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Communication System

Lets consider the simplified representation of a communication system

Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as
possible.

source-channel separation theorem

Source Sinkchannel

source
encoder 

source 
decoderchannelchannel

encoder 
channel
decoder 

Source Sink

source coding theorem: for a given source and distortion measure, there
exists a minimum rate R(d) necessary (and sufficient) to describe this source
with distortion ≤ d .
channel coding theorem: there exist a maximum rate (bits per channel use)
at which information can be transmitted reliably (probability of error → 0)
over a given channel. ⇒ maximum rate: capacity of the channel C .
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Communication System

Lets consider the simplified representation of a communication system

Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as
possible.

source-channel separation theorem

source
encoder 

source 
decoderchannelchannel

encoder 
channel
decoder 

Source Sink

the source can be reconstructed at the receiver with a distortion of at
most d if R(d) < C
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Limits for channel coding: channel capacity

The performance limits for channel coding are given by the channel
capacity

Results from information theory are mathematically exact, but have
to be interpreted with caution:

channel capacity holds for infinite block length
channel models are highly simplified
decoding complexity is not considered

Nevertheless useful to obtain guidelines for practical design
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Basic Concepts of Information Theory



Entropy and Mutual Information

We consider a discrete random variable X ∈ X = {x1, x2, . . . , xN}, where
X denotes an alphabet of cardinality N. The probability mass function
(pmf) is denoted by

pi = p(xi ) = P[X = xi ], with
N∑
i=1

pi = 1

The entropy of the X is defined as

H(X ) =
∑
x∈X

p(x)ld
1

p(x)
= E

X
[−ldp(X )] (1)

logarithms are base two (“logarithmus dualis”), the entropy is measured in
bits

H(X ) depends only on the distribution of X , i.e. the pi , and not on the
values of X itself, i.e. the xi
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Entropy and Mutual Information

We can think of the entropy H(X ) as a measure of

the amount of “information” provided by an observation of X
our “uncertainty” of X
the “randomness” of X

Properties of H(X )
1 0 ≤ H(X ) ≤ ldN
2 H(X ) = 0 iff pi = 1 for some i
3 H(X ) = ldN iff pi = 1/N for all i

H(X ) vanishes only if X is deterministic and it is maximum if X is
uniformly distributed

M.Navarro, S.Pfletschinger (CTTC) Basics Comm. 9 - 13 Nov. 2015 8 / 48



Entropy and Mutual Information

Binary entropy function

For X = {0, 1}, P[X = 0] = p, we define

H2(p) , −pldp − (1− p)ld(1− p) (2)

H2(p) is a concave
function in p

attains its maximum at
p = 1/2

our uncertainty about a
binary random variable is
maximum if both
outcomes are
equiprobable
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Entropy and Mutual Information
Multiple Random Variables

Now we consider two discrete RV, X ∈ X and Y ∈ Y and define the joint
entropy and the conditional entropy

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y)ldp(x , y) = −E [ldp(X ,Y )] (3)

H(X |Y ) =
∑
y∈Y

p(y)H(X |Y = y) = −
∑
x∈X

∑
y∈Y

p(x , y)ldp(x |y) (4)

where H(X |Y = y) , −
∑

x∈X p(x |y)ldp(x |y)

The conditional entropy H(X |Y ) is our uncertainty about X after having
observed Y .
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Entropy and Mutual Information
Some properties of entropy

Conditioning reduces entropy:

H(X |Y ) ≤ H(X ) (5)

equality holds if and only if X and Y are independent
H(X |Y = y) can be greater than H(X ), but on the average the
knowledge of Y reduces our uncertainty of X

Chain rule

H(X ,Y ) = H(X ) + H(Y |X ) ≤ H(X ) + H(Y ) (6)

H(X) ≤
n∑

i=1

H(Xi ) (7)

where X = (X1,X2, . . . ,Xn)
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Entropy and Mutual Information

The mutual information between X and Y is

I (X ;Y ) =
∑
x∈X

∑
y∈Y

p(x , y)ld
p(x , y)

p(x)p(y)
(8)

= H(X )− H(X |Y ) (9)

= H(X ) + H(Y )− H(X ,Y ) (10)

I (X ;Y ) ≥ 0 with equality iff X and Y are independent
I (X ;Y ) is the reduction in uncertainty of X due to the knowledge of Y
If X is transmitted over a channel and received as Y , I (X ;Y ) is the
transmitted amount of information

M.Navarro, S.Pfletschinger (CTTC) Basics Comm. 9 - 13 Nov. 2015 12 / 48



Entropy and Mutual Information

Mutual information for random vectors

I (X1,X2;Y ) = H(X1,X2)− H(X1,X2|Y )

I (X;Y ) = H(X)− H(X|Y )
(11)

Conditional mutual information

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z ) =
∑
z∈Z

p(z)I (X ;Y |Z = z) (12)

Chain rule

I (X1,X2;Y ) = I (X1;Y ) + I (X2;Y |X1)

= I (X2;Y ) + I (X1;Y |X2)
(13)
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Entropy and Mutual Information

Relationship between entropy, conditional entropy, joint entropy and
mutual information.

H(X,Y)
H(X)

H(Y)
H(X | Y) H(Y | X)I(X;Y)
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Entropy and Mutual Information

For a continuous random variable, we can define the differential entropy

h(X ) , −
∫

p(x)ldp(x) dx (14)

The conditional differential entropy and the mutual information are
defined accordingly

h(X |Y ) = −
∫∫

p(x , y)ldp(x |y) dx dy (15)

I (X ;Y ) = h(X )− h(X |Y ) (16)

h(X ) might be negative

h(X ) for a discrete random variable is −∞
I (X ;Y ) ≥ 0 like in the discrete case

chain rules hold like in discrete case
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Basic Channel Models
Discrete memoryless channel

The discrete memoryless channel (DMC)

is defined by an input alphabet X, an output
alphabet Y and the transition probabilities
p(y |x)
memoryless means p(y|x) =

∏n
i=1 p(yi |xi )

The simplest examples are the binary
symmetric channel (BSC) and the binary
erasure channel (BEC)

 p(y|x)
a1

...

a2

an

b1

b2

bm

X Y

Binary symmetric channel
1 − p

1 − p

 p

x = 0

x = 1

y = 0

y = 1

Binary erasure channel
1 − p

1 − p

 p

x = 0

x = 1

y = 0

y = 1

y = ?
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Basic Channel Models
Single-user channels

The following channels have continuous inputs and outputs.

AWGN channel: y = x + w
x y

0(0, )w N: CN

Rayleigh fading channel: y = h · x + w
x y

h
w

Vector Gaussian channel: y = Hx + w
x y

w

H
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Basic Channel Models
Multi-user channels

Multiple-access channel (MAC)

uplink
K users
K different messages
K power constraints

Broadcast channel (BC)

downlink
K users
K different messages, one common message
one power constraint

y

wx1

xK

...

y1

w1

x ...

yK

wK
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Basic Channel Models
Relay channel

Relay channel, general model

Relay helps source to transmit its message
Capacity is unknown

1x
Source

3 y
Destination

2

Relay

:y x% %

Degraded Gaussian relay channel

Capacity is known

y

w
1

x

w
2Relay

x

y%
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Single-User Channels
Definitions

Encoder channel Decoder

u
 
∈

 
{1,…,M} x

 
= (x

1
,…,x

n
) y

 
= (y

1
,…,y

n
) û

 
∈

 
{1,…,M}

An (n,M) codebook consists of

an encoding function u → x = (x1, . . . , xn)

a decoding function y → û

Probability of error: Pn
e = P[u 6= û]

The rate R = ldM
n is achievable if there exists a sequence of (n, 2nR)

codebooks such that Pn
e → 0 for n→∞.

⇔ for every ε > 0 we can find an (n, 2nR) codebook such that Pn
e < ε.
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Random coding with ML decoding

Generate (n,M) codebook: C = {x(1), x(2), . . . , x(M)}
codebook is known to transmitter and receiver

x1(1) x2(1) · · · xn(1)
x1(2) x2(2) · · · xn(2)

...
...

x1(M) x2(M) · · · xn(M)


Coding procedure

1 Select message u ∈ {1, 2, . . . ,M}
2 Transmit x(u) = (x1(u), x2(u), . . . , xn(u))
3 Receive y = (y1, . . . , yn)
4 Maximum likelihood decoding: û = arg maxi p (y|x(i))
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Capacities of Single-User Channels



Single-User Channels
Definitions

The channel capacity is the supremum of all achievable rates:

C = supR

Definition (Channel capacity)

The channel capacity of a channel with input X and output Y is given by

C = max
p(x)

I (X ;Y )
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Channel Capacity of BSC and BEC

BSC (binary symmetric channel)

I (X ;Y ) = H(Y )− H(Y |X ) = H(Y )−
∑
x∈X

p(x)H(Y |X = x)

= H(Y )−
∑

x∈{0,1}

p(x)H2(p) = H(Y )− H2(p)

H(Y ) is maximum for px = 1/2, then CBSC = 1− H2(p)

BEC (binary erasure channel):
CBEC = 1− p

on average, p bits get lost
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Channel Capacity of the AWGN

AWGN channel with continuous input:

real-valued: y = x + w , x ∈ R, w ∼ N (0,N0/2) (17)

complex-valued: y = x + w , x ∈ C, w ∼ CN (0,N0) (18)

the capacities are

Creal =
1

2
ld

(
1 +

2ES

N0

)
, Ccomplex = ld

(
1 +

ES

N0

)
(19)

To achieve capacity, the channel input must be normal distributed:
x ∼ N (0,ES) or x ∼ CN (0,ES).
this holds for the discrete-time channel, capacity is measured in bits
per channel use
for the continuous-time channel, this corresponds to the spectral
efficiency, measured in bps/Hz
Note: N0 = 2σ2 by convention

M.Navarro, S.Pfletschinger (CTTC) Basics Comm. 9 - 13 Nov. 2015 25 / 48



Channel Capacity of the AWGN

Outline of derivation for real-valued AWGN
Power constraint: E

[
x2
]
≤ ES, mutual information:

I (X ;Y ) = h(Y )− h(Y |X )

C = max
p(x):E[x2]≤ES

{h(Y )− h(Y |X )}

the differential entropy of a N (µ, σ2) distributed random variable is
1
2 ld(2πeσ2), independent of µ. Then

h(Y |X ) =

∫ ∞
−∞

p(x)h( Y |X = x︸ ︷︷ ︸
∼N (x,N0/2)

)dx = h(W ) =
1

2
ld(πeN0)

The normal distribution maximizes the differential entropy for a given
second moment ⇒ Y is normal distributed ⇒ X ∼ N (0,ES),
Y ∼ N (0,ES + N0

2 ), h(Y ) = 1
2 ld (πe(2ES + N0)) and finally

C =
1

2
ld

(
1 +

2ES

N0

)
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Channel Capacity of the AWGN

Consider the real-valued AWGN with continuous input
ES is the energy per transmitted symbol
in the context of channel coding, we often use the energy per bit
Eb = ES

R

the maximum rate is R = 1
2 ld
(

1 + 2REb

N0

)
, thus Eb

N0
= 22R−1

2R

for R → 0, Eb

N0
→ ln 2, i.e. −1.59 dB

For Eb/N0 < −1.59 dB, no reliable transmission!
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Channel Capacity of Parallel AWGN Channels

Consider N inputs X1,X2, . . . ,XN

N outputs Y1,Y2, . . . ,YN

each with Yi = Xi + Wi , Wi ∼ N (0, σ2
i )

subject to a total power constraint

E =

[
N∑
i=1

X 2
i

]
≤ P

The capacity is given by

C =
N∑
i=1

1

2
ld

(
1 +

Pi

σ2
i

)
is achieved for independent Gaussian Xi ∼ (0,Pi )

with Pi = max{ν − σ2
i , 0},ν a constant and

∑N
i=1 Pi = P

→ Waterfilling
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Channel Capacity of the AWGN with Discrete Input

AWGN channel with discrete input

Transmit symbol (channel input) is taken out of a discrete alphabet,
e.g. a PAM constellation: x ∈ X = {a1, a2, . . . , aM} ⊂ R. We
additionally assume that all constellation points are equiprobable.

h(Y |X ) =
∑
x∈X

p(x)h(Y |X = x) = h(W ) =
1

2
ld (πeN0)

h(Y ) = −E [ldp(y)] = −E

[
ld

(
1

M
√
πN0

M∑
i=1

exp

(
− (y − ai )

2

N0

))]
C = h(Y )− h(Y |X )

Note: most QAM constellations can be separated into two PAM
constellations
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Channel Capacity of the AWGN with Discrete Input
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Capacities of AWGN channel with QAM
Definitions

x y

w

µ
1

m

b

b

 
 =  
  

b M

mapping

With little loss of generality, we consider real-valued constellations

Definitions and assumptions for real-valued AWGN
channel: y = x + w , noise: w ∼ N (0,N0/2),

p(y |x) = 1√
πN0

exp
(
− (y−x)2

N0

)
input bit vector: b = (b1, . . . , bm)T ∈ {0, 1}m
mapping function: µ : {0, 1}m → X = {a1, a2, . . . , aM} ⊂ R, with
M = 2m

uniform input distribution: P[bi = 0] = 0.5 ∀i , hence
P[x = ai ] = 2−m = 1

M

No optimization over input distribution
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Capacities of AWGN channel with QAM
Definitions

We can define the following capacities:
1 CCM = I (X ;Y ) = I (B;Y ), “coded modulation” capacity
2 CCM

q = I (Bq;Y |B1 · · ·Bq−1), CM subchannel capacity
3 CBICM

q = I (Bq;Y ), BICM subchannel capacity
4 CBICM =

∑m
q=1 I (Bq;Y ), BICM capaciy

Note: only CCM is independent of the mapping µ

Derivation of capacities

From the chain rule,

CCM = I (B1 · · ·Bm;Y ) =
m∑

q=1

I (Bq;Y |B1 · · ·Bq−1) =
m∑

q=1

CCM
q
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Capacities of AWGN channel with QAM
Derivation

again with chain rule,

CCM
q = I (Bq · · ·Bm;Y |B1 · · ·Bq−1)︸ ︷︷ ︸

,Rq−1

− I (Bq+1 · · ·Bm;Y |B1 · · ·Bq)︸ ︷︷ ︸
=Rq

Rq =
∑

(b1···bq)∈{0,1}q
P[B1 = b1, . . . ,Bq = bq] · I (Bq+1 · · ·Bm;Y |b1 · · · bq)

= 2−q
2q−1∑
j=0

I (Bq+1 · · ·Bm;Y |(b1 · · · bq) = bin(j))︸ ︷︷ ︸
,Rq,j

Rq,j = C (A ((b1 · · · bq) = bin(j))), where A ((b1 · · · bq)) denotes the
subconstellation with bits b1, . . . , bq fixed and C (A) is its capacity

⇒ we require the capacity C (A)
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Capacities of AWGN channel with QAM
Derivation

For a discrete set A = {a1, . . . , aM} and equally probable constellation
points, we have

C (A) =
1

M

M∑
i=1

∫ ∞
−∞

p(y |ai )ld
p(y |ai )

1
M

∑M
j=1 p(y |aj)

dy

= ldM − 1

M

M∑
i=1

∫ ∞
−∞

p(y |ai )ld
M∑
j=1

p(y |aj)
p(y |ai )

dy

= ldM − 1

M

M∑
i=1

E
y |ai

ld M∑
j=1

exp

(
− (y − ai )

2 − (y − aj)
2

N0

)
since the expectation is over y = ai +

√
N0

2 w , with w ∼ N (0, 1), we

can write

C (A) = ldM− 1

M

M∑
i=1

E
w

ld M∑
j=1

exp

− (ai − aj +
√

N0

2 w)2 − N0

2 w2

N0


M.Navarro, S.Pfletschinger (CTTC) Basics Comm. 9 - 13 Nov. 2015 34 / 48



Capacities of AWGN channel with QAM
Derivation

Finally, for numerical computation, we can approximate the expectation
with a normally distributed sequence w1,w2, . . . ,wN for N →∞ and
obtain

C (A) ≈ ldM− 1

NM

N∑
n=1

M∑
i=1

ld

M∑
j=1

exp

(
− (ai − aj)

2

N0
+

√
2

N0
(ai − aj)wn

)

Hence, we obtain Rq,j → Rq → CCM
q . Note that we can compute CCM

directly.

For BICM, we have the subchannel capacities

CBICM
q = I (B;Y )− I (B1 · · ·Bq−1,Bq+1 · · ·Bm;Y |Bq)

= CCM − C (A(bq = 0)) + C (A(bq = 1))

2
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Capacities of AWGN channel with QAM
Capacities for 4-ASK with Gray labeling
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AWGN Capacity – Continuous Time

We consider a passband channel with bandwidth B and noise power
spectral density N0/2 (note the redefinition of N0!). Its capacity in
bit/s is

C = Bld

(
1 +

P

N0B

)
(20)

The capacity for infinite bandwidth is lim
B→∞

C = 1
ln 2

P
N0
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Fading Channels and Outage Capacity

Flat fading channel: yi = hi · xi + wi , wi ∼ CN (0,N0)

Power gain is unity, i.e. E
[
|hi |2

]
= 1, e.g. Rayleigh fading:

hi ∼ CN (0, 1)
Average SNR is γ̄ = ES

N0

Slow fading, no CSI at transmitter

channel coefficient is constant during one codeword: hi = h ∀i , the
“capacity” is hence ld(1 + |h|2γ̄). The transmitter sends at rate R.
The channel is in outage if the rate is too high,

Pout(R) = P
[
ld(1 + |h|2γ̄) < R

]
= 1− exp

(
−2R − 1

γ̄

)

Channel capacity is zero!
We need another metric to describe this channel.
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Fading Channels and Outage Capacity

We define the outage capacity Cε as the largest rate such that the
outage probability is less than ε:

Cε = ld
(
1 + γ̄ · F−1

g (ε)
)

(21)

where Fg (x) = P[g ≤ x ] is the cdf (cumulative distribution function)
of the channel power gain g = |h|2.

Fast fading, no CSI at transmitter

hi is i.i.d., while the codeword length n→∞. In this case, we apply
the ergodic capacity

C = E
[
ld
(
1 + |h|2γ̄

)]
(22)
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Remarks on practical Channel Coding schemes



Channel capacity and limits for infinite blocklength

Shannon limit: reliable communication is only possible if the data rate
is below the channel capacity

For system design we may want to calculate the minimum SNR γmin

required to achieve a target perfomance BER = p with rate R

Recall that for the Gaussian channel

y = x + w

with w ∼ N (0,N0/2)

capacity is achieved with Gaussian input distribution x ∼ N (0,Es)

CG(γ) =
1

2
ld(1 + 2γ)
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Channel capacity and limits for infinite blocklength

and the maximum achievable rate R for a given probability of bit
error p > 0 is related to the channel capacity by

R(γ, p) =
CG (γ)

1− H2(p)

where H2(p) = pld(p)− (1− p)ld(1− p)

γmin,G =
1

2

(
22R(1−H2(p)) − 1

)
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Channel capacity and limits for infinite blocklength

Equivalently, for binary antipodal signalling x ∈ {+1,−1} the
capacity is

CB(γ) = J(
√

8γ)

with function J(x) defined

J(x) = 1− 1√
2πx

∫ ∞
−∞

exp

(
−−(t − x2/2)2

2x2

)
ld(1 + exp(−t))dt

J(x) and its inverse J−1(y) are typically calculated through numerical
approximations [tenBrink01].

The minimum SNR γmin required to achieve a target perfomance
BER = p with rate R with binary antipodal signalling is

γmin,B =
1

8

(
J−1 (R(1− H2(p)))

)2
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Channel capacity and limits for infinite blocklength

Curve fitting approximations of the J(·)-function

J(σ) ={
−0.0421061σ3 + 0.209252σ2 − 0.00640081σ 0 ≤ σ ≤ σth
1− exp

(
0.00181491σ3 − 0.142675σ2 − 0.0822054σ + 0.0549608

)
σth < σ <∞

Curve fitting approximations of the J−1(·)-function

J−1(I ) =
{

1.09542I 2 + 0.214217I + 2.33727
√
I 0 ≤ I ≤ Ith

−0.706692 ln (−0.386013(I − 1)) + 1.75017I Ith < I < 1

[tenBrink01] S.ten Brink,”Design of Concatenated Coding Schemes based on Iterative Decoding
Convergence”, PhD thesis, Apr. 2001.
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Channel capacity and limits for infinite blocklength

Approximation of the J(·)-function
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Channel capacity and limits for finite blocklength

However, practical communication systems use finite blocklength
coding

Polyanksi, Poor and Verdú [Pol10] derived frame error probability
bounds for finite length N schemes (Gaussian input distribution)

The following expression provides a FER lower bound for any practical
coding/decoding scheme

pF ≥ Q

(
(1 + 2γ)

√
N

8γ(1 + γ)

(
ln(1 + γ) +

lnN

N
− 2R lnN

))

[Pol10]Y. Polyanskiy, H. V. Poor, and S. Verd, Channel coding rate in the finite blocklength
regime, IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
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Channel capacity and limits for finite blocklength

An example

 

Shannon limits for Gaussian and binary transmit signals, with Polyanskiy
bound for codeword lengths N = K/Rc and code rates Rc = 1/2, 1/3, 1/4
and 1/6 and the performance of IFMS turbo codes.
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Research trends in Channel Coding

Today’s channel coding schemes: LPDC, turbo-codes are capacity
achieving for point to point BIAWGN channels

There is room for improvement for multiuser networks

But also for point to point links

short block lengths (e.g. Massive Machine Type Communications, IoT
framework)
multi-terminal coding/decoding
improve computational power efficiency → transmission power
efficiency to be expected
joint source-channel coding
security (network coding → physical layer security)
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