

The driving force of IoT for the development of electronic technologies

Luca Roselli

(Inter)net of things?

Today

What are the challenges of today?

Connectivity

Sensing capabilities

The today industrial strategies

"L'accordo siglato oggi tra *Microsoft Italia ed STMicroelectronics* Srl rappresenta un passo importante per aiutare le aziende italiane a raggiungere il proprio potenziale grazie **all'Internet of Things**. Insieme intendiamo offrire una piattaforma aperta e scalabile che possa **supportare qualsiasi azienda**, dalle start up alle imprese consolidate. Il nostro obiettivo è renderle capaci di **trasformare i propri processi**, di cogliere nuove opportunità e perfino di dar vita a **nuovi modelli di business**", – ha dichiarato **Eric Boustouller**, Corporate Vice President Microsoft Western Europe.

Tomorrow?

"When wireless is perfectly applied, the whole earth will be converted in a huge brain, which in fact it is, all things being particles of a real and rhytmic whole... and the instruments through which we shall be able to do this will be amazingly simple compared with our present telephone.

A man will be able to carry one in this vest pocket"

Nikola Tesla, 1926, Collier's Magazine

Just a paradigm

Just a paradigm

The additional challenges of tomorrow?

How to face these challenges?

3D printing R2R process

Wireless Power Supply

Bio-materials

Organic solar panels

evolution (example)

It is not by lucky 🙂

Internet of Things, Big Data e Data Science

Le nuove sfide del settore ICT: la proposta didattica del Dipartimento d'Ingegneria

Università degli Studi di Perugia

Aula magna del Dipartimento d'Ingegneria Giovedì 21 Gennaio 2016

From F1 telemetry to IoT

The "force" of this vision

Before the advent of "homo sapiens"

From homo sapiens to the 1st Industrial revolution

1st Industrial revolution 1750 ->

2nd Industrial revolution 1870 ->

... in the future?

End of introduction ③

Technologies

A bit of foolhardiness!

Multi-layer ink-jet printing

- Substrate independent
- Cleanroom free
- High control on electrical and physical properties of the inks
- Multi-layer
- Fully additive (no waste of chemicals)
- Compatible with rapid prototyping and R2R industrialization

Metal adhesive laminate

- Substrate independent
- Room temperature
- Compatible with R2R industrialization
- High-temperature solderability of packaged components
- Multi-layer (via holes are doable)
- High metal conductivity (σ=5.8e7 S/m)

3D printing

- High shape customization
- Room temperature
- Rapid prototyping
- Fully additive

A reference structure

Passive Devices and Antennas

Inductors on paper

Georgia Tech

Results

Capacitors on Si wafer

Capacitors on paper

Cork and wood

- First ever applicaton of circuits on such material substrates through the laminate method
- Very good matching between model and experiment, also considering the anisotropic nature of the materials

Antennas on cork & wood

ABS characterization

Antennas on ABS

- Fully 3D printed with a commercial, 1500\$-platform..
- Reflection coefficient below -13 dB at 10.2 GHz

Sensing/Tunable Modules

Microfluidics

Proposed fabrication process:

- Cleanroom free
- Lower cost
- Lower waste (mostly additive)
- Eco-compatibility

Bandstop filter

Sub-system Circuits

1-GHz Mixer

Overpass Secondary Diodes HSMS2850 RF Ground Ring		1 mm		
Ref.	f _o (GHz)	minCL (dB)	technology	
[Maity]	2-7	9	GaAs	
[Maalik]	6-6.5	8-10	CNC	
[Sudow]	2-3	12	MMIC	
this work	1	9	copper	

- Configuration: LO primary, RF secondary
- Diodes connected to Port-2 and Port-3
 - Optimum working frequencies are:

LO = 1 GHz ---- RF = 900 MHz

Voltage controller Osc.

Ref.	f _o (MHz)	V _{cc} (V)	P _{DC} (mW)	PN (dBc/Hz)	Nc
[Kim]	800	1.8	7.2	-100	8
this work	998	1.2	0.9	-99	3

System Level Integration

24-GHz Doppler radar

- LO signal split by the branch line
 - first half of the signal feeds the antenna
 - second half goes to the LO port of the mixer
- The signal coming from the antenna is sent to the RF port of the mixer and to the oscillator
 - (receiving path)
- The IF is the mixer output from the received RF and the LO signal coming from the branch-line

Crack sensors

Crack sensors for:

- Structural health monitoring
- Electronic sealing
- Supply chain monitoring

Wireless chipless sensors:

- Low-cost
- Flexible electronics
- Green issues

Universiteit Gent

Holst Centre

Harmonic **RFID**

- ✓ The **reader interrogates** the environment **at f0** (fundamental).
- ✓The tag contains a frequency multiplier (typically a frequency doubler) and replies at n×f0 (for a doubler at 2×f0).
- ✓ 1-bit RFID system (it can determine the presence of the tag)
- ✓ It is insensitive to the environment backscattering

Proposed crack sensor tag

- Disposable band-stop filter
- Frequency doubler (to separate upling and downlink)
- Intact condition: the band stop filter short-circuits the second harmonic
- Cracked condition: the second harmonic can reach the output antenna
 -> alarm
- Single frequency system (f_0 =1.04 GHz, 2 f_0 =2.08 GHz)

Crack detector in paper substrate

- Second-order band-stop filter, based on two quarter-wave open-circuited stubs connected in shunt and separated by a quarter-wave section of line
- Copper laminate technology in paper substrate
- A series of equispaced holes are introduced to ease the stub removal

Experiment: Crack detector in paper substrate (metal laminate)

- Attenuation of 60 dB @ 2.08 GHz
- Fundamental frequency not affected

Frequency doubler

- Single low-barrier Schottky diode frequency doubler
- Two quarter-wave stubs behaving as harmonic filters
- o Input and output matching to a 50 Ω impedance
- OMN optimized by load-pull simulations
- Zero bias
- Conversion loss of 13 dB @ -10 dBm input power

available input power (dBm)

Whole tag: results

- P_{tx}=10 dBm
- Uplink: helix antennas, Gain=5 dBi
- Downlink: patch antennas, Gain=4.3 dBi
- Receiver noise floor=-100 dBm

Operating range > 1 m

Novel harmonic RFID sensor (1/3)

- ✓f0: received by an antenna insensitive to rotation
- ✓2f0: generated by a diode circuit and divided in two parts.
- First component: transmitted in vertical polarization.
- ✓ Second component:

transmitted in horizontal polarization after a phase shifting.

- ✓Phase shifting: determined by the sensor.
- The two transmitted signals at 2f0 acts as the reference one to each other

After **F. Alimenti, L. Roselli,** European Patent EP13161946.2

Novel harmonic RFID sensor (2/3)

Iwo vector receivers are used by the reader to extract the phase information for both the vertical and the horizontal polarizations.

Novel harmonic RFID sensor (3/3)

- experimental characterization of the system (f0 ~ 1 GHz)
- received phase dependent on TAG encoding (and not on distance)
- TX power: 0dBm; RX power: -80 dBm @ 60 cm

Think out of the box!

Thank you!

Transformer on LCP

3

Georgia Tech

- 5 fully inkjet printed separate layers
- MAG of -1.8 dB at 1.4 GHz implies that 67% of the the input power is transferred to the output (with I/O properly matched)