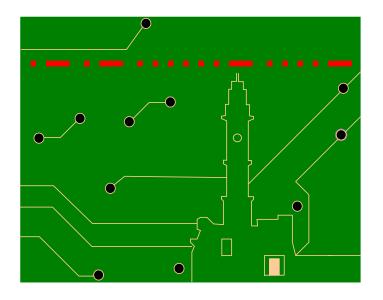
ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση)
Τηλεπικοινωνιακών Διατάξεων

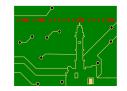
Διάλεξη 2

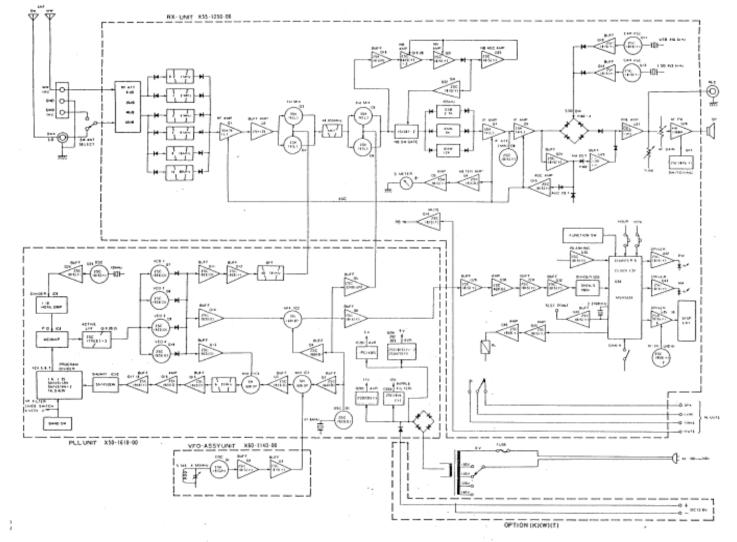


Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

Διάλεξη 2

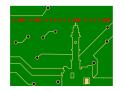
Most Figures for today's lecture come from: B. Razavi, RF Microelectronics, Prentice Hall 1998.



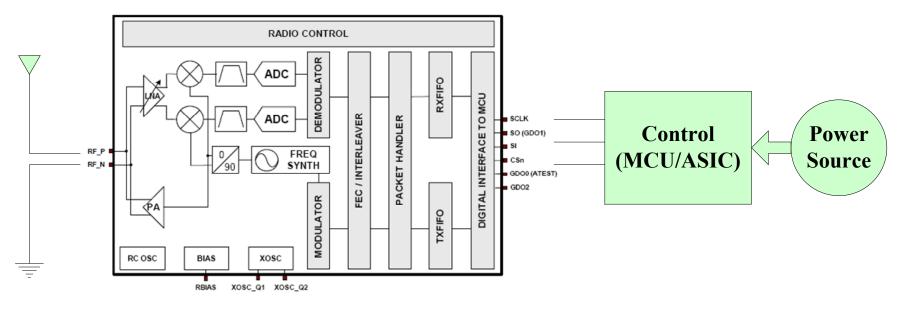


3

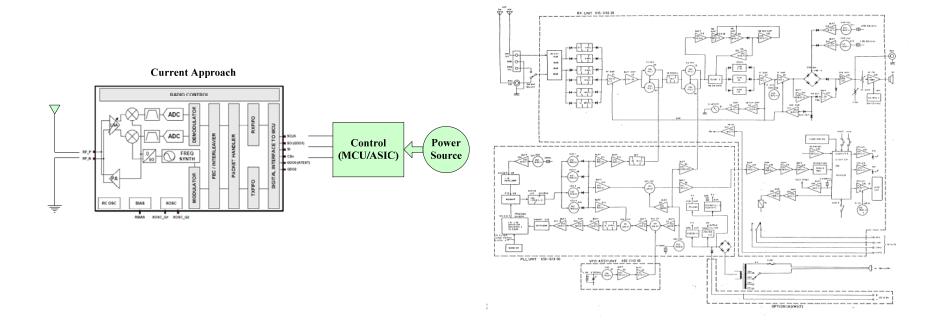
Intro: Radio Transceiver TODAY!



Current Approach

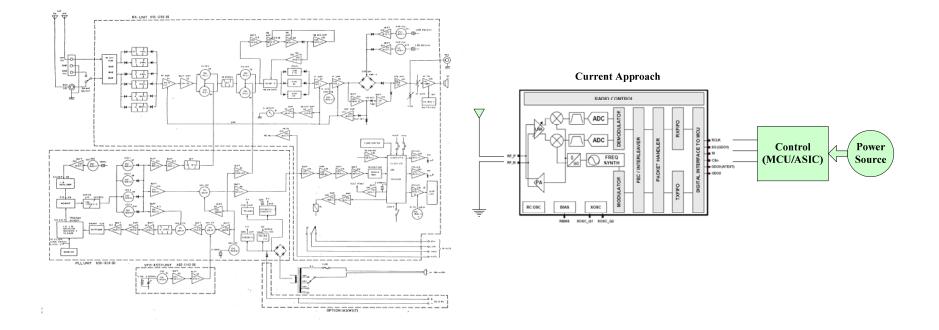


Real systems = non-ideal!



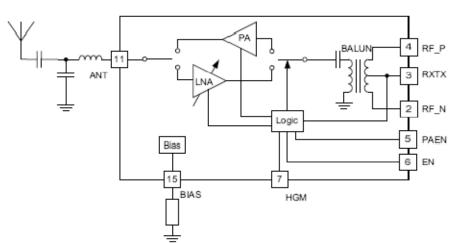
- Real systems, no matter what generation, exhibit non-idealities.
- Such non-idealities are (should be) well documented!

Real transceivers = non-ideal!



- Real systems, no matter what generation, exhibit non-idealities.
- Such non-idealities are (should be) well documented!

Example



2					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input IP3, High Gain Mode	HGM = 1		_Q		dBm
Nout reflection coefficient, S11	HGM = 1, measured at antenna port		-19		dB
RF Transmit					
Gain			14.1		dB
	P _{IN} = 4.5 dBm		13.8		dBm
Output power, Pout	P _{IN} = 0.5 dBm		12.2		dBm
	P _{IN} = -3.5 dBm		10.0		dBm
Power Added Efficiency, PAE	P _{IN} = 0.5 dBm		23.5		%
Output 1 dB compression			10.4		dBm
Output IP3			23		dBm
Output power variation over frequency	2400 – 2483.5 MHz, P _{IN} = 0.5 dBm		0.3		dB
Output power variation over power supply	2.0V – 3.6V , P _{IN} = 0.5 dBm		3.2		dB
Output power variation over temperature	-40°C - 85°C, P _{IN} = 0.5 dBm		1.1		dB
2nd harmonic power	The 2nd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.		-14		dBm
3rd harmonic power	The 3rd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.		-28		dBm

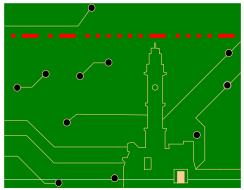
Περιεχόμενα Διάλεξης 2

Basic Unknown Concepts:

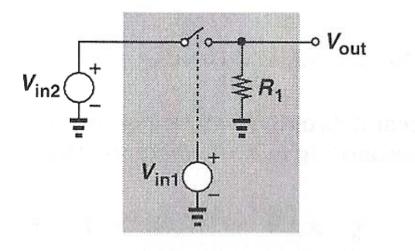
- Spectral Growth from LINEAR systems
- Gain Compression
- Desensitization
- Intermodulation Products and IP3
- Intro to Noise Figure (NF) calculation of NF in next

lecture.

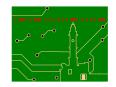
Tradeoff between IP3 and NF



Can a LINEAR system produce new freqs?



• Answer: YES, linear TIME-VARIANT systems, as the (sampling circuit) above!



$$V_{\text{in2}} \underbrace{\int_{\underline{u}}^{+}}_{\underline{u}} \underbrace{\int_{\underline{u}}^{+}}_{V_{\text{in1}}} V_{\text{out}}} V_{\text{out}}(f) = V_{\text{in2}}(f) * \sum_{n=-\infty}^{+\infty} \frac{\sin(n\pi/2)}{n\pi} \delta\left(f - \frac{n}{T_1}\right)$$
$$= \sum_{n=-\infty}^{+\infty} \frac{\sin(n\pi/2)}{n\pi} V_{\text{in2}}\left(f - \frac{n}{T_1}\right),$$

• Linear TIME-VARIANT systems: spectral growth.

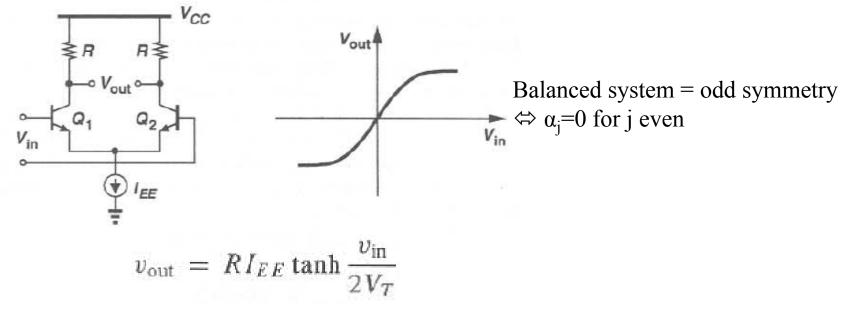
Proof

• In this lecture, we focus on time <u>invariant</u> non-linearities.

Today: non-linearity, its impact and quantification in time-INVARIANT systems

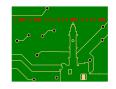
 $y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) + \cdots,$

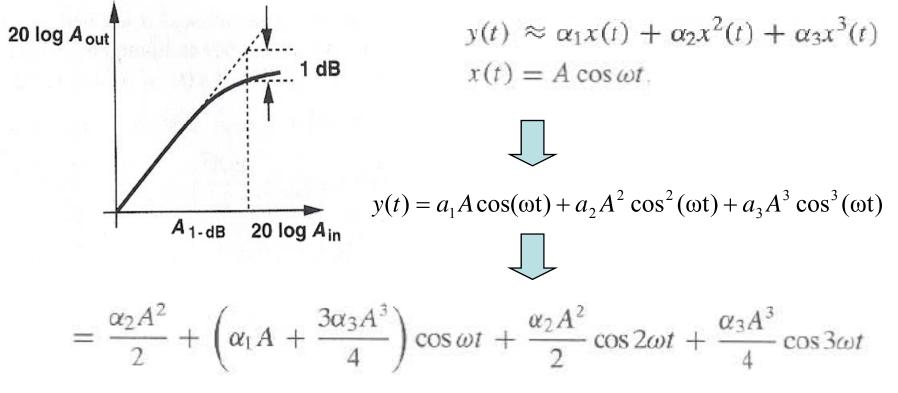
- assume $\{a_i\}$ time invariant (otherwise, system is time-variant)
- Special case: balanced systems.



11

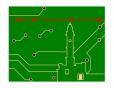
Effects of non-linearity: Gain Compression



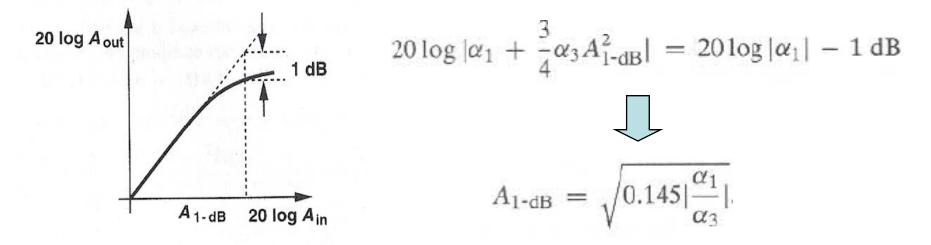


- For A small (small signal model), term $\alpha_3 A^3$ negligible...
- For A not small however and α_3 negative, gain is compressed!

Gain Compression

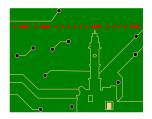


Definition: Level of INPUT signal where the following holds:



Measure of the maximum range of INPUT signal.

Effects of non-linearity: Desensitization



 Desensitization: a strong <u>unwanted</u> signal at the input decreases the desired signal output! [compare it with gain compression]

$$x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

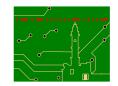
$$y(t) = \left(\alpha_1 A_1 + \frac{3}{4}\alpha_3 A_1^3 + \frac{3}{2}\alpha_3 A_1 A_2^2\right) \cos \omega_1 t + \cdots$$

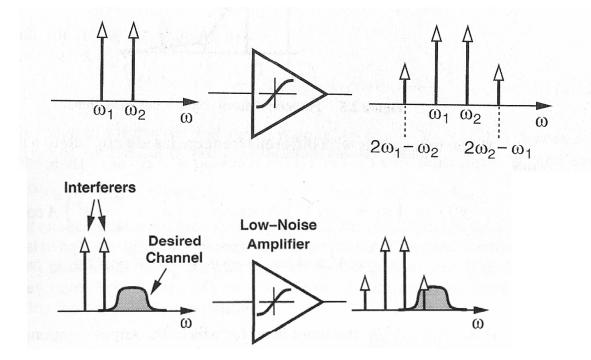
$$(1) \quad a_1 \gg \frac{9}{4}a_3 A^2$$

$$y(t) = \left(\alpha_1 + \frac{3}{2}\alpha_3 A_2^2\right) A_1 \cos \omega_1 t + \cdots$$

14

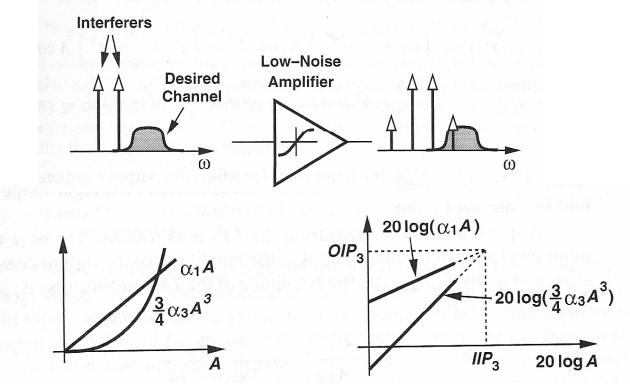
Non-linearity: Intermodulation





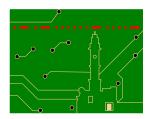
- 3^{rd} power term: if $\omega_1 \omega_2$ small, then intermodulation products in the vicinity of ω_1 and ω_2 .
- Odd power terms: exist in "balanced" systems (no even terms)!

Non-linearity: Intermodulation



 Input and output 3rd intercept point (IIP3 and OIP3) quantify the nonlinearity due to 3rd power term.

IP3 vs NF Tradeoff Preview (will be analyzed at the end of the lecture)

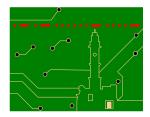


 IP3 of each stage is effectively scaled down by total gain preceding that stage => latter stages become more critical...

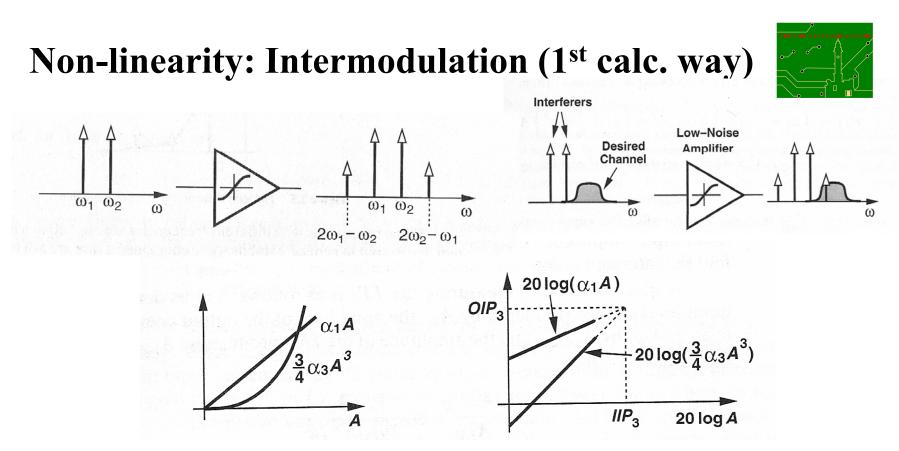
NF: Friss equation indicates that the noise contributed by
 each stage decreases as the gain preceding the stage increases
 => first stages are the most critical...

• NF: if a stage exhibits attenuation, then the noise figure of the following circuit is amplified!

IP3 vs NF Tradeoff Preview

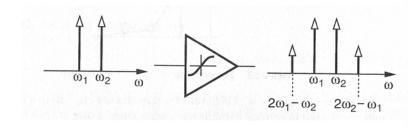


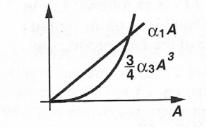
roughly, greater gain =>smaller NF but also smaller IP3!

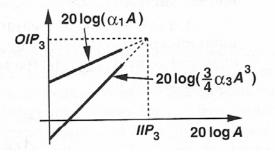


- Input and output 3rd intercept point (IIP3 and OIP3) quantify the nonlinearity due to 3rd power term.
- 3rd power term: if $\omega 1 \omega 2$ small, then intermodulation products in the vicinity of $\omega 1$ and $\omega 2$.
- Odd power terms: exist in "balanced" systems (no even terms)!

Non-linearity: Intermodulation (1st calc. way)







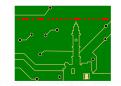
$$x(t) = A\cos(\omega_{1}t) + A\cos(\omega_{2}t) \Rightarrow$$

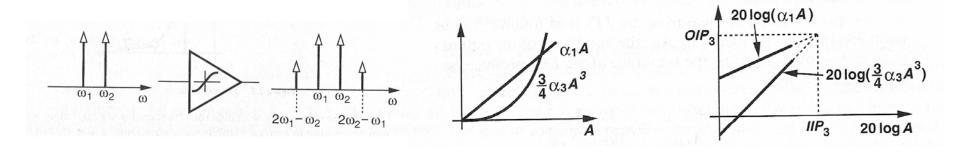
$$y(t) = a_{1}x(t) + a_{2}x^{2}(t) + a_{3}x^{3}(t) =$$

$$= \left(a_{1} + \frac{9}{4}a_{3}A^{2}\right)A\cos(\omega_{1}t) + \left(a_{1} + \frac{9}{4}a_{3}A^{2}\right)A\cos(\omega_{2}t) + \frac{3}{4}a_{3}A^{3}\cos((2\omega_{1} - \omega_{2})t) + \frac{3}{4}a_{3}A^{3}\cos((2\omega_{2} - \omega_{1})t) + \dots\right)$$

$$a_1 >> \frac{9}{4}a_3A^2 \Longrightarrow |a_1|A_{IP3} = \frac{3}{4}|a_3|A_{IP3}^3 \Longrightarrow A_{IP3} = \sqrt{\frac{4}{3}\frac{|a_1|}{|a_3|}}$$

Non-linearity: Intermodulation (1st calc. way)

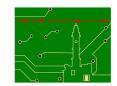


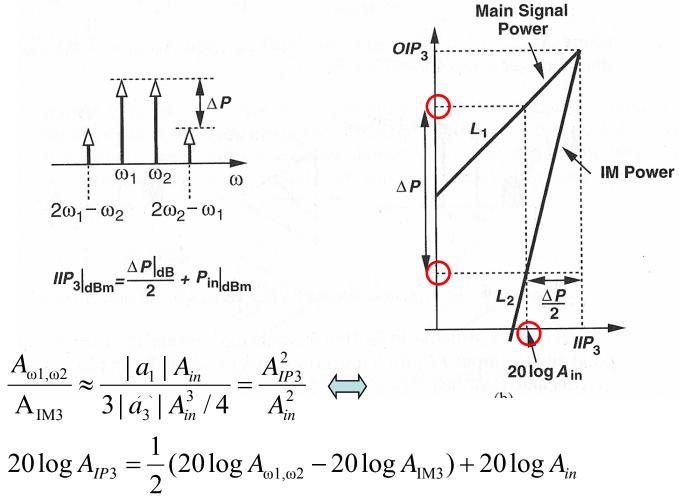


$$|a_1| \gg \frac{9}{4} |a_3| A^2 \Longrightarrow |a_1| A_{IP3} = \frac{3}{4} |a_3| A_{IP3}^3 \Longrightarrow A_{IP3} = \sqrt{\frac{4}{3} \frac{|a_1|}{|a_3|}}$$

- Calculated at the input of the system (e.g. LNA): input IP3...
- Calculated at the output of the system (e.g. PA): output IP3...
- Drawback of this method: IP3 is well beyond allowable input (e.g. supply voltage)
- Solution: extrapolation (2nd calc. way)

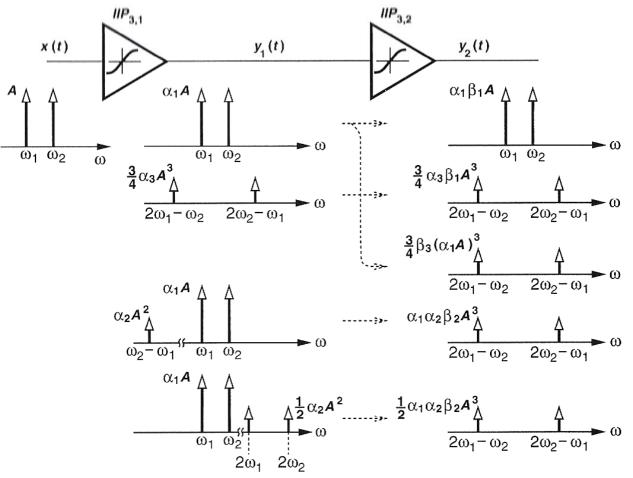
Non-linearity: Intermodulation (2nd calc. way)





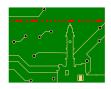
Intermodulation of Cascaded Systems





- IP3 calculation for multiple stages (cascade).
- Last products can be omitted in narrowband systems.

Intermodulation: Cascaded Systems?



 $y_1(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t)$ $y_2(t) = \beta_1 y_1(t) + \beta_2 y_1^2(t) + \beta_3 y_1^3(t),$

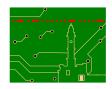
$$y_{2}(t) = \beta_{1}[\alpha_{1}x(t) + \alpha_{2}x^{2}(t) + \alpha_{3}x^{3}(t)] + \beta_{2}[\alpha_{1}x(t) + \alpha_{2}x^{2}(t) + \alpha_{3}x^{3}(t)]^{2} + \beta_{3}[\alpha_{1}x(t) + \alpha_{2}x^{2}(t) + \alpha_{3}x^{3}(t)]^{3}$$

 $y_2(t) = \alpha_1 \beta_1 x(t) + (\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3) x^3(t) + \cdots$

$$A_{IP3} = \sqrt{\frac{4}{3}} \left| \frac{\alpha_1 \beta_1}{\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3} \right|$$

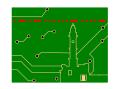
IP3 calculation for multiple stages (cascade).

Intermodulation: Cascaded Systems?



$$\begin{split} A_{IP3} &= \sqrt{\frac{4}{3}} \frac{\alpha_1 \beta_1}{\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3} \\ \frac{1}{A_{IP3}^2} &= \frac{3}{4} \frac{|\alpha_3 \beta_1| + |2\alpha_1 \alpha_2 \beta_2| + |\alpha_1^3 \beta_3|}{|\alpha_1 \beta_1|} \\ &= \frac{1}{A_{IP3,1}^2} + \frac{3\alpha_2 \beta_2}{2\beta_1} + \frac{\alpha_1^2}{A_{IP3,2}^2}, \\ \frac{1}{A_{IP3}^2} &\approx \frac{1}{A_{IP3,1}^2} + \frac{\alpha_1^2}{A_{IP3,2}^2} \end{split}$$

Intermodulation: Cascaded Systems?



$$\frac{1}{A_{IP3}^2} \approx \frac{1}{A_{IP3,1}^2} + \frac{\alpha_1^2}{A_{IP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IP3,3}^2} + \cdots,$$

- <u>Approximate</u> IP3 calculation for multiple stages (cascade).
- Gain higher than unity scales down IP3 of later stage =>
- ...scales down overall IP3 =>
- ...later stages must have higher IP3 => they become increasingly important!

Noise Figure



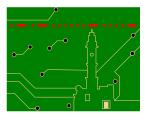
noise figure =
$$\frac{SNR_{in}}{SNR_{out}}$$

- Noiseless system (ideal) \Rightarrow NF = 1 (0 dB).
- Noise Figure of Cascaded Systems (Friis eq.):

$$NF_{\text{tot}} = 1 + (NF_1 - 1) + \frac{NF_2 - 1}{A_{p1}} + \dots + \frac{NF_m - 1}{A_{p1} \cdots A_{p(m-1)}}$$

- NF of a stage decreases with gain of preceding stage =>
- ...initial stages are the most (NF)-critical!

Summary

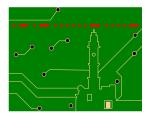


IP3 of each stage is effectively scaled down by total gain
 preceding that stage => latter stages become more critical...

NF: Friss equation indicates that the noise contributed by
 each stage decreases as the gain preceding the stage increases
 => first stages are the most critical...

• NF: if a stage exhibits attenuation, then the noise figure of the following circuit is amplified!

IP3 vs NF tradeoff!



roughly, greater gain =>smaller NF but also smaller IP3!

Ερωτήσεις?

