

# Novel antenna design paradigms for the Internet of Things

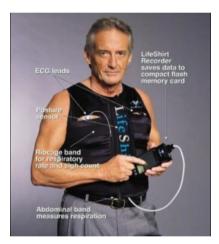
H Rogier, Sam Lemey, Marco Rossi, Olivier Caytan, Freek Boeykens, Arnaut Dierck, Sam Agneessens, Dries Vande Ginste, Piet Demeester, Maurizio Bozzi Dept. of Information Technology, iMinds/Ghent University, Ghent, Belgium







### The Internet-of-Things


- opportunities and design challenges
- Stochastic antenna design framework
  - Production uncertainties
  - Substrate compression
  - Substrate bending
- Some novel IoT antenna designs
  - Substrate-Integrated-Waveguide (SIW) Cavity-Backed Slot (CBS) topology
  - Three-element antenna array for integration into furniture
  - Half-mode SIW CBS antenna on cork substrate

### Conclusions

### The Internet-of-Things (IoT)

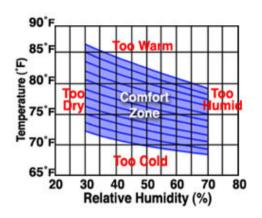


Invisibly integrated wireless communication systems



Increased Functionality




#### High data rates





Novel antenna design paradigms for the Internet of Things– Hendrik Rogier WIPE Information Technology Department – IBCN/Electromagnetics Group

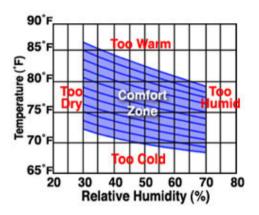
### IoT antenna design challenges



Stable antenna performance requires taking into account adverse conditions during design phase:

- effect of varying environmental conditions
- effect of fabrication tolerances
- effect of bending/compression/ layers covering antenna
- effect of equipment in near-field

Antenna design constraints:


- Cost-effective, compact and low-profile for invisible integration
- wideband performance for high-datarate communication



### → a dedicated design strategy is needed!

### IoT antenna design strategy





#### Stochastic design framework for random variations

- effect of varying environmental conditions
- effect of fabrication tolerances
- effect of bending/compression/ layers covering antenna

#### Antenna topology with high antenna/platform isolation

• effect of equipment in near-field

Antenna design constraints:

- Cost-effective, compact and low-profile for invisible integration
- wideband performance for high-datarate communication



### → a dedicated design strategy

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier WIPE Information Technology Department – IBCN/Electromagnetics Group





- The Internet-of-Things
  - opportunities and design challenges

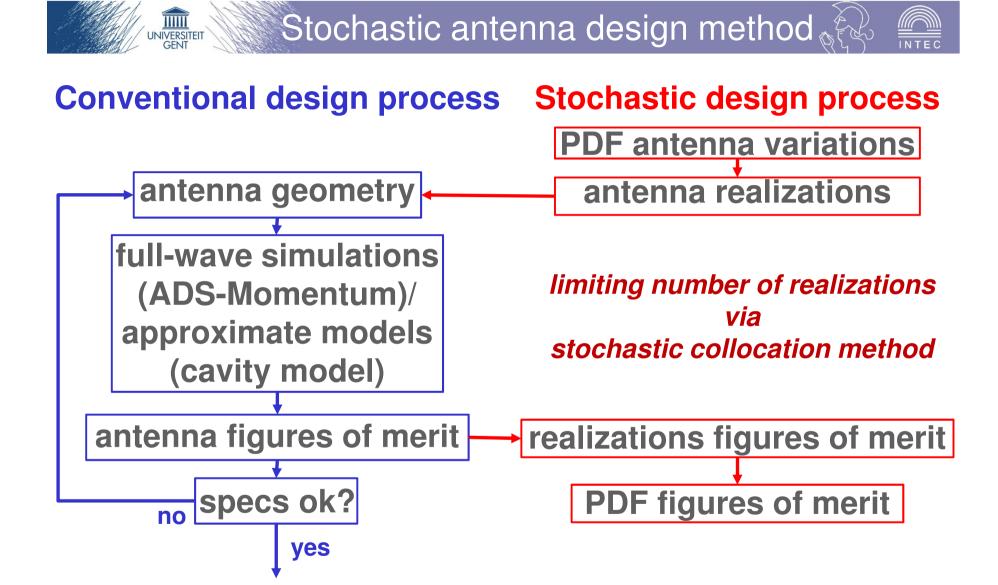
### Stochastic antenna design framework

- Production uncertainties
- Substrate compression
- Substrate bending
- Some novel IoT antenna designs
  - Substrate-Integrated-Waveguide (SIW) Cavity-Backed Slot (CBS) topology
  - Three-element antenna array for integration into furniture
  - Half-mode SIW CBS antenna on cork substrate

### Conclusions



### **Design strategies accounting for randomness**


- 1. Overspecifying design requirements
- → enlarging bandwidth, applying stricter specs
  - out-of-band interference

🗷 COSt

- 2. Quantifying random effects on antenna performance
- → applying Monte Carlo analysis
  - ✓ very accurate
  - time-consuming

### → a more effective stochastic formalism is needed!

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier WIPE Information Technology Department – IBCN/Electromagnetics Group





### **Polynomial chaos expansion** $\mathbb{P}(X_1, X_2, ..., X_N)$

• relates figures of merit Z to design parameters  $X_1, X_2, ..., X_N$  $P_1 P_2 P_N$ 

$$Z \approx \mathbb{P}(X_1, X_2, \dots, X_N) = \sum_{k_1=0}^{P_1} \sum_{k_2=0}^{P_2} \dots \sum_{k_N=0}^{P_N} y_{k_1 k_2 \dots k_N} \phi_{k_1}^{X_1}(X_1) \phi_{k_2}^{X_2}(X_2) \dots \phi_{k_N}^{X_N}(X_N)$$

- easy to find PDF figures of merit based on PDF design parameters
  - analytically based on polynomial
  - Monte Carlo applied to polynomial

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier



### **Construction of** $\mathbb{P}(X_1, X_2, \dots, X_N)$

$$Z \approx \mathbb{P}(X_1, X_2, \dots, X_N) = \sum_{k_1=0}^{P_1} \sum_{k_2=0}^{P_2} \dots \sum_{k_N=0}^{P_N} y_{k_1 k_2 \dots k_N} \phi_{k_1}^{X_1}(X_1) \phi_{k_2}^{X_2}(X_2) \dots \phi_{k_N}^{X_N}(X_N)$$

- statistically independent  $X_1, X_2, \ldots, X_N$ 
  - decorrelate random variables via Choleski decomposition
- for each random variable
  - basis function  $\phi_{k_i}^{X_i}(X_i)$  orthonormal to input PDF  $P_{X_i}(X_i)$

$$<\phi_{i}^{X}(X),\phi_{j}^{X}(X)>=\int\phi_{i}^{X}(X)\phi_{j}^{X}(X)P_{X}(X)dX=\delta_{ij}=\begin{cases} 1 & if \ i=j\\ 0 & if \ i\neq j \end{cases}$$



$$\begin{aligned} & \bullet \text{ Construction of } \mathbb{P}(X_1, X_2, \dots, X_N) \\ & Z \approx \mathbb{P}(X_1, X_2, \dots, X_N) = \sum_{k_1=0}^{P_1} \sum_{k_2=0}^{P_2} \dots \sum_{k_N=0}^{P_N} y_{k_1 k_2 \dots k_N} \phi_{k_1}^{X_1}(X_1) \phi_{k_2}^{X_2}(X_2) \dots \phi_{k_N}^{X_N}(X_N) \\ & \bullet \text{ exploiting orthonormality to calculate coefficients } y_{k_1 k_2 \dots k_N} \\ & \text{ via } V_1 \times V_2 \times \dots \times V_N \text{-point Gaussian quadrature rule} \\ & y_{k_1 k_2 \dots k_N} = \int \dots \int_{\Gamma} \mathbb{F}(X_1, X_2, \dots, X_N) \phi_{k_1}^{X_1} \phi_{k_2}^{X_2} \dots \phi_{k_N}^{X_N} dP_{X_1, X_2, \dots, X_N} \\ & \approx \sum_{l_1=0}^{V_1} \sum_{l_20}^{V_2} \dots \sum_{l_N=0}^{V_N} w_{l_1} w_{l_2} \dots w_{l_N} \phi_{k_1}^{X_1}(x_{l_1}) \phi_{k_2}^{X_2}(x_{l_2}) \dots \phi_{k_N}^{X_N}(x_{l_N}) \mathbb{F}(x_{l_1}', x_{l_2}', \dots, x_{l_N}') \end{aligned}$$

→ requires  $V_1 \times V_2$ ,× ... ×  $V_N$  realizations  $\mathbb{F}(x_{l_1}', x_{l_2}', ..., x_{l_N}')$ 

weights  $w_{l_i}$  correspond to  $x_{l_i}$ 

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier

 $x_{l_i}$ : zeros of  $\phi_{k_i}^{X_i}(X_i)$ 

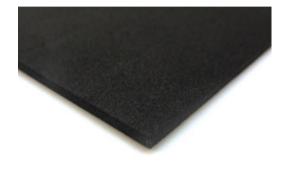


### Alternative: Padé approximation

• Better for highly non-linear relationships: rational function  $f(X_1, X_2, ..., X_N)$  instead of polynomial

$$Z \approx f(X_1, X_2, \dots, X_N) = \frac{P_M(X_1, X_2, \dots, X_N)}{Q_L(X_1, X_2, \dots, X_N)}$$

with polynomials 
$$P_M(X_1, X_2, \dots, X_N) = \sum_{j=0}^{c(M)} p_j \Phi_j$$
  
 $Q_L(X_1, X_2, \dots, X_N) = \sum_{j=0}^{c(L)} q_j \Phi_j, \qquad Q_L \neq 0 \text{ in } \Gamma$ 


### Randomness in textile antennas

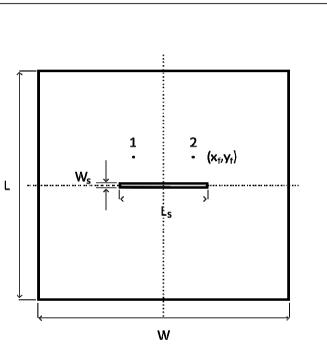


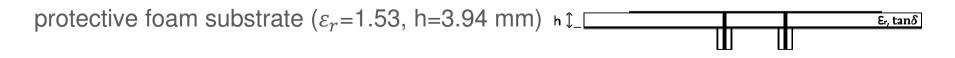
• non-uniformity in textile substrates

• variations in patch geometry

• feed misplacement





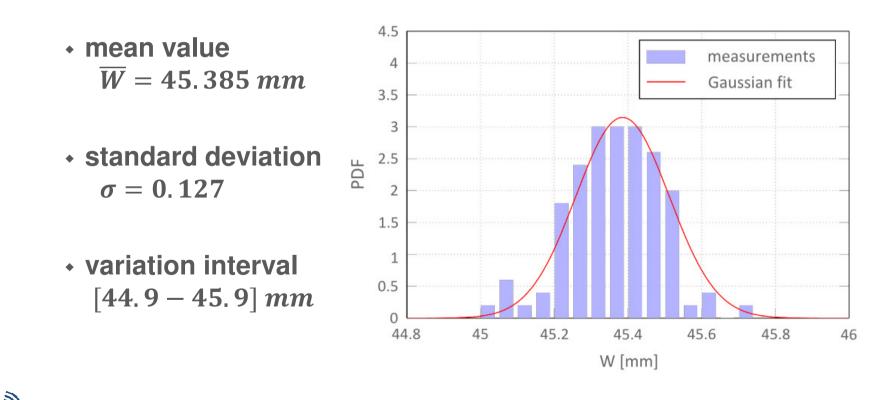


#### probe-fed 2.45GHz ISM-band patch antenna

nominal input impedance

 $Z_{in} = 50 \Omega$  at 2.45GHz

| W              | 44.46 mm         |
|----------------|------------------|
| L              | 45.32 mm         |
| $(x_f, y_f)$   | (±5.7,5.7)<br>mm |
| W <sub>s</sub> | 1 mm             |
| L <sub>s</sub> | 14.88 mm         |

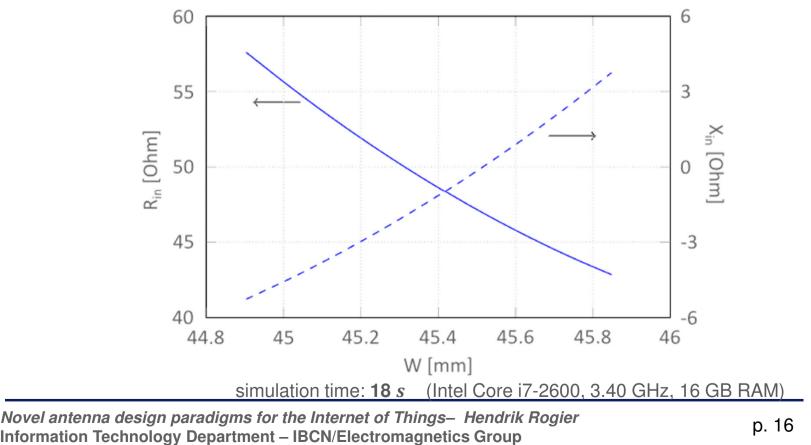





Novel antenna design paradigms for the Internet of Things– Hendrik Rogier

p. 14

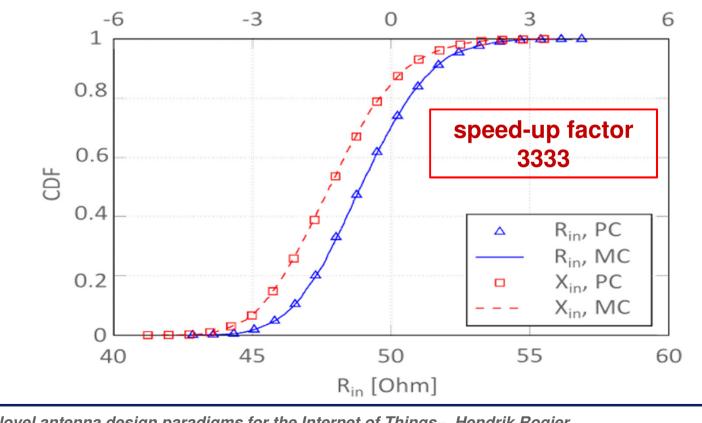
### • variations in patch width W: largest influence on $Z_{in}$


• measurements on 100 patches, manually cut



Geometry variations: input PDF

relates patch width W to Z<sub>in</sub>

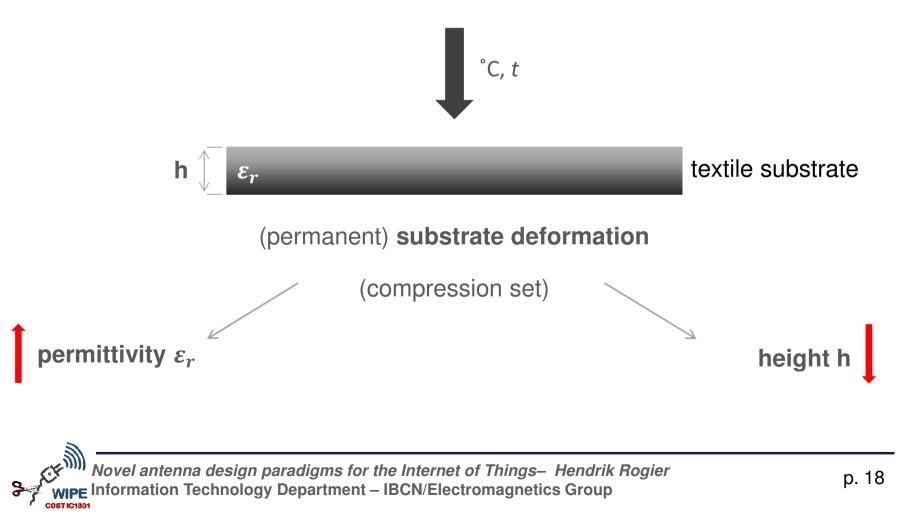

- convergence for polynomial order P = 2
- V = 3 quadrature points



WIPE

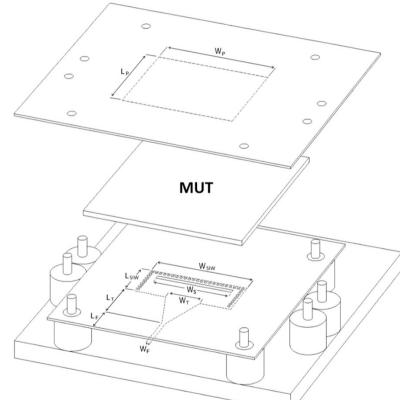
#### Output PDF of Z<sub>in</sub> generated with 10000 realizations

 Monte-Carlo based on polynomial expansion (PC) (CPU-time 18s) versus based on full-wave simulations (MC) (CPU-time 16h 40min) X<sub>in</sub> [Ohm]




WIPE Information Technology Department – IBCN/Electromagnetics Group

## Randomness in textile antennas


#### 2. Substrate compression

• 2D stochastic model for correlated height and permittivity



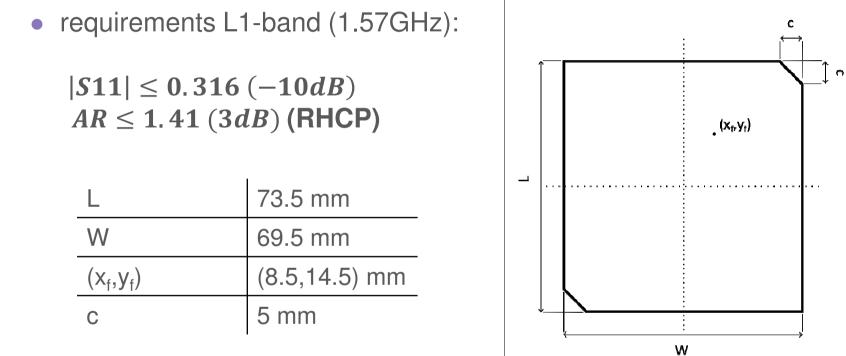


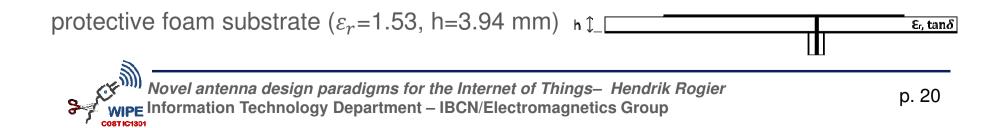
- 2. Substrate compression: permittivity measurement
  - 2D model for correlated height and permittivity: input PDF



Resonance perturbation method based

on aperture-coupled patch antenna:

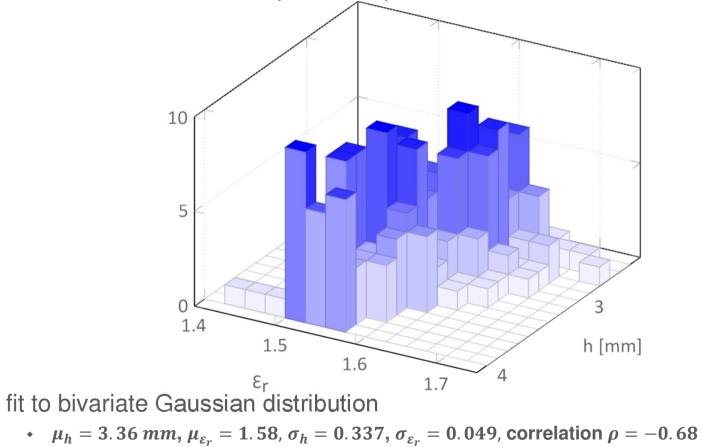

- minimized interference and back radiation
- highest field strength confined in the material under test (MUT)
- fast replacement of MUT


 $\varepsilon_r$  extracted by comparing measurements to CST Microwave Studio simulations

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier WIPE Information Technology Department – IBCN/Electromagnetics Group



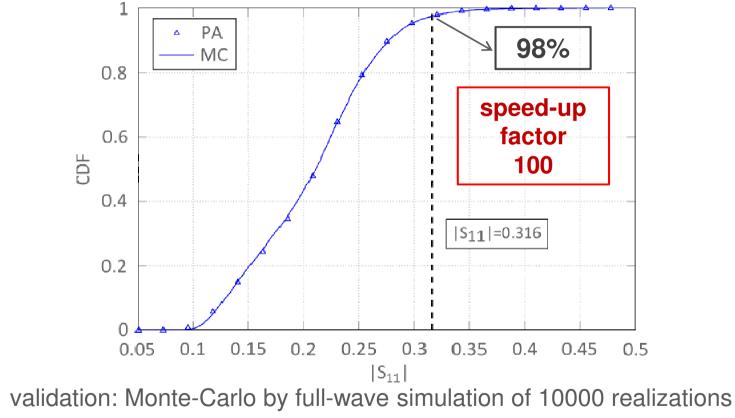
#### probe-fed microstrip GPS L1-band patch antenna







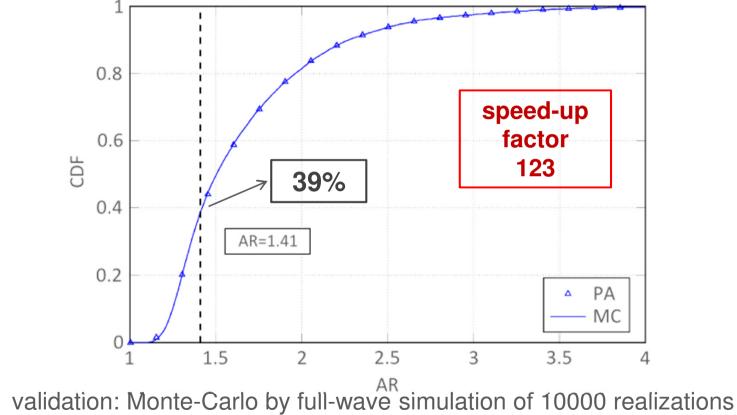

#### Input PDF


• 25 foam substrate samples compressed and measured 10 times





#### Output PDF constructed by Padé-chaos expansion


• antenna return loss at 1.57GHz

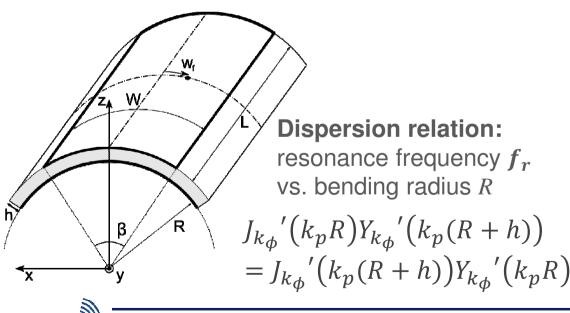


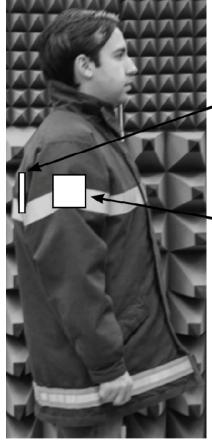
simulation time: 44 h 26 m

### Output PDF constructed by Padé-chaos expansion

• axial ratio (circular polarization) at 1.57GHz




simulation time: 44 h 26 m

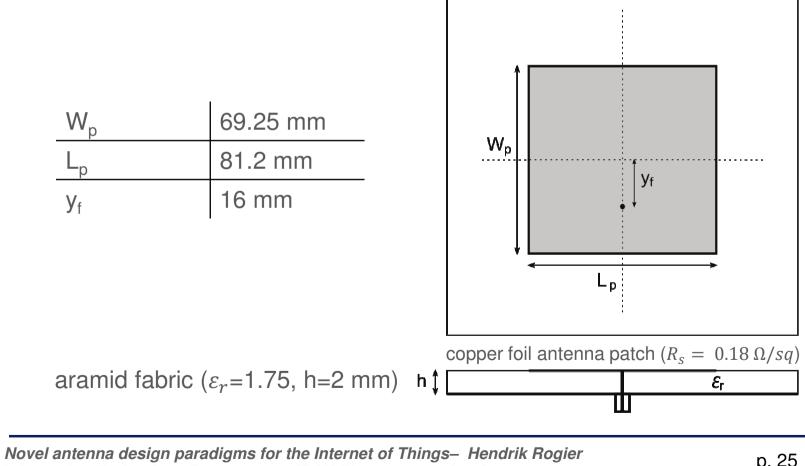

#### Randomness in textile antennas



#### 3. Substrate bending

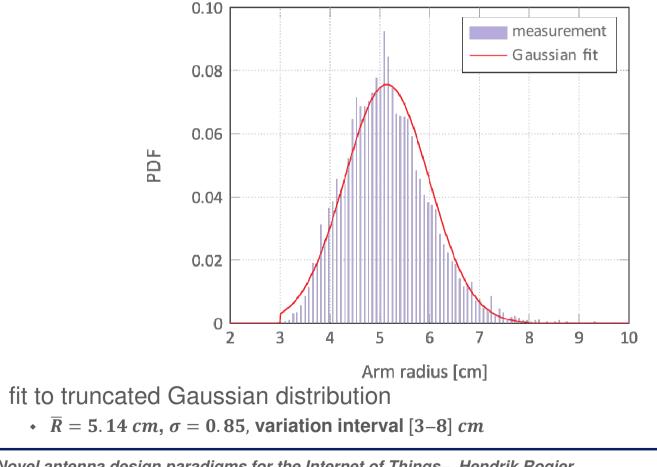
- variations in antenna's curvature radius
  - movements and activity of person wearing antenna
  - variations in body morphology over many different users
  - modeled by cavity model






antenna planar on-body position

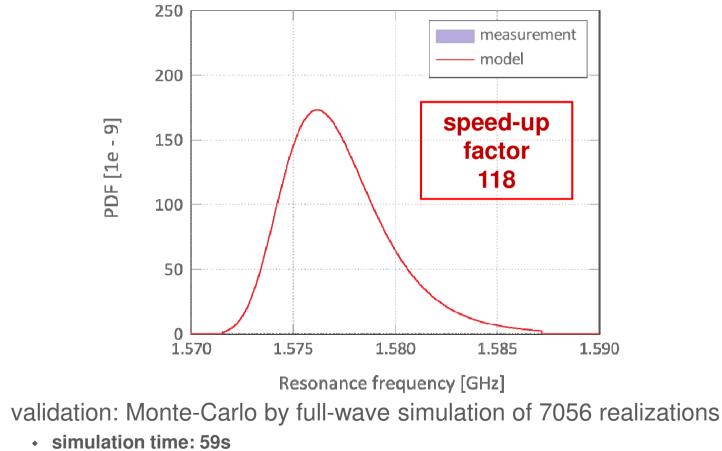
antenna bent
on-body position


#### probe-fed microstrip GPS L1-band patch antenna

• Nominal resonance frequency  $f_r = 1.57$ GHz



#### Input PDF arm radius R of human population


• from NHANES database





#### Output PDF by polynomial chaos expansion

• antenna resonance frequency



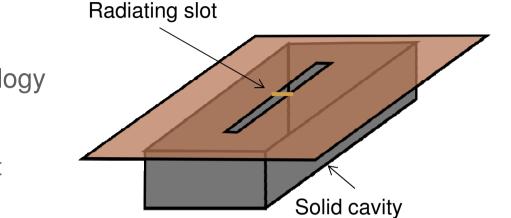




- The Internet-of-Things
  - opportunities and design challenges

### Stochastic antenna design framework

- Production uncertainties
- Substrate compression
- Substrate bending


### Some novel IoT antenna designs

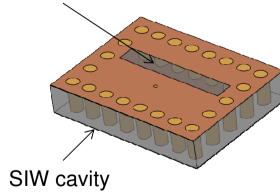
- Substrate-Integrated-Waveguide (SIW) Cavity-Backed Slot (CBS) topology
- Three-element antenna array for integration into furniture
- Half-mode SIW CBS antenna on cork substrate

### Conclusions

SIW cavity-backed slot antenna topology






#### Cavity-backed slot antenna topology

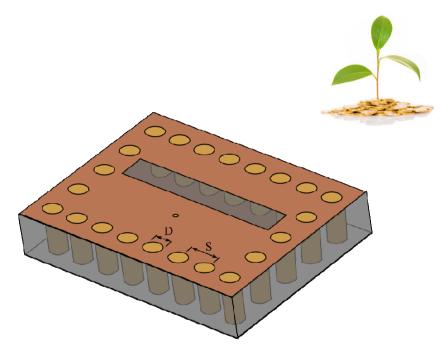
High radiation efficiency

NIVERSITEIT GENT

- High front-to-back ratio
- High isolation from its environment

#### Radiating slot



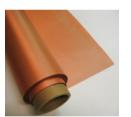

#### Substrate Integrated Waveguide (SIW) technology

- low-profile
- cost-effective
- simple implementation
- easy integration with planar circuitry

#### SIW cavity-backed slot antenna



### **Antenna materials**




#### Application-specific antenna substrate

- Stable, high-performance
- Green, recyclable design
- Reuse object's material if possible
- Significant cost and area reduction

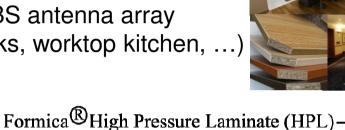
٠

Reliable material characterization necessary

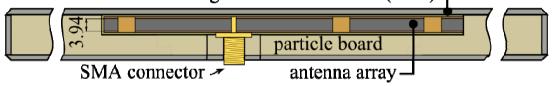


#### **Copper-plated tafetta**

- Conductive layers
- Rs = 0.18 Ω/sq




#### Brass tubular eyelets


- Effective electric walls
- Closely spaced to minimize radiation loss (S/D < 2.5)

#### Goal

- Ultra-wideband three-element SIW CBS antenna array
- Invisible integration into furniture (desks, worktop kitchen, ...)



Integration procedure

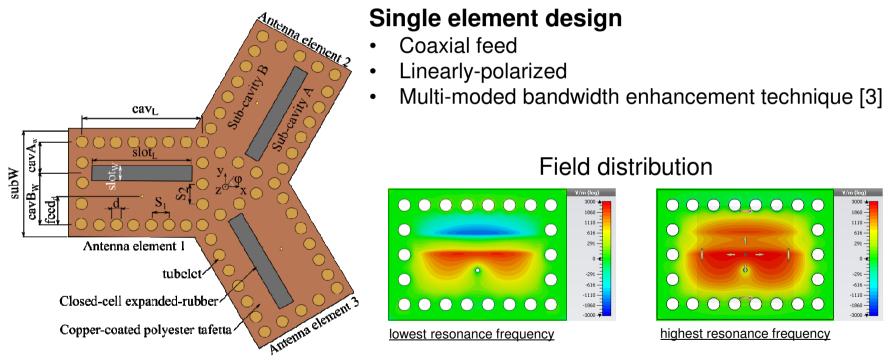


#### Integration platform



- Common material for furniture
- 38 mm-thick particle board
- 1 mm-thick High Pressure Laminate (HPL)
- ε<sub>r</sub> = 2.7 3.07 [1]
- $tan\delta = 0.07 0.09$  [1]

#### Antenna substrate

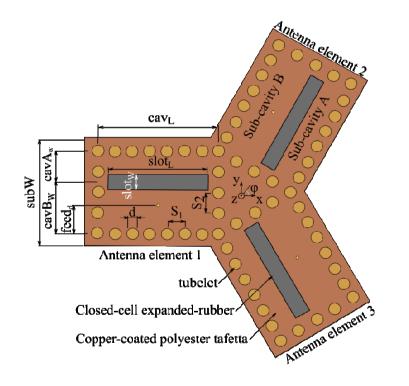

- 3.94 mm-thick closed-cell expanded-rubber
- Low losses
- Low moisture regain
- ε<sub>r</sub> = 1.495 @ 5.50 GHz [2]
- $tan\delta = 0.016 @ 5.50 \text{ GHz} [2]$

 G. I. Torgovnikov, Dielectric Properties of Wood and Wood-based Materials, Springer-Verlag, Berlin, 1993
F. Declercq, H. Rogier, and C. Hertleer, "Permittivity and Loss Tangent Characterization for Garment Antennas Based on a New Matrix-Pencil Two-Line Method," IEEE Trans. Antennas Propagat., vol. 56, no. 8, pp. 2548–2554, Aug 2008.



#### **Design requirements**

- 5 GHz Wi-Fi band [5.15-5.85] GHz , with 250 MHz margins
  - Return loss > 10 dB, [4.90-6.10] GHz
  - Isolation > 25 dB, [4.90-6.10] GHz




[3] G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes," IEEE Trans. Antennas Propagat., vol. 60, no. 4, pp. 1698–1704, Apr. 2012.

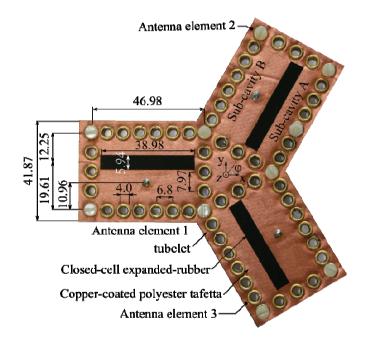
Novel antenna design paradigms for the Internet of Things– Hendrik Rogier WIPE Information Technology Department – IBCN/Electromagnetics Group



- 5 GHz Wi-Fi band [5.15-5.85] GHz , with 250 MHz margins
  - Return loss > 10 dB, [4.90-6.10] GHz
  - Isolation > 25 dB, [4.90-6.10] GHz



#### Array design

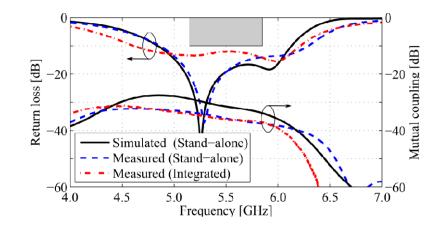

- Three identical antenna elements
- Threefold rotational symmetry
- Polarization diversity
- Spatial diversity

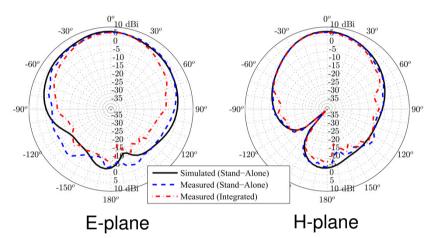
High MIMO/diversity gain



#### Prototype

JNIVERSITEIT GENT





#### Invisible integration in conference table



#### **S**-parameters

#### Radiation (far-field) performance





|         |                                      | Simulated<br>(Stand-Alone) | Measured<br>(Stand-Alone) | Measured (Integrated) |
|---------|--------------------------------------|----------------------------|---------------------------|-----------------------|
| Summary | Impedance bandwidth [MHz]            | 1296                       | 1433                      | 1652                  |
|         | η <sub>rad</sub> at 5.5 GHz [%]      | 91                         | 84                        | 78                    |
|         | Gain <sub>max</sub> at 5.5 GHz [dBi] | 6.45                       | 5.9                       | 5.8                   |
|         | FTBR at 5.5 GHz [dB]                 | 13.2                       | 10.9                      | 13.2                  |

Novel antenna design paradigms for the Internet of Things– Hendrik Rogier

INTEC

#### Short-range MIMO communication ĪIIII ultra-high datarate short-distance channel • 3x3 spatial multiplexing 802.11ac link wideband antenna array in desk and laptop Array 2 at MU Antenna (0,y,z)(0,0,z) (x.0.z)tation axis No Waterfilling Waterfilling Setup 35 1(a)plane array 2 Z = z-plane: 1(b)Arrav 1 at AP 3-element array at 0 30 2(a)Resembles antenna Antenna 2 mobile user (MU) 2(b)0 Antenna 1 array at MU [bps[Hz] 3(a) ..... 25 3(b) ..... Antenna 20 ot plane arra Ctot 15 10 Integrated inside desk /deployed underneath desl 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 3-element array at SNR [dB] access point (AP) up to 4.2 Gbps at 40dB SNR in 160MHz bandwidth up to 18.2 Gbps at 40dB SNR in 700MHz bandwidth Research at IBCN/EM – Hendrik Rogier, Dries Vande Ginste p. 36 Information Technology Department – IBCN/Electromagnetics Group

#### Half-mode SIW CBS antenna

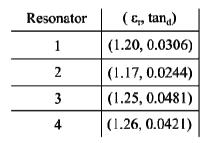
#### Goal

- Miniaturized, wideband single-element SIW CBS antenna
- Invisible integration into cork floor and wall tiles

#### Antenna substrate

NIVERSITEIT GENT




| Compact and a second second |
|-----------------------------|
|                             |
|                             |
|                             |
|                             |
| A TANK A TANK THE TANK      |

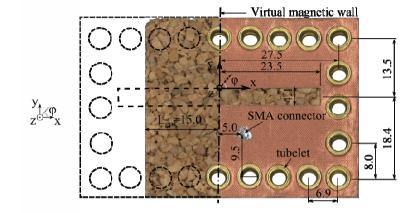
- 3 mm-thick cork substrate by Amorim Cork Composites S.A.
- Cork granules, bound by polyurethane
- Invisible integration: similar substrate as superstrate
- Low losses, low moisture regain
- Characterized at 5.50 GHz using resonator technique [5]

#### Antenna design

- Based on average parameters ( $\varepsilon_r$ , tan<sub>d</sub>) = (1.22, 0.0363)
- Retain 300 MHz impedance bandwidth margins
- Allow for slight variation in cork material properties

Return loss > 10 dB,




[5] O. Caytan, S. Lemey, S. Agneessens, D. Vande Ginste, P. Demeester, C. Loss, R. Salvado, and H. Rogier, "Half-mode substrateintegrated-waveguide cavity-backed slot antenna on cork substrate," Antennas Wirel. Propag. Lett., vol. PP, no. 99, 2015.

[4.85-6.15] GHz

WIPE Information Technology Department – IBCN/Electromagnetics Group

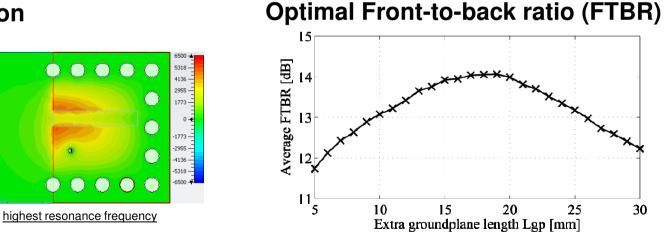
#### Half-mode SIW CBS antenna





JNIVERSITEIT GENT

#### Field distribution


 $\bigcirc \bigcirc$ 

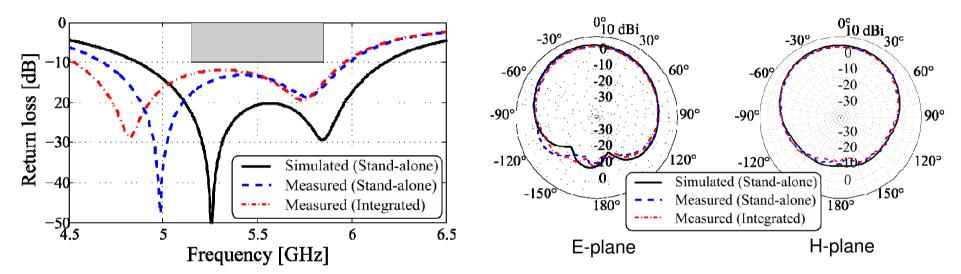
lowest resonance frequency

 $\cap$ 

#### Half-mode SIW CBS Antenna

- Return loss > 10 dB, [4.85-6.15] GHz
- Multi-moded bandwidth enhancement technique
- Half-mode SIW miniaturization technique




Half-mode SIW CBS Antenna



#### Return loss

08TIC1301

#### **Radiation performance at 5.5 GHz**



|         |                                      | Simulated     | Measured      | Measured     |
|---------|--------------------------------------|---------------|---------------|--------------|
|         |                                      | (Stand-Alone) | (Stand-Alone) | (Integrated) |
| Summary | Impedance bandwidth [MHz]            | 1317          | 1312          | 1436         |
|         | η <sub>rad</sub> at 5.5 GHz [%]      | 83            | 85            | 80           |
|         | Gain <sub>max</sub> at 5.5 GHz [dBi] | 5.0           | 4.3           | 4.2          |
|         | FTBR at 5.5 GHz [dB]                 | 14.5          | 15.0          | 16.8         |





- The Internet-of-Things
  - opportunities and design challenges

### Stochastic antenna design framework

- Production uncertainties
- Substrate compression
- Substrate bending
- Some novel IoT antenna designs
  - Substrate-Integrated-Waveguide (SIW) Cavity-Backed Slot (CBS) topology
  - Three-element antenna array for integration into furniture
  - Half-mode SIW CBS antenna on cork substrate

### Conclusions

### Conclusions



### Accounting for random variations in IoT antennas

• in antenna geometry

• In deployment conditions

### Stochastic antenna design framework

→ quantify statistics of antenna's figures of merit

#### Better isolation between antenna and IoT platform

### > Dedicated antenna topology

→ Cavity-backed slot antenna in SIW technology

### Design examples

- three-element UWB antenna array for integration into furniture
- miniature HMSIW antenna for integration in cork floors and walls





JNIVERSITEIT GENT



- 1. C. Hertleer, H. Rogier, L. Vallozzi, and L. Van Langenhove, "A Textile Antenna for Off-Body Communication Integrated into Protective Clothing for Firefighters", IEEE Trans. on Antennas Propag., vol. 57, no. 4, pp. 919–925, Apr. 2009.
- 2. C. Hertleer, A. Van Laere, H. Rogier, L. Van Langenhove, "Influence of Relative Humidity on Textile Antenna Performance.," Textile Research Journal, vol. 80, no. 2, pp. 177–183, Jan. 2010.
- 3. P. Van Torre, L. Vallozzi, H. Rogier, M. Moeneclaey, C. Hertleer, J. Verhaevert, "Indoor off-body wireless MIMO communication with dual polarized textile antennas.", IEEE Trans. on Antennas Propag. (IF 2.151, ranking 11/78, Q1, 13 citations), vol. 59, no. 2, pp. 631–642, Feb. 2011.
- 4. M. Scarpello, D. Kurup, H. Rogier, D. Vande Ginste, F. Axisa, J. Vanfleteren, W. Joseph, L. Martens, G. Vermeeren, "Design of an Implantable Slot Dipole Conformal Flexible Antenna for Biomedical Applications", IEEE Trans. on Antennas Propag., vol. 59, no. 10, pp. 3556–3564, Oct. 2011.
- 5. F. Boeykens, L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular-patch antennas," International Journal of Antennas and Propagation, Article ID 170420, 11 pages, doi:10.1155/2012/170420, 2012
- 6. M. L. Scarpello, I. Kazani, C. Hertleer, H. Rogier and D. Vande Ginste, "Stability and Efficiency of Screen-Printed Wearable and Washable Antennas", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 838–841, 2012.
- 7. P. Van Torre, L. Vallozzi, L. Jacobs, H. Rogier, M. Moeneclaey and J. Verhaevert, "Characterization of measured indoor offbody MIMO channels with correlated fading, correlated shadowing and constant path loss," IEEE Trans. on Wireless Communications, vol. 11, no. 2, pp. 712-721, Feb. 2012.
- 8. R. Moro, S. Agneessens, H. Rogier, and M. Bozzi, "Wearable Textile Antenna in Substrate Integrated Waveguide Technology," IET Electronics Letters, vol. 48, no. 16, pp. 985–987, Aug. 2012.
- F. Declercq, I. Couckuyt, H. Rogier, and T. Dhaene, "Environmental High Frequency Characterization of Fabrics based on a Novel Surrogate Modelling Antenna Technique", IEEE Trans. on Antennas Propag., vol. 61, no. 10, pp. 5200–5213, Oct. 2013.
- 10. S. Lemey, F. Declercq and H. Rogier, "Dual-band Substrate Integrated Waveguide Textile Antenna with Integrated Solar Harvester", IEEE Antennas and Wireless Propagation Letters, vol. 13, Digital Object Identifier: 10.1109/LAWP.2014.2303573, pp. 269–272, 2014.
- 11. F. Boeykens, H. Rogier, and L. Vallozzi, "An efficient technique based on polynomial chaos to model the uncertainty in the resonance frequency of textile antennas due to bending", IEEE Trans. on Antennas Propag, vol. 62, no. 3, pp. 1253–1260, Mar. 2014.
- N. Carvalho, A. Georgiadis, A. Costanzo, H. Rogier, A. Collado, J. A. García, S. Lucyszyn, P. Mezzanotte, J. Kracek, D. Masotti, A. Boaventura, M. Nieves Ruíz, M. Pinuela, D. Yates, P. Mitcheson, M. Mazanek, and V. Pankrac, "Wireless Power Transmission: R&D Activities within Europe", IEEE Trans. Microwave Theory Tech., vol. 62, no. 4, pp. 1031–1045, Apr. 2014.



JNIVERSITEIT GENT



- 13. S. Agneessens, and H. Rogier, "Compact Half Diamond Dual-Band Textile HMSIW On body Antenna", IEEE Trans. on Antennas Propag., vol. 62, no. 4, pp. 2374–2381, May 2014.
- 14. S. Lemey, F. Declercq, and H. Rogier, "Textile antennas as hybrid energy harvesting platforms", Proceedings of the IEEE, vol. 102, no. 11, pp. 1833–1857, Nov. 2014.
- 15. M. Rossi, A. Dierck, H. Rogier, and D. Vande Ginste, "A Stochastic Framework for the Variability Analysis of Textile Antennas", IEEE Trans. on Antennas Propag., vol. 62, no. 12, pp. 6510-6514, Dec. 2014.
- S. Agneessens, S.Lemey, T. Vervust, and H. Rogier, "Wearable, small, and robust: the circular Quarter-Mode Textile Antenna", IEEE Antennas and Wireless Propagation Letters, vol. 14, Digital Object Identifier: <u>10.1109/LAWP.2014.2368597</u>, pp. 1482–1485, 2015.
- 17. R. Moro, S. Agneessens, H. Rogier, A. Dierck, and Maurizio Bozzi, "Textile Microwave Components in Substrate Integrated Waveguide Technology", IEEE Trans. Microwave Theory Tech. (IF 2.243, ranking 46/249, Q1, 3 citations), vol. 63, no. 2, pp. 422–432, Feb. 2015.
- 18. M. Marinova, A. Thielens, E. Tanghe, L. Vallozzi, G. Vermeeren, W. Joseph, H. Rogier, L. Martens, "Diversity Performance of Off-body MB-OFDM UWB-MIMO", IEEE Trans. on Antennas Propag., vol. 63, no. 7, pp. 3187–3197, Mar. 2015.
- 19. P. Vanveerdeghem, P. Van Torre, A. Thielens, J. Knockaert, W. Joseph, and Hendrik Rogier, "Compact Personal Distributed Wearable Exposimeter", IEEE Sensors Journal, vol. 15, no. 8, pp. 4393–4401, Aug. 2015.
- 20. P. Nepa, and H. Rogier, "Wearable Antennas for Off-Body Radio Links at VHF and UHF bands (below 1 GHz): Challenges, State-of-the-Art and Future Trends", IEEE Antennas and Propagation Magazine, vol. 57, no. 5, Digital Object Identifier: 10.1109/MAP.2015.2472374, pp. 30–52, Oct. 2015.
- 21. O. Caytan, S. Lemey, S. Agneessens, D. Vande Ginste, P. Demeester, C. Loss, R. Salvado, and H. Rogier, "Half-Mode Substrate-Integrated-Waveguide Cavity-Backed Slot Antenna on Cork Substrate", IEEE Antennas and Wireless Propagation Letters, vol. 15, Digital Object Identifier: <u>10.1109/LAWP.2015.2435891</u>, pp. 162–165, 2015.
- 22. O. Caytan, S. Lemey, S. Agneessens, and H. Rogier, "SIW Antennas as Hybrid Energy Harvesting and Power Management Platforms for the Internet of Things", Int. Journal of Microwave and Wireless Technologies, doi:10.1017/S1759078716000325, in press, Feb. 2016.
- 23. S. Lemey, T. Castel, P. Van Torre, T. Vervust, J. Vanfleteren, P. Demeester, D. Vande Ginste, and Hendrik Rogier, "Threefold Rotationally Symmetric SIW Antenna Array for Ultra-Short-Range MIMO Communication", IEEE Trans. on Antennas Propag., vol., no., pp. –, in press, Feb. 2016.
- 24. T. Castel, P. Van Torre, L. Vallozzi, M. Marinova, S. Lemey, W. Joseph, C. Oestges, and H. Rogier, "Capacity of Broadband Body-to-Body Channels between Firefighters wearing Textile SIW Antennas", IEEE Trans. on Antennas Propag. (IF 2.181, ranking 10/77, Q1), vol., no., pp. –, in press, Feb. 2016.
- 25. M. Rossi, S. Agneessens, H. Rogier, and D. Vande Ginste, "Stochastic Analysis of the Impact of Substrate Compression on the Performance of Textile Antennas", IEEE Trans. on Antennas Propag., vol. , no. , pp. –, in press, Mar. 2016.