uW Backscatter Sensors for Low Cost Agricultural Wireless Sensor Networks <u>Spyridon Nektarios Daskalakis, Apostolos Georgiadis, George Goussetis and Manos M. Tenzteris</u> sd70@hw.ac.uk, apostolos.georgiadis@ieee.org, g.goussetis@hw.ac.uk, etentze@ece.gatech.edu SCHOOL OF ENGINEERING & PHYSICAL SCIENCES, HERIOT-WATT UNIVERSITY, EDINBURGH, SCOTLAND, UNITED KINGDOM

Backscatter Communication Background

1. Low cost and low power sensing:

- Commercial WSN Radios \rightarrow Cost and Power Constraints.
- "One Use" Environmental Sensors for Agricultural Applications.
- 2. Necessity:
- Wireless communication!
- Low cost, scalability, ultra low power.

Solution: Backscatter Radio → RFID technology

- Antenna load switching @ Fsw.
- Single transistor (!) wireless communication.
- µWatt communication.

FM Ambient Backscatter Communication

- 1. Communication using reflected ambient signals.
- 2. Simplified communication scheme \rightarrow only a **Receiver** and a **Tag**.

Low-Cost Batteryless Sensor Tags

- Measure temperature difference (Tleaf -Tair): Canopy temperature related with water stress.
- 2. Capacitive Soil Moisture Sensor.
- Solar Powered + Super Cap.

Custom Low Cost Receiver

- Receiver: Low cost software defined radio \rightarrow RTL SDR (Cost: 18\$).
- Software: Linux + GNU Radio + MATLAB.
- Channel fluctuation \rightarrow Bitrate and efficient filtering: Trade off.

Reader FM Antenna

Indoor Demos & Future Work

FM Station: BBC 95.8 MHz Transmission power: 250 KW Measured indoor max power: -51 dBm Edinburgh

• GOAL: increase the "tagreader" distance.

Modulation Techniques

Edinburgh Heriot-Watt University lab.

Future Goals:

- Better RF front-end \rightarrow Increase range.
- 2. Ambient solar & RF energy harvesting.
- 3. An "All in one" PCB on paper substrate.
- 4. Android smartphone FM receiver.
- Use nanotechnology:
- Flexible low cost substrates
- Nanoparticle conductive inks
- **Easily fabricated tags**
- Nanomaterial based passive sensors (e.g. gas, humidity)

Silver Nanoparticle Inks, Resolution: 20 µm – 50 µm