ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων

Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

Lecture 3 – Basic Concepts (cont'd)

Basic Unknown Concepts:

Previous lecture: Introduction to nonlinearities

(1-dB CP, IP3)

Today:

- Thermal noise of a resistor
- Calculating Noise Figure (NF)
- Notion of Sensitivity
- Notion of Dynamic Range

Διάλεξη 3

Most Figures for today's lecture come from: B. Razavi, RF Microelectronics, Prentice Hall 1998.

Thermal noise voltage of a resistor

Assume resistor R, then <u>thermal</u> noise induced voltage across the resistor:

$$\overline{V_n^2} = 4 \ k \ T \ R$$
 = average squared voltage for unit bandwidth (V²/Hz)
k = 1.38 x 10⁻²³ Joules/K (Boltzmann constant)
T = absolute temperature (in Kelvin)

• Remark 1: stems from PSD =2 k TR of <u>two-sided</u> thermal noise which can be considered WHITE up to |f| < 100 GHz

• Remark 2: factor of 2 in voltage-squared above stems for considering both positive as well as negative freqs!

• Caution: PSD has units of power per unit bandwidth (Watt/Hz) but V_n^2 has units of V²/Hz [try BW=100MHz, R=1MOhm and test oscilloscope]

Remember Noise Figure?

noise figure =
$$\frac{SNR_{in}}{SNR_{out}}$$

- Noiseless system (ideal) \Rightarrow NF = 1 (0 dB).
- Noise Figure of Cascaded Systems (Friis eq.):

$$NF_{\text{tot}} = 1 + (NF_1 - 1) + \frac{NF_2 - 1}{A_{p1}} + \dots + \frac{NF_m - 1}{A_{p1} \cdots A_{p(m-1)}}$$

- NF of a stage decreases with gain of previous stage =>
- ...initial stages are the most (NF)-critical!

Power gain (not voltage gain)

• Basic principle: we refer SNRs to input source resistance R_sassuming VOLTAGE gain α from V_{in} to P and A_p from P to V_{out}

• Basic principle: we refer SNRs to input source resistance R_sassuming VOLTAGE gain α from V_{in} to P and A_v from P to V_{out}

noise figure =
$$\frac{SNR_{in}}{SNR_{out}} = \frac{\overline{V_{RS}^2} + \overline{(V_n + I_n R_S)^2}}{\overline{V_{RS}^2}} \implies (Per unit bandwidth)$$

= $1 + \frac{\overline{(V_n + I_n R_S)^2}}{\overline{V_{RS}^2}} \implies NF = 1 + \frac{\overline{(V_n + I_n R_S)^2}}{4kTR_S}$

Remark 1: NF is defined according to source (input) resistance!

...which means that in cascaded systems, the output resistance of a preceding stage is needed to calculate the NF of the immediately next stage (more on this later).

Remark 2: end-to-end voltage gain A (squared) is also needed!

 Condition for minimum NF does not coincide with maximum power transfer.

- Power loss = NF for Lossy circuits (!!!)
- ATTENTION: L is power LOSS (not GAIN), i.e L⁻¹ = G

- WARNING: the above assumes that NF_{LNA} is referenced to input resistance equal to the output resistance of the above Filter...
- Usually in RF engineering, all systems are designed around 50 (75) Ω hm.
- Don't forget: Friss equation utilizes power gains (not voltage gains).

Notion of Sensitivity:

"the minimum signal level that the system can detect with acceptable signalto-noise ratio".

Notion of Sensitivity:

"The minimum signal level that the system can detect with acceptable signalto-noise ratio".

 $P_{\text{in},\min}|_{dBm} = P_{RS}|_{dBm/Hz} + NF|_{dB} + SNR_{\min}|_{dB} + 10\log B$ $P_{\text{in},\min} = -174 \text{ dBm/Hz} + NF + 10\log B + SNR_{\min}$ ="noise floor F"

 WARNING1: small detectable signal (high sensitivity) might be the result of small communication bandwidth!

• WARNING2: SNR_{min} is the output, operational SNR.

Notion of Dynamic Range:

"The ratio of the maximum input level the system tolerates to the minimum signal level the system provides a <u>reasonable</u> signal quality".

 notice that the definition is rather vague => different metric in ADCs, different metric in RF systems...

 RF systems: min signal according to sensitivity... max signal according to intermodulation behavior, i.e. input level where IM3 products equal noise floor.
 => "Spurious-free dynamic range (SFDR)"

$$P_{IIP3} = P_{\rm in} + \frac{P_{\rm out} - P_{IM,\rm out}}{2}$$

Notion of Dynamic Range:

$$P_{IIP3} = P_{in} + \frac{P_{out} - P_{IM,out}}{2}$$

$$P_{IIP3} = P_{in} + \frac{P_{in} - P_{IM,in}}{2}$$

$$= \frac{3P_{in} - P_{IM,in}}{2},$$

$$P_{in} = \frac{2P_{IIP3} + P_{IM,in}}{3}$$

$$P_{in,max} = \frac{2R_{IP3} + F}{3}$$

$$P_{out} - P_{IM,out} = P_{in} - P_{IM,in}$$

(remember geometric proof of IIP3!)

$$SFDR = \frac{2P_{IIP3} + F}{3} - (F + SNR_{\min})$$
$$= \frac{2(P_{IIP3} - F)}{3} - SNR_{\min}.$$

Example: IIP3=-15 dBm, NF=9 dB, B=200kHz, SNR_{min}=12 dB

=> SFDR ≈ 53 dB

Think of the maximum relative level of interferer that a rec can tolerate for small desired input signal!

Questions?

Next lecture: Receiver Architectures!