

Gaetano Marrocco

Pervasive Electromagnetic Lab University di Roma "Tor Vergata" <u>Gaetano.marrocco@uniroma2.it</u>

www.pervasive.ing.uniroma2.it

Pervasive Electromagnetics Lab

Credits

Carla **STIFANO**, Cecilia **OCCHIUZZI**, Cristina **CACCAMI** Stefano **PETTINARI**, Rossella **LODATO**, Stefano **MILICI** Sara **AMENDOLA**, Alessia **PALOMBI**, Giordano **CONTRI** Carmen **VALLESE**, Diego **CERULLI**, Stefano **CIPPITELLI**

0 - 0 - 0

prof. Luigi BIANCHI, prof. Alessandra Bianco, prof. Corrado Di Natale, prof. Pier Paolo Valentini

RADIO6ENSE srl

H2020 SCISSORS

www.pervasive.ing.uniroma2.it

UNIVERSITY OF ROMA TOR VERGATA

Pervasive Electromagnetics Lab

Pervasive Electromagnetics Lab

Logan's Run (1976)

Pervasive Electromagnetics Lab

Self tracking (I-health)

Pervasive Electromagnetics Lab

G. Marrocco - 2016 6

Pervasive Healthcare systems (Smart home)

UNIVERSITY OF ROMA TOR VERGATA Human-environment interactions

- (a) Sketch of an RFID-powered habitat with ambient tags (AT) attached over the walls and objects, wearable tags (WT), and implanted tags (IT) placed over and inside the human body, one or more RFID readers (R) scanning the rooms and a wireless concentrator (C) capable to pack the collected data for in-house processing and/or for internet streaming.
- (b) Example of RFID coverage [2] of a homeportion by a multiplicity of readers' antennas placed at the walls' side (R_s) and over the top ceiling (R_T).

Batteryless ...

- Sensors could be requested to operate for months or even years
- Battery replacement or recharging needed
- Additional man-power
- Pollution
- Energy-Harvesting required

Wireless remote powering by electromagnetic waves

UHF-RFID Technology

Pervasive Electromagnetics Lab

Power-less Sensors for Pervasive Healthcare

Signal Processingcco - 2016 11

Outline

Bodycentric RFID Devices

- wearable
- epidermal
- implantable

RFID-IoT Systems

- Motion detection and gesture recognition
- Continuous and on-flight temperature monitoring
- Human-things interactions

Bodycentric RFIDs

Pervasive Electromagnetics Lab

G. Marrocco - 2016 13

RFID-Bodycentric Systems

On-Body link

The reader's antenna is placed over the body

- Activity and shadowing effect
 - Exposure limit

Off-Body link

The reader placed far from the body

- Reading range in real scenario
- Environmental influence
- Position

Through-the-Body link

The tag is implanted

- High loss
- Small read ranges

R

RFID-Bodycentric Systems

- Read ranges

Wearable textile RFID Tags

Felt substrate

EPDM (Ethylene-Propylene Diene Monomer)

Wearable textile RFID Tags

S. Manzari, S. Pettinari, G. Marrocco, Electronics Letters, Vol. 48, N. 21, p.1325–1326

Pervasive Electromagnetics Lab

17

On-body RFID link

Pin=200 dBm/10

Vertical Polarization

Horizontal Polarization

The tag on the chest is almost always visible except for one lying position

S. Manzari, C. Occhiuzzi, G. Marrocco, "Feasibility of Bodycentric Passive RFID Systems by Using Textile Tags" to appear on IEEE Antennas Propagat. Magazine Aug. 2012

Off-body RFID link - Real scenario

- Two tags properly placed enable a robust monitoring in a 4x3 m room
- Chip Sensitivity -15dBm
- No shadowing effects during normal activity

Off-body: Dense readings

Epidermal tags

Pervasive Electromagnetics Lab

From Wearable to ...

Huge scientific and industrial growth in the last decade

Pervasive Electromagnetics Lab

... to Bio-integrated Electronics

KEYWORDS

- Skin
- Epidermal
- Flexible
- Stretchable
- Temporary
- Dissolvable
- Bio-absorbable

D-H. Kim, N. Lu *et al.*, "Epidermal Electronics", *Science*, Vol. 333, N.12, pp. 838-843, Aug. 2011.

Prof. J, Rogers, University of Illinois Prof. F. Omenetto, Tuft University

Pervasive Electromagnetics Lab

Concept: Smart Plasters

- Multi-sensors
- Sensor + Actuators (controlled drugs delivery)

Pervasive Electromagnetics Lab

Epidermal Electronics and EM community

Tissue-Thin Electronics That Float on the Breeze

By Eliza Strickland Posted 25 Jul 2013 | 15:25 GMT

🕂 Share | 🗁 Email | 🗁 Print | 🗷 Reprint

Researcher <u>Takao Someya</u> has just unveiled an ultra-thin, ultra-flexible sheet of electronics that can stick to your skin and still works no matter how you bend, twist, or stretch your body.

By integrating sensors into the electronics, Someya says this lightweight

Hacking the Human OS > Reading the Code > Sensors

A Temporary Tattoo That Senses Through Your Skin

The Biostamp can replace today's clunky biomedical sensors

By Teikla S. Percy Posted 29 May 2015 | 8:08 GMT

🕀 Share | 🖸 Email | 🗇 Print | 🖪 Repr

Sector Preside Testalla

2015 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting 19–24 July 2015 • Vancouver, BC, Canada

Antennas and Sensors for Epidermal Electronics

Organizers

Gaetano MARROCCO John BATCHELOR University of Roma Tor Vergata (IT) University of Kent (UK)

Special Sessions

Requests to organize special sessions should be submitted to xxx yyy@zzz no later than October 9, 2015. Each proposal should include the title of the special session, a brief description of the topic, and justification for its designation as a special session. All proposals should be submitted in PDF format. Special sessions will be selected and finalized by the end of November 2015. At that time, additional instructions will be provided to the organizers of the special sessions chosen for inclusion in the symposium and/ or the meeting. The associated papers or abstracts will be due January 15, 2015. A list of special sessions will be posted at the symposium website in December 2015.

A few special sessions will be solicited by the TPC chair and topic co-chairs, on topics of particular interest and relevance. Examples of expected special sessions at the 2016 meeting may include:

- · Mm-Wave Antenna Arrays and Massive MIMO
- Antenna Design/Analysis Based on Characteristic Modes
- Electromagnetic Skins: Epidermal Antennas, Flexible and Stretchable Antennas, Sensing Substrates
- Metamatenals in Industry
- Grand Challenges in Computational EM
- Novel Paradigms, Challenges and Perspectives in Wave Scattering and Propagation

SOLECITED SPECIAL SESSIONS 2016

Electromagnetic Skins:

Epidermal Antennas, Flexible and Stretchable Antennas, Sensing Substrates

Challenges of Epidermal UHF-RFID Tags

- Tag has to play as sensor and hence the antenna is at close touch with the body (very thin or no insulating substrate)
- High loss and modest antenna performance: proper selection of antenna layout. Unlike wearable applications, patch antenna are not useful
- Human Variability: broadband and/or possible on-body retuning
- □ Transfer modality of the Tag
- **Bio-compatibility** and transpiration
- **Deformation immunity**

Optimal UHF antennas for Epidermal Tags

S. Amendola, G. Marrocco, "Optimal Performance of Epidermal Antennas for UHF Radiofrequency Identification ", IEEE Trans. Antennas and Propagat, under review IEEE TAP, 2015

Optimal UHF antennas for Epidermal Tags

Two counteracting phenomena for Skin Antennas:

The initial increase in the gain is mostly due to the increase in the radiation resistance, which is proportional to the overall length of the antenna.

Further enlargements of the antenna produce more intense dissipation of power into the conductors and the surrounding tissues, because of the high conductivity of the hosting medium, which dominates radiation.

→ Optimal size of antennas over the skin

Optimal UHF antennas for Epidermal Tags

Which is the best shape for the antenna ?

- gain
- size
- amount of copper

Table I ELECTROMAGNETIC PERFORMANCE AND GEOMETRICAL PARAMETERS AT 870 MHz of the reference epidermal antennas

Antenna	η [%]	G [dB]	L_{opt} [cm]	A _{metal} [cm ²]
	0.3	-18.7	5	0.5
0	0.3	-19.1	3	0.9
0	0.3	-19.4	6	27.6
\bigcirc	0.2	-19.5	8	46.7

Pervasive Electromagnetics Lab

Antenna size

Performance vs. trace conductivity

Low-Cost Inkjet Printing

Desktop printer

Ink Properties

- Water-based, RoHS compliant
- Particle size average: 20nm
- Ag solid content: 10 ~ 20wt%
- Ethylene glycol content: 10 ~ 40wt%
- Viscosity: < 10 cps
- Surface tension: 25 35 mN/m
- Density: 1.2 1.3 grams/ml
- · Jetting properties: excellent
- Designed for fast curing
- Minimal VOC
- Easy cleanup

Self-Sintering at room temperature

Pervasive Electromagnetics Lab

Experimentations: Optimal length

Membranes for Skin Antennas

Thin-layer Band-aid - Silicone

Table 1: Summary table of the features of synthetic rubber PSA, acrylate PSA and soft silicone adhesive gel.

Pervasive Electromagnetics Lab

Membranes for Skin Antennas

Scaffold - Poli ε-Caprolactone (PCL)

Semi-crystalline bio-readsorbable membrane with slow degrading rate due to its hydrophobic nature and high crystallinity degree.

Produced by Electrospinning techniques (dense non- with specific chemical receptors woven micro and/or nano-fibrous fabrics)

Elexible and stretchable scaffold. Natural transpiration

Possibility to be **functionalized** Del Gaudio, Bianco et al, Wiley InterScience, 2007.

Membranes for Skin Antennas Hydrogel

Figure 20. PVA/XG membranes under test having different compositions.

Figure 21. Samples of the fabricated hydrogel membrane. Left) Swollen; Right) Dried

An hydrogel membrane is a stretchable substrate made of **a polyvinyl alcohol/xyloglucan** (PVA/XG). **Polyvinyl alcohol is a biocompatible synthetic polymer** while Xyloglucan is a hemicellulose that occurs in the primary cell wall of every vascular plant.

PVA/XG membranes **are able to absorb body fluids** (such as wound exudates) **and release water and drugs**. Their structure hence undergoes swelling and drying processes according to the skin conditions being able to absorb in the specific case up to **40% of fluid**.

Membranes for Skin Antennas

Fibres-based Dressing

Carboxy methyl cellulose (CMC)

Huge liquid Absorption

G. Marrocco - 2016 ³⁸

Membrane characterization

Dielectric Meter

Suspended-Ring Resonator:¹

- Not disruptive method
- Good flexibility in terms of size/shape of the sample
- Liquid and solid materials
- No preliminary calibration with reference materials
- Possible exposure to external agents (liquid, gases and mechanical solicitations..): time-variant sample characterization.

I. Waldron, S.N. Makarov, S. Biederman, R. Ludwig, "Suspended Ring Resonator for Dielectric Constant Measurement of Foams," *Microwave and Wireless Components Letters, IEEE*, vol.16, no.9, pp.496-498, Sept. 2006

Parametric Identification

Validation

Low & High permittivity and losses

Solid Samples, Different Thickness

Validated for both low-permittivity and high-permittivity materials

Characterization of e.m. Parameters ^{fluid} - Hydrogel

scale

Distributed Exposure

Solution uniformly dispersed by spray nozzle Large burns, ulcers, Bedsores, Sweat loss

→ VNA

• Localized Exposure

Solution locally release by syringe Punctured wounds, Gunshot wound, Incision

Absorbed Water [g]

Characterization of e.m. Parameters

- Fibres dressing

Aquacel dressing

Pervasive Electromagnetics Lab

G. Marrocco - 2016 43

Skin antennas: Dual-Loop tag

Miniaturized Skin Antennas

- Miniaturization of the "un-useful" traces
- Additional meandering to achieve stretching
- Performance , practically unchanged

Fabrication

Pervasive Electromagnetics Lab

Traces Deposition

Carved adhesive copper sheet

Coated Micro-wires

Stencil and conductive paint

Inkjet printing

Pervasive Electromagnetics Lab

Antenna on Silicone Membrane

On bio-compatible silicone

Pervasive Electromagnetics Lab

UNIVERSITY OF ROMA

Antenna on Scaffold-like Membrane

- Poli ε-Caprolactone (PCL)

Pervasive Electromagnetics Lab

Skin antennas over PET

Skin Antennas: performance comparison

- a. Adhesive Copper foil (plotter)
- b. Micro-wire
- c. Inkjet printing
- d. Micro-fabrication (gold)

Antennas over a liquid body-phantom

Human Body Variability

Body size

Position

Volunteer	height [cm]	weight [Kg]	Body mass Index
tiny female	155	45	18.7
robust female	178	75	23.7
normal male	174	64	21.4
muscular male	184	85	25.1

DOM: N

Pervasive Electromagnetics Lab

Tuning

OnBody Retuning

examples

S. Amendola, S. Milici, G. Marrocco, "Performance of Epidermal RFID Dual-loop Tag and On-skin Retuning ", IEEE TAP. 2015

Implantable sensors

Pervasive Electromagnetics Lab

Implantable Sensors Why ?

Self-diagnostic orthopedic prosthesis

- monitoring of bio-mechanical parameters from the inside

Smart sutures

- monitoring of post-surgery local inflammation (temperature)

Smart Stents

- monitoring of re-stenosis inside blood vessels

Through the Body Links
 Near field interactions

UNIVERSITY OF ROMA

TOR VERGATA Electromagnetic Models & Phantoms for Implanted RFID tags

Limb Implants

Integration of sensors into a prosthesis to monitor its health status

- Deformations
- Temperature ,..

Implanted RFID radio channel

G. Marrocco - 2016 ⁵⁹

Feasibility Margins

Quantify the feasibility and reliability of the RFID channel

Direct Link Margin

$$M_{DL}(\psi) = G_T(\psi)P_{avG} - p_{chip}$$
$$P_{R \to T}(\psi)$$

Backward Link Margin

$$M_{BL}(\psi) = G_{RT}(\psi)P_{avG} - p_{rdr}$$

$$P_{R\leftarrow T}(\psi)$$

Margin > 0dB in order to establish the transcutaneous link

G. Marrocco - 2016 ⁶⁰

Through-the-body UHF-RFID link Limb Implants: simulation with Visible Human

Locus of implant	$M_{DL}(dB)$	$M_{BL}(dB)$
shoulder (humerus)	+2	+20
elbow (humerus)	+10	+34
hip (femur)	+3	+18
knee (femur)	+2	+17

W/kg

8.237 0.219 8.284 0.189 0.174 0.159 0.144 0.13 0.115 0.10 8.8852 8.8784 8,8556 0.0487 8.8259 0.0111

Safety

Locus of implant	Localized SAR 10g (W/kg)	
Shoulder	0.23	
Elbow	0.36	
Hip	0.36	
Knee	0.30	

Regulations: SAR<2W/Kg

G. Marrocco - 2016 61

Through-the-body UHF-RFID link Limb Implants: Experiments over phantoms

Through-the-body UHF-RFID link - Motion detection

63

Intra-medullary Smart Nail

		•
	Femoral nail	Tibial nai
Distal diameter (mm)	9-16	8-13
Proximal diameter (mm)	13.5 -16	11-13
Length (mm)	300-480	255-465

an anatomically curved rod generally made of titanium alloy whose size depends on the type of the fracture and on the specific implantation locus such as, for instance, the **femur** and the **tibia**. Fixing holes are drilled at the extremities of the device at the purpose to lock the prosthesis to the bone by means of screws.

Intra-medullary Smart Nail

"Antennification "

the dielectric insulator) hosts the two strips where the microchip will be connected; b) side section with indication of the insulator and c) external view.

Intra-medullary Smart Nail Proof of concept

Pervasive Electromagnetics Lab

G. Marrocco - 2016 66

Intra-medullary Smart Nail experiments

Figure 10. a) PST placed inside the medullary canal of a cow bone and b) measurement set-up comprising a ThingMagic M5 reader (not shown) connected to a Stacked PIFA antenna and the limb phantom with the bone inside.

Dmax: 30cm (identification only)

Figure 11. Simulated and measured turn-on power P_{to} for PST implanted as in Fig.9 having included also the S-PIFA antenna of the reader that is placed at distances d = 10cm, 5cm, respectively.

Hip Prosthesis

Pervasive Electromagnetics Lab

G. Marrocco - 2016 68

Hip Prosthesis

- Structural sensor

Onsite optimization of the tag

G. Marrocco - 2016 69

Bio-mechanic Analisis

stress

Pervasive Electromagnetics Lab

Hip Prosthesis

- Additive manufacturing

Pervasive Electromagnetics Lab

G. Marrocco - 2016 71

Systems and Applications

Pervasive Electromagnetics Lab
TOR VERGATA In-hospital Temperature Monitoring

On the flight Identification & sensing of moving people

Epidemic control at airport and hospital

In-house automatic screening on crossing door

Figure 25. Possible setup for the automatic health monitoring of in transit people.

On the flight Identification & sensing of moving people

Video G. Marrocco - 2016

76

Motion-detection and Gesture Recognition

Pervasive Electromagnetics Lab

Classification of body motion

Pervasive Electromagnetics Lab

UNIVERSITY OF ROMA TOR VERSATA of Roma Tor Vergata

Classification Method (Data Analystics)

The term classifier refers to the problem of identifying to which one within a predefined set of movements type an observation belongs

.. Borrowed from the BRAIN COMPUTER INTERFACE (Machine Learning)

UNIVERSITY OF ROMA TOR VERGATA of Roma Tor Vergata

Classification Method

Supervised Learning Paradigm

Pervasive Electromagnetics Lab

o.,

Classification Method

SUPPORT VECTOR MACHINE (SVM)

Original Formulation¹:

- Binary classification
- Linear separability of datapoints

How to chose the best hyperplane? Maximum-Margin Hyperplane

$$\begin{array}{ll} \min_{\mathbf{w}\in\mathbb{R}^n, b\in\mathbb{R}} & ||\mathbf{w}||^2\\ subject \ to \quad y_i \left(w\cdot\mathbf{x_i}-b\right) \geq 1 \end{array}$$

Quadratic constrained Optimization Problem

Classification of body motion

- Electromagnetics + Neuroscience
- Application of Machine Learning algorithms

Pervasive Electromagnetics Lab

UNIVERSITY OF ROMA

TOR VERGATA

→ <u>video</u>

G. Marrocco - 2016

82

Ambient Modulation

Fig. 7. Backscattered power variation from a linear cluster of tags attached on the wall during the walk of a subject into a corridor. The sequence of the nulls carries information about the direction of motion (delays among nulls) and velocity (slope of the enveloping line through the nulls)

Multi-channel monitor

The backscattered response of the tags to the reader's query is modified by the proximity of the human body with the tags themselves.

Goal: extract information about motion and about specific *postures* during the sleep.

Multi-channel Proc.

Young Subject in Domestic Environment

Pervasive Electromagnetics Lab

Elder Subject in Nursing House

UNIVERSITY OF ROMA

TOR VERGATA

Aged volunteer

Advanced Human-Things Interactions and multi-parameters monitoring

Antennas coverage

N.4 switchable surveillance antennas

ROSARIO

the maintenance technician

(*authorized personnel*) badge

STEFANO the intruder (un-*authorized personnel*) No badge

TOR VERGATA Authorized access

Human-based Semantic Analysis

- 1. Door open: somebody inside
- 2. Badge detection: the system recognizes the technician
- 3. The technician turns on the light
- 4. The technician opens a cabinet
- The technician get close the exit door and turns-off the light; the system records the exit

That's all !

Gaetano.marrocco@uniroma2.it

Pervasive Electromagnetics Lab

References (I)

C. Occhiuzzi, G. Marrocco, "Precision and Accuracy in UHF-RFID Power Measurements for Passive Sensing", IEEE Sensors Journal, in press

S. Amendola, L. Bianchi, G. Marrocco, « Body Movements Classification by Passive Radiofrequency Identification and Machine Learning Technologies», IEEE Antennas and Propagat. Magaz. Vol.57, N. 3, pp. 23-37, 2015

iS. Amendola, S. Milici, G. Marrocco, "Performance of Epidermal RFID Dual-loop Tag and On-skin Retuning", IEEE Trans. Antennas and Propagat, Vol.63, N.8, pp. 3672 – 3680, Aug. 2015

R. Lodato, G. Marrocco, "Close Integration of a UHF-RFID Transponder into a Limb Prosthesis for Tracking and Sensing", IEEE Sensor Journal, in press

G. Marrocco et al, "RFID & IoT: a synergic pair", IEEE RFID Virtual Journal, N.8, March 2015, http://ieeexplore.ieee.org/xpls/virtual-journal/virtualJournalHome?pub=rfid&issue=8

S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, G. Marrocco, « RFID Technology for IoT-based Personal Healthcare in SmartSpaces », IEEE Internet of Things Journal, Vol.1, N.2, pp. , 144.152, April 2014

C. Occhiuzzi, C. Vallese, S. Amendola, S. Manzari, G. Marrocco, « NIGHT-care : a passive RFID system for remote monitoring and control of overnight living environment », Procedia Computer Science, Vol.32, pp.190.197, 2014

R. Lodato, V. Lopresti, R. Pinto, G. Marrocco, "Numerical and Experimental Characterization of Through-the-Body UHF-RFID Links for Passive Tags Implanted into Human Limbs", IEEE Trans. Antennas Propagat, Vol. 62, N.10, pp.5298-5306, Oct. 2014

Ø.

www.pervasive.ing.uniroma.it

References (II)

C. Occhiuzzi, S. Caizzone, G. Marrocco, « Passive UHF RFID Antennas for Sensing Applications: Principles, Methods and Classifications « , IEEE Antennas and Propagat. Magaz., Vol.44, N.6, pp.14-34, Dec, 2013

S. Manzari, S. Pettinari, G. Marrocco, "Miniaturized wearable UHF-RFID tag with tuning capability", Electronics Letters, VoL. 48, N. 21, p.1325–1326

S. Manzari, C, Occhiuzzi, G. Marrocco, « Feasibility of Body-centric Systems by Using passive textile RFID tags », IEEE Antennas and Propagation Magazine, Vol.54, N.9, pp 2851-2858, 2012

C. Occhiuzzi, G. Contri, G. Marrocco, "Design of Implanted RFID Tags for Passive Sensing of Human Body: the STENTag", IEEE Trans. Antennas and Propagat. Vol.60, N.7, pp.3146-3154, 2012

G. Marrocco, "Pervasive Electromagnetics: sensing paradigms by passive RFID Technology", IEEE Wireless Communications, Invited Paper, Vol.17, N.6, pp.10-17, Dec. 2010, 2010

C. Occhiuzzi, G. Marrocco, "The RFID Technology for Neuroscience: feasibility of Limbs' Monitoring in Sleep Diseases". IEEE Trans. Information Technology in Biomedicine, Vol.14, N.1, pp. 37-43, Jan. 2010.

C. Occhiuzzi, S. Cippitelli, G. Marrocco, "Modeling design and experimentation of wearable UHF RFID sensor tag antennas", IEEE Trans. Antenna Propagat., Vol.58 N.8, pp. 2490 - 2498, 2010

G. Marrocco, "The Art of UHF RFID Antenna Design: Impedance Matching and Size-reduction Techniques", IEEE Antennas and Propagation Magazine, Vol.50, N.1, pp.66-79, Feb. 2008.

Original videos at **→** www.pervasive.ing.uniroma.it