Radiative Wireless Power Transfer at Holst Centre / imec and TU/e: Past, Present and Future

				H	u	or	'e	gt	t u	J.	V	′is	SS	se	er																											E					•	
				Ą	0I	ʻil	2	20	1(6																											/				01	С /А1		N.	AW	/AF		
•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	• •	• •	•	•	•	•		• •			0						•
•	•	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	٠	•	•	•	•	• •	• •	•	•	1			• •	9			1					•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	ŀ												•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	•	•				• •			Ú		/				•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	• •	• •	•	•							IN			10	• -	<u> </u>	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	• •			1						Ę.	П		۱, L	15	21		• •
•	•	•	•		•	•	•		•	•	•	•	•	•	•	•		•	•								•	•	•	•	•				7.													
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•				• •			• •			• •	•	•	• •

TU

Technische Universiteit **Eindhoven** University of Technology

The IET Innovation Awards 2015

INNOVATION

Book your tickets

18 November 201

to join us at the cerer

Where innovation starts

8

Contents

- **1.** Introduction
- **2.** The Early History of RWPT
- **3.** The Modern History of RWPT
- 4. **RWPT Basics**
- **5.** Examples
- **6.** Future Perspectives
- 7. Summary and Conclusions

Definitions

Energy / **Power Harvesting:** "The process by which power is obtained by a device from external sources in the environment of the device and converted into usable electric power".

Radiative Wireless Power Transfer (RWPT): "A special form of Radio Frequency (RF) Power Harvesting in which use is made of radiated fields".

Energy Harvesting Sources

Applications

Replacing batteries in small, wireless, autonomous sensors

Power Densities

Source	Available Power Density	Typical Harvested Power Density				
Ambient Light						
Indoor	0.1 mW/cm ²	10 μW/cm ²				
Outdoor	100 mW/cm ²	10 mW/cm ²				
Vibration/Motion						
Human	0.5 m at 1 Hz 1 m/s² at 50 Hz	4 μW/cm²				
Industrial	1 m at 5 Hz 10 m/s² at 1 kHz	100 μW/cm ²				
Thermal						
Human	20 mW/cm ²	30 μW/cm ²				
Industrial	100 mW/cm ²	1-10 mW/cm ²				
RF						
GSM Base Station	0.3 μW/cm ²	0.1 μW/cm ²				

(Non-Radiative) Near-Field Wireless Power Transfer

Asus, Blackberry, Broadcom, Dell, Fairchild, Freescale, Hama, Hitachi, HTC, Huawei, IKEA, Keysight, LG, Microsoft, Motorola, Nokia, NXP, Omron, Panasonic, Philips, Powercast, Qualcomm, Ricoh, Samsung, Sony, TDK, TI, Toshiba, Toyota, and others

Acer, Asus, AT&T, Broadcom, Canon, Deutsche Telekom, Dialog, Fairchild, Fujitsu, HP, Hitachi, HTC, Intel, Keysight, Lenovo, LG, Microsoft, Motorola, Nordic, NXP, Omron, Panasonic, P&G, Qualcomm, Renesas, Rohm, Samsung, Starbucks, Sandisk, Sharp, Sony, ST, TDK, TI, Toshiba, Witricity, and others

Radiative Far-Field Wireless Power Transfer

Ambient RF Energy

- Unintentional WPT or harvesting
- · No influence on source and transmit antenna

Dedicated Transmit System

- Intentional WPT
- · Access to source and transmit antenna
- Transmit power restrictions

Far-Field Wireless Power Transfer

/ Department of Electrical Engineering

Far-Field Wireless Power Transfer

Power density at distance $r: S = \frac{P_T G_T}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$

Received power at distance $r: P_R = \frac{EIRP}{4\pi r^2} A_{eR}$ $A_{eR}:$ Effective area receive antenna $A_{eR} = \frac{G_R \lambda^2}{4\pi}$ P_R

Friis transmission equation

2. The Early History of RWPT

1886: Heinrich Hertz, in proving the Maxwell equations, constructs the first radio

TU/e Technische Universiteit Eindhoven University of Technology

/ Department of Electrical Engineering

<u>1894:</u> Guglielmo Marconi develops practical radio, transmitting and receiving data

/ Department of Electrical Engineering

/ Department of Electrical Engineering

/ Department of Electrical Engineering

1901: Nikola Tesla creates the idea to wirelessly transmit and receive power

/ Department of Electrical Engineering

<u>1931:</u> Harrell Noble demonstrates Wireless Power Transfer

- 100MHz half-wavelength dipoles
- Displaced 5 to 12 meters
- 15kW transmit power (!)
- Westinghouse laboratories
- Demonstrated at 1933-1934
 Chicago World Fair

3. The Modern History of RWPT

1964: William Brown demonstrates a microwave powered model helicopter

- 5kW, 2.45GHz magnetron
- 3m diameter parabolic reflector antenna
- 9m height
- 1.5m² receive antenna
- 4480 diodes
- 270W dc power
- Raytheon Airborne Microwave Platform (RAMP) project

3. The Modern History of RWPT (ctd.)

2014: Visser et al. demonstrate most compact, efficient 868/915MHz rectenna

4. RWPT Basics

/ Department of Electrical Engineering

Tuned antenna: $X_A = 0$. Low-loss materials: $R_L \approx 0$.

Maximum power delivered to load R_r if $R_r = R_A$: $P = \frac{1}{8} |V_A|^2 \frac{1}{R_A}$ Maximum power delivered to load R_r if $R_r \neq R_A$: $P = \frac{1}{2} |V_A|^2 \left| \frac{R_A}{R_A + R_r} \right|^2 \frac{1}{R_A}$

Voltage reflection coefficient, looking into load: $\Gamma = \frac{R_r - R_A}{R_r + R_A}$

22-4-2016 PAGE 20

TU/e Technische Universiteit Eindhoven University of Technology

Friis Equation

Assume transmit antenna to be uniform radiator. Then power density at distance *r*:

$$S(r) = \frac{P_T}{4\pi r^2}$$

spherical spreading

In reality antenna has gain G_T : $S(r) = \frac{P_T G_T}{4\pi r^2}$

Receive antenna intercepts power equal to the power density times the *effective aperture A_e*:

$$P_R(r) = S(r)A_e = \frac{P_T G_T A_e}{4\pi r^2}$$
With: $A_e = \frac{G_R \lambda^2}{4\pi}$

$$P_R(r, \lambda) = P_T G_T \frac{G_R \lambda^2}{(4\pi)^2 r^2}$$

 $P_T G_T$ is Effective Isotropic Radiated Power

Antenna Matching

maximize v_{rect} for maximum sensitivity

maximize R_L and minimize X_L or maximize X_{l} and minimize R_{l}

e Technische Universiteit Eindhoven University of Technology

Antenna Design

Any antenna textbook, but preferably:

/ Department of Electrical Engineering

impecance

rectification

Rectifier

R.G. Harrison and X. Le Polozec, "Nonsquarelaw Behavior of Diode Detectors Analyzed by the Ritz-Galerkin method", IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 5, pp. 840-846, May 1994.

Rectifier

Input Impedance

 $R_{Load} = 2R_{Leff}$ Fundamental harmonic of diode's current is ~ twice dc load current

Cascaded Rectifier

Input Impedance

Power Management

- 330 mV in cold start •
- 100 mV in after start
- V_{out} 1.2 4.0 V

5. Examples

Large Area Rectenna

The Idea

Diode loaded grid, after *

- Current is flowing upward and to the left;
- DC collection on lower-right and upper-left;
- DC collection network integrated in receiving aperture.

- The above structure is recognized as being a diode-loaded Frequency Selective Surface (FSS);
- Therefore, the modeling and design may be based on FSS equivalent circuit models;
- The grid may be modified to improve performance.

- Scalable;
- May be positioned over an already existing antenna aperture;
- Carefully choose transmission and reflection bands;
- Reflection may be used for position determination.

* Hagerty, J.A. et al. (2000) Broadband Rectenna Arrays for Randomly Polarized Incident Waves. EuMC, 4pp. Technische Universiteit / Department of Electrical Engineering 22-4-2016 PAGE 30

RF Energy Harvesting FSS Analysis

/ Department of Electrical Engineering

1 GHz Design

Considerations:

- HSMS-2820 Schottky diode impedance analyzed: Reactive part invariant with input power;
- Through full-wave simulation it is verified that 1GHz resonance is in the optimum RF-to-dc power conversion efficiency

/ Department of Electrical Engineering

1 GHz Design

Peak current density at 2.2GHz: Resonance in square loops

Technische Universiteit **Eindhoven** University of Technology IU e

Prototype

TUe Technische Universiteit Eindhoven University of Technology

/ Department of Electrical Engineering

Demonstration

/ Department of Electrical Engineering

Small Area Rectenna

$$PCE = \frac{P_{dc}}{P_{inRF}}$$

State of the art	P _{in} (dBm)	Freq. (MHz)	Load (kΩ)	Diode(s)	PCE (%)
[61]	-10	866.5	3	HSMS285C	24
[62]	4.3	870	1	HSMS285X	50
[63]	-10	830	104	HSMS286Y	44
[64]	-20	850	-	Skyworks SMS7630	15
[65]	-10	950	0.13	Toshiba 1SS315	40
[66]	-9	915	2.2	Skyworks SMS7630	37
This work	-10	868	10	HSMS2852	50
	-20	868	10	HSMS2852	32

- [61] D. De Donno, L. Catarinucci and L. Tarricone, 'An UHF RFID Energy-Harvesting System Enhanced by a DC-DC Charge Pump in Silicon-On-Insulator Technology', *IEEE Microwave Wireless Components Letters*, Vol. 23, pp. 315-317, 2013.
- [62] G. Monti, L. Corchia and L. Tarricone, 'UHF Wearable Rectenna on Textile Materials', *IEEE Transactions on Antennas and Propagation*, Vol. 61, pp. 3869-3873, 2013.
- [63] H. Kanaya, S. Tsukamaoto, T. Hirabaru and D. Kanemoto, 'Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna', *IEEE Microwave Wireless Components Letters*, Vol. 23, pp. 164-166, 2013.
- [64] A. Georgiadis, A. Collado, S. Via and C. Menses, 'Flexible Hybrid Solar/EM Energy Harvester for Autonomous Sensors', *IEEE MTT-S International Microwave Symposium*, Baltimore, USA, 2011.
- [65] K. Ogawa, K. Ozaki, M. Yamada and K. Honda, 'High Efficiency Small-Sized Rectenna Using a High-Q LC Resonator for Long Distance WPT at 950 MHz', *IEEE MTT-S International Microwave Symposium*, Nanjing, China, 2012.
- [66] K. Niotaki, S. Kim, S. Jeong, A. Collado, A. Georgiadis and M. Tentzeris, 'A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna', IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 1634-1637, 2013.

Small Area Rectenna

State of the art	Pin (dBm)	Freq. (MHz)	Load (kΩ)	Size (λ²)	PCE (%)
[63]	-10	830	10 ⁴	0.028	44
[67]	-20	550	2	0.036	18
[68]	0	900	1	0.66	49
This work	-10	868	10	0.028	55
	-20	868	10	0.028	34

University of Technology

- [63] H. Kanaya, S. Tsukamaoto, T. Hirabaru and D. Kanemoto, 'Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna', *IEEE Microwave Wireless Components Letters*, Vol. 23, pp. 164-166, 2013.
- [67] C. Mikeka, H. Arai, A. Georgiadis and A. Collado, 'DTV Band Micropower RF Energy Harvesting Circuit Architecture and Performance Analysis', *RFID-TA*, Barcelona, Spain, 2011.
- [68] S. Korhummel, D.G. Kuester and Z. Popovic, 'A Harmonically-Terminated Two-Gram Low-Power Rectenna on a Flexible Substrate', USNC-URSI Radio Science Meeting, Boulder, USA, 2013.

Circuit Test

/ Department of Electrical Engineering

Circuit Test

Prototype

/ Department of Electrical Engineering

Demonstration

/ Department of Electrical Engineering

6. Future Perspectives

Smaller Rectenna

/ Department of Electrical Engineering

More Power

/ Department of Electrical Engineering

Test

Test

Test

/ Department of Electrical Engineering

Test

/ Department of Electrical Engineering

Test

/ Department of Electrical Engineering

Conclusion

- For practical far-field WPT dc voltage is a challenge;
- Sufficient voltage may be created by enlarging the receiving aperture;
- For small sensors, application of a voltage boost and power management circuit is advised;
- Through careful co-design of rectifier, antenna, matching circuits and power management circuit practical WPT becomes feasible;
- Periodic loading will make WPT over distances in excess of 10m possible;

/ Department of Electrical Engineering
Iranciant \//PT \//II maka larna no\//ar \/

