

ELEctromagnetic DIAgnostics Research Center

ELEDIA@UniTN (University of Trento) Via Sommarive 9, 38123 Trento, Italy E-mail: <u>andrea.massa@unitn.it</u> Web: www.eledia.org

EM Positioning for IoT <u>Fundamentals and Advances</u>

Federico Viani, Alessandro Polo, Andrea Massa

IC1301 WIPE Cost Action – 2016 International Spring School April 18-20, 2016 – Bologna, Italy

Copyright Notice

Tutti i diritti relativi ai contenuti del presente documento sono riservati. È vietato qualsiasi utilizzo, totale o parziale, dei contenuti inseriti nel presente documento, ivi inclusa la memorizzazione, riproduzione, rielaborazione, diffusione o distribuzione dei contenuti stessi mediante qualunque piattaforma tecnologica, supporto o rete telematica, senza previa autorizzazione scritta da parte dell'autore.

All rights to the content of this document are reserved. Any use, in whole or in part, of the contents included in this document, including the storage, reproduction, editing, dissemination or distribution of their content through any technology platform, support, or computer network is forbidden without the prior written permission from the author.

Outline

- EM Positioning for IoT Intro and Motivation
- Active Localization of Mobile Devices
 - Localization through optimization
 - Semantic-based probabilistic approach

• Passive Localization of Transceiver-free Targets

- Target tracking
- Crowd detection
- Indirect occupancy estimation
- Conclusions and Actual Trends

"The IoT is a giant wireless network of connected *things*, which also includes people. The relationship will be between people-people, people-things, and things-things."

Forbes, 2015

IoT Evolution and Trends

First smart object: Internet Coke-machine

Transmits info about: • Number of cokes

• Temperature

Smart Objects

Things understand the social behavior/needs of people

Social Objects

• ...

Acting Objects

Example: Google Connected Car Makes autonomous actions:

• Drives from A to B

Objects adapt their

actions according to:

Human behavior

Relational models Authority ranking

- Stops at intersections
- Automatic parking

IoT Evolution and Trends

© 2016 - ELEDIA Research Center

IoT Technological Challenges

Objects-People interactions introduce Nonstationarity and Spatio-temporal Variability in IoT architectures

Solutions under Investigation Novel Antenna Design Passive Communication

Near-field Focused Antenna

- **Ubiquitous Connectivity**
- Autonomy and Resilience
- Low-cost

CHALLENGES

Mobility

- Wireless Power Transfer
- Backscatter Communication Energy Harvesting
- RFID Technology Chipless Tags Textile Substrates
- - Opportunistic EM Localization Ultrawideband Technology

IoT Technological Challenges

Objects-People interactions introduce Nonstationarity and Spatio-temporal Variability in IoT architectures

Relevance of Position Information

Examples of location-based services

Indoor Navigation (you are here)

Emergency Team Localization

Smart Building management (e.g., smart lighting)

Service: Provide best routes to fit user needs Service: Support search&rescue operation / finding way of escape Service: Building plants usage only where needed for energy saving

Relevance of Position Information

Examples of location-based services

Indoor Navigation Emergency Team Smart Building Localization (you are here) management (e.g., smart lighting) MESH Acquisition of IoT data is useless without the knowledge of the user position! INTEGRATED

Service: Provide best routes to fit user needs Service: Support search&rescue operation / finding way of escape Service: Building plants usage only where needed for energy saving

OBJECTIVE

Exploit IoT for EM Positioning

Target Localization through **Opportunistic** Exploitation of Existing Wireless IoT Devices

© 2016 - ELEDIA Research Center

OBJECTIVE

Exploit IoT for EM Positioning

Target Localization through **Opportunistic** Exploitation of Existing Wireless IoT Devices

Solutions for EM Positioning by IoT

Active vs Passive

Active

<u>Target is the transceiver</u> Processing of received EM power of active wireless links

Passive

<u>Target is transceiver-free</u> Analysis of EM perturbation caused by passive targets

Direct vs Indirect

Cooperative vs Non-Cooperative

Cooperative Target

Non-Cooperative

Target

active)

to the localization system

Target Interacts/participates to the localization process (e.g., through dedicated applications)

Outline

- EM Positioning for IoT Intro & Motivation
- <u>Active Localization of Mobile Devices</u>
 - Localization through optimization
 - Semantic-based probabilistic approach
- Passive Localization of Transceiver-free Targets
 - Target tracking
 - Crowd detection
 - Indirect occupancy estimation
- Conclusions and Actual Trends

Active Localization

Objective Accurate tracking of wireless devices in indoor domains exploiting existing infrastructures

Applications & Goals

MAIN APPLICATIONS

location-based services through end-user devices

- Indoor Navigation
- Personalized Advertising
- benefits for the user

- Marketing Analysis
- Flows Management

benefits for the provider

GOALS

- <u>Compatibility with commodity devices</u>
- <u>Exploitation of existing wireless IoT already</u> <u>connected</u>

localization technologies?..

Which Wireless Technology?

opportunistic approach?..

Exploit Wireless Signal Characteristic

which information?

Time of Arrival (TOA)

Requires accurate time synchronization

Angle of Arrival (AOA)

Received signal strength (RSS)

- Requires dedicated infrastructure and calibration
- Very noisy indicator
- Amplitude only information
- No impact on the infrastructure
- Available on all transceivers

Exploit Wireless Signal Characteristic

oppositeum intrichitege to are h ?...

which information?

Time of Arrival (TOA)	Requires accurate time synchronization
Angle of Arrival (AOA)	Requires dedicated infrastructure and calibration
Received signal strength (RSS) opportunistic approach	 Very noisy indicator Amplitude only information No impact on the infrastructure Available on all transceivers

[1] F. Viani, F. Robol, A. Polo, P. Rocca, G. Oliveri, and A. Massa, "Wireless architectures for heterogeneous sensing in smart home applications – Concepts and real implementations," Proceedings of the IEEE – Special Issue on 'The Smart Home,' Invited Paper, vol. 101, no. 11, pp. 2381-2396, November 2013 (DOI 10.1109/JPROC.2013.2266858).

RSS-based System Architecture

RSS-based Methodologies

Fingerprinting

🗕 RSS signature map

Which cell has the <u>best-matching signature</u>?

- Accuracy
- Long offline training
- Prone to environment changes

Propagation Based

Numerical EM model

- Scalability, No Training
- Prone to EM model accuracy
- Complex propagation in indoor

proposed method ..

Proposed Localization Method

[1] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Problems* – 25th Year Special Issue of Inverse Problems, Invited Topical Review, vol. 25, pp. 1-41, December 2009.

propagation term..

Propagation-based Term

WIRELESS PROPAGATION

Minimize difference between estimated and measured RSS

$$\Theta(x, y, \overline{\gamma}) = \frac{\sum_{n=1}^{N} \left\{ \left[RSS_n(x, y, \overline{\gamma}) - RSS(\zeta(x_n, y_n)) \right]^2 \right\}}{\sum_{n=1}^{N} \left\{ \left[RSS(\zeta(x_n, y_n)) \right]^2 \right\}}$$

where

 $RSS(\zeta(x_n, y_n))$

 $\overline{\gamma} = [P_0, \lambda, \rho]$

<u>RSS measured</u> by *n*-th AP, proportional to the EM field

$$\zeta(x_n, y_n) = \int_{D^T} J^T(x', y') G(x', y'|x_n, y_n) dx' dy'$$

EM <u>field measurements</u> by WI-Fi APs

RSS estimated by the EM propagation model (log-shadow path loss)

$$RSS_n(x, y, \overline{\gamma}) = P_0 - 10\lambda \log\left(\frac{\sqrt{(x - x_n)^2 + (y - y_n)^2}}{d_0}\right) - \rho$$

EM channel parameters vector

used in the propagation model

N

Number of APs at (x_n, y_n)

propagation model..

Propagation-based Term

Probabilistic-based Term

LOCALIZATION FRAMEWORK

Experimental Validation

Multi-client (App) / server software framework

RSS measurements **Localization Server** estimated position Run & compare algorithms ٠ i **Replay logs** Nireless links • Interactive map & tools Wi-Fi or 3G channel ٠ **Interactive Map Real-time Analysis** SW App CIOECUD Scan Wi-Fi networks (RSS) TX RSS to remote server Show position on device **Live Interaction Multiple Location** Algorithms Support

validation scenario ..

© 2016 - ELEDIA Research Center

Logging, Emulation

SCENARIO

Office facility with standard Wi-Fi infrastructure

© 2016 - ELEDIA Research Center

REAL-TIME DEMONSTRATION Propagation only vs. Propagation + Probabilistic

Propagation + Probabilistic

Outline

- EM Positioning for IoT Intro & Motivation
- Active Localization of Mobile Devices
 - Localization through optimization
 - Semantic-based probabilistic approach

Passive Localization of Transceiver-free Targets

- Target tracking
- Crowd detection
- Indirect occupancy estimation
- Conclusions and Actual Trends

Objective

Passive Localization

Passive tracking of wireless devices in indoor domains exploiting wireless propagation only

Problem Geometry

Background – Inhomogeneous Region

Field measured without the target $\zeta(\underline{r}_m)$ m=1,...,M

Problem Geometry

Background with the Target \underline{r}_2 \underline{r}_1 Generic EM Source Incident \underline{r}_3 wave Measurement Perturbation Points Target $\underline{r}_{m}; m = 1, ..., M$ \underline{r}_M $\underline{r} = (x, y)$ r_m

Field measured with the target

$$\xi(\underline{r}_m) m = 1, \dots, M$$

Field Equivalence Principle

Background with the Target

Equivalent Source

Field Equivalence Principle

Problem Formulation

ТΧ

Localization Approach

How to solve the localization problem at hand?

Requirements:

Simplicity

Flexibility

Real Time

Learning by Example method

samples are needed...

Proposed Approach – Binary Problem

Training data set

$$(\underline{\Gamma}_{c}^{(t)}) = \left\{ \underline{E}_{t}; \underline{r}_{c}, \chi_{c}; c = 1, \dots, C; t = 1, \dots, T \right\} \qquad \chi_{c} \in [-1, 1]$$

Class of membership is exactly determined for each input data

Proposed Approach - Classification

Drawbacks

(1) Unbalanced Additional Information

Usually the number of samples of class χ =-1 (i.e., Absence) is larger than that class χ =+1 (i.e., Presence)

The classification function is biased towards the class with more samples

(2) Good/Bad Classification?

No information on the reliability of the classification is available since the output is of binary nature.

How to cope with these drawbacks?

Step 1 – Binary Classification

PROBLEM

non-linearly separable classes (in the input space)

PROPOSED SOLUTION

Non-linear SVM

© 2016 - ELEDIA Research Center

Probabilistic approach gives information on the distance of the input samples from the classification function

Step 2 – A-posteriori Probability

A-Posteriori Probability:

$$\Pr\{\chi_{c} = 1 \mid (\underline{\Gamma})\} = \frac{1}{1 + \exp\{\gamma \hat{\Phi}(\underline{\rho}(\underline{\Gamma})) + \delta\}} \quad c = 1, ..., C$$

with γ and δ estimated by the minimization of [*]:

$$Y\{\gamma,\delta\} = -\sum_{s=1}^{s} \sum_{c=1}^{c} \left\{ \frac{\chi_{c}^{(s)} + 1}{2} \log \left[\frac{1}{1 + \exp(\gamma \hat{\Phi}_{c}^{(s)} + \delta)} \right] + \left(\frac{1 - \chi_{c}^{(s)}}{2} \right) \log \left[\frac{\exp(\gamma \hat{\Phi}_{c}^{(s)} + \delta)}{1 + \exp(\gamma \hat{\Phi}_{c}^{(s)} + \delta)} \right] \right\}$$

where

$$\hat{\Phi}_{c}^{(s)} = \hat{\Phi}\left(\underline{\varphi}\left(\underline{\Gamma}_{c}^{(t)}\right)\right)$$

$$\left\{ \left(\underline{E}, \underline{r}_{c}, \chi_{c}; c = 1, \dots, c\right)^{(s)}; s = 1, \dots, S \right\} \qquad S < T$$

[*] J. Platt, "Probabilistic outputs for support vector machines and comparison to regularized likelihood methods," in *Advances in Large Marging Classifiers*, A. J. Smola , P. Barlett, B. Scholkopf, D. Shuurmans (Eds.), MIT Press, 1999

Step 2 – A-posteriori Probability

Experimental Validation - Outdoor

Demo – Outdoor Scenario

Experimental Validation - Indoor

Scenario • standard office • obstacles

M = 8

Domain Size [m]

$$X_{D} = 7$$
$$Y_{D} = 4$$

Frequency [GHz]

$$f = 2.4$$

Demo – Indoor Scenario (1/3)

Absence/Presence/Movement of Targets

- Maximum of Probability
- Estimated Position (Kalman filtered)

Heterogeneous Movements

- Maximum of Probability
- Estimated Position (Kalman filtered)

Demo – Indoor Scenario (3/3)

Unknown Obstacle

- Maximum of Probability
- Estimated Position (Kalman filtered)

Outline

- EM Positioning for IoT Intro & Motivation
- Active Localization of Mobile Devices
 - Localization through optimization
 - Semantic-based probabilistic approach
- Passive Localization of Transceiver-free Targets
 - Target tracking
 - <u>Crowd detection</u>
 - Indirect occupancy estimation
- Conclusions and Actual Trends

Passive Crowd Detection

Objective Detection of crowd presence in indoor areas exploiting standard wireless networks already deployed

Passive Crowd Detection - Scenario

Crowd perturbs the EM propagation of standard wireless devices: **Opportunistic Localization**

© 2016 - ELEDIA Research Center

Challenges of "Opportunism"

- **Signal stability**. Standard wireless devices are designed to minimize effects of undesired perturbations:
 - Adaptive power control
 - Frequency hopping strategies
 - Jamming reduction procedures
- **Limited information**. EM propagation is represented by simplified/rough quality indicators (e.g., RSSI, LQI)
- **Standardization**. Data acquisition method is regulated by standards (e.g., IEEE802.11)

«Target signature extraction» is very complex without dedicated hardware/systems!

Crowd Detection Approach

RSS Data Acquisition

© 2016 - ELEDIA Research Center

1 RSS Data Acquisition

RSSI is strongly affected by:

- Metallic obstacles
- Objects and forniture
- In-band EM interferences
- (Low-cost) hardware inaccuracies
- Antenna orientations
- Human presence

 f_{ugp} f_{ss} $f_{$

The fusion of such noise sources causes complex and umpredictable RSS pattern

- Multiple frequency content
- High time variability

Challenge

Detect/extract/learn the «target signature» in complex RSS data

2 Feature Extraction

IDEA: analyze RSS in a transformed domain

Wavelets: Introduction

[*] I. Daubechies, "Orthonormal bases of compactly supported wavelets", Communications on Pure and Applied Mathematics, vol. 41, no. 7, p. 909–996, October 1988

[*] I. Daubechies, "Orthonormal bases of compactly supported wavelets", Communications on Pure and Applied Mathematics, vol. 41, no. 7, p. 909–996, October 1988

discretization detail

Applied Mathematics, vol. 41, no. 7, p. 909–996, October 1988

Signature Learning

3 Learning by Example Strategy

Experimental Validation

Test Case 1 – Single Day

Test Case 2 - Weekend

Test set acquisition

Date: from 13/03/2015, Friday to 16/03/2015, Monday Duration: 108 hours Test samples: 407551

<u>Performance</u>

- False positive detection: < 3%
- •False negative detection: < 2%

With threshold probability $Pr_{th} \{C = +1\} = 0.25$

Empty state correctly estimated during the whole weekend

Test Case 3 – Intrusion Detection

Test set acquisition

Date: 20/03/2015, Friday Duration: 32 hours Test samples: 128740

Night (unexpected) movement detected <u>in the corridor close</u> <u>to the monitored one</u>!

74

Outline

- EM Positioning for IoT Intro & Motivation
- Active Localization of Mobile Devices
 - Localization through optimization
 - Semantic-based probabilistic approach
- Passive Localization of Transceiver-free Targets
 - Target tracking
 - Crowd detection
 - Indirect occupancy estimation
- Conclusions and Actual Trends

Objective

Indirect Occupancy Estimation

Estimate indoor occupancy level only exploiting environmental data acquired by IoT devices

Occupancy Estimation: Basic Principle

PRINCIPLEPeople presence causes two opposite vertical profilesof temperature and humidity

Occupancy Estimation: Basic Principle

PRINCIPLEPeople presence causes two opposite vertical profilesof temperature and humidity

IoT Hardware Platform

SENSORS

- Temperature (°C) and humidity (%RH)
- Temperature Accuracy: ±0.3°C
- Humidity Accuracy: ±2%RH

FEATURES

- Real-time data
- Flexible acquisition (periodic or on-demand)
- **Remote interaction** with sensors (user commands)
- Low power (<1.5mA in standby)
- Sub-GHz working frequency (868 MHz)

INSTALLATION

- Simple **deployment** (small, robust, batteryoperated devices)
- System lifetime > 15 months

DEVICE

- Size: 85mm x 60mm x 20mm
- Consumptions: 0.9 mA (stand-by), 15 mA (tx/rx)
- Voltage: 3V
- Working frequency: 868 MHz

IoT Platform: Key Features

Occupancy Estimation: How?

3/4 METHOD Process the <u>slope of the vertical profiles</u> to identify an indicator of occupancy

^{© 2016 -} ELEDIA Research Center

Deployment @ "Sala dei 500"

- Commissioned in 1494 by Girolamo Savonarola, expanded in 1555 by Cosimo I De' Medici
- Largest and most important (historically and artistically) hall in <u>"Palazzo Vecchio"</u> <u>in Florence</u>
- Largest "civil power" hall in Italy
- Hosts sculptures and paintings made between 1490 and 1600 (including <u>Michelangelo</u>, Vasari, Giambologna, Ghirlandaio, Passignano, Francavilla,...)

Sala dei 500, Firenze

"Pisa attaccata dalle truppe di Firenze", Giorgio Vasari

"Genio della Vittoria" Michelangelo Buonarroti

Deployment @ "Sala dei 500"

Dimensions: 54m[L] x 23m[W] x 18m[H]

Panelled ceiling 42 squares – woods and gold

Paintings 6 wall frescos

Sculptures *Pedestal statues*

Monitoring campaign

<u>Number of nodes</u>: 22 indoor, 1 outdoor <u>Start date</u>: 18 October 2012 <u>Acquisition time interval</u>: 10 minutes

Three monitoring layers

Deployment @ "Sala dei 500"

© 2016 - ELEDIA Research Center

Occupancy - Experimental Validation

^{© 2016 -} ELEDIA Research Center

Occupancy - Experimental Validation

^{© 2016 -} ELEDIA Research Center

Low Occupancy Example

LOW OCCUPANCY

Museum is closed (Christmas, 25 December 2013)

SVR parameters:

<u>Training set size</u> T=1008 <u>Hyperparameter</u> C=100 Gamma RBF G=0.1

Estimated Occupancy [%]

© 2016 - ELEDIA Research Center

Standard Occupancy Example

80

Estimated

STANDARD OCCUPANCY

Museum is open (Standard weekday, 24 October 2013)

SVR parameters:

<u>Training set size</u> T=1008 <u>Hyperparameter</u> C=100 <u>Gamma RBF</u> G=0.1

Estimated Occupancy [%]

$\int_{0}^{100} \int_{0}^{100} \int_{0}^{10} \int_{0}^{100} \int_{0}^{100} \int_{0}$

---- Actual

© 2016 - ELEDIA Research Center

High Occupancy Example

HIGH OCCUPANCY

Notte Bianca (Special Event, 30 April 2013)

> NOTTE* BIANCA FIRENZE

SVR parameters: <u>Training set size</u> T=1008 <u>Hyperparameter</u> C=100 Gamma RBF G=0.1

Estimated Occupancy [%]

Derivative Profiles

Conclusions

- Opportunistic Approaches for Wireless Localization
- EM information from IoT Devices can be Exploited for Localization
- Different Approaches for Different Scenarios and Requirements

Current Trends

- Sensor Fusion Strategies Exploiting Heterogeneous IoT Devices/Technologies (RFID, wearables, etc.)
- Investigation of Hybrid Solutions "*p-active*" (passive and active)

ELEctromagnetic DIAgnostics Research Center

ELEDIA@UniTN (University of Trento) Via Sommarive 9, 38123 Trento, Italy E-mail: <u>andrea.massa@unitn.it</u> Web: www.eledia.org

EM Positioning for IoT <u>Fundamentals and Advances</u>

Federico Viani, Alessandro Polo, Andrea Massa

IC1301 WIPE Cost Action – 2016 International Spring School April 18-20, 2016 – Bologna, Italy