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@ Introduction
@ Basic Concepts of Information Theory

e Entropy and mutual information
e Fundamental channel models

o Capacities of Single-User Channels
e BSC, BEC
o AWGN, AWGN with discrete input
o Fading channels
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Communication System

@ Lets consider the simplified representation of a communication system

@ Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as

possible.

Source —> channel —— Sink
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Communication System

@ Lets consider the simplified representation of a communication system

@ Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as
possible.

@ source-channel separation theorem

Source Sink

source channel channel source
channel
encoder encoder decoder decoder
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Communication System

@ Lets consider the simplified representation of a communication system

@ Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as
possible.

@ source-channel separation theorem

Source Sink

source channel channel channel source
encoder encoder decoder decoder
source coding theorem: for a given source and distortion measure, there

exists a minimum rate R(d) necessary (and sufficient) to describe this source
with distortion < d.
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Communication System

@ Lets consider the simplified representation of a communication system

@ Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as
possible.

@ source-channel separation theorem

Source Sink

soulrce channel channel sojrce
encoder 4’{ encoder H SHEE }_" decoder }_' decoder
source coding theorem: for a given source and distortion measure, there
exists a minimum rate R(d) necessary (and sufficient) to describe this source
with distortion < d.

channel coding theorem: there exist a maximum rate (bits per channel use)

at which information can be transmitted reliably (probability of error — 0)
over a given channel. = maximum rate: capacity of the channel C.
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Communication System

@ Lets consider the simplified representation of a communication system

@ Goal: achieve reliable transmission; recover (at the sink) the
transmitted information from the source with as little distortion as

possible.
@ source-channel separation theorem
Source Sink
source channel Ll channel | channel .,/ source
encoder encoder decoder decoder

the source can be reconstructed at the receiver with a distortion of at
most d if R(d) < C
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Limits for channel coding: channel capacity

@ The performance limits for channel coding are given by the channel
capacity

@ Results from information theory are mathematically exact, but have
to be interpreted with caution:

e channel capacity holds for infinite block length
o channel models are highly simplified
o decoding complexity is not considered

@ Nevertheless useful to obtain guidelines for practical design
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Basic Concepts of Information Theory




Entropy and Mutual Information

We consider a discrete random variable X € X = {xy, x2, ..., xn}, where

X denotes an alphabet of cardinality N. The probability mass function
(pmf) is denoted by

N
pi=p(x)=P[X=x], with > p=1
i=1

The entropy of the X is defined as

H(X) = 3 G0l = E[-1dp(X) 1)

= p(x)

@ logarithms are base two (“logarithmus dualis”), the entropy is measured in
bits

@ H(X) depends only on the distribution of X, i.e. the p;, and not on the
values of X itself, i.e. the x;
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Entropy and Mutual Information

@ We can think of the entropy H(X) as a measure of

e the amount of “information” provided by an observation of X
e our “uncertainty” of X
o the “randomness” of X

@ Properties of H(X)
Q 0 < H(X) <1dN
@ H(X)=0iff p; =1 for some i
© H(X) =1dN iff p; = 1/N for all i

e H(X) vanishes only if X is deterministic and it is maximum if X is
uniformly distributed
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Entropy and Mutual Information

Binary entropy function
For X = {0,1}, P[X = 0] = p, we define

Ha(p) £ —pldp — (1 — p)ld(1 — p) (2)
e Hy(p) is a concave 1
function i
unction in p 08l
@ attains its maximum at
p= 1/2 @ 0.61
@ our uncertainty about a T 04
binary random variable is
. . 0.2t
maximum if both
outcomes are % 02 04 06 08 1
equiprobable p
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Entropy and Mutual Information

Multiple Random Variables

Now we consider two discrete RV, X € X and Y € Y and define the joint
entropy and the conditional entropy

H(X? Y) = - Z Z p(X,y)]dp(X,y) =-E [ldp(X, Y)] (3)

xeXyeY
HXIY) = D pHXIY =y) == p(x,y)ldp(xly) (4)
yeY xeXyeY

where H(X|Y = y) & =37, cx p(x|y)ldp(x|y)

The conditional entropy H(X|Y') is our uncertainty about X after having
observed Y.
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Entropy and Mutual Information

Some properties of entropy

e Conditioning reduces entropy:

H(X]Y) < H(X) (5)

e equality holds if and only if X and Y are independent
o H(X|Y = y) can be greater than H(X), but on the average the
knowledge of Y reduces our uncertainty of X

@ Chain rule

H(X,Y) = HX)+ H(Y[X) < H(X)+H(Y) (6)
H(X) < Y H(X) (7)
i=1

where X = (X1, Xo,..., X,)
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Entropy and Mutual Information

@ The mutual information between X and Y is

06Y) = X3 plxyia P Q

xeXyeY
= H(X) = HX]Y) (9)
= H(X)+ H(Y) = H(X,Y) (10)

e I(X;Y) > 0 with equality iff X and Y are independent

e [(X;Y) is the reduction in uncertainty of X due to the knowledge of Y

o If X is transmitted over a channel and received as Y, /(X; Y) is the
transmitted amount of information
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Entropy and Mutual Information

@ Mutual information for random vectors
1(X1,X2; Y) = H(X1, X2) — H(X1, X2|Y)
I(X;Y)=H(X)— H(X|Y)
@ Conditional mutual information
I(X; Y|Z) = H(X|Z) = H(X|Y,Z) =) " p(2)I(X: Y|Z =2) (12)
z€Z
@ Chain rule

I(Xl,Xz Y) I(Xl; Y) + I(Xz; Yle)
= I(X2; Y) + I(Xl; Yle)
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Entropy and Mutual Information

Relationship between entropy, conditional entropy, joint entropy and
mutual information.

H(X,Y)
. Hn
HX|Y)
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Entropy and Mutual Information

For a continuous random variable, we can define the differential entropy

h(X) & — / p()ldp(x) dx (14)

The conditional differential entropy and the mutual information are
defined accordingly

hX|Y) = // (x, y)ldp(x]y) dx dy (15)
I(X;Y) = — h(X|Y) (16)

e h(X) might be negative

e h(X) for a discrete random variable is —oo
e /(X;Y) >0 like in the discrete case

@ chain rules hold like in discrete case
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Basic Channel Models

Discrete memoryless channel

@ The discrete memoryless channel (DMC)

o is defined by an input alphabet X, an output
alphabet Y and the transition probabilities
p(ylx)
o memoryless means p(y|x) = []_; p(yix:) x
o The simplest examples are the binary
symmetric channel (BSC) and the binary
erasure channel (BEC)

pOlx)

Binary symmetric channel Binary erasure channel
- 1-p
1-p x=0 o ° y=0

x=0 o——° y=0

S P e yes
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Basic Channel Models

Single-user channels

The following channels have continuous inputs and outputs.

w~CN(0,N,)
X 5 y
@ AWGN channel: y = x+ w
w
6
x y
@ Rayleigh fading channel: y =h- x4+ w
w

X —| : '——(—E— y
@ Vector Gaussian channel: y = Hx +w
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Basic Channel Models

Multi-user channels

e Multiple-access channel (MAC) X1
o uplink j\% y

K users

o :
o K different messages Xy _/
]

K power constraints

@ Broadcast channel (BC)

e downlink
o K users &
e K different messages, one common message o4
@ one power constraint
X Wg

Yk
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Basic Channel Models

Relay channel

@ Relay channel, general model

o Relay helps source to transmit its message
o Capacity is unknown

Source Destination

@ Degraded Gaussian relay channel
o Capacity is known

X
" "
x {gy o
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Single-User Channels

Definitions

Q—~ Encoder @ Decoder ‘

wl{1,....M} X= (k) Y= () a0 {1,...M}

An (n, M) codebook consists of
@ an encoding function u — x = (x1,...,Xp)

@ a decoding functiony — i

e Probability of error: P! = Plu # {]
o The rate R = M is achievable if there exists a sequence of (n,2"R)

codebooks such that P — 0 for n — oo.
& for every € > 0 we can find an (n,2"R) codebook such that P! < e.
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Random coding with ML decoding

o Generate (n, M) codebook: C = {x(1),x(2),...,x(M)}

e codebook is known to transmitter and receiver

x1(1)  x(1) - xu(1)
x1(2)  x(2) - x(2)
(M) so(M) - xo(M)

@ Coding procedure
© Select message v € {1,2,..., M}
@ Transmit x(u) = (x1(u), x2(u), ..., xn(v))
© Receivey = (y1,-.-,¥n)
@ Maximum likelihood decoding: & = arg max; p (y|x(1))
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Capacities of Single-User Channels




Single-User Channels

Definitions

@ The channel capacity is the supremum of all achievable rates:

C=supR

Definition (Channel capacity)

The channel capacity of a channel with input X and output Y is given by

C=maxI(X;Y)
p(x)
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Channel Capacity of BSC and BEC

e BSC (binary symmetric channel)

I(X; Y) = H(Y) = H(Y|X) = H(Y) = 3_ p(x)H(Y|X = x)
xeX

= H(Y) = > p(x)Ha(p) = H(Y) — Ha(p)
xe{0,1}

e H(Y) is maximum for p, = 1/2, then Cgsc = 1 — Ha(p)

1

o8l ARIY
e BEC (binary erasure channel): °
Cgec=1-p 04t
e on average, p bits get lost 02l

0O 0‘.2
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Channel Capacity of the AWGN

@ AWGN channel with continuous input:

real-valued: y = x+w, x€R, w~N(0,Ny/2) (17)
complex-valued: y = x+w, xe€C, w~CN(0,Ny) (18)

@ the capacities are

1 2Eg Eg
=Zd(14+ 22 =d(14+=2 1
Creal 5 d < + NO ) 5 Ccomplex d ( + N0> ( 9)

e To achieve capacity, the channel input must be normal distributed:
x ~ N(0, Es) or x ~ CN(0, Es).

o this holds for the discrete-time channel, capacity is measured in bits
per channel use

o for the continuous-time channel, this corresponds to the spectral
efficiency, measured in bps/Hz

o Note: Ny = 202 by convention
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Channel Capacity of the AWGN

Outline of derivation for real-valued AWGN

o Power constraint: E [xz] < Eg, mutual information:
1(X:Y)=h(Y)— h(Y|X)

max h(Y)—h(Y|X

sogmax_p (h(Y) = h(Y|X)}

o the differential entropy of a N'(i,0?) distributed random variable is
1ld(2mec?), independent of . Then

h(Y|X) = / p(x)h( Y|X =x)dx = h(W) = 1ld(ﬂ-eNo)
—co —— 2
NN(X7NO/2)
e The normal distribution maximizes the differential entropy for a given
second moment = Y is normal distributed = X ~ N/(0, Es),
Y ~ N(0, Es + %), h(Y) = 11d (re(2Es + No)) and finally

-2

1 2Fg
=Zld(1+%2
c 2d< ; No)
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Channel Capacity of the AWGN

o Consider the real-valued AWGN with continuous input
e Eg is the energy per transmitted symbol

@ in the context of channel coding, we often use the energy per bit

E
E, =&

M.Navarro, S.Pfletschinger (CTTC)

C [bps/Hz]

the maximum rate is R = %ld (1 + %) thus f,—‘; ST

for R =0, % —1n2,ie —159 dB

92R _

1

Complex-valued AWGN channel

’l
.
.
.
-
.
.
-
e + 1024-QAM
r”
at + 256-QAM
1/
o + 64-QAM
+ 16-QAM
+ QPSK P=10"°

10 15 20
E/ N, [dB]
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Channel Capacity of the AWGN

o Consider the real-valued AWGN with continuous input
e Eg is the energy per transmitted symbol
@ in the context of channel coding, we often use the energy per bit
E=5%

e the maximum rate is R = %ld (1 + %) thus f,—‘; = 22;;1
o for R—0, % —1In2 ie —1.59dB
e For E,/Ny < —1.59 dB, no reliable transmission!
y Complex-valued AWGN chamel ;
12 r -
10 . //' +1024-QAM
g 8 ’,// + 256-QAM
:3 6 ',// + 64-QAM
4 , + 16-QAM
2 //" + QPSK P=10"°
95 '0 30 35

10 15 20
E/ N, [dB]
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Channel Capacity of Parallel AWGN Channels

Consider N inputs Xi, X5, ..., Xy

N outputs Y1, Yo,..., Yy

each with Y; = X; + W;, W; ~ N (0,0?)
subject to a total power constraint

N
2.X}
i=1

1 P;
—dl1+ —
2.3 < " )

@ is achieved for independent Gaussian X; ~ (0, P;)
o with P; = max{v — ¢2,0},v a constant and 3", P, = P

E= <P

@ The capacity is given by

C =

M=
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Channel Capacity of Parallel AWGN Channels

Consider N inputs Xi, X5, ..., Xy

N outputs Y1, Yo,..., Yy

each with Y; = X; + W;, W; ~ N (0,0?)
subject to a total power constraint

N
2.X}
i=1

1 P;
—dl1+ —
2.3 < " )

@ is achieved for independent Gaussian X; ~ (0, P;)
o with P; = max{v — ¢2,0},v a constant and 3", P, = P
— Waterfilling

E= <P

@ The capacity is given by

M=

C =
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Channel Capacity of the AWGN with Discrete Input

@ AWGN channel with discrete input

e Transmit symbol (channel input) is taken out of a discrete alphabet,
e.g. a PAM constellation: x € X = {ay,a,,...,au} CR. We
additionally assume that all constellation points are equiprobable.

h(YIX) = p(x)h(Y|X = x) = (W) = %m (meNo)
xeX

M _ 13.)2
h(Y) = —E[ldp(y)] = —E lm <M\/1WO Y e <_(YN§)))]
C = h(Y) - h(Y|X) .

o Note: most QAM constellations can be separated into two PAM
constellations
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Channel Capacity of the AWGN with Discrete Input

1024-QAM

10f

512-QAM

256-QAM b

1

128-QAM
64-QAM .
32-QAM .
16-QAM .

8-QAM .

spectral efficiency [bits per channel use]

QPSK -

Iy S BesK .

o Il Il Il Il Il Il Il Il Il Il

0 5 10 15 20 25 30 35 40 45
EJN, [dB]
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Capacities of AWGN channel with QAM

Definitions

mapping w

0b,0

b

m

@ With little loss of generality, we consider real-valued constellations
@ Definitions and assumptions for real-valued AWGN

o channel: y = x + w, noise: w ~ N (0, Np/2),

—x)?
p(ylx) = =5 exp (—(y,\,o)

e input bit vector: b = (by,..., by)T €{0,1}™

e mapping function: p: {0,1}" — X = {a1,a2,...,am} C R, with
M =2m

o uniform input distribution: P[b; = 0] = 0.5 Vi, hence
P[X:ai]:27m:%
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Capacities of AWGN channel with QAM

Definitions

mapping w

0b,0

b

m

@ With little loss of generality, we consider real-valued constellations
@ Definitions and assumptions for real-valued AWGN

o channel: y = x + w, noise: w ~ N (0, Np/2),

—x)?
p(ylx) = =5 exp (—(y,\,o)

e input bit vector: b = (by,...,by,)T € {0,1}7

e mapping function: p: {0,1}" — X = {a1,a2,...,am} C R, with
M =2m

o uniform input distribution: P[b; = 0] = 0.5 Vi, hence
Plx=a]=2""= 1L

o No optimization over input distribution
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Capacities of AWGN channel with QAM

Definitions

@ We can define the following capacities:
Q@ CM=(X;Y)=1(B;Y), “coded modulation” capacity
Q CqC'VI =I(Bg; Y|Bi--- Bg—1), CM subchannel capacity
Q@ CP'M = (Bg; Y), BICM subchannel capacity
Q CBICtM — Z;"Zl 1(Bg; Y), BICM capaciy

CCM

@ Note: only is independent of the mapping p

@ Derivation of capacities
From the chain rule,

CM=1(Br- BmiY)=> I(Bg Y|Bi---Bg1) =Y CM
q=1 q=1
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Capacities of AWGN channel with QAM

Derivation

again with chain rule,

ch'\" =1(By-Bm Y|Bi---Bg1)—I(Bgs1-- Bm; Y|B1--- By)

éRq,l =Rq
Ry= Y. P[Bi=by,....,Bg=bgl-I(Bgi1-+Bm; Y|b1-by)
(br---bg)€{0.1}7
29-1
=271 Z I'(Bgt1++ Bm; Y|(b1 -+ bg) = bin(j))
j=0
’ éRw‘

Rqj= C(A((by--- bg) =bin(j))), where A((by--- bg)) denotes the
subconstellation with bits by, ..., by fixed and C(A) is its capacity
= we require the capacity C(A)
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Capacities of AWGN channel with QAM

Derivation

For a discrete set A = {a1,...,am} and equally probable constellation

points, we have

ply|a)
C .A —d
4 MZ/ PV i ey

/ p(ylai) ldzp |aj)

M
(y—a)’—(y— 3j)2)

since the expectation is over y = a; + %w, with w ~ N(0,1), we

(ai — aj + 1/ Bow)?
No

9 - 13 Nov. 2015 34 /48

can write

1 M M
C(A):ldM—MZIV% 1d) " exp
i=1 j=1

Basics Comm.
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Capacities of AWGN channel with QAM

Derivation

o Finally, for numerical computation, we can approximate the expectation

with a normally distributed sequence wy, ws, ..., wy for N — oo and
obtain
C 1AM 1d f )2 2

(A) = ——;; Zexp + ﬁo(a;—aj)w,,

o Hence, we obtain R, ; —+ Rq — CgM. Note that we can compute c™
directly.

@ For BICM, we have the subchannel capacities

CC‘?'CM =1(B;Y) = 1(B1--Bg-1,Bqt1- - Bm; Y|Byg)

_ cem_ C(A(bg = 0) + C(A(bg = 1))
2
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Capacities of AWGN channel with QAM

Capacities for 4-ASK with Gray labeling

Subchannel capacities for 4-ASK with Gray labeling

™M
2+ 7g3|cm
O™ _ BICM

) <A
o) —C5
> CBICcMm
@ 1.5¢ 2 b
o
5]
ey
(8]
=
2 1L
2
‘o
I
o
©
O o5 ) i

O — L L L L

-10 -5 0 5 10 15

EJN, [dB]
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AWGN Capacity — Continuous Time

@ We consider a passband channel with bandwidth B and noise power
spectral density Ny/2 (note the redefinition of Np!). Its capacity in

bit/s is
c—gu(1+- (20)
NoB
@ The capacity for infinite bandwidth is lim C = iﬂ
B n2 Np
— 00
Continuous-time AWGN channel
1.6 T T T
1_4f ””””””””””””””””””
L power |
12 limited regipn
7T Y
Sos
©og
04 bandwidth
0.o] limited region PIN,=1 |
GO 5 iO 1‘5 20

B [MHz]
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Fading Channels and Outage Capacity

e Flat fading channel: y; = h; - x; + w;, w; ~ CN (0, Np)
o Power gain is unity, i.e. E [|hj]?] =1, e.g. Rayleigh fading:
hi ~ CN(0,1)
o Average SNR is ¥ = Z—i

@ Slow fading, no CSI at transmitter
e channel coefficient is constant during one codeword: h; = h Vi, the
“capacity” is hence 1d(1 + |h|?7). The transmitter sends at rate R.
The channel is in outage if the rate is too high,

R _
Pout(R) = P[1d(1 + |h[*3) < R] =1 —exp <2 5 1)
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Fading Channels and Outage Capacity

e Flat fading channel: y; = h; - x; + w;, w; ~ CN (0, Np)
o Power gain is unity, i.e. E [|hj]?] =1, e.g. Rayleigh fading:
hi ~ CN(0,1)
o Average SNR is ¥ = Z—i

@ Slow fading, no CSI at transmitter
e channel coefficient is constant during one codeword: h; = h Vi, the
“capacity” is hence 1d(1 + |h|?7). The transmitter sends at rate R.
The channel is in outage if the rate is too high,

R _
Pout(R) = P[1d(1 + |h[*3) < R] =1 —exp <2 5 1)

o Channel capacity is zero!
o We need another metric to describe this channel.
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Fading Channels and Outage Capacity

@ We define the outage capacity C, as the largest rate such that the
outage probability is less than e:

Co=1d(1+75-F;'(e)) (21)

where Fg(x) = P[g < x] is the cdf (cumulative distribution function)
of the channel power gain g = |h|?.
e Fast fading, no CSI at transmitter

e h;isi.i.d., while the codeword length n — oo. In this case, we apply
the ergodic capacity

C=E [1d (1+]h[*3)] (22)
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Remarks on practical Channel Coding schemes




Channel capacity and limits for infinite blocklength

@ Shannon limit: reliable communication is only possible if the data rate
is below the channel capacity

@ For system design we may want to calculate the minimum SNR i,
required to achieve a target perfomance BER = p with rate R

@ Recall that for the Gaussian channel
y=x+w
with w ~ AN(0, Ny /2)

@ capacity is achieved with Gaussian input distribution x ~ N(0, E;)

Co(r) = 31d(1+27)
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Channel capacity and limits for infinite blocklength

@ and the maximum achievable rate R for a given probability of bit
error p > 0 is related to the channel capacity by

_ Ge(v)
RO.P) = T (o _GHz(p)

e where Ha(p) = pld(p) — (1 — p)ld(1 — p)

Ymin,G = (22R(1_H2(P)) _ 1)

N =
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Channel capacity and limits for infinite blocklength

e Equivalently, for binary antipodal signalling x € {+1, —1} the
capacity is

with function J(x) defined

Jx)=1— 2 /OO exp <—_(t_xz/2)2> 1d(1 + exp(—t)) dt

27X J—oo 2x2

o J(x) and its inverse J~1(y) are typically calculated through numerical
approximations [tenBrink01].

@ The minimum SNR 7, required to achieve a target perfomance
BER = p with rate R with binary antipodal signalling is

=

Yoins = 5 (47 (RO~ Ha(p))))”
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Channel capacity and limits for infinite blocklength

e Curve fitting approximations of the J(-)-function

J(o) =
—0.04210610° + 0.20925252 — 0.006400810 0<o<ow
1 — exp (0.00181491¢° — 0.1426750% — 0.08220540 + 0.0549608) oy, < 0 < 00

o Curve fitting approximations of the J~1(-)-function
() = 1.09542/2 4 0.2142171 + 2.33727/1 0< 1< Iy
— | —0.706692In (—0.386013(/ — 1)) + 1.75017/ Iy < I <1

[tenBrink01] S.ten Brink,” Design of Concatenated Coding Schemes based on Iterative Decoding
Convergence”, PhD thesis, Apr. 2001.
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Channel capacity and limits for infinite blocklength

@ Approximation of the J(-)-function

1

0.9r 1

0.8 N

0.71 4

0.6 B

J(o)

0.5F N

ol 1=0:3646

0.3f N
0.2 4

0.1f N

0 ! ! ! ! ! ! ! ! !
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Channel capacity and limits for finite blocklength

@ However, practical communication systems use finite blocklength
coding

@ Polyanksi, Poor and Verdd [Pol10] derived frame error probability
bounds for finite length N schemes (Gaussian input distribution)

@ The following expression provides a FER lower bound for any practical
coding/decoding scheme

pr > Q <(1+2V)’/87(1N+7) (In(l +7)+%—2Rln N>>

[Pol10]Y. Polyanskiy, H. V. Poor, and S. Verd, Channel coding rate in the finite blocklength
regime, |IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
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Channel capacity and limits for finite blocklength

An example

Shannen limit (BER), Gaussian transmit signal
Shannen limit (BER), binary transmit signal
) Polyanskiy bound (FER), £ = 1784
10 Polyanskiy bound (FER), & = 8920
IFMS turbo code (FER), £=1784
= IFMS turbo code (FER), £ = 8920
N 107+ 8
o \
) \
o |
2 ‘ i
A 10 | | b
| I
| I
| I
. | !
107 . ‘ L ]
It 1l I
= = =
I f L
10° il L L L ] L L
-10 -9 8 - -6 5 -4 -3 -2 1

EyN, [dB]

Shannon limits for Gaussian and binary transmit signals, with Polyanskiy
bound for codeword lengths N = K/R. and code rates R. =1/2,1/3,1/4
and 1/6 and the performance of IFMS turbo codes.
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Research trends in Channel Coding

@ Today's channel coding schemes: LPDC, turbo-codes are capacity
achieving for point to point BIAWGN channels

@ There is room for improvement for multiuser networks

@ But also for point to point links

e short block lengths (e.g. Massive Machine Type Communications, loT
framework)

o multi-terminal coding/decoding

e improve computational power efficiency — transmission power
efficiency to be expected

e joint source-channel coding

e security (network coding — physical layer security)
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