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To the Instructor ...

...though it’s OK for the student to listen in.

Software Receiver Design helps the reader build a complete digital radio
that includes each part of a typical digital communication system. Chapter by
chapter, the reader creates a MATLAB® realization of the various pieces of the
system, exploring the key ideas along the way. In the final chapters, the reader
“puts it all together” to build fully functional receivers, though as MATLAB code
they are not intended to operate in real time. Software Receiver Design
explores telecommunication systems from a very particular point of view: the
construction of a workable receiver. This viewpoint provides a sense of continuity
to the study of communication systems.

The three basic tasks in the creation of a working digital radio are

1. building the pieces,
2. assessing the performance of the pieces,
3. integrating the pieces.

In order to accomplish this in a single semester, we have had to strip away
some topics that are commonly covered in an introductory course and empha-
size some topics that are often covered only superficially. We have chosen not to
present an encyclopedic catalog of every method that can be used to implement
each function of the receiver. For example, we focus on frequency division mul-
tiplexing rather than time or code division methods, and we concentrate only
on pulse amplitude modulation and quadrature amplitude modulation. On the
other hand, some topics (such as synchronization) loom large in digital receivers,
and we have devoted a correspondingly greater amount of space to these. Our
belief is that it is better to learn one complete system from start to finish than
to half-learn the properties of many.

Whole Lotta Radio

Our approach to building the components of the digital radio is consistent
throughout Software Receiver Design. For many of the tasks, we define a
“performance” function and an algorithm that optimizes this function. This
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approach provides a unified framework for deriving the AGC, clock recovery, car-
rier recovery, and equalization algorithms. Fortunately, this can be accomplished
using only the mathematical tools that an electrical engineer (at the level of a
college junior) is likely to have, and Software Receiver Design requires no
more than knowledge of calculus, matrix algebra, and Fourier transforms. Any
of the fine texts cited for further reading in Section 3.8 would be fine.

Software Receiver Design emphasizes two ways to assess the behavior of
the components of a communication system: by studying the performance func-
tions and by conducting experiments. The algorithms embodied in the various
components can be derived without making assumptions about details of the
constituent signals (such as Gaussian noise). The use of probability is limited to
naive ideas such as the notion of an average of a collection of numbers, rather
than requiring the machinery of stochastic processes. The absence of an advanced
probability prerequisite for Software Receiver Design makes it possible to
place it earlier in the curriculum.

The integration phase of the receiver design is accomplished in Chapters 9 and
15. Since any real digital radio operates in a highly complex environment, ana-
lytical models cannot hope to approach the “real” situation. Common practice
is to build a simulation and to run a series of experiments. Software Receiver
Design provides a set of guidelines (in Chapter 15) for a series of tests to verify
the operation of the receiver. The final project challenges the digital radio that
the student has built by adding many different kinds of imperfections, includ-
ing additive noise, multipath disturbances, phase jitter, frequency inaccuracies,
and clock errors. A successful design can operate even in the presence of such
distortions.

It should be clear that these choices distinguish Software Receiver Design
from other, more encyclopedic texts. We believe that this “hands-on” method
makes Software Receiver Design ideal for use as a learning tool, though it is
less comprehensive than a reference book. In addition, the instructor may find
that the order of presentation of topics in the five easy steps is different from
that used by other books. Section 1.3 provides an overview of the flow of topics,
and our reasons for structuring the course as we have.

Finally, we believe that Software Receiver Design may be of use to non-
traditional students. Besides the many standard kinds of exercises, there are
many problems in the text that are “self-checking” in the sense that the reader
will know when/whether they have found the correct answer. These may also be
useful to the self-motivated design engineer who is using Software Receiver
Design to learn about digital radio.
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How We’ve Used Software Receiver Design

The authors have taught from (various versions of) this text for a number of
years, exploring different ways to fit coverage of digital radio into a “standard”
electrical engineering elective sequence.

Perhaps the simplest way is via a “stand-alone” course, one semester long, in
which the student works through the chapters and ends with the final project
as outlined in Chapter 15. Students who have graduated tell us that when they
get to the workplace, where software-defined digital radio is increasingly impor-
tant, the preparation of this course has been invaluable. After having completed
this course plus a rigorous course in probability, other students have reported
that they are well prepared for the typical introductory graduate-level class in
communications offered at research universities.

At Cornell University, the University of Wisconsin, and Worcester Polytechnic
Institute (the home institutions of the authors), there is a two-semester sequence
in communications available for advanced undergraduates. We have integrated
the text into this curriculum in three ways.

1. Teach from a traditional text for the first semester and use Software
Receiver Design in the second.

2. Teach from Software Receiver Design in the first semester and use a tra-
ditional text in the second.

3. Teach from Software Receiver Design in the first semester and teach a
project-oriented extension in the second.

All three work well. When following the first approach, students often comment
that by reading Software Receiver Design they “finally understand what
they had been doing the previous semester.” Because there is no probability
prerequisite for Software Receiver Design, the second approach can be moved
earlier in the curriculum. Of course, we encourage students to take probability
at the same time. In the third approach, the students were asked to extend the
basic pulse amplitude modulation (PAM) and quadrature amplitude modulation
(QAM) digital radios to incorporate code division multiplexing, to use more
advanced equalization techniques, etc.

We believe that the increasing market penetration of broadband communica-
tions is the driving force behind the continuing (re)design of “radios” (wireless
communications devices). Digital devices continue to penetrate the market for-
merly occupied by analog (for instance, digital television has now supplanted
analog television in the USA) and the area of digital and software-defined radio
is regularly reported in the mass media. Accordingly, it is easy for the instructor
to emphasize the social and economic aspects of the “wireless revolution.” The
impact of digital radio is vast, and it is an exciting time to get involved.
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Some Extras

The course website contains extra material of interest, especially to the instruc-
tor. First, we have assembled a complete collection of slides (in .pdf format)
that may help in lesson planning. The final project is available in two complete
forms, one that exploits the block coding of Chapter 14 and one that does not.
In addition, there are several “received signals” on the website, which can be
used for assignments and for the project. Finally, all the MATLAB code that is
presented in the text is available on the website. Once these are added to the
MATLAB path, they can be used for assignments and for further exploration.®

Mathematical Prerequisites

¢ G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry, 8th edition,
Addison-Wesley, 1992.

¢ B. Kolman and D. R. Hill, Elementary Linear Algebra, 8th edition, Prentice-
Hall, 2003.

e J. H. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing First,
Prentice-Hall, 2003.

1 The .m scripts will run with either MATLAB or GNU Octave, which is freely available at
http://www.gnu.org/software/octave. When using the scripts with MATLAB, the Signal Pro-
cessing Toolbox is required; all scripts have been tested with MATLAB v7.10/R2010a, but
are expected to work with older versions of MATLAB. For Octave, the scripts were tested
with Octave v3.2.3 and the required Octave-Forge toolboxes signal v1.0.11, specfun v1.0.9,
optim v1.0.12, miscellaneous v1.0.9, and audio v1.1.4. When using Octave, the script
firpm_octave.m can be renamed firpm.m so that identical code will run in the two plat-
forms.
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Step 1: The Big Picture

Software Receiver Design: Build Your Own Digital Communications System
in Five Fasy Steps is structured like a staircase with five simple steps. The first
chapter presents a naive digital communications system, a sketch of the digital
radio, as the first step. The second chapter ascends one step to fill in details
and demystify various pieces of the design. Successive chapters then revisit the
same ideas, each step adding depth and precision. The first functional (though
idealized) receiver appears in Chapter 9. Then the idealizing assumptions are
stripped away one by one throughout the remaining chapters, culminating in
sophisticated receiver designs in the final chapters. Section 1.3 on page 12 outlines
the five steps in the construction of the receiver and provides an overview of the
order in which topics are discussed.
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1.1

A Digital Radio

What Is a Digital Radio?

The fundamental principles of telecommunications have remained much the same
since Shannon’s time. What has changed, and is continuing to change, is how
those principles are deployed in technology. One of the major ongoing changes is
the shift from hardware to software—and Software Receiver Design reflects
this trend by focusing on the design of a digital software-defined radio that you
will implement in MATLAB.

“Radio” does not literally mean the AM/FM radio in your car; it represents
any through-the-air transmission such as television, cell phone, or wireless com-
puter data, though many of the same ideas are also relevant to wired systems
such as modems, cable TV, and telephones. “Software-defined” means that key
elements of the radio are implemented in software. Taking a “software-defined”
approach mirrors the trend in modern receiver design in which more and more of
the system is designed and built in reconfigurable software, rather than in fixed
hardware. The fundamental concepts behind the transmission are introduced,
demonstrated, and (we hope) understood through simulation. For example, when
talking about how to translate the frequency of a signal, the procedures are
presented mathematically in equations, pictorially in block diagrams, and then
concretely as short MATLAB programs.

Our educational philosophy is that it is better to learn by doing: to motivate
study with experiments, to reinforce mathematics with simulated examples, to
integrate concepts by “playing” with the pieces of the system. Accordingly, each
of the later chapters is devoted to understanding one component of the transmis-
sion system, and each culminates in a series of tasks that ask you to “build” a
particular version of that part of the communication system. In the final chapter,
the parts are combined to form a full receiver.

We try to present the essence of each system component in the simplest possi-
ble form. We do not intend to show all the most recent innovations (though our
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presentation and viewpoint are modern), nor do we intend to provide a complete
analysis of the various methods. Rather, we ask you to investigate the perfor-
mance of the subsystems, partly through analysis and partly using the software
code that you have created and that we have provided. We do offer insight into
all pieces of a complete transmission system. We present the major ideas of com-
munications via a small number of unifying principles such as transforms to teach
modulation, and recursive techniques to teach synchronization and equalization.
We believe that these basic principles have application far beyond receiver design,
and so the time spent mastering them is well worth the effort.

Though far from optimal, the receiver that you will build contains all the
elements of a fully functional receiver. It provides a simple way to ask and answer
what if questions. What if there is noise in the system? What if the modulation
frequencies are not exactly as specified? What if there are errors in the received
digits? What if the data rate is not high enough? What if there are distortion,
reflections, or echoes in the transmission channel? What if the receiver is moving?

The first step begins with a sketch of a digital radio.

An lllustrative Design

The first design is a brief tour of a digital radio. If some of the terminology
seems obscure or unfamiliar, rest assured that succeeding sections and chapters
will revisit the words and refine the ideas. The design is shown in Figures 1.1
through 1.5. While talking about these figures, it will become clear that some
ideas are being oversimplified. Eventually, it will be necessary to come back and
examine these more closely.

The boxed notes are reminders to
return and think about these areas
more deeply later on.

In keeping with Shannon’s goal of reproducing at one point a message known
at another point, suppose that it is desired to transmit a text message from one
place to another. Of course, there is nothing magical about text; however, .mp3
sound files, .jpg photos, snippets of speech, raster-scanned television images,
or any other kind of information would do, as long as it can be appropriately
digitized into ones and zeros.

Can every kind of message be digitized
into ones and zeros?

Perhaps the simplest possible scheme would be to transmit a pulse to represent
a one and to transmit nothing to represent a zero. With this scheme, however,
it is hard to tell the difference between a string of zeros and no transmission at
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Figure 1.1 An idealized
baseband transmitter.

all. A common remedy is to send a pulse with a positive amplitude to represent
a one and a pulse of the same shape but negative amplitude to represent a zero.
In fact, if the receiver could distinguish pulses of different sizes, then it would
be possible to send two bits with each symbol, for example, by associating the
amplitudes' of +1, —1, +3, and —3 with the four choices 10, 01, 11, and 00.
The four symbols +1, +3 are called the alphabet, and the conversion from the
original message (the text) into the symbol alphabet is accomplished by the
coder in the transmitter diagram Figure 1.1. The first few letters, the standard
ASCII (binary) representation of these letters, and their coding into symbols are
as follows

letter binary ASCII code symbol string

a 01100001  —1,1, -3, —1
b 01100010  —1,1, =3, 1

¢ 01100011  —1,1, -3, 3 (1.1)
d

01100100 -1, 1, —1, -3

In this example, the symbols are clustered into groups of four, and each cluster
is called a frame. Coding schemes can be designed to increase the security of a
transmission, to minimize the errors, or to maximize the rate at which data are
sent. This particular scheme is not optimized in any of these senses, but it is
convenient to use in simulation studies.

Some codes are better than others. How

can we tell?

To be concrete, let

e the symbol interval T be the time between successive symbols, and
e the pulse shape p(t) be the shape of the pulse that will be transmitted.

I Many such choices are possible. These particular values were chosen because they are equidis-
tant and so noise would be no more likely to flip a 3 into a 1 than to flip a 1 into a —1.
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For instance, p(t) may be the rectangular pulse

1 when0<t<T,
p(t) = { < (1.2)

0 otherwise,

which is plotted in Figure 1.2(a). The transmitter of Figure 1.1 is designed so that
every T seconds it produces a copy of p(+) that is scaled by the symbol value s[-].
A typical output of the transmitter in Figure 1.1 is illustrated in Figure 1.2(b)
using the rectangular pulse shape. Thus the first pulse begins at some time 7
and it is scaled by s[0], producing s[0]p(t — 7). The second pulse begins at time
7+ T and is scaled by s[1], resulting in s[1]p(t — 7 — T'). The third pulse gives
s[2]p(t — 7 — 2T), and so on. The complete output of the transmitter is the sum
of all these scaled pulses:

y(t) = slilp(t — 7 —iT).
K3
Since each pulse ends before the next one begins, successive symbols should
not interfere with each other at the receiver. The general method of sending
information by scaling a pulse shape with the amplitude of the symbols is called
Pulse Amplitude Modulation (PAM). When there are four symbols as in (1.1),
it is called 4-PAM.

For now, assume that the path between the transmitter and receiver, which is
often called the channel, is “ideal.” This implies that the signal at the receiver is
the same as the transmitted signal, though it will inevitably be delayed (slightly)
due to the finite speed of the wave, and attenuated by the distance. When the
ideal channel has a gain g and a delay 4, the received version of the transmitted
signal in Figure 1.2(b) is as shown in Figure 1.2(c).

There are many ways in which a real signal may change as it passes from the
transmitter to the receiver through a real (nonideal) channel. It may be reflected
from mountains or buildings. It may be diffracted as it passes through the atmo-
sphere. The waveform may smear in time so that successive pulses overlap. Other
signals may interfere additively (for instance, a radio station broadcasting at the
same frequency in a different city). Noises may enter and change the shape of
the waveform.

There are two compelling reasons to consider the telecommunication system
in the simplified (idealized) case before worrying about all the things that might
go wrong. First, at the heart of any working receiver is a structure that is able to
function in the ideal case. The classic approach to receiver design (and also the
approach of Software Receiver Design) is to build for the ideal case and later
to refine so that the receiver will still work when bad things happen. Second,
many of the basic ideas are clearer in the ideal case.

The job of the receiver is to take the received signal (such as that in Figure
1.2(c)) and to recover the original text message. This can be accomplished by an
idealized receiver such as that shown in Figure 1.3. The first task this receiver
must accomplish is to sample the signal to turn it into computer-friendly digital
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| n+AT | baseband receiver.
|

Sampler

form. But when should the samples be taken? On comparing Figures 1.2(b) and
1.2(c), it is clear that if the received signal were sampled somewhere near the
middle of each rectangular pulse segment, then the quantizer could reproduce
the sequence of source symbols. This quantizer must either

1. know g so the sampled signal can be scaled by 1/g to recover the symbol
values, or
2. separate +¢g from +3¢g and output symbol values +1 and £3.

Once the symbols have been reconstructed, then the original message can be
decoded by reversing the assignment of letters to symbols used at the transmitter
(for example, by reading (1.1) backwards). On the other hand, if the samples
were taken at the moment of transition from one symbol to another, then the
values might become confused.

To investigate the timing question more fully, let T be the sample interval and 7
be the time at which the first pulse begins. Let § be the time it takes for the signal
to move from the transmitter to the receiver. Thus the (k + 1)st pulse, which
begins at time 7 + kT, arrives at the receiver at time 7 4+ k7" + 6. The midpoint
of the pulse, which is the best time to sample, occurs at 7+ kT + 0 + T/2. As
indicated in Figure 1.3, the receiver begins sampling at time 7, and then samples
regularly at n + kT for all integers k. If  were chosen so that

n=1+6+T/2, (1.3)
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then all would be well. But there are two problems: the receiver does not know
when the transmission began, nor does it know how long it takes for the signal
to reach the receiver. Thus both 7 and ¢ are unknown!

Somehow, the receiver must figure out

when to sample.

Basically, some extra “synchronization” procedure is needed in order to satisfy
(1.3). Fortunately, in the ideal case, it is not really necessary to sample exactly at
the midpoint; it is necessary only to avoid the edges. Even if the samples are not
taken at the center of each rectangular pulse, the transmitted symbol sequence
can still be recovered. But if the pulse shape were not a simple rectangle, then
the selection of 1 would become more critical.

How does the pulse shape interact with

timing synchronization?

Just as no two clocks ever tell exactly the same time, no two independent
oscillators? are ever exactly synchronized. Since the symbol period at the trans-
mitter, call it T},qns, i created by a separate oscillator from that creating the
symbol period at the receiver, call it T;.¢., they will inevitably differ. Thus another
aspect of timing synchronization that must ultimately be considered is how to
automatically adjust T)... so that it aligns with Tirqns-

Similarly, no clock ticks out each second exactly evenly. Inevitably, there is
some jitter, or wobble in the value of Ti.qns and/or The.. Again, it may be
necessary to adjust 7 to retain sampling near the center of the pulse shape
as the clock times wiggle about. The timing adjustment mechanisms are not
explicitly indicated in the sampler box in Figure 1.3. For the present idealized
transmission system, the receiver sampler period and the symbol period of the
transmitter are assumed to be identical (both are called T' in Figures 1.1 and
1.3) and the clocks are assumed to be free of jitter.

What about clock jitter?

Even under the idealized assumptions above, there is another kind of syn-
chronization that is needed. Imagine joining a broadcast in progress, or one in
which the first K symbols have been lost during acquisition. Even if the symbol
sequence is perfectly recovered after time K, the receiver would not know which
recovered symbol corresponds to the start of each frame. For example, using the
letters-to-symbol code of (1.1), each letter of the alphabet is translated into a
sequence of four symbols. If the start of the frame is off by even a single sym-

2 Oscillators, electronic components that generate repetitive signals, are discussed at length in
Chapter 3.
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bol, the translation from symbols back into letters will be scrambled. Does this
sequence represent a or X7
a
—_—~

-1, ~1,1,-3,-1

~1,-1, 1,-3,—1

—_———

X

Thus proper decoding requires locating where the frame starts, a step called
frame synchronization. Frame synchronization is implicit in Figure 1.3 in the
choice of n, which sets the time ¢ (= n with & = 0) of the first symbol of the first
(character) frame of the message of interest.

| How to find the start of a frame? |

In the ideal situation, there must be no other signals occupying the same fre-
quency range as the transmission. What bandwidth (what range of frequencies)
does the transmitter (1.1) require? Consider transmitting a single T-second-wide
rectangular pulse. Fourier transform theory shows that any such time-limited
pulse cannot be truly bandlimited, that is, cannot have its frequency content
restricted to a finite range. Indeed, the Fourier transform of a rectangular pulse
in time is a sinc function in frequency (see Equation (A.20) in Appendix A). The
magnitude of this sinc is overbounded by a function that decays as the inverse of
frequency (peek ahead to Figure 2.11). Thus, to accommodate this single-pulse
transmission, all other transmitters must have negligible energy below some fac-
tor of B = 1/T. For the sake of argument, suppose that a factor of 5 is safe, that
is, all other transmitters must have no significant energy within 58 Hz. But this
is only for a single pulse. What happens when a sequence of T-spaced, T-wide
rectangular pulses of various amplitudes is transmitted? Fortunately, as will be
established in Section 11.1, the bandwidth requirements remain about the same,
at least for most messages.

What is the relation between the pulse
shape and the bandwidth?

One fundamental limitation to data transmission is the trade-off between the
data rate and the bandwidth. One obvious way to increase the rate at which data
are sent is to use shorter pulses, which pack more symbols into a shorter time.
This essentially reduces T'. The cost is that this would require excluding other

transmitters from an even wider range of frequencies since reducing 7" increases
B.

What is the relation between the data
rate and the bandwidth?
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If the safety factor of 5B is excessive, other pulse shapes that would decay
faster as a function of frequency could be used. For example, rounding the sharp
corners of a rectangular pulse reduces its high-frequency content. Similarly, if
other transmitters operated at high frequencies outside 5B Hz, it would be sen-
sible to add a lowpass filter at the front end of the receiver. Rejecting frequencies
outside the protected 5B baseband turf also removes a bit of the higher-frequency
content of the rectangular pulse. The effect of this in the time domain is that the
received version of the rectangle would be wiggly near the edges. In both cases,
the timing of the samples becomes more critical as the received pulse deviates
further from rectangular.

One shortcoming of the telecommunication system embodied in the transmit-
ter of Figure 1.1 and the receiver of Figure 1.3 is that only one such transmitter
at a time can operate in any particular geographical region, since it hogs all the
frequencies in the baseband, that is, all frequencies below 5B Hz. Fortunately,
there is a way to have multiple transmitters operating in the same region simul-
taneously. The trick is to translate the frequency content so that instead of all
transmitters trying to operate in the 0 and 5B Hz band, one might use the 5B
to 10B band, another the 10B to 15B band, etc. Conceivably, this could be
accomplished by selecting a different pulse shape (other than the rectangle) that
has no low-frequency content, but the most common approach is to “modulate”
(change frequency) by multiplying the pulse-shaped signal by a high-frequency
sinusoid. Such a “radio-frequency” (RF) transmitter is shown in Figure 1.4,
though it should be understood that the actual frequencies used may place it
in the television band or in the range of frequencies reserved for cell phones,
depending on the application.

At the receiver, the signal can be returned to its original frequency (demod-
ulated) by multiplying by another high-frequency sinusoid (and then lowpass
filtering). These frequency translations are described in more detail in Section
2.6, where it is shown that the modulating sinusoid and the demodulating sinu-
soid must have the same frequencies and the same phases in order to return
the signal to its original form. Just as it is impossible to align any two clocks
exactly, it is also impossible to generate two independent sinusoids of exactly the
same frequency and phase. Hence there will ultimately need to be some kind of
“carrier synchronization,” a way of aligning these oscillators.

How can the frequencies and phases of

these two sinusoids be aligned?

Adding frequency translation to the transmitter and receiver of Figures 1.1 and
1.3 produces the transmitter in Figure 1.4 and the associated receiver in Figure
1.5. The new block in the transmitter is an analog component that effectively
adds the same value (in Hz) to the frequencies of all of the components of the
baseband pulse train. As noted, this can be achieved with multiplication by a
“carrier” sinusoid with a frequency equal to the desired translation. The new
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Baseband Passband .

Text Symbols | Pulse- |  signal signal ~ Figure 1.4

—> Coder shape 1:;;2:12?33 — “Radio-frequency”

filter transmitter.
Received Baseband Reconstructed .
signal signal text E';"z; 1.f5 )
adio-frequenc
—»[Frequency Sampler = Quantizer —>| Decoder —> . q Y
translator receliver.

block in the receiver of Figure 1.5 is an analog component that processes the
received analog signal prior to sampling in order to subtract the same value (in
Hz) from all components of the received signal. The output of this block should
be identical to the input to the sampler in Figure 1.3.

This process of translating the spectrum of the transmitted signal to higher
frequencies allows many transmitters to operate simultaneously in the same geo-
graphical area. But there is a price. Since the signals are not completely band-
limited to within their assigned 5B-wide slot, there is some inevitable overlap.
Thus the residual energy of one transmitter (the energy outside its designated
band) may interfere with other transmissions. Solving the problem of multiple
transmissions has thus violated one of the assumptions for an ideal transmission.
A common theme throughout Software Receiver Design is that a solution to
one problem often causes another!

There is no free lunch. How much does
the fix cost?

In fact, there are many other ways in which the transmission channel can devi-
ate from the ideal, and these will be discussed in detail later on (for instance, in
Section 4.1 and throughout Chapter 9). Typically, the cluttered electromagnetic
spectrum results in a variety of distortions and interferences:

e in-band (within the frequency band allocated to the user of interest)

e out-of-band (frequency components outside the allocated band such as the
signals of other transmitters)

e narrowband (spurious sinusoidal-like components)

e broadband (with components at frequencies across the allocated band and
beyond, including thermal noise introduced by the analog electronics in the
receiver)

e fading (when the strength of the received signal fluctuates)

e multipath (when the environment contains many reflective and absorptive
objects at different distances, the transmission delay will differ across different
paths, smearing the received signal and attenuating some frequencies more
than others)
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Multipath

These channel imperfections are all incorporated in the channel model shown in
Figure 1.6, which sits in the communication system between Figures 1.4 and 1.5.

Many of these imperfections in the channel can be mitigated by clever use of
filtering at the receiver. Narrowband interference can be removed with a notch
filter that rejects frequency components in the narrow range of the interferer
without removing too much of the broadband signal. Out-of-band interference
and broadband noise can be reduced using a bandpass filter that suppresses
the signal in the out-of-band frequency range and passes the in-band frequency
components without distortion. With regard to Figure 1.5, it is reasonable to
wonder whether it is better to perform such filtering before or after the sampler
(i.e., by an analog or a digital filter). In modern receivers, the trend is to minimize
the amount of analog processing since digital methods are (often) cheaper and
(usually) more flexible since they can be implemented as reconfigurable software
rather than fixed hardware.

Analog or digital processing? ‘

Conducting more of the processing digitally requires moving the sampler closer
to the antenna. The sampling theorem (discussed in Section 6.1) says that no
information is lost as long as the sampling occurs at a rate faster than twice the
highest frequency of the signal. Thus, if the signal has been modulated to (say)
the band from 20B to 258 Hz, then the sampler must be able to operate at least
as fast as 50B samples per second in order to be able to exactly reconstruct the
value of the signal at any arbitrary time instant. Assuming this is feasible, the
received analog signal can be sampled using a free-running sampler. Interpola-
tion can be used to figure out values of the signal at any desired intermediate
instant, such as at time n + kT (recall (1.3)) for a particular n that is not an
integer multiple of T'. Thus, the timing synchronization can be incorporated into
the post-sampler digital signal processing box, which is shown generically in
Figure 1.7. Observe that Figure 1.5 is one particular version of 1.7.

How exactly does interpolation work?
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Received Recovered  Figure 1.7 A generic modern
signal Analog _){ Digital source receiver using both analog signal
—>| signal —>| signal > processing (ASP) and digital

processing N+ kT processing signal processing (DSP).

However, sometimes it is more cost effective to perform certain tasks in analog
circuitry. For example, if the transmitter modulates to a very high frequency, then
it may cost too much to sample fast enough. Currently, it is common practice
to perform some frequency translation and some out-of-band signal reduction in
the analog portion of the receiver. Sometimes the analog portion may translate
the received signal all the way back to baseband. Other times, the analog portion
translates to some intermediate frequency, and then the digital portion finishes
the translation. The advantage of this (seemingly redundant) approach is that
the analog part can be made crudely and, hence, cheaply. The digital processing
finishes the job, and simultaneously compensates for inaccuracies and flaws in
the (inexpensive) analog circuits. Thus, the digital signal processing portion of
the receiver may need to correct for signal impairments arising in the analog
portion of the receiver as well as from impairments caused by the channel.

| Use DSP when possible.

The digital signal processing portion of the receiver can perform the following
tasks:

e downconvert the sampled signal to baseband

e track any changes in the phase or frequency of the modulating sinusoid
® adjust the symbol timing by interpolation

e compensate for channel imperfections by filtering

e convert modestly inaccurate recovered samples into symbols

e perform frame synchronization via correlation

e decode groups of symbols into message characters

A central task in Software Receiver Design is to elaborate on the system
structure in Figures 1.4-1.6 to create a working software-defined radio that can
perform these tasks. This concludes the illustrative design at the first, most
superficial step of the radio stairway.

Use DSP to compensate for cheap ASP.

Walk This Way

This section provides a whirlwind tour of the complete structure of Software
Receiver Design. Each step presents the digital transmission system in greater
depth and detail.
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e Step 1: The Naive Digital Communications System. As we have just seen,
the first step introduced the digital transmission of data, and discussed how
bits of information may be coded into waveforms, sent across space to the
receiver, and then decoded back into bits. Since there is no universal clock,
issues of timing become important, and some of the most complex issues in
digital receiver design involve the synchronization of the received signal. The
system can be viewed as consisting of three parts:

1.  a transmitter as in Figure 1.4
2.  a transmission channel

3. areceiver as in Figure 1.5

e Step 2: The Basic Components. The next two chapters provide more depth and
detail by outlining a complete telecommunication system. When the trans-
mitted signal is passed through the air using electromagnetic waves, it must
take the form of a continuous (analog) waveform. A good way to understand
such analog signals is via the Fourier transform, and this is reviewed briefly in
Chapter 2. The six basic elements of the receiver will be familiar to many read-
ers, and they are presented in Chapter 3 in a form that will be directly useful
when creating MATLAB implementations of the various parts of the commu-
nication system. By the end of the second step, the basic system architecture
is fixed and the ordering of the blocks in the system diagram is stabilized.

o Step 3: The Idealized System. The third step encompasses Chapters 4 through
9. Step 3 gives a closer look at the idealized receiver—how things work when
everything is just right: when the timing is known, when the clocks run at
exactly the right speed, when there are no reflections, diffractions, or diffu-
sions of the electromagnetic waves. This step also integrates ideas from pre-
vious systems courses, and introduces a few MATLAB tools that are needed
to implement the digital radio. The order in which topics are discussed is
precisely the order in which they appear in the receiver:

frequency
channel — translation — sampling —
Chapter 4 Chapter 5 Chapter 6

receive .. decision .
. — equalization i — decoding
filtering _, device
Chapter 7 Chapter 8

Channel impairments and linear systems Chapter 4
Frequency translation and modulation = Chapter 5
Sampling and gain control Chapter 6
Receive (digital) filtering Chapter 7
Symbols to bits to signals Chapter 8
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Chapter 9 provides a complete (though idealized) software-defined digital
radio system.

Step 4: The Adaptive Components. The fourth step describes all the practical
fixes that are required in order to create a workable radio. One by one the
various problems are studied and solutions are proposed, implemented, and
tested. These include fixes for additive noise, for timing offset problems, for
clock frequency mismatches and jitter, and for multipath reflections. Again,
the order in which topics are discussed is the order in which they appear in
the receiver:

Carrier recovery Chapter 10
the timing of frequency translation

Receive filtering Chapter 11
the design of pulse shapes

Clock recovery Chapter 12
the timing of sampling

Equalization Chapter 13
filters that adapt to the channel

Coding Chapter 14

making data resilient to noise

Step 5: Putting It All Together. The final steps are the projects of Chapters
15 and 16 which integrate all the fixes of the fourth step into the receiver
structure of the third step to create a fully functional digital receiver. The well-
fabricated receiver is robust with respect to distortions such as those caused
by noise, multipath interference, timing inaccuracies, and clock mismatches.



Step 2: The Basic Components

The next two chapters provide more depth and detail by outlining a complete
telecommunication system. When the transmitted signal is passed through the
air using electromagnetic waves, it must take the form of a continuous (analog)
waveform. A good way to understand such analog signals is via the Fourier
transform, and this is reviewed briefly in Chapter 2. The six basic elements of
the receiver will be familiar to many readers, and they are presented in Chapter 3
in a form that will be directly useful when creating MATLAB implementations of
the various parts of the communications system. By the end of the second step,
the basic system architecture is fixed; the ordering of the blocks in the system
diagram has stabilized.
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2.1

A Telecommunication System

Telecommunications technologies using electromagnetic transmission surround
us: television images flicker, radios chatter, cell phones (and telephones) ring,
allowing us to see and hear each other anywhere on the planet. E-mail and the
Internet link us via our computers, and a large variety of common devices such
as CDs, DVDs, and hard disks augment the traditional pencil and paper storage
and transmittal of information. People have always wished to communicate over
long distances: to speak with someone in another country, to watch a distant
sporting event, to listen to music performed in another place or another time,
to send and receive data remotely using a personal computer. In order to imple-
ment these desires, a signal (a sound wave, a signal from a TV camera, or a
sequence of computer bits) needs to be encoded, stored, transmitted, received,
and decoded. Why? Consider the problem of voice or music transmission. Send-
ing sound directly is futile because sound waves dissipate very quickly in air.
But if the sound is first transformed into electromagnetic waves, then they can
be beamed over great distances very efficiently. Similarly, the TV signal and
computer data can be transformed into electromagnetic waves.

Electromagnetic Transmission of Analog Waveforms

There are some experimental (physical) facts that cause transmission systems to
be constructed as they are. First, for efficient wireless broadcasting of electro-
magnetic energy, an antenna needs to be longer than about 1/10 of a wavelength
of the frequency being transmitted. The antenna at the receiver should also be
proportionally sized.

The wavelength A and the frequency f of a sinusoid are inversely propor-
tional. For an electrical signal travelling at the speed of light ¢ (3 x 10® m/s),
the relationship between wavelength and frequency is

A= S
f
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For instance, if the frequency of an electromagnetic wave is f = 10 kHz, then
the length of each wave is

\ 3 x 10% m/s
o 104/s

Efficient transmission requires an antenna longer than 0.1\, which is 3 km! Sinu-
soids in the speech band would require even larger antennas. Fortunately, there is
an alternative to building mammoth antennas. The frequencies in the signal can
be translated (shifted, upconverted, or modulated) to a much higher frequency
called the carrier frequency, at which the antenna requirements are easier to
meet. For instance,

=3 x 10* m.

¢ AM radio: f =~ 600-1500 kHz = A ~ 500-200 m = 0.1\ > 20 m

e VHF (TV): f ~ 30-300 MHz = A = 10-1 m = 0.1A > 0.1 m

e UHF (TV): f~033GHz= A~ 1-01m= 0.1\ > 0.0l m

e Cell phones (USA): f =~ 824-894 MHz = A = 0.36-0.33 m = 0.1\ > 0.03 m
e PCS: f~1.8-1.9 GHz = A ~ 0.167-0.158 m = 0.1A > 0.015 m

* GSM (Europe): f =~ 890-960 MHz = X =~ 0.337-0.313 m = 0.1A > 0.03 m
e LEO satellites: f ~ 1.6 GHz = A = 0.188 m = 0.1\ > 0.0188 m

Recall that 1 kHz = 103 Hz; 1 MHz = 10 Hz; 1 GHz = 10° Hz.
A second experimental fact is that electromagnetic waves in the atmosphere
exhibit different behaviors, depending on the frequency of the waves.

e Below 2 MHz, electromagnetic waves follow the contour of the Earth. This
is why shortwave (and other) radios can sometimes be heard hundreds or
thousands of miles from their source.

® Between 2 and 30 MHz, sky-wave propagation occurs, with multiple bounces
from refractive atmospheric layers.

e Above 30 MHz, line-of-sight propagation occurs, with straight-line travel
between two terrestrial towers or through the atmosphere to satellites.

e Above 30 MHz, atmospheric scattering also occurs, which can be exploited
for long-distance terrestrial communication.

Humanmade media in wired systems also exhibit frequency-dependent behav-
ior. In the phone system, due to its original goal of carrying voice signals, severe
attenuation occurs above 4 kHz.

The notion of frequency is central to the process of long-distance communica-
tions. Because of its role as a carrier (the AM/UHF /VHF /PCS bands mentioned
above) and its role in specifying the bandwidth (the range of frequencies occupied
by a given signal), it is important to have tools with which to easily measure the
frequency content in a signal. The tool of choice for this job is the Fourier trans-
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form (and its discrete counterparts, the DFT and the FFT).! Fourier transforms
are useful in assessing energy or power at particular frequencies. The Fourier
transform of a signal w(t) is defined as

W(f) = / w(t)e It = Fluw(t)), 2.1)
t=—00
where j = y/—1 and f is given in Hz (i.e., cycles/s or 1/s).

Speaking mathematically, W(f) is a function of the frequency f. Thus, for
each f, W(f) is a complex number and so can be plotted in several ways. For
instance, it is possible to plot the real part of W(f) as a function of f and to plot
the imaginary part of W (f) as a function of f. Alternatively, it is possible to plot
the real part of W(f) versus the imaginary part of W (f). The most common
plots of the Fourier transform of a signal are done in two parts: the first graph
shows the magnitude |W(f)| versus f (this is called the magnitude spectrum)
and the second graph shows the phase angle of W (f) versus f (this is called the
phase spectrum). Often, just the magnitude is plotted, though this inevitably
leaves out information.

Perhaps the best way to understand the Fourier transform is to look closely
at the inverse function

o0
w(t) = / W) g, (2.2)
f=—
The complex exponential e/27/* can be interpreted as a (complex-valued) sinu-
soidal wave since it is the sum of a sine term and a cosine term, both of frequency
f (via Euler’s formula). Since W(f) is a complex number at each f, (2.2) can
be interpreted as describing or decomposing w(t) into sinusoidal elements of fre-
quencies f weighted by the W(f). The discrete approximation to the Fourier
transform, called the DFT) is discussed in some detail in Chapter 7, and a table
of useful properties appears in Appendix A.

Bandwidth

If, at any particular frequency fy, the magnitude spectrum is strictly positive
(IW(fo)| > 0), then the frequency fo is said to be present in w(t). The set of
all frequencies that are present in the signal is the frequency content, and if the
frequency content consists only of frequencies below some given ff, then the
signal is said to be bandlimited to f'. Some bandlimited signals are

¢ telephone-quality speech with maximum frequency ~ 4 kHz and
¢ audible music with maximum frequency ~ 20 kHz.

I These are the discrete Fourier transform, which is a computer implementation of the Fourier
transform, and the fast Fourier transform, which is a slick, computationally efficient method
of calculating the DFT.
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But real-world signals are never completely bandlimited, and there is almost
always some energy at every frequency. Several alternative definitions of band-
width are in common use; these try to capture the idea that “most of” the
energy is contained in a specified frequency region. Usually, these are applied
across positive frequencies, with the presumption that the underlying signals are
real-valued (and hence have symmetric spectra). Here are some of the alternative
definitions.

1. Absolute bandwidth is the smallest interval fo — f1 for which the spectrum is
zero outside of f1 < f < f2 (only the positive frequencies need be considered).

2. 3-dB (or half-power) bandwidth is fo — f1, where, for frequencies outside f; <
f < f2, [H(f)] is never greater than 1/4/2 times its maximum value.

3. Null-to-null (or zero-crossing) bandwidth is fo — f1, where f5 is the first null
in |H(f)| above fy and, for bandpass systems, f; is the first null in the enve-
lope below fy, where fy is the frequency of maximum |H(f)|. For baseband
systems, fi is usually zero.

4. Power bandwidth is fo — f1, where f; < f < fa defines the frequency band in
which 99% of the total power resides. Occupied bandwidth is such that 0.5%
of power is above f, and 0.5% below f;.

These definitions are illustrated in Figure 2.1.

The various definitions of bandwidth refer directly to the frequency content
of a signal. Since the frequency response of a linear filter is the transform of its
impulse response, bandwidth is also used to talk about the frequency range over
which a linear system or filter operates.
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Exercise 2.1. TRUE or FALSE: Absolute bandwidth is never less than 3-dB
power bandwidth.

Exercise 2.2. Suppose that a signal is complex-valued and hence has a spectrum
that is not symmetric about zero frequency. State versions of the various defini-
tions of bandwidth that make sense in this situation. Illustrate your definitions
as in Figure 2.1.

Upconversion at the Transmitter

Suppose that the signal w(t) contains important information that must be trans-
mitted. There are many kinds of operations that can be applied to w(t). Linear
time invariant (LTI) operations are those for which superposition applies, but
LTT operations cannot augment the frequency content of a signal—no sine wave
can appear at the output of a linear operation if it was not already present in
the input.

Thus, the process of modulation (or upconversion), which requires a change
of frequencies, must be either nonlinear or time varying (or both). One useful
way to modulate is with multiplication; consider the product of the message
waveform w(t) with a cosine wave

s(t) = w(t) cos(2m fot), (2.3)

where fy is called the carrier frequency. The Fourier transform can now be used
to show that this multiplication shifts all frequencies present in the message by
exactly fo Hz.

Using one of Euler’s identities (A.2),

1. .
cos(27 fot) = 3 <6]27rfot + 6*]27rf0t) 7 (2.4)

one can calculate the spectrum (or frequency content) of the signal s(t) from the
definition of the Fourier transform given in (2.1). In complete detail, this is

S(f) = F{s(t)} = Flw(t) cos(2mfot) }
=F {w(t) B (e72mfot eﬂ”fﬂt)} }

>0 1, . , ,
:/ w(t) |:§ (BJQTrfot +6J27rfot):| e*]Zﬁftdt

o]

_ 1 / S ) (e—m(f—fo)t n 6—j2w<f+fo>t) dt

= l/oo w(t)efﬁﬁ(f*fo)tdt + l/oo w(t)e*jQW(erfo)tdt
2 J 2 )

= W~ Jo) + W+ fo). (25)
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Figure 2.2 Action of a modulator: If the message signal w(¢) has the magnitude
spectrum shown in part (a), then the modulated signal s(t) has the magnitude
spectrum shown in part (b).

Thus, the spectrum of s(t) consists of two copies of the spectrum of w(t),
each shifted in frequency by fo (one up and one down) and each half as large.
This is sometimes called the frequency-shifting property of the Fourier trans-
form, and sometimes called the modulation property. Figure 2.2 shows how the
spectra relate. If w(¢) has the magnitude spectrum shown in part (a) (this is
shown bandlimited to f' and centered at 0 Hz or baseband, though it could be
elsewhere), then the magnitude spectrum of s(t) appears as in part (b). This
kind of modulation (or upconversion, or frequency shift) is ideal for translating
speech, music, or other low-frequency signals into much higher frequencies (for
instance, fo might be in the AM or UHF bands) so that they can be transmit-
ted efficiently. It can also be used to convert a high-frequency signal back down
to baseband when needed, as will be discussed in Section 2.6 and in detail in
Chapter 5.

Any sine wave is characterized by three parameters: the amplitude, frequency,
and phase. Any of these characteristics can be used as the basis of a modulation
scheme: modulating the frequency is familiar from the FM radio, and phase
modulation is common in computer modems. A major example in this book is
amplitude modulation as in (2.3), where the message w(t) is multiplied by a high-
frequency sinusoid with fixed frequency and phase. Whatever the modulation
scheme used, the idea is the same: a sinusoid is used to translate the message
into a form suitable for transmission.

Exercise 2.3. Referring to Figure 2.2, find which frequencies are present in
W (f) and not in S(f). Which frequencies are present in S(f) but not in W(f)?

Exercise 2.4. Using (2.5), draw analogous pictures for the phase spectrum of
s(t) as it relates to the phase spectrum of w(t).

Exercise 2.5. Suppose that s(t) is modulated again, this time via multiplication
with a cosine of frequency fi. What is the resulting magnitude spectrum? Hint:
let r(t) = s(t) cos(2m f1t), and apply (2.5) to find R(f).
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Frequency Division Multiplexing

When a signal is modulated, the width (in Hz) of the replicas is the same as the
width (in Hz) of the original signal. This is a direct consequence of Equation (2.5).
For instance, if the message is bandlimited to + f*, and the carrier frequency is f.,
then the modulated signal has energy in the range from — f* — f. to +f* — f. and
from —f* + f. to +f* + fe. If f* < f., then several messages can be transmitted
simultaneously by using different carrier frequencies.

This situation is depicted in Figure 2.3, where three different messages are
represented by the triangular, rectangular, and half-oval spectra, each bandlim-
ited to £f*. Each of these is modulated by a different carrier (f;, f2, and f3),
which are chosen so that they are further apart than the width of the messages.
In general, as long as the carrier frequencies are separated by more than 2 f*,
there will be no overlap in the spectrum of the combined signal. This process
of combining many different signals together is called multiplexing, and because
the frequencies are divided up among the users, the approach of Figure 2.3 is
called frequency-division multiplexing (FDM).

Whenever FDM is used, the receiver must separate the signal of interest from
all the other signals present. This can be accomplished with a bandpass filter as
in Figure 2.4, which shows a filter designed to isolate the middle user from the
others.

Exercise 2.6. Suppose that two carrier frequencies are separated by 1 kHz.
Draw the magnitude spectra if (a) the bandwidth of each message is 200 Hz
and (b) the bandwidth of each message is 2 kHz. Comment on the ability of the
bandpass filter at the receiver to separate the two signals.

Another kind of multiplexing is called time-division multiplexing (TDM), in
which two (or more) messages use the same carrier frequency but at alternating
time instants. More complex multiplexing schemes (such as code division mul-
tiplexing) overlap the messages in both time and frequency in such a way that
they can be demultiplexed efficiently by appropriate filtering.

W(f) . «
| | L= hK+S
[ [ Figure 2.3 Three different

[ [ upconverted signals are
assigned different frequency
oL/, N L L bands. This is called

f T T T T T T | | T i mf frequency-division
5 - x4 5 ! h ! /3 multiplexing.

b=t h+f
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Filters that Remove Frequencies

Each time the signal is modulated, an extra copy (or replica) of the spectrum
appears. When multiple modulations are needed (for instance, at the transmitter
to convert up to the carrier frequency, and at the receiver to convert back down to
the original frequency of the message), copies of the spectrum may proliferate.
There must be a way to remove extra copies in order to isolate the original
message. This is one of the things that linear filters do very well.

There are several ways of describing the action of a linear time-invariant filter.
In the time domain (the most common method of implementation), the filter is
characterized by its impulse response (which is defined to be the output of the
filter when the input is an impulse function). Because of the linearity, the output
of the filter in response to any arbitrary input is the superposition of weighted
copies of a time-shifted version of the impulse response, a procedure known as
convolution. Since convolution may be difficult to understand directly in the time
domain, the action of a linear filter is often described in the frequency domain.

Perhaps the most important property of the Fourier transform is the duality
between convolution and multiplication, which says that

e convolution in time < multiplication in frequency, and
¢ multiplication in time <> convolution in frequency.

This is discussed in detail in Section 4.5. Thus, the convolution of a linear filter
can readily be viewed in the frequency (Fourier) domain as a point-by-point
multiplication. For instance, an ideal lowpass filter (LPF) passes all frequencies
below f; (which is called the cutoff frequency). This is commonly plotted in a
curve called the frequency response of the filter, which describes the action of the
filter.? If this filter is applied to a signal w(t), then all energy above f; is removed
from w(t). Figure 2.5 shows this pictorially. If w(t) has the magnitude spectrum
shown in part (a), and the frequency response of the lowpass filter with cutoff
frequency f is as shown in part (b), then the magnitude spectrum of the output
appears in part (c).

2 Formally, the frequency response can be calculated as the Fourier transform of the impulse
response of the filter.
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Exercise 2.7. An ideal highpass filter passes all frequencies above some given
fr and removes all frequencies below. Show the result of applying a highpass
filter to the signal in Figure 2.5 with f, = fi.

Exercise 2.8. An ideal bandpass filter passes all frequencies between an upper
limit f and a lower limit f. Show the result of applying a bandpass filter to the
signal in Figure 2.5 with f = 2;/3 and f=h/3.

The problem of how to design and implement such filters is considered in detail
in Chapter 7.

Analog Downconversion

Because transmitters typically modulate the message signal with a high-
frequency carrier, the receiver must somehow remove the carrier from the mes-
sage that it carries. One way is to multiply the received signal by a cosine wave
of the same frequency (and the same phase) as was used at the transmitter. This
creates a (scaled) copy of the original signal centered at zero frequency, plus some
other high-frequency replicas. A lowpass filter can then remove everything but
the scaled copy of the original message. This is how the box labelled “frequency
translator” in Figure 1.5 is typically implemented.

To see this procedure in detail, suppose that s(t) = w(t) cos(27 fot) arrives at
the receiver, which multiplies s(¢) by another cosine wave of exactly the same
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frequency and phase to get the demodulated signal
d(t) = s(t) cos(2m fot) = w(t) cos®(27 fot).

Using the trigonometric identity (A.4), namely,

1 1
cos? () = 3 + 5 cos(2x),

this can be rewritten as

d(t) = w(t) [% + % COS(47Tf0t):| = %w(t) + %w(t) cos(2m(2fo)t).

The spectrum of the demodulated signal can be calculated to be
1 1
F{d(t)} = ]-'{Ew(t) + Qw(t) cos(27r(2f0)t)}

— %]—'{w(t)} + %]—'{w(t) cos(2m(2fo)t)}

by linearity. Now the frequency-shifting property (2.5) can be applied to show
that

FL()} = SW() + {W( ~20) + {W(T +2fo) (26)

Thus, the spectrum of this downconverted received signal has the original base-
band component (scaled to 50%) and two matching pieces (each scaled to 25%)
centered around twice the carrier frequency fy and twice its negative. A lowpass
filter can now be used to extract W (f), and hence to recover the original message
w(t).

This procedure is shown diagrammatically in Figure 2.6. The spectrum of the
original message is shown in (a), and the spectrum of the message modulated by
the carrier appears in (b). When downconversion is done as just described, the
demodulated signal d(t) has the spectrum shown in (c). Filtering by a lowpass
filter (as in part (c)) removes all but a scaled version of the message.

Now consider the FDM transmitted signal spectrum of Figure 2.3. This can be
demodulated/downconverted similarly. The frequency-shifting rule (2.5), with a
shift of fy = f3, ensures that the downconverted spectrum in Figure 2.7 matches
(2.6), and the lowpass filter removes all but the desired message from the down-
converted signal.

This is the basic principle of a transmitter and receiver pair. But there are
some practical issues that arise. What happens if the oscillator at the receiver
is not completely accurate in either frequency or phase? The downconverted
received signal becomes s(t) cos(2m(fo + )t + 3). This can have serious conse-
quences for the demodulated message. What happens if one of the antennas is
moving? The Doppler effect suggests that this corresponds to a small nonzero
value of a. What happens if the transmitter antenna wobbles due to the wind
over a range equivalent to several wavelengths of the transmitted signal? This
can alter 3. In effect, the baseband component is perturbed from (1/2)W(f), and
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Figure 2.6 The message can be recovered by downconversion and lowpass filtering. (a)
shows the original spectrum of the message; (b) shows the message modulated by the
carrier fo; (c) shows the demodulated signal. Filtering with an LPF recovers the
original spectrum.
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Figure 2.7 The signal containing the three messages of Figure 2.3 is modulated by a
sinusoid of frequency f3. This translates all three spectra by =+ f3, placing two
identical semicircular spectra at the origin. These overlapping spectra, shown as
dashed lines, sum to form the larger solid semicircle. Applying an LPF isolates just
this one message.

simply lowpass filtering the downconverted signal results in distortion. Carrier
synchronization schemes (which attempt to identify and track the phase and fre-
quency of the carrier) are routinely used in practice to counteract such problems.
These are discussed in detail in Chapters 5 and 10.

Analog Core of a Digital Communication System

The signal flow in the AM communication system described in the preceding
sections is shown in Figure 2.8. The message is upconverted (for efficient trans-
mission), summed with other FDM users (for efficient use of the electromag-
netic spectrum), subjected to possible channel noises (such as thermal noise),
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Figure 2.8 Analog AM communication system.

bandpass filtered (to extract the desired user), downconverted (requiring carrier
synchronization), and lowpass filtered (to recover the actual message).

But no transmission system operates perfectly. Each of the blocks in Figure 2.8
may be noisy, may have components which are inaccurate, and may be subject
to fundamental limitations. For instance,

e the bandwidth of a filter may be different from its specification (e.g., the
shoulders might not drop off fast enough to avoid passing some of the adjacent
signal),

¢ the frequency of an oscillator might not be exact, and hence the modulation
and/or demodulation might not be exact,

® the phase of the carrier is unknown at the receiver, since it depends on the
time of travel between the transmitter and the receiver,

e perfect filters are impossible, even in principle,

® 1o oscillator is perfectly regular, there is always some jitter in frequency.

Even within the frequency range of the message signal, the medium can
affect different frequencies in different ways. (These are called frequency selective
effects.) For example, a signal may arrive at the receiver, and a moment later a
copy of the same signal might arrive after having bounced off a mountain or a
nearby building. This is called multipath interference, and it can be viewed as
a sum of weighted and delayed versions of the transmitted signal. This may be
familiar to the (analog broadcast) TV viewer as “ghosts,” misty copies of the
original signal that are shifted and superimposed over the main image. In the
simple case of a sinusoid, a delay corresponds to a phase shift, making it more
difficult to reassemble the original message. A special filter called the equalizer is
often added to the receiver to help improve the situation. An equalizer is a kind
of “deghosting” circuit,® and equalization is addressed in detail in Chapter 13.

3 We refrain from calling these ghost busters.
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Sampling at the Receiver

Because of the proliferation of inexpensive and capable digital processors,
receivers often contain chips that are essentially special-purpose comput-
ers. In such receivers, many of the functions that are traditionally han-
dled by discrete components (such as analog oscillators and filters) can
be handled digitally. Of course, this requires that the analog received sig-
nal be turned into digital information (a series of numbers) that a com-
puter can process. This analog-to-digital conversion (A/D) is known as
sampling.

Sampling measures the amplitude of the waveform at regular intervals, and
then stores these measurements in memory. Two of the chief design issues in a
digital receiver are the following.

® Where should the signal be sampled?
® How often should the sampling be done?

The answers to these questions are intimately related to each other.

When taking samples of a signal, they must be taken fast enough that impor-
tant information is not lost. Suppose that a signal has no frequency content above
f* Hz. The widely known Nyquist reconstruction principle (see Section 6.1) says
that if sampling occurs at a rate greater than 2 f* samples per second, it is pos-
sible to reconstruct the original signal from the samples alone. Thus, as long as
the samples are taken rapidly enough, no information is lost. On the other hand,
when samples are taken too slowly, the signal cannot be reconstructed exactly
from the samples, and the resulting distortion is called aliasing.

Accordingly, in the receiver, it is necessary to sample at least twice as fast as
the highest frequency present in the analog signal being sampled in order to avoid
aliasing. Because the receiver contains modulators that change the frequencies
of the signals, different parts of the system have different highest frequencies.
Hence the answer to the question of how fast to sample is dependent on where
the samples will be taken.

The sampling

1. could be done at the input to the receiver at a rate proportional to the carrier
frequency,

2. could be done after the downconversion, at a rate proportional to the rate of
the symbols, or

3. could be done at some intermediate rate.

Each of these is appropriate in certain situations.

For the first case, consider Figure 2.3, which shows the spectrum of the FDM
signal prior to downconversion. Let f3 + f* be the frequency of the upper edge
of the user spectrum near the carrier at f3. According to the Nyquist principle,
the upconverted received signal must be sampled at a rate of at least 2(f3 + f*)
to avoid aliasing. For high-frequency carriers, this exceeds the rate of reasonably
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Figure 2.9 FDM downconversion to an intermediate frequency.

priced A /D samplers. Thus directly sampling the received signal (and performing
all the downconversion digitally) might not be feasible, even though it appears
desirable for a fully software-based receiver.

In the second case, the downconversion (and subsequent lowpass filtering)
are done in analog circuitry, and the samples are taken at the output of the
lowpass filter. Sampling can take place at a rate twice the highest frequency
f* in the baseband, which is considerably smaller than twice fs + f*. Since the
downconversion must be done accurately in order to have the shifted spectra
of the desired user line up exactly (and overlap correctly), the analog circuitry
must be quite accurate. This, too, can be expensive.

In the third case, the downconversion is done in two steps: an analog circuit
downconverts to some intermediate frequency, where the signal is sampled. The
resulting signal is then digitally downconverted to baseband. The advantage of
this (seemingly redundant) method is that the analog downconversion can be
performed with minimal precision (and hence inexpensively), while the sampling
can be done at a reasonable rate (and hence inexpensively). In Figure 2.9, the
frequency f; of the intermediate downconversion is chosen to be large enough
so that the whole FDM band is moved below the upshifted portion. Also, fr is
chosen to be small enough so that the downshifted positive frequency portion
lower edge does not reach zero. An analog bandpass filter extracts the whole
FDM band at an intermediate frequency (IF), and then it is only necessary to
sample at a rate greater than 2(f5 + f* — f1).

Downconversion to an intermediate frequency is common since the analog
circuitry can be fixed, and the tuning (when the receiver chooses between users)
can be done digitally. This is advantageous since tunable analog circuitry is
considerably more expensive than tunable digital circuitry.

Digital Communications Around an Analog Core

The discussion so far in this chapter has concentrated on the classical core of
telecommunication systems: the transmission and reception of analog waveforms.
In digital systems, as considered in the previous chapter, the original signal
consists of a stream of data, and the goal is to send the data from one location
to another. The data may be a computer program, ASCII text, pixels of a picture,
a digitized MP3 file, or sampled speech from a cell phone. “Data” consist of a
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sequence of numbers, which can always be converted to a sequence of zeros and
ones, called bits. How can a sequence of bits be transmitted?

The basic idea is that, since transmission media (such as air, phone lines, the
ocean) are analog, the bits are converted into an analog signal. Then this analog
signal can be transmitted exactly as before. Thus at the core of every “digital”
communication system lies an “analog” system. The output of the transmitter,
the transmission medium, and the front end of the receiver are necessarily analog.

Digital methods are not new. Morse-code telegraphy (which consists of a
sequence of dashes and dots coded into long and short tone bursts) became
widespread in the 1850s. The early telephone systems of the 1900s were analog,
with digitization beginning in the 1960s.

Digital (relative to fully analog) communications have the following advan-
tages:

e digital circuits are relatively inexpensive,

* data encryption can be used to enhance privacy,

e digital realization tends to support greater dynamic range,

e signals from voice, video, and data sources can be merged for transmission
over a common system,

e digital signals can be easily compressed

® noise does not accumulate from repeater to repeater over long distances,

e Jow error rates are possible, even with substantial noise,

® errors can be corrected via coding.

In addition, digital receivers can easily be reconfigured or upgraded, because they
are essentially software-driven. For instance, a receiver built for one broadcast
standard (say for the American market) could be transformed into a receiver for
the European market with little additional hardware.

But there are also some disadvantages of digital (relative to fully analog)
communications, including the following:

e more bandwidth is (generally) required than with analog,
e gsynchronization is required.

Pulse Shaping

In order to transmit a digital data stream, it must be turned into an analog
signal. The first step in this conversion is to clump the bits into symbols that
lend themselves to translation into analog form. For instance, a mapping from
the letters of the English alphabet into bits and then into the 4-PAM symbols
+1, £3 was given explicitly in (1.1). This was converted into an analog waveform
using the rectangular pulse shape (1.2), which results in signals that look like
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Figure 1.2. In general, such signals can be written

y(t) = 3 slklp(t - KT), (2.7)
k

where the s[k] are the values of the symbols, and the function p(t) is the pulse
shape. Thus, each member of the 4-PAM data sequence is multiplied by a pulse
that is nonzero over the appropriate time window. Adding all the scaled pulses
results in an analog waveform that can be upconverted and transmitted. If the
channel is perfect (distortionless and noise-free), then the transmitted signal will
arrive unchanged at the receiver. Is the rectangular pulse shape a good idea?

Unfortunately, though rectangular pulse shapes are easy to understand, they
can be a poor choice for a pulse shape because they spread substantial energy
into adjacent frequencies. This spreading complicates the packing of users in
frequency division multiplexing, and makes it more difficult to avoid having
different messages interfere with each other.

To see this, define the rectangular pulse

(1 —T/2<t<T/2
() = {0 otherwise (2.8)

as shown in Figure 2.10. The shifted pulses (2.8) are sometimes easier to work
with than (1.2), and their magnitude spectra are the same by virtue of the time-
shifting property (A.37). The Fourier transform can be calculated directly from
the definition (2.1)

N ' T/2 , e-i2mft|T/2
Wi = [ e ttan= [ e = o
oo t=—T/2 —I2 ety
o—imfT _ oinfT sin(rw fT)
) B T sinel £T). 9.
—j2rf mfT et -

The sinc function is illustrated in Figure 2.11.

Thus, the Fourier transform of a rectangular pulse in the time domain is a
sinc function in the frequency domain. Since the sinc function dies away with
an envelope of 1/(mx), the frequency content of the rectangular pulse shape
is (in principle) infinite. It is not possible to separate messages into different
nonoverlapping frequency regions as is required for an FDM implementation as
in Figure 2.3.

Alternatives to the rectangular pulse are essential. Consider what is really
required of a pulse shape. The pulse is transmitted at time k7" and again at time
(k+ 1)T (and again at (k+ 2)T...). The received signal is the sum of all these
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| sinc(x) = sin(wzx)/(7x) has zeros at
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away with an envelope of 1/(nz).

pulses (weighted by the message values). As long as each individual pulse is zero
at all integer multiples of T', then the value sampled at those times is just the
value of the original pulse (plus many additions of zero). The rectangular pulse
of width T seconds satisfies this criterion, as does any other pulse shape that
is exactly zero outside a window of width 7. But many other pulse shapes also
satisfy this condition, without being identically zero outside a window of width
T.

In fact, Figure 2.11 shows one such pulse shape—the sinc function itself! It is
zero at all integers® (except at zero, where it is unity). Hence, the sinc can be
used as a pulse shape. As in (2.7), the shifted pulse shape is multiplied by each
member of the data sequence, and then added together. If the channel is perfect
(distortionless and noise-free), the transmitted signal will arrive unchanged at
the receiver. The original data can be recovered from the received waveform by
sampling at exactly the right times. This is one reason why timing synchroniza-
tion is so important in digital systems. Sampling at the wrong times may garble
the data.

To assess the usefulness of the sinc pulse shape, consider its transform. The
Fourier transform of the rectangular pulse shape in the time domain is the sinc
function in the frequency domain. Analogously, the Fourier transform of the sinc
function in the time domain is a rectangular pulse in the frequency domain (see
(A.22)). Thus, the spectrum of the sinc is bandlimited, and so it is appropriate
for situations requiring bandlimited messages, such as FDM. Unfortunately, the
sinc is not entirely practical because it is doubly infinite in time. In any real
implementation, it will need to be truncated.

The rectangular and the sinc pulse shapes give two extremes. Practical pulse
shapes compromise between a small amount of out-of-band content (in fre-
quency) and an impulse response that falls off rapidly enough to allow reason-
able truncation (in the time domain). Commonly used pulse shapes such as the
square-root raised cosine shape are described in detail in Chapter 11.

4 In other applications, it may be desirable to have the zero crossings occur at places other
than the integers. This can be done by suitably scaling the x.
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Exercise 2.9. Consider the three pulse shapes sketched in Figure 2.12 for a
T-spaced PAM system.

a. Which of the three pulse shapes in Figure 2.12 has the largest baseband power
bandwidth? Justify your answer.

b. Which of the three pulse shapes in Figure 2.12 has the smallest baseband
power bandwidth? Justify your answer.

Exercise 2.10. TRUE or FALSE: The flatter the top of the pulse shape, the
less sensitive the receiver is to small timing offsets. Explain your reasoning.

Synchronization: Good Times Bad Times

Synchronization may occur in several places in the digital receiver.

e Symbol phase synchronization—choosing when (within each interval T') to
sample.

e Symbol frequency synchronization—accounting for different clock (oscillator)
rates at the transmitter and receiver.

¢ Carrier phase synchronization—aligning the phase of the carrier at the receiver
with the phase of the carrier at the transmitter.

e Carrier frequency synchronization—aligning the frequency of the carrier at
the receiver with the frequency of the carrier at the transmitter.

e Frame synchronization—finding the “start” of each message data block.

In digital receivers, it is important to sample the received signal at the appro-
priate time instants. Moreover, these time instants are not known beforehand;
rather, they must be determined from the signal itself. This is the problem of
clock recovery. A typical strategy samples several times per pulse and then uses
some criterion to pick the best one, to estimate the optimal time, or to interpo-
late an appropriate value. There must also be a way to deal with the situation
when the oscillator defining the symbol clock at the transmitter differs from the
oscillator defining the symbol clock at the receiver. Similarly, carrier synchroniza-
tion is the process of recovering the carrier (in both frequency and phase) from
the received signal. This is the same task in a digital receiver as in an analog
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design (recall that the cosine wave used to demodulate the received signal in
(2.6) was aligned in both phase and frequency with the modulating sinusoid at
the transmitter), though the details of implementation may differ.

In many applications (such as cell phones), messages come in clusters called
packets, and each packet has a header (that is located in some agreed-upon
place within each data block) that contains important information. The process
of identifying where the header appears in the received signal is called frame
synchronization, and is often implemented using a correlation technique.

The point of view adopted in Software Receiver Design is that many of
these synchronization tasks can be stated quite simply as optimization problems.
Accordingly, many of the standard solutions to synchronization tasks can be
viewed as solutions to these optimization problems.

e The problem of clock (or timing) recovery can be stated as that of finding
a timing offset 7 to maximize the energy of the received signal. Solving this
optimization problem via a gradient technique leads to a standard algorithm
for timing recovery.

e The problem of carrier phase synchronization can be stated as that of finding
a phase offset 6 to minimize a particular function of the modulated received
signal. Solving this optimization problem via a gradient technique leads to
the phase-locked loop, a standard method of carrier recovery.

e Carrier phase synchronization can also be stated using an alternative per-
formance function that leads directly to the Costas loop, another standard
method of carrier recovery.

Our presentation focuses on solving problems using simple recursive (gradient)
methods. Once the synchronization problems are correctly stated, techniques
for their solution become obvious. With the exception of frame synchroniza-
tion (which is approached via correlational methods) the problem of designing
synchronizers is unified via one simple concept, that of the minimization (or
maximization) of an appropriate performance function. Chapters 6, 10, and 12
contain details.

Equalization

When all is well in the digital receiver, there is no interaction between adjacent
data values and all frequencies are treated equally. In most real wireless systems
(and many wired systems as well), however, the transmission channel causes
multiple copies of the transmitted symbols, each scaled differently, to arrive at
the receiver at different times. This intersymbol interference can garble the data.
The channel may also attenuate different frequencies by different amounts. Thus
frequency selectivity can render the data indecipherable.

The solution to both of these problems is to build a filter in the receiver that
attempts to undo the effects of the channel. This filter, called an equalizer, cannot
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be fixed in advance by the system designer, however, because it must be different
in order to compensate for different channel paths that are encountered when the
system is operating. The problem of equalizer design can be stated as a simple
optimization problem, that of finding a set of filter parameters to minimize an
appropriate function of the error, given only the received data (and perhaps a
training sequence). This problem is investigated in detail in Chapter 13, where
the same kinds of adaptive techniques that are used to solve the synchronization
problems can also be applied to solve the equalization problem.

Decisions and Error Measures

In analog systems, the transmitted waveform can attain any value, but in a
digital implementation the transmitted message must be one of a small number
of values defined by the symbol alphabet. Consequently, the received waveform
in an analog system can attain any value, but in a digital implementation the
recovered message is meant to be one of a small number of values from the
source alphabet. Thus, when a signal is demodulated to a symbol and it is not
a member of the alphabet, the difference between the demodulated value (called
a soft decision) and the nearest element of the alphabet (the hard decision) can
provide valuable information about the performance of the system.
To be concrete, label the signals at various points as shown in Figure 2.13.

¢ The binary input message b(-).

e The coded signal w(-) is a discrete-time sequence drawn from a finite alphabet.

e The signal m(-) at the output of the filter and equalizer is continuous-valued
at discrete times.

e Q{m(-)} is a version of m(-) that is quantized to the nearest member of the
alphabet.

e The decoded signal b(-) is the final (binary) output of the receiver.

If all goes well and the message is transmitted, received, and decoded success-
fully, then the output should be the same as the input, although there may be
some delay § between the time of transmission and the time when the output is
available. When the output differs from the message, then errors have occurred
during transmission.

There are several ways to measure the quality of the system. For instance, the
“symbol recovery error”

e(kT) = w((k —0)T) — m(kT)

measures the difference between the message and the soft decision. The average
squared error,

1 M
M Z 62(kT)a
k=1
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Figure 2.13 PAM system diagram.

gives a measure of the performance of the system. This can be used as in Chapter
13 to adjust the parameters of an equalizer when the source message is known.
Alternatively, the difference between the message w(-) @@and the quantized output
of the receiver Q{m(-)} can be used to measure the “hard-decision error”

e(kT) = w((k = 6)T) — Q{m(kT)}.
The “decision-directed error” replaces this with
e(kT) = Q{m(kT)} — m(kT),

the error between the soft decisions and the associated hard decisions. This error
is used in Section 13.4 as a way to adjust the parameters in an equalizer when
the source message is unknown, as a way of adjusting the phase of the carrier in
Section 10.5, and as a way of adjusting the symbol timing in Section 12.3.

There are other useful indicators of the performance of digital communication
receivers. Let Tj, be the bit duration (when there are two bits per symbol, T, =
T/2). The indicator

1 it b((k — )
0 if b((k — o)

(KT)

) #
= b(kT})

)

counts how many bits have been incorrectly received, and the bit error rate is

T,) # b
kT,) = 2
o(kTy) { T,) = b

M
1
BER = — ; c(ETy). (2.10)

Similarly, the symbol error rate sums the indicators
1 i w((k—0)T)) # Q{m(KkT)}
“D={5 it it -1 GmeD)

counting the number of alphabet symbols that were transmitted incorrectly.
More subjective or context-dependent measures are also possible, such as the


Daskals
Highlight

Daskals
Highlight


2.14

A Telecommunication System 37

percentage of “typical” listeners who can accurately decipher the output of the
receiver.

No matter what the exact form of the error measure, the ultimate goal is the
accurate and efficient transmission of the message.

Coding and Decoding

What is information? How much can move across a particular channel in a given
amount of time? Claude Shannon proposed a method of measuring information
in terms of bits, and a measure of the capacity of the channel in terms of the bit
rate—the number of bits transmitted per second. This is defined quantitatively
by the channel capacity, which is dependent on the bandwidth of the channel
and on the power of the noise in comparison with the power of the signal. For
most receivers, however, the reality is far from the capacity, and this is caused
by two factors. First, the data to be transmitted are often redundant, and the
redundancy squanders the capacity of the channel. Second, the noise can be
unevenly distributed among the symbols. When large noises disrupt the signal,
then excessive errors occur.

The problem of redundancy is addressed in Chapter 14 by source coding, which
strives to represent the data in the most concise manner possible. After demon-
strating the redundancy and correlation of English text, Chapter 14 introduces
the Huffman code, which is a variable-length code that assigns short bit strings
to frequent symbols and longer bit strings to infrequent symbols. Like Morse
code, this will encode the letter “e” with a short code word, and the letter “z”
with a long code word. When correctly applied, the Huffman procedure can be
applied to any symbol set (not just the letters of the alphabet), and is “nearly”
optimal, that is, it approaches the limits set by Shannon.

The problem of reducing the sensitivity to noise is addressed in Chapter 14
using the idea of linear block codes, which cluster a number of symbols together,
and then add extra bits. A simple example is the (binary) parity check, which
adds an extra bit to each character. If there is an even number of ones then a 1
is added, and if there is an odd number of ones, a 0 is added. The receiver can
always detect that a single error has occurred by counting the number of ones
received. If the sum is even, then an error has occurred, while if the sum is odd
then no single error can have occurred. More sophisticated versions can not only
detect errors, but also correct them.

Like good equalization and proper synchronization, coding is an essential part
of the operation of digital receivers.
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A Telecommunication System

The complete system diagram, including the digital receiver that will be built in
this text, is shown in Figure 2.13. This system includes the following.

e A source coding that reduces the redundancy of the message.

® An error coding that allows detection and/or correction of errors that may
occur during the transmission.

® A message sequence of T-spaced symbols drawn from a finite alphabet.

¢ Pulse shaping of the message, designed (in part) to conserve bandwidth.

¢ Analog upconversion to the carrier frequency (within a specified tolerance).

e Channel distortion of transmitted signal.

e Summation with other FDM users, channel noise, and other interferers.

¢ Analog downconversion to intermediate frequency (including bandpass pre-
filtering around the desired segment of the FDM passband).

¢ A/D impulse sampling (preceded by antialiasing filter) at a rate of 1/7s with
arbitrary start time. The sampling rate is assumed to be at least as fast as
the symbol rate 1/T.

e Downconversion to baseband (requiring carrier-phase and frequency synchro-
nization).

e Lowpass (or pulse-shape-matched) filtering for the suppression of out-of-band
users and channel noise.

® Downsampling with timing adjustment to T-spaced symbol estimates.

e Equalization filtering to combat intersymbol interference and narrowband
interferers.

¢ A decision device quantizing soft-decision outputs of the equalizer to the near-
est member of the source alphabet (i.e., the hard decision).

® Source and error decoders.

Of course, permutations and variations of this system are possible, but we
believe that Figure 2.13 captures the essence of many modern transmission sys-
tems.

Stairway to Radio

The path taken by Software Receiver Design is to break down the telecommu-
nication system into its constituent elements: the modulators and demodulators,
the samplers and filters, the coders and decoders. In the various tasks within
each chapter, you are asked to build a simulation of the relevant piece of the sys-
tem. In the early chapters, the parts need to operate only in a pristine, idealized
environment, but as we progress, impairments and noises inevitably intrude. The
design evolves to handle the increasingly realistic scenarios.
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Throughout this text, we ask you to consider a variety of small questions, some
of which are mathematical in nature, most of which are “what if” questions best
answered by trial and simulation. We hope that this combination of reflection
and activity will be useful in enlarging your understanding and in training your
intuition.

For Further Reading

There are many books about various aspects of communication systems. Here
are some of our favorites. Three basic texts that utilize probability from the
outset, and that also pay substantial attention to pragmatic design issues (such
as synchronization) are the following:

¢ J. B. Anderson, Digital Transmission Engineering, IEEE Press, 1999;

e J. G. Proakis and M. Salehi, Digital Communications, 5th edition, McGraw-
Hill, 2007. [This text also has a MATLAB-based companion, J. G. Proakis, M.
Salehi, and G. Bauch, Contemporary Communication Systems Using MATLAB,
2nd edition, Cengage Learning, 2004];

e S. Haykin, Communication Systems, 4th edition, John Wiley and Sons, 2001.

Three introductory texts that delay the introduction of probability until the
latter chapters are the following:

e L. W. Couch III, Digital and Analog Communication Systems, 6th edition,
Prentice-Hall, 2001;

e B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd edition,
Oxford University Press, 1998;

e F. G. Stremler, Introduction to Communication Systems, 3rd edition, Addison
Wesley, 1990.

These final three references are probably the most compatible with Software
Receiver Design in terms of the assumed mathematical background.



The Six Elements

At first glance, block diagrams such as the communication system shown in Fig-
ure 2.13 probably appear complex and intimidating. There are so many different
blocks and so many unfamiliar names and acronyms! Fortunately, all the blocks
can be built from six simple elements:

® signal generators such as oscillators, which create sine and cosine waves,

e linear time-invariant filters, which augment or diminish the amplitude of par-
ticular frequencies or frequency ranges in a signal,

e samplers, which change analog (continuous-time) signals into discrete-time
signals,

® static nonlinearities such as squarers and quantizers, which can add frequency
content to a signal,

¢ linear time-varying systems such as mizers that shift frequencies around in
useful and understandable ways, and

® adaptive elements, which track the desired values of parameters as they slowly
change over time.

This section provides a brief overview of these six elements. In doing so, it also
reviews some of the key ideas from signals and systems. Later chapters explore
how the elements work, how they can be modified to accomplish particular tasks
within the communication system, and how they can be combined to create a
large variety of blocks such as those that appear in Figure 2.13.

The elements of a communication system have inputs and outputs; the element
itself operates on its input signal to create its output signal. The signals that
form the inputs and outputs are functions that represent the dependence of some
variable of interest (such as a voltage, current, power, air pressure, temperature,
etc.) on time.

The action of an element can be described by the manner in which it operates
in the “time domain,” that is, how the element changes the input waveform
moment by moment into the output waveform. Another way of describing the
action of an element is by how it operates in the “frequency domain,” that is,
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by how the frequency content of the input relates to the frequency content of
the output. Figure 3.1 illustrates these two complementary ways of viewing the
elements. Understanding both the time-domain and frequency-domain behavior
is essential. Accordingly, the following sections describe the action of the six
elements in both time and frequency.

Readers who have studied signals and systems (as is often required in elec-
trical engineering degrees) will recognize that the time-domain representation
of a signal and its frequency-domain representation are related by the Fourier
transform, which is briefly reviewed in the next section.

Finding the Spectrum of a Signal

A signal s(t) can often be expressed in analytical form as a function of time ¢,
and the Fourier transform is defined as in (2.1) as the integral of s(t)e~2™/*. The
resulting transform S(f) is a function of frequency. S(f) is called the spectrum of
the signal s(t) and describes the frequencies present in the signal. For example,
if the time signal is created as a sum of three sine waves, the spectrum will
have spikes corresponding to each of the constituent sines. If the time signal
contains only frequencies between 100 and 200 Hz, the spectrum will be zero for
all frequencies outside of this range. A brief guide to Fourier transforms appears
in Appendix D, and a summary of all the transforms and properties that are
used throughout Software Receiver Design appears in Appendix A.

Often, however, there is no analytical expression for a signal; that is, there is
no (known) equation that represents the value of the signal over time. Instead,
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the signal is defined by measurements of some physical process. For instance, the
signal might be the waveform at the input to the receiver, the output of a linear
filter, or a sound waveform encoded as an MP3 file. In all these cases, it is not
possible to find the spectrum by calculating a Fourier transform since the signal
is not known in analytical form.

Rather, the discrete Fourier transform (and its cousin, the more rapidly com-
putable fast Fourier transform, or FFT) can be used to find the spectrum or fre-
quency content of a measured signal. The MATLAB function plotspec.m, which
plots the spectrum of a signal, is available on the website. Its help file! notes

% plotspec(x,Ts) plots the spectrum of x
% Ts=time (in secs) between adjacent samples

The function plotspec.m is easy to use. For instance, the spectrum of a square
wave can be found using the following sequence:

Listing 3.1. specsquare.m plot the spectrum of a square wave

f=10; % ” frequency” of square wave
time=2; % length of time

Ts=1/1000; % time interval between samples
t=Ts:Ts:time; % create a time vector
x=sign(cos(2*pixfx*t)); % square wave = sign of cos wave
plotspec(x,Ts) % call plotspec to draw spectrum

The output of specsquare.mis shown? in Figure 3.2. The top plot shows time=2
seconds of a square wave with £=10 cycles per second. The bottom plot shows a
series of spikes that define the frequency content. In this case, the largest spike
occurs at £10 Hz, followed by smaller spikes at all the odd-integer multiples (i.e.,
at 30, £50, £70, etc.).

Similarly, the spectrum of a noise signal can be calculated as

Listing 3.2. specnoise.m plot the spectrum of a noise signal

time=1; % length of time

Ts=1/10000; % time interval between samples
x=randn (1 ,time/Ts); % Ts points of noise for time seconds
plotspec(x,Ts) % call plotspec to draw spectrum

A typical run of specnoise.m is shown in Figure 3.3. The top plot shows
the noisy signal as a function of time, while the bottom shows the magnitude
spectrum. Because successive values of the noise are generated independently, all
frequencies are roughly equal in magnitude. Each run of specnoise.m produces
plots that are qualitatively similar, though the details will differ.

You can view the help file for the MATLAB function xxx by typing help xxx at the MATLAB
prompt. If you get an error such as xxx not found, then this means either that the function
does not exist, or that it needs to be moved into the same directory as the MATLAB appli-
cation. If you don’t know what the proper command to do a job is, then use lookfor. For
instance, to find the command that inverts a matrix, type lookfor inverse. You will find
the desired command inv.

All code listings in Software Receiver Design can be found on the website. We encourage
you to open MATLAB and explore the code as you read.
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Exercise 3.1. Use specsquare.m to investigate the relationship between the
time behavior of the square wave and its spectrum. The MATLAB command
zoom on is often helpful for viewing details of the plots.

a. Try square waves with different frequencies: £=20, 40, 100, 300 Hz. How
do the time plots change? How do the spectra change?
b. Try square waves of different lengths, time=1, 10, 100 seconds. How does

the spectrum change in each case?

c. Try different sampling times, Ts=1/100, 1/10000 seconds. How does the

spectrum change in each case?

Exercise 3.2. In your signals and systems course, you probably calculated (ana-
lytically) the spectrum of a square wave by using the Fourier series. How does
this calculation compare with the discrete data version found by specsquare.m?

Exercise 3.3. Mimic the code in specsquare.m to find the spectrum of

o o T o

and 0 < ¢t < 10.

. an exponential pulse s(t) = e~ for 0 < ¢ < 10,

a scaled exponential pulse s(t) = 5e* for 0 < ¢ < 10,

. a Gaussian pulse s(t) = e " for —2 < ¢ < 2,

. a Gaussian pulse s(t) = e for —20 < t < 20,

. the sinusoids s(t) = sin(27 ft + ¢) for f = 20, 100, 1000, with ¢ = 0, w/4, 7/2,

Exercise 3.4. MATLAB has several commands that create random numbers.

a. Use rand to create a signal that is uniformly distributed on [—1,1]. Find the
spectrum of the signal by mimicking the code in specnoise.m.

b. Use rand and the sign function to create a signal that is +1 with probability
1/2 and —1 with probability 1/2. Find the spectrum of the signal.

c. Use randn to create a signal that is normally distributed with mean 0 and

variance 3. Find the spectrum of the signal.
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Exercise 3.5. Modify the code in plotspec.m to also plot the phase spectrum.

a. Plot the phase spectrum of a sine wave and a cosine wave, both of the same
frequency. How do they differ?
b. Plot the phase spectrum of the random signal created in Exercise 3.4(a).

While plotspec.m can be quite useful, ultimately, it will be necessary to have
more flexibility, which, in turn, requires one to understand how the FFT function
inside plotspec.m works. This will be discussed at length in Chapter 7. The
next six sections describe the six elements that are at the heart of communica-
tions systems. The elements are described both in the time domain and in the
frequency domain.

The First Element: Oscillators

The Latin word oscillare means “to ride in a swing.” It is the origin of oscillate,
which means to move back and forth in steady unvarying rhythm. Thus, a device
that creates a signal that moves back and forth in a steady, unvarying rhythm is
called an oscillator. An electronic oscillator is a device that produces a repetitive
electronic signal, usually a sinusoidal wave.

A basic oscillator is diagrammed in Figure 3.4. Oscillators are typically
designed to operate at a specified frequency fo, and the input specifies the phase
@(t) of the output

s(t) = cos(2m fot + H(t)).

The input may be a fixed number, but it may also be a signal; that is, it may
change over time. In this case, the output is no longer a pure sinusoid of frequency
fo. For instance, suppose the phase is a “ramp” or line with slope 27c; that is,
@(t) = 2met. Then s(t) = cos(27 fot + 2met) = cos(2mw(fo + ¢)t), and the “actual”
frequency of oscillation is fo + c.
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There are many ways to build oscillators from analog components. Generally,
there is an amplifier and a feedback circuit that returns a portion of the amplified
wave back to the input. When the feedback is aligned properly in phase, sustained
oscillations occur.

Digital oscillators are simpler. Since they can be directly calculated, no ampli-
fier or feedback is needed. For example, a “digital” sine wave of frequency f Hz
and a phase of ¢ radians can be represented mathematically as

s(kTs) = cos(2m fkTs + ¢), (3.1)

where T is the time between samples and where k is an integer counter k =
1,2,3,.... Equation (3.1) can be directly implemented in MATLAB:

Listing 3.3. speccos.m plot the spectrum of a cosine wave

f=10; phi=0; % specify frequency and phase
time=2; % length of time

Ts=1/100; % time interval between samples
t=Ts:Ts: time; % create a time vector

x=cos (2* pi*f*t+phi); % create cos wave

plotspec (x,Ts) % draw waveform and spectrum

The output of speccos.m is shown in Figure 3.5. As expected, the time plot
shows an undulating sinusoidal signal with f = 10 repetitions in each second.
The spectrum shows two spikes, one at f = 10 Hz and one at f = —10 Hz. Why
are there two spikes? Basic Fourier theory shows that the Fourier transform of
a cosine wave is a pair of delta functions at plus and minus the frequency of the
cosine wave (see Equation (A.18)). The two spikes of Figure 3.5 mirror these
two delta functions. Alternatively, recall that a cosine wave can be written using
Euler’s formula as the sum of two complex exponentials, as in (A.2). The spikes of
Figure 3.5 represent the magnitudes of these two (complex-valued) exponentials.



46

3.3

Chapter 3. The Six Elements

Exercise 3.6. Mimic the code in speccos.m to find the spectrum of a cosine
wave

a. for different frequencies f=1, 2, 20, 30 Hz,
b. for different phases ¢ = 0,0.1,7/8, 7 /2 radians,
c. for different sampling rates Ts=1/10, 1/1000, 1/100000.

Exercise 3.7. Let x1(t) be a cosine wave of frequency f = 10, z2(¢) be a cosine
wave of frequency f = 18, and x3(t) be a cosine wave of frequency f = 33. Let
z(t) = x1(t) + 0.5 x x2(t) + 2 x x3(¢). Find the spectrum of z(¢). What property
of the Fourier transform does this illustrate?

Exercise 3.8. Find the spectrum of a cosine wave in the following cases.

¢ is a function of time. Try ¢(t)

¢ is a function of time. Try ¢(t) = 7t
. f is a function of time. Try f(t) =s
. f is a function of time. Try f(t) = t2.

B T

The Second Element: Linear Filters

Linear time-invariant filters shape the spectrum of a signal. If the signal has
too much energy in the low frequencies, a highpass filter can remove them. If
the signal has too much high-frequency noise, a lowpass filter can reject it. If a
signal of interest resides only between f, and f*, then a bandpass filter tuned
to pass frequencies between f, and f* can remove out-of-band interference and
noise. More generally, suppose that a signal has frequency bands in which the
magnitude of the spectrum is lower than desired and other bands in which the
magnitude is greater than desired. Then a linear filter can compensate by increas-
ing or decreasing the magnitude. This section provides an overview of how to
implement simple filters in MATLAB. More thorough treatments of the theory,
design, use, and implementation of filters are given in Chapter 7.

While the calculations of a linear filter are usually carried out in the time
domain, filters are often specified in the frequency domain. Indeed, the words
used to specify filters (such as lowpass, highpass, and bandpass) describe how the
filter acts on the frequency content of its input. Figure 3.6, for instance, shows
a noisy input entering three different filters. The frequency response of the LPF
shows that it allows low frequencies (those below the cutoff frequency f.) to pass,
while removing all frequencies above the cutoff. Similarly, the HPF passes all the
high frequencies and rejects those below its cutoff f*. The frequency response of
the BPF is specified by two frequencies. It will remove all frequencies below f,
and all frequencies above f*, leaving only the region between.



The Six Elements a7

X(f) Mag.
Yi(f) Figure 3.6 A “white”
1 signal containing all
White inputreq. e Sx o 7« S frequencies is passed
0 LPF |—— ‘Eig)g)gl; a lowpasT ﬁl}tler
eaving only the
[ ] [] [ o ™ low frequencies, a
S S St S S bandpass filter (BPF)
BPF 20 leaving only the middle
frequencies, and a
Y3(f) highpass filter (HPF)
_l, ,V_ ANVL W leaving only the high
g r -+ I frequencies.
HPF y3(1)

Figure 3.6 shows the action of ideal filters. How close are actual implementa-
tions? The MATLAB code in filternoise.m shows that it is possible to create
digital filters that reliably and accurately carry out these tasks.

Listing 3.4. filternoise.m filter a noisy signal three ways

time=3; % length of time

Ts=1/10000; % time interval between samples
x=randn (1, time/Ts); % generate noise signal

figure (1), plotspec(x,Ts) % draw spectrum of input

freqs=[0 0.2 0.21 1];
amps=[1 1 0 0];

b=firpm (100, freqs ,amps); % specify the LP filter
ylp=filter (b,1,x); % do the filtering
figure (2),plotspec(ylp,Ts) % plot the output spectrum

freqs=[0 0.24 0.26 0.5 0.51 1];
amps=[0 0 1 1 0 0];

b=firpm (100, freqs ,amps); % BP filter
ybp=filter (b,1,x); % do the filtering
figure (3), plotspec (ybp,Ts) % plot the output spectrum

freqs=[0 0.74 0.76 1];
amps=[0 0 1 1];

b=firpm (100, freqs ,amps); % specify the HP filter
yhp=filter (b,1,x); % do the filtering
figure (4),plotspec (yhp,Ts) % plot the output spectrum

The output of filternoise.mis shown in Figure 3.7. Observe that the spec-
tra at the output of the filters are close approximations to the ideals shown in
Figure 3.6. There are some differences, however. While the idealized spectra are
completely flat in the passband, the actual ones are rippled. While the idealized
spectra completely reject the out-of-band frequencies, the actual ones have small
(but nonzero) energy at all frequencies. Two new MATLAB commands are used
in filternoise.m. The firpm command specifies the contour of the filter as a
line graph (Octave and early versions of MATLAB call this command remez). For
instance, typing
plot ([0 0.24 0.26 0.5 0.51 1],[0 0 1 1 0 0])
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Magnitude spectrum at input Figure 3.7 The spectrum of a “white”
signal containing all frequencies is
shown in the top figure. This is
passed through three filters: a

| I ! m I I J
Magnitude spectrum at output of lowpass filter lowpass, a bandpass, and a highpass
) ) .
The spectra at the outputs of these
L L | ke

three filters are shown in the second,
third, and bottom plots. The “actual”
filters behave much like their
idealized counterparts in Figure 3.6.

Magnitude spectrum at output of bandpass filter

L L L L

—4000  -2000 0 2000 4000
Magnitude spectrum at output of highpass filter

at the MATLAB prompt draws a box that represents the action of the BPF
designed in filternoise.m (over the positive frequencies). The frequencies
are specified as percentages of fyyg = 1/(27T), which in this case is equal to
5000 Hz. (fnyq is discussed further in the next section.) Thus the BPF in
filternoise.m passes frequencies between 0.26 x5000 Hz and 0.5x5000 Hz, and
rejects all others. The filter command uses the output of firpm to carry out
the filtering operation on the vector specified in its third argument. More details
about these commands are given in the section on practical filtering in Chapter 7.

Exercise 3.9. Mimic the code in filternoise.m to create a filter that

a. passes all frequencies above 500 Hz,
b. passes all frequencies below 3000 Hz,
c. rejects all frequencies between 1500 and 2500 Hz.

Exercise 3.10. Change the sampling rate to Ts=1/20000. Redesign the three
filters from Exercise 3.9.

Exercise 3.11. Let x4 (¢) be a cosine wave of frequency f = 800, z2(¢) be a cosine
wave of frequency f = 2000, and z3(t) be a cosine wave of frequency f = 4500.
Let 2(t) = x1(t) + 0.5 % 22(¢t) + 2 * 23(¢). Use x(t) as input to each of the three
filters in filternoise.m. Plot the spectra, and explain what you see.

Exercise 3.12. TRUE or FALSE: A linear, time-invariant system exists that
has input a cos(bt) and output csin(dt) with a # ¢ and |b| # |d|. Explain.

Exercise 3.13. TRUE or FALSE: Filtering a passband signal with absolute
bandwidth B through certain fixed linear filters can result in an absolute band-
width of the filter output greater than B. Explain.
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Exercise 3.14. TRUE or FALSE: A linear, time-invariant, finite-impulse-
response filter with a frequency response having unit magnitude over all fre-
quencies and a straight-line, sloped phase curve has as its transfer function a
pure delay. Explain.

Exercise 3.15. TRUE or FALSE: Processing a bandlimited signal through a
linear, time-invariant filter can increase its half-power bandwidth. Explain.

3.4 The Third Element: Samplers

Since part of any digital transmission system is analog (transmissions through
the air, across a cable, or along a wire are inherently analog), and part of the
system is digital, there must be a way to translate the continuous-time signal
into a discrete-time signal and vice versa. The process of sampling an analog sig-
nal, sometimes called analog-to-digital conversion, is easy to visualize in the time
domain. Figure 3.8 shows how sampling can be viewed as the process of evalu-
ating a continuous-time signal at a sequence of uniformly spaced time intervals,
thus transforming the analog signal x(t) into the discrete-time signal z(kT).

One of the key ideas in signals and systems is the Fourier series: a signal is
periodic in time (it repeats every P seconds) if and only if the spectrum can
be written as a sum of complex sinusoids with frequencies at integer multiples
of a fundamental frequency f. Moreover, this fundamental frequency can be
written in terms of the period as f =1/P. Thus, if a signal repeats 100 times
every second (P = 0.01 s), then its spectrum consists of a sum of sinusoids with
frequencies 100, 200, 300, . .. Hz.

Conversely, if a spectrum is built from a sum of sinusoids with frequencies
100, 200, 300, ... Hz, then it must represent a periodic signal in time that has
period P = 0.01 s. Said another way, the nonzero portions of the spectrum are
uniformly spaced f = 100 Hz apart. This uniform spacing can be interpreted as
a sampling (in frequency) of an underlying continuous-valued spectrum. This is

A
e

x(f) >< x(kT,) = x[K]
T,

s

(a)
(b)

Figure 3.8 The sampling process is shown in (b) as an evaluation of the signal z(t) at

times ..., —2Ts, Ts, 0,75, 275, . ... This procedure is schematized in (a) as an element
that has the continuous-time signal z(t) as input and the discrete-time signal z(kT5)

as output.
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Figure 3.9 Fourier’s result says that any signal that is periodic in time has a spectrum
that consists of a collection of spikes uniformly spaced in frequency. Analogously, any
signal whose spectrum is periodic in frequency can be represented in time as a
collection of spikes uniformly spaced in time, and vice versa.

illustrated in the top portion of Figure 3.9, which shows the time-domain repre-
sentation on the left and the corresponding frequency-domain representation on
the right.

The basic insight from Fourier series is that any signal which is periodic in
time can be reexpressed as a collection of uniformly spaced spikes in frequency;
that is,

Periodic in Time < Uniform Sampling in Frequency.
The same arguments show the basic result of sampling, which is that
Uniform Sampling in Time < Periodic in Frequency.

Thus, whenever a signal is uniformly sampled in time (say, with sampling interval
T seconds), the spectrum will be periodic; that is, it will repeat every fs = 1/T
Hz.

Two conventions are often observed when drawing periodic spectra that arise
from sampling. First, the spectrum is usually drawn centered at 0 Hz. Thus, if
the period of repetition is fs, this is drawn from — f5/2 to fs/2, rather than from
0 to fs. This makes sense because the spectra of individual real-valued sinusoidal
components contain two spikes symmetrically located around 0 Hz (as we saw in
Section 3.2). Accordingly, the highest frequency that can be represented unam-
biguously is fs/2, and this frequency is often called the Nyquist frequency fny .
The second convention is to draw only one period of the spectrum. After all,
the others are identical copies that contain no new information. This is evident
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x[K] y[i]  Figure 3.10 The discrete signal x[k] is downsampled by a factor
- l > of m by removing all but one of every m samples. The
resulting signal is y[i], which takes on values y[i] = z[k]
m whenever k = im + n.

in the bottom right diagram of Figure 3.9 where the spectrum between —3f/2
and —f;/2 is the same as the spectrum between f,/2 and 3f,/2. In fact, we
have been observing this convention throughout Sections 3.2 and 3.3, since all
of the figures of spectra (Figures 3.2, 3.3, 3.5, and 3.7) show just one period of
the complete spectrum.

Perhaps you noticed that plotspec.m changes the frequency axis when the
sampling interval Ts is changed. (If not, go back and redo Exercise 3.1(c).) By
the second convention, plotspec.m shows exactly one period of the complete
spectrum. By the first convention, the plots are labeled from —fyyg to fnyg.

What happens when the frequency of the signal is too high for the sampling
rate? The representation becomes ambiguous. This is called aliasing, and is inves-
tigated by simulation in the problems below. Aliasing and other sampling-related
issues (such as reconstructing an analog signal from its samples) are covered in
more depth in Chapter 6.

Closely related to the digital sampling of an analog signal is the (digital)
downsampling of a digital signal, which changes the rate at which the signal is
represented. The simplest case downsamples by a factor of m, removing all but
one out of every m samples. This can be written

yli] = xlim + nl,

where n is an integer between 0 and m — 1. For example, with m =3 and n =1,
yli] is the sequence that consists of every third value of x[k],

yl0] = 21, y[1] = «[4], y[2] = «[7), y[3] = «[10], etc.

This is commonly drawn in block form as in Figure 3.10. If the spectrum of x[k]
is bandlimited to 1/m of the Nyquist rate, then downsampling by m loses no
information. Otherwise, aliasing occurs. Like analog-to-digital sampling, down-
sampling is a time-varying operation.

Exercise 3.16. Mimicking the code in speccos.m with the sampling interval
Ts=1/100, find the spectrum of a cosine wave cos(27 ft) when £=30, 40, 49,
50, 51, 60 Hz. Which of these show aliasing?

Exercise 3.17. Create a cosine wave with frequency 50 Hz. Plot the spec-
trum when this wave is sampled at Ts=1/50, 1/90, 1/100, 1/110, and 1/200.
Which of these show aliasing?

Exercise 3.18. Mimic the code in speccos.m with sampling interval Ts=1/100
to find the spectrum of a square wave with fundamental £=10, 20, 30, 33,
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43 Hz. Can you predict where the spikes will occur in each case? Which of the
square waves show aliasing?

The Fourth Element: Static Nonlinearities

Linear systems® such as filters cannot add new frequencies to a signal, though
they can remove unwanted frequencies. Nonlinearities such as squaring and quan-
tizing can and will add new frequencies. These can be useful in the communica-
tion system in a variety of ways.

Perhaps the simplest (memoryless) nonlinearity is the square, which takes
the input at each time instant and multiplies it by itself. Suppose the input
is a sinusoid at frequency f, that is, x(t) = cos(2w ft). Then the output is the
sinusoid squared, which can be rewritten using the cosine—cosine product (A.4)
as

y(t) = 22(t) = cos®(2n ft) = % + % cos(2m(2f)t).

The spectrum of y(t) has a spike at 0 Hz due to the constant, and a spike at
+2f Hz from the double-frequency term. Unfortunately, the action of a squaring
element is not always as simple as this example might suggest. The following
exercises encourage you to explore the kinds of changes that occur in the spectra
when using a variety of simple nonlinear elements.

Exercise 3.19. Mimic the code in speccos.m with Ts=1/1000 to find the
spectrum of the output y(t) of a squaring block when the input is

|

. x(t) = cos(2m ft) for f = 100 Hz,

b. x(t) = cos(2m f1t) + cos(27m fat) for f1 = 100 and fo = 150 Hz,

c. a filtered noise sequence with nonzero spectrum between f; = 100 and fo =
300 Hz. Hint: generate the input by modifying filternoise.m.

d. Can you explain the large DC (zero-frequency) component?

Exercise 3.20. TRUE or FALSE: The bandwidth of z*(t) cannot be greater
than that of z(¢). Explain.

Exercise 3.21. Try different values of f; and fy in Exercise 3.19. Can you
predict what frequencies will occur in the output? When is aliasing an issue?

Exercise 3.22. Repeat Exercise 3.21 when the input is a sum of three sinusoids.

3 To be accurate, these systems must be exponentially stable and time-invariant.
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Exercise 3.23. Suppose that the output of a nonlinear block is the rectification
(absolute value) of the input y(t) = |z(¢)|. Find the spectrum of the output when
the input is

a. x(t) = cos(2n ft) for f = 100 Hz,

b. z(t) = cos(2m fit) + cos(27 fot) for f1 = 100 and fo = 125 Hz.

c. Repeat (b) for f; =110 and fo = 200 Hz. Can you predict what frequencies
will be present for any fi; and fa?

d. What frequencies will be present if z(t) is the sum of three sinusoids f1, fa,
and f37

Exercise 3.24. Suppose that the output of a nonlinear block is y(t) = g(x(¢)),

where
B 1 z(t)>0
9() = {—1 2(t) <0

is a quantizer that outputs plus one when the input is positive and minus one
when the input is negative. Find the spectrum of the output when the input is

a. x(t) = cos(2n ft) for f =100 Hz,
b. x(t) = cos(2m f1t) + cos(27 fat) for f1 = 100 and fo = 150 Hz.

Exercise 3.25. Quantization of an input is another kind of common nonlinear-
ity. The MATLAB function quantalph.m (available on the website) quantizes a
signal to the nearest element of a desired set. Its help file reads

% y=quantalph (x,alphabet)

%

% quantize the input signal x to the alphabet
% using nearest neighbor method

% input x — vector to be quantized

% alphabet — vector of discrete values
% that y can assume

% sorted in ascending order
% output y — quantized vector

Let x be a random vector x=randn(1,n) of length n. Quantize x to the nearest
[-3,-1,1,3].

a. What percentage of the outputs are 1s? 3s?
b. Plot the magnitude spectrum of x and the magnitude spectrum of the output.
c. Now let x=3*randn(1,n) and answer the same questions.

The Fifth Element: Mixers

One feature of most telecommunications systems is the ability to change the
frequency of the signal without changing its information content. For example,
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speech occurs in the range below about 8 kHz. In order to transmit this, it is
upconverted (as in Section 2.3) to radio frequencies at which the energy can
easily propagate over long distances. At the receiver, it is downconverted (as in
Section 2.6) to the original frequencies. Thus the spectrum is shifted twice.

One way of accomplishing this kind of frequency shifting is to multiply the
signal by a cosine wave, as shown in Figure 3.11. The following MATLAB code
implements a simple modulation.

Listing 3.5. modulate.m change the frequency of the input

time=.5; Ts=1/10000; % time and sampling interval
t=Ts:Ts:time; % define a ’time’ vector
fc=1000; cmod=cos (2*pi*fc*t); % create cos of freq fc
fi=100; x=cos(2*pi*fix*t); % input is cos of freq fi
y=cmod .*X; % multiply input by cmod
figure (1), plotspec(cmod,Ts) % find spectra and plot

figure (2), plotspec(x,Ts)
figure (3), plotspec(y,Ts)

The first three lines of the code create the modulating sinusoid (i.e., an oscillator).
The next line specifies the input (in this case another cosine wave). The MATLAB
syntax .* calculates a point-by-point multiplication of the two vectors cmod and
X.

The output of modulate.mis shown in Figure 3.12. The spectrum of the input
contains spikes representing the input sinusoid at +100 Hz and the spectrum
of the modulating sinusoid contains spikes at #1000 Hz. As expected from the
modulation property of the transform, the output contains sinusoids at 1000 +
100 Hz, which appear in the spectrum as the two pairs of spikes at £900 and
+1100 Hz. Of course, this modulation can be applied to any signal, not just to
an input sinusoid. In all cases, the output will contain two copies of the input,
one shifted up in frequency and the other shifted down in frequency.

Exercise 3.26. Mimic the code in modulate.mto find the spectrum of the output
y(t) of a modulator block (with modulation frequency f. = 1000 Hz) when

the input is x(t) = cos(27 f1t) + cos(27 fot) for f1 = 100 and fo = 150 Hz,
the input is a square wave with fundamental f = 150 Hz,

the input is a noise signal with all energy below 300 Hz,

the input is a noise signal bandlimited to between 2000 and 2300 Hz,

the input is a noise signal with all energy below 1500 Hz.

o o0 T

x(t) Figure 3.11 The mixing operation shifts all
l frequencies of a signal z(¢) by an amount
SCfor+4) x()cos2mfyr+0)  defined by the frequency fo of the
[N\ AN Y quency fo
¢ (\// \X/ modulating sinusoidal wave.
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! ! ! ! !
Magnitude spectrum at input

! !
Magnitude spectrum of the oscillator

-3000 —2000 —1000 0 1000 2000 3000
Magnitude spectrum at output

Figure 3.12 The spectrum of the input sinusoid is shown in the top figure. The middle
figure shows the spectrum of the modulating wave. The bottom shows the spectrum
of the point-by-point multiplication (in time) of the two, which is the same as their
convolution (in frequency).

The Sixth Element: Adaptation

Adaptation is a primitive form of learning. Adaptive elements in telecommuni-
cation systems find approximate values for unknown parameters in an attempt
to compensate for changing conditions or to improve performance. A common
strategy in parameter-estimation problems is to guess a value, assess how good
the guess is, and refine the guess over time. With luck, the guesses converge to
a useful estimate of the unknown value.

Figure 3.13 shows an adaptive element containing two parts. The adaptive
subsystem parameterized by a changes the input into the output. The quality-
assessment mechanism monitors the output (and other relevant signals) and tries
to determine whether a should be increased or decreased. The arrow through the
system indicates that the a value is then adjusted accordingly.

Adaptive elements occur in a number of places in the communication system,
including the following.

¢ In an automatic gain control, the “adaptive subsystem” is multiplication by a
constant a. The quality-assessment mechanism gauges whether the power at
the output of the AGC is too large or too small, and adjusts a accordingly.

Figure 3.13 The adaptive element is a

Assessment

I
I
Input | Output subsystem that transforms the input
I a : into the output (parameterized by a)
| | and a quality-assessment mechanism
! i | that evaluates how to alter a; in this
: Quality : case, whether to increase or decrease
! |
! |

a.
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® In a phase-locked loop, the “adaptive subsystem” contains a sinusoid with
an unknown phase shift a. The quality-assessment mechanism adjusts a to
maximize a filtered version of the product of the sinusoid and its input.

® In a timing recovery setting, the “adaptive subsystem” is a fractional delay
given by a. One mechanism for assessing quality monitors the power of the
output, and adjusts a to maximize this power.

e In an equalizer, the “adaptive subsystem” is a linear filter parameterized by
a set of as. The quality-assessment mechanism monitors the deviation of the
output of the system from a target set and adapts the as accordingly.

Chapter 6 provides an introduction to adaptive elements in communication
systems, and a detailed discussion of their implementation is postponed until
then.

Summary

The bewildering array of blocks and acronyms in a typical communication system
diagram really consists of just a handful* of simple elements: oscillators, linear
filters, samplers, static nonlinearities, mixers, and adaptive elements. For the
most part, these are ideas that the reader will have encountered to some degree in
previous studies, but they have been summarized here in order to present them in
the same form and using the same notation as in later chapters. In addition, this
chapter has emphasized the “how-to” aspects by providing a series of MATLAB
exercises, which will be useful when creating simulations of the various parts of
a receiver.

For Further Reading

The intellectual background of the material presented here is often called signals
and systems. One of the most accessible books is

e J. H. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing First,
Pearson Prentice-Hall, 2003.

Other books provide greater depth and detail about the theory and uses of
Fourier transforms. We recommend these as both background and supplementary
reading:

e A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd
edition, Prentice-Hall, 1997;
e S. Haykin and B. Van Veen, Signals and Systems, Wiley, 2002.

4 Assuming a six-fingered hand.
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There are also many wonderful books about digital signal processing, and these
provide both depth and detail about basic issues such as sampling and filter
design. Some of the best are the following:

e A.V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Pro-
cessing, Prentice-Hall, 1999;

e B. Porat, A Course in Digital Signal Processing, Wiley, 1997;

e S. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw-
Hill, 2005.

Finally, since MATLAB is fundamental to our presentation, it is worth mentioning
some books that describe the uses (and abuses) of the MATLAB language.

e A. Gilat, MATLAB: An Introduction with Applications, Wiley, 2007;
e B. Littlefield and D. Hanselman, Mastering MATLAB 7, Prentice-Hall, 2004.



Step 3: The ldealized System

The next step encompasses Chapters 4 through 9. This gives a closer look at
the idealized receiver—how things work when everything is just right: when the
timing is known, when the clocks run at exactly the right speed, when there are
no reflections, diffractions, or diffusions of the electromagnetic waves. This step
also introduces a few MATLAB tools that are needed to implement the digital
radio. The order in which topics are discussed is precisely the order in which
they appear in the receiver:

frequency
channel — translation — sampling —
Chapter 4 Chapter 5 Chapter 6

receive .. decision .
. — equalization ) — decoding
filtering _, device
Chapter 7 Chapter 8

Chapter 9 provides a complete (though idealized) software-defined digital radio
system.




4.1

Modeling Corruption

If every signal that went from here to there arrived at its intended receiver
unchanged, the life of a communications engineer would be easy. Unfortunately,
the path between here and there can be degraded in several ways, including
multipath interference, changing (fading) channel gains, interference from other
users, broadband noise, and narrowband interference.

This chapter begins by describing some of the funny things that can happen
to signals, some of which are diagrammed in Figure 4.1. More important than
locating the sources of the problems is fixing them. The received signal can
be processed using linear filters to help reduce the interferences and to undo,
to some extent, the effects of the degradations. The central question is how to
specify filters that can successfully mitigate these problems, and answering this
requires a fairly detailed understanding of filtering. Thus, a discussion of linear
filters occupies the bulk of this chapter, which also provides a background for
other uses of filters throughout the receiver, such as the lowpass filters used in the
demodulators of Chapter 5, the pulse-shaping and matched filters of Chapter 11,
and the equalizing filters of Chapter 13.

When Bad Things Happen to Good Signals

The path from the transmitter to the receiver is not simple, as Figure 4.1 sug-
gests. Before the signal reaches the receiver, it may be subject to a series of
strange events that can corrupt the signal and degrade the functioning of the
receiver. This section discusses five kinds of corruption that are used throughout
the chapter to motivate and explain the various purposes that linear filters may
serve in the receiver.
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Types of corruption Figure 4.1 Sources of
Signals Broadband Narrowband corruption include
from  noise noise multipath interference,
other changing channel gains,
Received  interference from other
signal ~ users, broadband noise,
and narrowband
interferences.

Transmitted A users

signal -
— > Multipath|—>| CPnging
gain

Other Users

Many different users must be able to broadcast at the same time. This requires
that there be a way for a receiver to separate the desired transmission from all
the others (for instance, to tune to a particular radio or TV station among a
large number that may be broadcasting simultaneously in the same geographical
region). One standard method is to allocate different frequency bands to each
user. This was called frequency-division multiplexing (FDM) in Chapter 2, and
was shown diagrammatically in Figure 2.3 on page 22. The signals from the
different users can be separated using a bandpass filter, as in Figure 2.4 on page
23. Of course, practical filters do not completely remove out-of-band signals, nor
do they pass in-band signals completely without distortions. Recall the three
filters in Figure 3.7 on page 48.

Broadband Noise

When the signal arrives at the receiver, it is small and must be amplified. While
it is possible to build high-gain amplifiers, the noises and interferences will also
be amplified along with the signal. In particular, any noise in the amplifier itself
will be increased. This is often called “thermal noise” and is usually modeled as
white (independent) broadband noise. Thermal noise is inherent in any electronic
component and is caused by small random motions of electrons, like the Brownian
motion of small particles suspended in water.

Such broadband noise is another reason why a bandpass filter is applied at
the front end of the receiver. By applying a suitable filter, the total power in
the noise (compared with the total power in the signal) can often be reduced.
Figure 4.2 shows the spectrum of the signal as a pair of triangles centered at the
carrier frequency +f. with bandwidth 2B. The total power in the signal is the
area under the triangles. The spectrum of the noise is the flat region, and its
power is the shaded area. After applying the bandpass filter, the power in the
signal remains (more or less) unchanged, while the power in the noise is greatly
reduced. Thus, the signal-to-noise ratio (SNR) improves.
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in noise in signal
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Narrowband Noise

Noises are not always white; that is, the spectrum need not always be flat. Stray
sine waves (and other signals with narrow spectra) may also impinge on the
receiver. These may be caused by errant transmitters that accidentally broad-
cast in the frequency range of the signal, or they may be harmonics of a lower-
frequency wave as it experiences nonlinear distortion. If these narrowband distur-
bances occur out of band, they will automatically be attenuated by the bandpass
filter just as if they were a component of the wideband noise. However, if they
occur in the frequency region of the signal, they decrease the SNR in proportion
to their power. Judicious use of a “notch” filter (one designed to remove just the
offending frequency) can be an effective tool.

Figure 4.3 shows the spectrum of the signal as the pair of triangles, along with
three narrowband interferers represented by the three pairs of spikes. After the
bandpass filter (BPF), the two pairs of out-of-band spikes are removed, but the
in-band pair remains. Applying a narrow notch filter tuned to the frequency
of the interferer allows its removal, although this cannot be done without also
affecting the signal somewhat.

Multipath Interference

In some situations, an electromagnetic wave can propagate directly from one
place to another. For instance, when a radio signal from a spacecraft is trans-
mitted back to Earth, the vacuum of space guarantees that the wave will arrive
more or less intact (though greatly attenuated by distance). Often, however, the
wave reflects, refracts, or diffracts, and the signal arriving is quite different from
the one that was sent.
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Signal plus three
narrowband
interferers .

BPF | | | | Figure 4.3 Three narrowband

¢ interferers are shown in the top
figure (the three pairs of spikes).
Removal of The BPF cannot remove the
out-of-band in-band interferer, though a
interferers o
¢ narrow notch filter can, at the
expense of changing the signal in

the region where the
narrowband noise occurred.

fler | |

Removal of

in-band
interferers also
modifier signals

These distortions can be thought of as a combination of scaled and delayed
reflections of the transmitted signal, which occur when there are different prop-
agation paths from the transmitter to the receiver. Between two transmission
towers, for instance, the paths may include one along the line of sight, reflections
from the atmosphere, reflections from nearby hills, and bounces from a field or
lake between the towers. For indoor digital TV reception, there are many (local)
time-varying reflectors, including people in the receiving room, nearby vehicles,

and the buildings of an urban environment. Figure 4.4, for instance, shows mul-
tiple reflections that arrive after bouncing off a cloud and off a mountain, and
others that are scattered by multiple bounces from nearby buildings.

The strength of the reflections depends on the physical properties of the reflect-
ing surface, while the delay of the reflections is primarily determined by the
length of the transmission path. Let s(t) be the transmitted signal. If N delays

are represented by Ay, Ao, ..., Ay, and the strengths of the reflections are
hi, ha,..., hy, then the received signal r(t) is
T(t) = hls(t — Al) + hgs(t — Ag) + -4 hNS(t - AN) (41)

As will become clear in Section 4.4, this model of the channel has the form of
a linear filter (since the expression on the right-hand side is a convolution of
the transmitted signal and the h;s). This is shown in part (a) of Figure 4.5.
Since this channel model is a linear filter, it can also be viewed in the frequency
domain, and part (b) shows its frequency response. When this is combined with
the BPF and the spectrum of the signal (shown in (c)), the result is the distorted
spectrum shown in (d).
What can be done?
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Figure 4.4 The received
signal may be a combination
of several copies of the
original transmitted signal,
each with a different
attenuation and delay.

Transmitter

Mountain
Transmitted Received
signal signal
@ — W) —
Fourier Transform
Figure 4.5 (a) The channel
H(f) model (4.1) as a filter. (b)

The frequency response of
the filter. (c) An idealized
BPF and the spectrum of the
(b) signal. The product of (b)
and (c) gives (d), the
/ \ / \ distorted spectrum at the

receiver.
(©)

/"~ "\

(d) Frequency

If the kinds of distortions introduced by the channel are known (or can some-
how be determined), then the bandpass filter at the receiver can be modified
in order to undo the effects of the channel. This can be seen most clearly in
the frequency domain, as in Figure 4.6. Observe that the BPF is shaped (part
(d)) to approximately invert the debilitating effects of the channel (part (a)) in
the frequency band of the signal and to remove all the out-of-band frequencies.
The resulting received signal spectrum (part (e)) is again a close copy of the
transmitted signal spectrum, in stark contrast to the received signal spectrum
in Figure 4.5 where no shaping was attempted.
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Frequency
response of
channel

(a)

Spectrum
of
signal

(b)

Product of
(@) & (b)

(©)

BPF with
shaping

(d

Product of
(©) & (d)
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Figure 4.6 (a) The frequency response of the channel. (b) The spectrum of the signal.
(¢) The product of (a) and (b), which is the spectrum of the received signal. (d) A
BPF filter that has been shaped to undo the effect of the channel. (e) The product of
(¢) and (d), which combine to give a clean representation of the original spectrum of
the signal.

Thus, filtering in the receiver can be used to reshape the received signal within
the frequency band of the transmission as well as to remove unwanted out-of-
band frequencies.

Fading

Another kind of corruption that a signal may encounter on its journey from the
transmitter to the receiver is called “fading,” where the frequency response of the
channel changes slowly over time. This may be caused because the transmission
path changes. For instance, a reflection from a cloud might disappear when the
cloud dissipates, an additional reflection might appear when a truck moves into a
narrow city street, or in a mobile device such as a cell phone the operator might
turn a corner and cause a large change in the local geometry of reflections.
Fading may also occur when the transmitter and/or the receiver are moving.
The Doppler effect shifts the frequencies slightly, causing interferences that may
slowly change.

Such time-varying problems cannot be fixed by a single fixed filter; rather, the
filter must somehow compensate differently at different times. This is an ideal
application for the adaptive elements of Section 3.7, though results from the
study of linear filters will be crucial in understanding how the time variations
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in the frequency response can be represented as time-varying coefficients in the
filter that represents the channel.

Linear Systems: Linear Filters

Linear systems appear in many places in communication systems. The trans-
mission channel is often modeled as a linear system as in (4.1). The bandpass
filters used in the front end to remove other users (and to remove noises) are
linear. Lowpass filters are crucial to the operation of the demodulators of Chap-
ter 5. The equalizers of Chapter 13 are linear filters that are designed during the
operation of the receiver on the basis of certain characteristics of the received
signal.

Time-invariant linear systems can be described in any one of three equivalent
ways.

e The impulse response h(t) is a function of time that defines the output of a
linear system when the input is an impulse (or ¢) function. When the input
to the linear system is more complicated than a single impulse, the output
can be calculated from the impulse response via the convolution operator.

e The frequency response H(f) is a function of frequency that defines how the
spectrum of the input is changed into the spectrum of the output. The fre-
quency response and the impulse response are intimately related: H(f) is the
Fourier transform of h(t).

e A linear difference equation with constant coefficients (such as (4.1)) shows
explicitly how the linear system can be implemented and can be useful in
assessing stability and performance.

This chapter describes the three representations of linear systems and shows
how they interrelate. The discussion begins by exploring the ¢ function, and then
showing how it is used to define the impulse response. The convolution property
of the Fourier transform then shows that the transform of the impulse response
describes how the system behaves in terms of the input and output spectra, and
so it is called the frequency response. The final step is to show how the action
of the linear system can be redescribed in the time domain as a difference (or as
a differential) equation. This is postponed to Chapter 7, and is also discussed in
some detail in Appendix F.

The Delta “Function”

One way to see how a system behaves is to kick it and see how it responds.
Some systems react sluggishly, barely moving away from their resting state,
while others respond quickly and vigorously. Defining exactly what is meant
mathematically by a “kick” is trickier than it seems because the kick must occur
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over a very short amount of time, yet must be energetic in order to have any
effect. This section defines the impulse (or delta) function §(t), which is a useful
“kick” for the study of linear systems.

The criterion that the impulse be energetic is translated to the mathematical
statement that its integral over all time must be nonzero, and it is typically
scaled to unity, that is,

/ " S(tydt = 1. (4.2)

The criterion that it occur over a very short time span is translated to the
statement that, for every positive e,

0 t<—e

o(t) = ’ 4.3

®) {0 t>e. (43)

Thus, the impulse 6(t) is explicitly defined to be equal to zero for all ¢ # 0. On

the other hand, §(t) is implicitly defined when ¢ = 0 by the requirement that its
integral be unity. Together, these guarantee that §(¢) is no ordinary function.!

The most important consequence of the definitions (4.2) and (4.3) is the sifting

property

/ W(t)S(t — to)dt = w()|ms, = wito), (4.4)
—00
which says that the delta function picks out the value of the function w(t) from

under the integral at exactly the time when the argument of the § function is
zero, that is, when ¢ = to. To see this, observe that §(t — o) is zero whenever
t # to, and hence w(t)d(t — tp) is zero whenever t # tg. Thus,

/jo w(t)8(t — to)dt = /oo w(to)d(t — to)dt

o0 —o0 NS
- w(to)/ 5t — to)dt = w(ty) - 1 = w(ty).
Sometimes it is helpful to think of the impulse as a limit. For instance, define
the rectangular pulse of width 1/n and height n by

0 t<-1/(2n),
In(t)=<n —=1/(2n) <t <1/(2n),

0 t>1/(2n).
Then 6(t) = limy 00 05, (¢) fulfills both criteria (4.2) and (4.3). Informally, it is not
unreasonable to think of §(t) as being zero everywhere except at t = 0, where it is
infinite. While it is not really possible to “plot” the delta function §(¢ — o), it can
be represented in graphical form as zero everywhere except for an up-pointing
arrow at tg. When the § function is scaled by a constant, the value of the constant
is often placed in parentheses near the arrowhead. Sometimes, when the constant

1 The impulse is called a distribution and is the subject of considerable mathematical investi-
gation.
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Figure 4.7 The function w(t) = §(¢t + 10)
— 25(t+ 1) 4+ 36(t — 5) consisting of three
weighted ¢ functions is represented
graphically as three weighted arrows at

t = —10,—1,5, weighted by the
appropriate constants.

is negative, the arrow is drawn pointing down. For instance, Figure 4.7 shows a
graphical representation of the function w(t) = §(t + 10) — 26(¢ + 1) + 35(t — 5).

What is the spectrum (Fourier transform) of §(¢)? This can be calculated
directly from the definition by replacing w(t) in (2.1) with 6(¢):

F{5(t)} = [ h S(t)e 72 It dt, (4.5)

Apply the sifting property (4.4) with w(t) = e=727#* and ty = 0. Thus F{5(t)} =
e_jQﬂ-ft|t:0 =1.

Alternatively, suppose that 0 is a function of frequency, that is, a spike at
zero frequency. The corresponding time-domain function can be calculated anal-
ogously using the definition of the inverse Fourier transform, that is, by substi-

tuting 6(f) for W(f) in (A.16) and integrating:

FHO = [ serettag = e g = 1.

Thus a spike at frequency zero is a “DC signal” (a constant) in time.
The discrete time counterpart of 6(t) is the (discrete) delta function

1 k=0,
ﬂk]_{o k#0.

While there are a few subtle differences between 6(t) and §[k], for the most part
d(t) and 0[k] act analogously. For example, the program specdelta.m calculates
the spectrum of the (discrete) delta function.

Listing 4.1. specdelta.m plots the spectrum of a delta function

time=2; % length of time

Ts=1/100; % time interval between samples
t=Ts:Ts: time; % create time vector

x=zeros (size (t)); % create signal of all zeros
x(1)=1; % delta function

plotspec(x,Ts) % draw waveform and spectrum

The output of specdelta.m is shown in Figure 4.8. As expected from (4.5),
the magnitude spectrum of the delta function is equal to 1 at all frequencies.

Exercise 4.1. Calculate the Fourier transform of 6(¢t — ¢y) from the definition.
Now calculate it using the time-shift property (A.37). Are they the same? Hint:
they had better be.
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Exercise 4.2. Use the definition of the IFT (A.16) to show that

3(f = fo) & e?mhor.

Exercise 4.3. Mimic the code in specdelta.m to find the magnitude spectrum
of the discrete delta function in the following cases.

a. The delta does not occur at the start of x. Try x[10]=1, x[100]=1, and
x[110]=1. How do the spectra differ? Can you use the time-shift property
(A.37) to explain what you see?

b. The delta changes magnitude x. Try x[1]=10,x[10]=3, and x[110]=0. 1. How
do the spectra differ? Can you use the linearity property (A.31) to explain
what you see?

Exercise 4.4. Modify the code in specdelta.m to find the phase spectrum of a
signal that consists of a delta function when the nonzero term is located at the
start (x(1)=1), in the middle (x(100)=1), and at the end (x(200)=1).

Exercise 4.5. Mimic the code in specdelta.m to find the spectrum of a train of
equally spaced pulses. For instance, x(1:20:end) =1 spaces the pulses 20 samples
apart, and x(1:25:end)=1 places the pulses 25 samples apart.

a. Can you predict how far apart the resulting pulses in the spectrum will be?
b. Show that

o0 o0
1
k; 5t —kTy) & in;:ma(f —nfs), (4.6)
where f, = 1/Ts. Hint: let w(t) = 1 in (A.27) and (A.28).
c. Now can you predict how far apart the pulses in the spectrum are? Your
answer should be in terms of how far apart the pulses are in the time signal.

In Section 3.2, the spectrum of a sinusoid was shown to consist of two sym-
metric spikes in the frequency domain (recall Figure 3.5 on page 45). The next
example shows why this is true by explicitly taking the Fourier transform to find
the spectrum of a sinusoid.
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(W
A2) “2) Figure 4.9 The magnitude spectrum of a
sinusoid with frequency fo and amplitude A
1 ‘ T contains two d-function spikes, one at f = fy
‘ ‘ ‘ f and the other at f = —fj.
o fo '

Example 4.1. Let w(t) = Asin(2n fot), and use Euler’s identity (A.3) to rewrite
w(t) as

w(t) = —

oF [ej27rf0t o e*jQﬂ’fot] )
J

Applying the linearity property (A.31) and the result of Exercise 4.2 gives

F{w(t)} = % [F{ei2mfoty — f{eijwfot}]

= 50U o)+ o+ o). (@)

Thus, the spectrum of a sine wave is a pair of § functions with opposite signs,
located symmetrically about zero frequency. The corresponding magnitude spec-
trum, shown in Figure 4.9, is at the heart of one important interpretation of the
Fourier transform: it shows the frequency content of any signal by displaying
which frequencies are present in (and absent from) the waveform. For example,
Figure 4.10(a) shows the magnitude spectrum W (f) of a real-valued signal w(t).
This can be interpreted as saying that w(t) contains (or is made up of) “all the
frequencies” up to B Hz, and that it contains no sinusoids with higher frequency.
Similarly, the modulated signal s(¢) in Figure 4.10(b) contains all positive fre-
quencies between f. — B and f. + B, and no others.

Note that the Fourier transform in (4.7) is purely imaginary, as it must be
because w(t) is odd (see (A.37)). The phase spectrum is a flat line at —90°
because of the factor j.

Exercise 4.6. What is the magnitude spectrum of sin(2 fot + 6)? Hint: use the
frequency-shift property (A.34). Show that the spectrum of cos(27 fot) is 5 (5(f —
fo) +6(f + fo)). Compare this analytical result with the numerical results from
Exercise 3.6.

Exercise 4.7. Let w;(t) = a;sin(2n f;t) for ¢ = 1,2,3. Without doing any cal-
culations, write down the spectrum of v(t) = w1 (t) + wa(t) + ws(t). Hint: use
linearity. Graph the magnitude spectrum of v(¢) in the same manner as in Fig-
ure 4.9. Verify your results with a simulation mimicking that in Exercise 3.7.
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Figure 4.10 The magnitude spectrum of a message signal w(t) is shown in (a). When
w(t) is modulated by a cosine at frequency f., the spectrum of the resulting signal
s(t) = w(t) cos(2m f.t + ¢) is shown in (b).

Exercise 4.8. Let W(f) = sin(27 fto). What is the corresponding time function?

Convolution in Time: It’s What Linear Systems Do

Suppose that a system has impulse response h(t), and that the input consists of
a sum of three impulses occurring at times tg, t1, and o, with amplitudes ay,
a1, and ay (for example, the signal w(t) of Figure 4.7). Because of the linearity
of the Fourier transform, property (A.31), the output is a superposition of the
outputs due to each of the input pulses. The output due to the first impulse is
aph(t — to), which is the impulse response scaled by the size of the input and
shifted to begin when the first input pulse arrives. Similarly, the outputs to the
second and third input impulses are a1h(t —¢1) and ash(t — t2), respectively,
and the complete output is the sum agh(t — to) + a1h(t — t1) + azh(t — t2).

Now suppose that the input is a continuous function x(t). At any time instant
A, the input can be thought of as consisting of an impulse scaled by the amplitude
x(A), and the corresponding output will be z(A)h(t — A), which is the impulse
response scaled by the size of the input and shifted to begin at time A. The
complete output is then given by integrating over all \:

y(t) = /jo 2OVR(E — Nd\ = 2(t) + h(t). (4.8)

o0

This integral defines the convolution operator * and provides a way of finding
the output y(t) of any linear system, given its impulse response h(t) and the
input x(t).

MATLAB has several functions that simplify the numerical evaluation of con-
volutions. The most obvious of these is conv, which is used in convolex.m to
calculate the convolution of an input x (counsisting of two delta functions at times
t =1 and t = 3) and a system with impulse response h that is an exponential
pulse. The convolution gives the output of the system.

Listing 4.2. convolex.m example of numerical convolution

Ts=1/100; time=10; % sampling interval and total time
t=0:Ts: time; % create time vector
h=exp(—t); % define impulse response

x=zeros (size(t)); % input = sum of two delta functions
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x(1/Ts)=3; x(3/Ts)=2; % at times t=1 and t=3
y=conv(h,x); % do convolution
subplot (3,1,1), plot(t,x) % and plot

subplot (3,1,2), plot(t,h)
subplot (3,1,3), plot(t,y(l:length(t)))

Figure 4.11 shows the input to the system in the top plot, the impulse response
in the middle plot, and the output of the system in the bottom plot. Nothing
happens before time ¢t = 1, and the output is zero. When the first spike occurs,
the system responds by jumping to 3 and then decaying slowly at a rate dictated
by the shape of h(t). The decay continues smoothly until time ¢t = 3, when the
second spike enters. At this point, the output jumps up by 2, and is the sum of
the response to the second spike, plus the remainder of the response to the first
spike. Since there are no more inputs, the output slowly dies away.

Exercise 4.9. Suppose that the impulse response h(t) of a linear system is the
exponential pulse
et t>0
h(t) = = 4.
o={i %o (49
Suppose that the input to the system is 36(¢t — 1) + 2(¢ — 3). Use the definition
of convolution (4.8) to show that the output is 3h(t — 1) + 2h(t — 3), where

ettto ¢ > ¢,
h(t_tO):{ 0 t <to

How does your answer compare with Figure 4.117
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Exercise 4.10. Suppose that a system has an impulse response that is an expo-
nential pulse. Mimic the code in convolex.m to find its output when the input
is a white noise (recall specnoise.m on page 42).

Exercise 4.11. Mimic the code in convolex.m to find the output of a system
when the input is an exponential pulse and the impulse response is a sum of two
delta functions at times t =1 and ¢ = 3.

The next two problems show that linear filters commute with differentiation, and
with each other.

Exercise 4.12. Use the definition to show that convolution is commutative (i.e.,
that wy (t) * we(t) = wa(t) * wi(¢)). Hint: apply the change of variables 7 =t — A
in (4.8).

Exercise 4.13. Suppose a filter has impulse response h(t). When the input is
x(t), the output is y(t). If the input is 2:4(t) = dz(t)/0t, the output is y4(t). Show
that yq(t) is the derivative of y(t). Hint: use (4.8) and the result of Exercise 4.12.

Exercise 4.14. Let w(t) =II(¢) be the rectangular pulse of (2.8). What is
w(t) * w(t)? Hint: a pulse shaped like a triangle.

Exercise 4.15. Redo Exercise 4.14 numerically by suitably modifying
convolex.m. Let T'=1.5s.

Exercise 4.16. Suppose that a system has an impulse response that is a sinc
function, as shown in Figure 2.11, and that the input to the system is a white
noise (as in specnoise.m on page 42).

a. Mimic convolex.m to numerically find the output.
b. Plot the spectrum of the input and the spectrum of the output (using
plotspec.m). What kind of filter would you call this?

Convolution < Multiplication

While the convolution operator (4.8) describes mathematically how a linear sys-
tem acts on a given input, time-domain approaches are often not particularly
revealing about the general behavior of the system. Who would guess, for instance
in Exercises 4.11 and 4.16, that convolution with exponentials and sinc functions
would act like lowpass filters? By working in the frequency domain, however, the
convolution operator is transformed into a simpler point-by-point multiplication,
and the generic behavior of the system becomes clearer.

The first step is to understand the relationship between convolution in time
and multiplication in frequency. Suppose that the two time signals wy(t) and
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wa(t) have Fourier transforms Wi (f) and Wa(f). Then,
Flwi(t) = wa ()} = Wi(f)Wa(f). (4.10)

To justify this property, begin with the definition of the Fourier transform (2.1)
and apply the definition of convolution (4.8) to obtain

o0

Flwy(t) *wa(t)} = / wi (t) * wQ(t)e—jzwftdt

t=—00

_ /t i)o [ A O_O_m wr (N wa(t — )\)d)\} eIt gy,

Reversing the order of integration and using the time-shift property (A.37) pro-
duces

Fln)sws @) = [ wi () { /:o wg(t—/\)eﬂ”ftdt} i

A=—00 =—00

= /:C w1 (N) [Wa(f)e 272 dx

=—00
00

—Wu(f) / wn (e PN\ = W (/)W (f).

=—0
Thus, convolution in the time domain is the same as multiplication in the fre-
quency domain. See (A.40).
The companion to the convolution property is the multiplication property,
which says that multiplication in the time domain is equivalent to convolution
in the frequency domain (see (A.41)); that is,

Flwi (ws ()} = Wi(f) « Wa(f) = /_Z Wa (A Wa(f — A)JdA. (4.11)

The usefulness of these convolution properties is apparent when applying them
to linear systems. Suppose that H(f) is the Fourier transform of the impulse
response h(t). Suppose that X (f) is the Fourier transform of the input x(¢) that
is applied to the system. Then (4.8) and (4.10) show that the Fourier transform
of the output is exactly equal to the product of the transforms of the input and
the impulse response, that is,

Y(f) = FHy)} = F{z(t) « h(t)} = F{a)}F{z(t)} = H(f)X(f).
This can be rearranged to solve for

H(f)= % (4.12)

which is called the frequency response of the system because it shows, for each
frequency f, how the system responds. For instance, suppose that H(f1) = 3 at
some frequency f1. Then, whenever a sinusoid of frequency f; is input into the
system, it will be amplified by a factor of 3. Alternatively, suppose that H(f2) = 0
at some frequency fo. Then whenever a sinusoid of frequency fs is input into
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the system, it is removed from the output (because it has been multiplied by a
factor of 0).

The frequency response shows how the system treats inputs containing various
frequencies. In fact, this property was already used repeatedly in Chapter 1 when
drawing curves that describe the behavior of lowpass and bandpass filters. For
example, the filters of Figures 2.4, 2.5, and 2.6 are used to remove unwanted
frequencies from the communications system. In each of these cases, the plot of
the frequency response describes concretely and concisely how the system (or
filter) affects the input, and how the frequency content of the output relates to
that of the input. Sometimes, the frequency response H(f) is called the transfer
function of the system, since it “transfers” the input z(t) (with transform X (f))
into the output y(¢) (with transform Y (f)).

Thus, the impulse response describes how a system behaves directly in time,
while the frequency response describes how it behaves in frequency. The two
descriptions are intimately related because the frequency response is the Fourier
transform of the impulse response. This will be used repeatedly in Section 7.2
to design filters for the manipulation (augmentation or removal) of specified
frequencies.

Example 4.2. In Exercise 4.16, a system was defined to have an impulse response
that is a sinc function. The Fourier transform of a sinc function in time is a rect
function in frequency (A.22). Hence, the frequency response of the system is a
rectangle that passes all frequencies below f. = 1/T and removes all frequencies
above (i.e., the system is a lowpass filter).

MATLAB can help to visualize the relationship between the impulse response
and the frequency response. For instance, the system in convolex.m is defined
via its impulse response, which is a decaying exponential. Figure 4.11 shows
its output when the input is a simple sum of delta functions, and Exercise 4.10
explores the output when the input is a white noise. In freqresp.m, the behavior
of this system is explained by looking at its frequency response.

Listing 4.3. freqresp.m numerical example of impulse and frequency response

Ts=1/100; time=10; % sampling interval and total time
t=0:Ts: time; % create time vector

h=exp(—t); % define impulse response
plotspec(h,Ts) % find and plot frequency response

The output of freqresp.m is shown in Figure 4.12. The frequency response
of the system (which is just the magnitude spectrum of the impulse response)
is found using plotspec.m. In this case, the frequency response amplifies low
frequencies and attenuates other frequencies more as the frequency increases.
This explains, for instance, why the output of the convolution in Exercise 4.10
contained (primarily) lower frequencies, as evidenced by the slower undulations
in time.
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Exercise 4.17. Suppose a system has an impulse response that is a sinc func-
tion. Using freqresp.m, find the frequency response of the system. What kind
of filter does this represent? Hint: center the sinc in time; for instance, use
h=sinc(10*(t-time/2)).

Exercise 4.18. Suppose a system has an impulse response that is a sin func-
tion. Using freqresp.m, find the frequency response of the system. What kind
of filter does this represent? Can you predict the relationship between the fre-
quency of the sine wave and the location of the peaks in the spectrum? Hint: try
h=sin(25%t).

Exercise 4.19. Create a simulation (analogous to convolex.m) that inputs
white noise into a system with an impulse response that is a sinc function (as in
Exercise 4.17). Calculate the spectra of the input and output using plotspec.m.
Verify that the system behaves as suggested by the frequency response in Exer-
cise 4.17.

Exercise 4.20. Create a simulation (analogous to convolex.m) that inputs
white noise into a system with an impulse response that is a sin function (as in
Exercise 4.18). Calculate the spectra of the input and output using plotspec.m.
Verify that the system behaves as suggested by the frequency response in Exer-
cise 4.18.

So far, Section 4.5 has emphasized the idea of finding the frequency response of
a system as a way to understand its behavior. Reversing things suggests another
use. Suppose it was necessary to build a filter with some special characteristic
in the frequency domain (for instance, in order to accomplish one of the goals
of bandpass filtering in Section 4.1). It is easy to specify the filter in the fre-
quency domain. Its impulse response can then be found by taking the inverse
Fourier transform, and the filter can be implemented using convolution. Thus,
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the relationship between impulse response and frequency response can be used
both to study and to design systems.

In general, this method of designing filters is not optimal (in the sense that
other design methods can lead to more efficient designs), but it does show clearly
what the filter is doing, and why. Whatever the design procedure, the represen-
tation of the filter in the time domain and its representation in the frequency
domain are related by nothing more than a Fourier transform.

Improving SNR

Section 4.1 described several kinds of corruption that a signal may encounter
as it travels from the transmitter to the receiver. This section shows how linear
filters can help. Perhaps the simplest way a linear bandpass filter can be used
is to remove broadband noise from a signal. (Recall Section 4.1.2 and especially
Figure 4.2.)

A common way to quantify noise is the signal-to-noise ratio (SNR), which is
the ratio of the power of the signal to the power of the noise at a given point in
the system. If the SNR at one point is larger than the SNR at another point, the
performance is better at the first point because there is more signal in comparison
with the amount of noise. For example, consider the SNR at the input and output
of a BPF as shown in Figure 4.13. The signal at the input (r(¢) in part (a)) is
composed of the message signal x(t) and the noise signal n(t), and the SNR at
the input is therefore

power in z(t)
SNR; ==
mput = power in n(t)

Similarly, the output y(t) is composed of a filtered version of the message (y,(t)
in part (b)) and a filtered version of the noise (y,(¢) in part (b)). The SNR at
the output can therefore be calculated as

power in y,(t)

SNR, = .
output = o wer in Yn(t)

Observe that the SNR at the output cannot be calculated directly from y(¢) (since
the two components are scrambled together). But, since the filter is linear,

y(t) = BPF{x(t) + n(t)} = BPF{(t)} + BPF{n(t)} = y, + yu.

which effectively shows the equivalence of parts (a) and (b) of Figure 4.13.

The MATLAB program improvesnr.m explores this scenario concretely. The
signal x is a bandlimited signal, containing only frequencies between 3000 and
4000 Hz. This is corrupted by a broadband noise n (perhaps caused by an
internally generated thermal noise) to form the received signal. The SNR of this
input snrinp is calculated as the ratio of the power of the signal x to the power
of the noise n. The output of the BPF at the receiver is y, which is calculated
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Figure 4.13 Two equivalent ways to draw the same system. In part (a) it is easy to
calculate the SNR at the input, while the alternative form (b) allows easy calculation
of the SNR at the output of the BPF.

as a BPF version of x+n. The BPF is created using the firpm command just
like the bandpass filter in filternoise.m on page 47. To calculate the SNR of
y, however, the code also implements the system in the alternative form of part
(b) of Figure 4.13. Thus, yx and yn represent the signal x filtered through the
BPF and the noise n passed through the same BPF. The SNR at the output is
then the ratio of the power in yx to the power in yn, which is calculated using
the function pow.m available on the website.

Listing 4.4. improvesnr.m using a linear filter to improve SNR

time=3; Ts=1/20000; % time and sampling interval
freqs=[0 0.29 0.3 0.4 0.41 1]; % filter design, bandlimited
amps=[0 0 1 1 0 0]; % ...between 3K and 4K
b=firpm (100, freqs ,amps); % BP filter

n=0.25*%randn (1, time/Ts); % generate white noise signal
x=filter (b,1,2*randn(1,time/Ts)); % do the filtering

y=filter (b,1 ,x+n); % (a) filter the signal4noise
yx=filter (b,1,x); % or (b) filter signal
yn=filter (b,1,n); % ...and noise separately
Z=yx+yn; % add them
diffzy=max(abs(z—y)) % and make sure y = z
snrinp=pow (x)/pow (n) % SNR at input

snrout=pow (yx)/pow (yn) % SNR at output

Since the data generated in improvesnr.m are random, the numbers are
slightly different each time the program is run. Using the default values, the
SNR at the input is about 7.8, while the SNR at the output is about 61. This is
certainly a noticeable improvement. The variable diffzy shows the largest dif-
ference between the two ways of calculating the output (that is, between parts
(a) and (b) of Figure 4.13). This is on the order of 1071°, which is effectively
the numerical resolution of MATLAB calculations, indicating that the two are
(effectively) the same.

Figure 4.14 plots the spectra of the input and the output of a typical run
of improvesnr.m. Observe the large noise floor in the left plot, and how this is
reduced by passage through the BPF. Observe also that the signal is still changed
by the noise in the passband between 3000 and 4000 Hz, since the BPF has no
effect there.
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Magnitude spectrum of signal plus noise Magnitude spectrum after filtering

Figure 4.14 The spectrum of the input to the BPF is shown in the left plot. The
spectrum of the output is shown on the right. The overall improvement in SNR is
clear.

The program improvesnr.m can be thought of as a simulation of the effect of
having a BPF at the receiver for the purposes of improving the SNR when the
signal is corrupted by broadband noise, as was described in Section 4.1.2. The
following problems ask you to mimic the code in improvesnr.m to simulate the
benefit of applying filters to the other problems presented in Section 4.1.

Exercise 4.21. Suppose that the noise in improvesnr.m is replaced with nar-

rowband noise (as discussed in Section 4.1.3). Investigate the improvements in
SNR

a. when the narrowband interference occurs outside the 3000 to 4000 Hz pass-
band,
b. when the narrowband interference occurs inside the 3000 to 4000 Hz passband.

Exercise 4.22. Suppose that the noise in improvesnr.m is replaced with “other
users” who occupy different frequency bands (as discussed in Section 4.1.1). Are
there improvements in the SNR?

Exercise 4.23. Consider the interference between two users z; and zo occupying
the same frequency band as shown in Figure 4.15. The phases of the two mixers
at the transmitter are unequal with 57/6 > |¢ — 0| > w/3. The lowpass filter
(LPF) has a cutoff frequency of f., a passband gain of 1.5, a stopband gain of
zero, and zero phase at zero frequency.

cos(2nf .t +¢)

receiver
xy(8)

Figure 4.15 The
multiuser transmission
system of Exercise
4.23.

(1)

transmitter LPF |——>

x(8)

cos(2mf .t + o)

cos(2mf,.t+0)
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a. For this system Y (f) = c1 X1 (f) + c2X2(f). Determine ¢; and ¢ as functions
of fc, ¢, 0, and a.

b. With « set to maximize (01/02)2, find ¢; and co as functions of f., ¢, and 6.

c. With « set to minimize (c;1/c2)?, find ¢ and ¢z as functions of f., ¢, and 6.

The other two problems posed in Section 4.1 were multipath interference and
fading. These require more sophisticated processing because the design of the
filters depends on the operating circumstances of the system. These situations
will be discussed in detail in Chapters 6 and 13.

For Further Reading
An early description of the linearity of communication channels can be found in

e P. A. Bello, “Characterization of Randomly Time-Variant Linear Channels,”
IEEE Transactions on Communication Systems, vol. 11, no. 4, pp 360-393,
Dec. 1963.



Analog (De)modulation

Several parts of a communication system modulate the signal and change the
underlying frequency band in which the signal lies. These frequency changes
must be reversible; after processing, the receiver must be able to reconstruct (a
close approximation to) the transmitted signal.

The input message w(kT) in Figure 5.1 is a discrete-time sequence drawn from
a finite alphabet. The ultimate output m(kT) produced by the decision device
(or quantizer) is also discrete-time and is drawn from the same alphabet. If all
goes well and the message is transmitted, received, and decoded successfully, then
the output should be the same as the input, although there may be some delay
0 between the time of transmission and the time when the output is available.
Though the system is digital in terms of the message communicated and the
performance assessment, the middle of the system is inherently analog from the
(pulse-shaping) filter of the transmitter to the sampler at the receiver.

At the transmitter in Figure 5.1, the digital message has already been turned
into an analog signal by the pulse shaping (which was discussed briefly in Section
2.10 and is considered in detail in Chapter 11). For efficient transmission, the
analog version of the message must be shifted in frequency, and this process
of changing frequencies is called modulation or upconversion. At the receiver,
the frequency must be shifted back down, and this is called demodulation or
downconversion. Sometimes the demodulation is done in one step (all analog) and
sometimes the demodulation proceeds in two steps, an analog downconversion to
the intermediate frequency and then a digital downconversion to the baseband.
This two-step procedure is shown in Figure 5.1.

There are many ways in which signals can be modulated. Perhaps the sim-
plest is amplitude modulation (AM), which is discussed in two forms (large and
small carrier) in the next two sections. This is generalized to the simultane-
ous transmission of two signals using quadrature modulation in Section 5.3, and
it is shown that quadrature modulation uses bandwidth more efficiently than
amplitude modulation. This gain in efficiency can also be obtained using single-
sideband and wvestigial-sideband methods, which are discussed in the document
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Figure 5.1 A complete digital communication system has many parts. This chapter
focuses on the upconversion and the downconversion, which can done in many ways,
including large-carrier AM as in Section 5.1, suppressed-carrier AM as in Section 5.2,
and quadrature modulation as in Section 5.3.

titled Other Modulations available on the website. Demodulation can also be
accomplished using sampling, as discussed in Section 6.2, and amplitude modu-
lation can also be accomplished with a simple squaring and filtering operation
as in Exercise 5.9.

Throughout, the chapter contains a series of exercises that prepare readers to
create their own modulation and demodulation routines in MATLAB. These lie
at the heart of the software receiver that will be assembled in Chapters 9 and
15.

5.1 Amplitude Modulation with Large Carrier

Perhaps the simplest form of (analog) transmission system modulates the mes-

sage signal by a high-frequency carrier in a two-step procedure: multiply the

message by the carrier, then add the product to the carrier. At the receiver, the

message can be demodulated by extracting the envelope of the received signal.
Consider the transmitted/modulated signal

v(t) = Acw(t) cos(2m fot) + Ac cos(2m fot) = Ac(w(t) + 1) cos(2m f.t)

diagrammed in Figure 5.2. The process of multiplying the signal in time by a
(co)sinusoid is called mizing. This can be rewritten in the frequency domain by
mimicking the development from (2.3) to (2.5) on page 20. Using the convolution
property of Fourier transforms (4.10), the transform of v(t) is

V(f) = F{Ac(w(t) + 1) cos(2nft)} = A F{(w(t) + 1)} * F{cos(2nfct)}. (5.1)

The spectra of F{w(t) + 1} and |V (f)] are sketched in Figure 5.3 (a) and (b). The
vertical arrows in (b) represent the transform of the cosine carrier at frequency
fe (i.e., a pair of delta functions at £f.) and the scaling by A./2 is indicated
next to the arrowheads.

If w(t) > —1, the envelope of v(t) is the same as w(t) and an envelope detector
can be used as a demodulator (envelopes are discussed in detail in Appendix C).
One way to find the envelope of a signal is to lowpass filter the absolute value.
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w(t) v(t) v(t) m(t)
[ -1 LPF
A, cos(2nf.t) envelope detector
(a) Transmitter (b) Receiver

Figure 5.2 A communications system using amplitude modulation with a large carrier.
In the transmitter (a), the message signal w(t) is modulated by a carrier wave at
frequency f. and then added to the carrier to give the transmitted signal v(t). In (b),
the received signal is passed through an envelope detector consisting of an
absolute-value nonlinearity followed by a lowpass filter. When all goes well, the
output m(t) of the receiver is approximately equal to the original message.
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(b) V()
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Figure 5.3 Spectra of the signals
in the large-carrier AM system
of Figure 5.2. Lowpass filtering
(d) gives a scaled version of (a).
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To see this analytically, observe that

Flo@)[} = F{|Ac(w(t) + 1) cos(2m fet)|}
= [Ac| F{lw(t) + 1| cos2m fet)[} = [Ac| F{w(t) + 1} F{[ cos(2m fet)[},

where the absolute value can be removed from w(t) + 1 because w(t) + 1 > 0 (by
assumption). The spectrum of F{|cos(27 ft)|}, shown in Figure 5.3(c), may be
familiar from Exercise 3.23. Accordingly, F{|v(t)|} is the convolution shown in
Figure 5.3(d). Lowpass filtering this returns w(t) + 1, which is the envelope of
v(t) offset by the constant unity.
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An example is given in the following MATLAB program. The “message” signal
is a sinusoid with a drift in the DC offset, and the carrier wave is at a much
higher frequency.

Listing 5.1. AMlarge.m large-carrier AM demodulated with “envelope”

time=0.33; Ts=1/10000; % sampling interval & time
t=0:Ts:time; lent=length(t); % define a time vector
fm=20; fc=1000; c=cos(2*pixfcx*t); % define carrier at freq fc
w=10/lent *[1:lent]+cos(2* pixfm=*t); % create ”message” > —1
v=C.*WhC; % modulate w/ large carrier
fbe=[0 0.05 0.1 1]; % LPF design

damps=[1 1 0 0]; fl=100;

b=firpm ( fl , fbe ,damps); % impulse response of LPF
envv=(pi/2)*filter (b,1,abs(v)); % find envelope

The output of this program is shown in Figure 5.4. The slowly increasing
sinusoidal “message” w(t) is modulated by the carrier ¢(t) at f. = 1000 Hz.
The heart of the modulation is the point-by-point multiplication of the message
and the carrier in the fifth line. This product v(t) is shown in Figure 5.4(c). The
enveloping operation is accomplished by applying a lowpass filter to the real part
of 2v(t)el?™fet (as discussed in Appendix C). This recovers the original message
signal, though it is offset by 1 and delayed by the linear filter.

Exercise 5.1. Using AMlarge.m, plot the spectrum of the message w(t), the
spectrum of the carrier ¢(t), and the spectrum of the received signal v(t). What
is the spectrum of the envelope? How close are your results to the theoretical
predictions in (5.1)7?

Exercise 5.2. One of the advantages of transmissions using AM with a large
carrier is that there is no need to know the (exact) phase or frequency of the
transmitted signal. Verify this using AMlarge .m.

a. Change the phase of the transmitted signal; for instance, let c=cos(2*pi*
fcxt+phase) with phase=0.1, 0.5, pi/3, pi/2, pi, and verify that the
recovered envelope remains unchanged.

b. Change the frequency of the transmitted signal; for instance, let c=cos (2%
pix(fc+g)*t) with g=10, -10, 100, -100, and verify that the recovered
envelope remains unchanged. Can g be too large?

Exercise 5.3. Create your own message signal w(t), and rerun AMlarge.m.
Repeat Exercise 5.1 with this new message. What differences do you see?

Exercise 5.4. In AMlarge .m, verify that the original message w and the recovered
envelope envv are offset by 1, except at the end points where the filter does not
have enough data. Hint: the delay induced by the linear filter is approximately
£1/2.
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The principal advantage of transmission systems that use AM with a large
carrier is that exact synchronization is not needed; the phase and frequency of
the transmitter need not be known at the receiver, as was demonstrated in Exer-
cise 5.2. This means that the receiver can be simpler than when synchronization
circuitry is required. The main disadvantage is that adding the carrier into the
signal increases the power needed for transmission but does not increase the
amount of useful information transmitted. Here is a clear engineering trade-off;
the value of the wasted signal strength must be balanced against the cost of the
receiver.

Amplitude Modulation with Suppressed Carrier
It is also possible to use AM without adding the carrier. Consider the transmit-
ted/modulated signal

v(t) = Acw(t)cos(2m fet)

diagrammed in Figure 5.5(a), in which the message w(t) is mixed with the cosine
carrier. Direct application of the frequency-shift property of Fourier transforms
(A.33) shows that the spectrum of the received signal is

V) = AW + 1)+ 3AW (S~ fo)

As with AM with a large carrier, the upconverted signal v(t) for AM with a
suppressed carrier has twice the bandwidth of the original message signal. If the



Analog (De)modulation 85

w(t) V(1) v(t) x(1) m(t)
@ @ LPF
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Figure 5.5 A communications system using amplitude modulation with a suppressed
carrier. In the transmitter (a), the message signal w(t) is modulated by a carrier wave
at frequency f. to give the transmitted signal v(¢). In (b), the received signal is
demodulated by a wave with frequency f. + v and phase ¢, and then lowpass filtered.
When all goes well, the output of the receiver m(¢) is approximately equal to the
original message.

original message occupies the frequencies between +B Hz, then the modulated
message has support between f. — B and f. + B, a bandwidth of 2B. See Figure
4.10 on page 70.

As illustrated in (2.6) on page 25, the received signal can be demodulated by
mixing with a cosine that has the same frequency and phase as the modulating
cosine, and the original message can then be recovered by lowpass filtering. But,
as a practical matter, the frequency and phase of the modulating cosine (located
at the transmitter) can never be known exactly at the receiver.

Suppose that the frequency of the modulator is f. but that the frequency at
the receiver is f. + 7y, for some small . Similarly, suppose that the phase of the
modulator is 0 but that the phase at the receiver is ¢. Figure 5.5(b) shows this
downconverter, which can be described by

z(t) = v(t) cos(2m(fec + 7)t + ) (5.2)
and
m(t) = LPF{(0)}

where LPF represents a lowpass filtering of the demodulated signal x(t) in an
attempt to recover the message. Thus, the downconversion described in (5.2)
acknowledges that the receiver’s local oscillator might not have the same fre-
quency or phase as the transmitter’s local oscillator. In practice, accurate a
priori information is available for the carrier frequency, but the (relative) phase
could be anything, since it depends on the distance between the transmitter and
the receiver as well as when the transmission begins. Because the frequencies are
high, the wavelengths are small and even small motions can change the phase
significantly.

The remainder of this section investigates what happens when the frequency
and phase are not known exactly, that is, when v or ¢ (or both v and ¢) are
nonzero. Using the frequency-shift property of Fourier transforms (5.3) on x(t)
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in (5.2) produces the Fourier transform X (f)
AW+ fo— et 1)+ W fo (et )
+ e THUWS + fet (fe+7) + W(F = fot (Fe+ 7)Y

A.. . )
= JLW( =)+ W = 2fe =)

+ e TOW(f+2fe+7) + e W (f +7)]. (5.3)

If there is no frequency offset (i.e., if ¥ = 0), then
A,
X(f) = 2
(=4
Because cos(x) = (1/2)(e’® + e77%) from (A.2), this can be rewritten

X(f) = SEW(F)eos() + 2 [FOW (T —20) + W (T +21,)].

(70 + e TOYW (f) + T°W (f — 2f.) + e I*W (f + 2f.)].

Thus, a perfect lowpass filtering of x(t) with cutoff below 2 f. removes the high-
frequency portions of the signal near £2f. to produce

m(t) = %w(t) cos(¢). (5.4)

The factor cos(¢) attenuates the received signal (except for the special case when
¢ = 0 & 2wk for integers k). If ¢ were sufficiently close to 0 £ 27k for some integer
k, then this would be tolerable. But there is no way to know the relative phase,
and hence cos(¢) can assume any possible value within [—1, 1]. The worst case
occurs as ¢ approaches £7/2, when the message is attenuated to zero! A scheme
for carrier-phase synchronization, which automatically tries to align the phase
of the cosine at the receiver with the phase at the transmitter, is vital. This is
discussed in detail in Chapter 10.

To continue the investigation, suppose that the carrier-phase offset is zero,
(i.e., » = 0), but that the frequency offset v is not. Then the spectrum of x(t)
from (5.3) is

Ac

X(N) =7 W=+ W =2fe =)+ W(f +2fc +7) + W(f +7)],

and the lowpass filtering of x(¢

~—

produces

B

M(f) = ZSW(f —7) + W(f +7)].

This is shown in Figure 5.6. Recognizing this spectrum as a frequency-shifted
version of w(t), it can be translated back into the time domain using (A.33) to
give

|

m(t) = %w(t) cos(2myt). (5.5)

Instead of recovering the message w(t), the frequency offset causes the receiver
to recover a low-frequency amplitude-modulated version of it. This is bad with
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even a small carrier-frequency offset. While cos(¢) in (5.4) is a fixed scal-
ing, cos(2wvt) in (5.5) is a time-varying scaling that will alternately recover
m(t) (when cos(2myt) ~ 1) and make recovery impossible (when cos(2myt) a2 0).
Transmitters are typically expected to maintain suitable accuracy to a nominal
carrier-frequency setting known to the receiver. Ways of automatically tracking
(inevitable) small frequency deviations are discussed at length in Chapter 10.

The following code AM.m generates a message w(t) and modulates it with a
carrier at frequency f.. The demodulation is done with a cosine of frequency f. +
v and a phase offset of ¢. When v = 0 and ¢ = 0, the output (a lowpass version
of the demodulated signal) is nearly identical to the original message, except for
the inevitable delay caused by the linear filter. Figure 5.7 shows four plots: the
message w(t) on top, followed by the upconverted signal v(t) = w(t)cos(27 fct),
followed in turn by the downconverted signal z(t). The lowpass-filtered version
is shown in the bottom plot; observe that it is nearly identical to the original
message, albeit with a slight delay.

Listing 5.2. AM.m suppressed carrier with (possible) freq and phase offset

time=0.3; Ts=1/10000; % sampling interval & time
t=Ts:Ts: time; lent=length(t); % define a time vector
fm=20; fc=1000; c=cos(2*pixfc*t); % carrier at freq fc
w=5/lent *(1:lent)+cos(2*pi*fm=*t); % create ”message”

V=C.*W; % modulate with carrier
gam=0; phi=0; % freq & phase offset
c2=cos (2*pi*(fctgam)* t+phi); % create cosine for demod
X=v.*c2; % demod received signal
fbe=[0 0.1 0.2 1]; damps=[1 1 0 0]; % LPF design

f1=100; b=firpm(fl ,fbe ,damps); % impulse response of LPF
m=2xfilter (b,1,x); % LPF the demodulated signal

Exercise 5.5. Using AM.m as a starting point, plot the spectra of w(t), v(t), z(t),
and m(t).

Exercise 5.6. Try different phase offsets ¢ = [—-m, —7/2, —7/3, —7/6, 0, 7/6,
/3, m/2, w|. How well does the recovered message m(t) match the actual message
w(t)? For each case, what is the spectrum of m(t)?

Exercise 5.7. TRUE or FALSE: A small, fixed phase offset in the receiver
demodulating AM with suppressed carrier produces an undesirable low-frequency
modulated version of the analog message.
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Figure 5.7 The message signal
in the top frame is modulated
to produce the signal in the
(b) message after modulation second plOt. Demodulation
gives the signal in the third
plot, and the LPF recovers
the original message (with
delay) in the bottom plot.
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Exercise 5.8. Try different frequency offsets gam = [0.014, 0.1, 1.0, 10]. How
well does the recovered message m(t) match the actual message w(t)? For each
case, what is the spectrum of m(t)? Hint: look over more than just the first 0.1 s
to see the effect.

Exercise 5.9. Consider the system shown in Figure 5.8. Show that the output
of the system is 2A4gw(t) cos(2mf.t), as indicated.

Exercise 5.10. Create a MATLAB routine to implement the square-law mixing

modulator of Figure 5.8.

a. Create a signal w(t) that has bandwidth 100 Hz.
b. Modulate the signal to 1000 Hz.
c. Demodulate using the AM demodulator from AM.m (to recover the original
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Figure 5.9 The transmission system for Exercise 5.12: (a) the magnitude spectrum of
the message, (b) the transmitter, (c) the channel, and (d) the receiver.

Exercise 5.11. Exercise 5.10 essentially creates a transmitter and receiver based
on the square-law modulator (rather than the more standard mixing modulator).
Using this system, do the following.

a. Show how the received signal degrades if the phase of the cosine wave is not
known exactly.

b. Show how the received signal degrades if the frequency of the cosine wave is
not exact.

c. Show how the received signal degrades if the bandpass filter is not centered
at the specified frequency.

Exercise 5.12. Consider the transmission system of Figure 5.9. The message
signal w(t) has the magnitude spectrum shown in part (a). The transmitter in
part (b) produces the transmitted signal x(¢), which passes through the chan-
nel in part (¢). The channel scales the signal and adds narrowband interferers
to create the received signal r(t). The transmitter and channel parameters are
¢1 = 0.3 radians, f; = 24.1 kHz, f =23.9 kHz, f3 = 27.5 kHz, f, = 29.3 kHz,
and fs5 = 22.6 kHz. The receiver processing r(t) is shown in Figure 5.9(d). All
bandpass and lowpass filters are considered ideal, with a gain of unity in the
passband and zero in the stopband.

a. Sketch |R(f)| for —30 kHz < f < 30 kHz. Clearly indicate the amplitudes and
frequencies of key points in the sketch.

b. Assume that ¢o is chosen to maximize the magnitude of y(t) and reflects the
value of ¢; and the delays imposed by the two ideal bandpass filters that form
the received signal r(t). Select the receiver parameters fs, f7, fs, and fg, so
the receiver output y(t) is a scaled version of w(t).

Exercise 5.13. An analog baseband message signal w(¢) has all energy between
—B and B Hz. Tt is upconverted to the transmitted passband signal z(t) via AM
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with suppressed carrier
x(t) = w(t) cos(2mfot + dc),

where the carrier frequency f. > 10B. The channel is a pure delay and the
received signal r is r(t) = z(t — d), where the delay d = nT, + T/« is an integer
multiple n > 0 of the carrier period T. (= 1/f.) plus a fraction of T, given by
a > 1. The mixer at the receiver is perfectly synchronized to the transmitter so
that the mixer output y(t) is

y(t) = r(t) cos(2mft + ¢r).

The receiver mixer phase need not match the transmitter mixer phase ¢.. The
receiver lowpass filters y to produce

u(t) = LPF{y(1)},

where the lowpass filter is ideal with unity passband gain, linear passband phase
with zero phase at zero frequency, and cutoff frequency 1.2B5.

a. Write a formula for the receiver mixer output y(t) as a function of f., ¢, d,
a, ¢, and w(t) (without use of z, r, n, or Tp).

b. Determine the amplitude of the minimum and maximum values of y(t) for
a=4.

c. For a =6, n =42, ¢. = 0.2 radians, and T, = 20 us, determine the value of
¢, that maximizes the magnitude of the maximum and minimum values of

v(t).

Quadrature Modulation

In AM transmission, where the baseband signal and its modulated passband ver-
sion are real-valued, the spectrum of the modulated signal has twice the band-
width of the baseband signal. As pictured in Figure 4.10 on page 70, the spectrum
of the baseband signal is nonzero only for frequencies between —B and B. After
modulation, the spectrum is nonzero in the interval [—f. — B, —f. 4+ B] and in
the interval [f. — B, f. + B]. Thus the total width of frequencies occupied by the
modulated signal is twice that occupied by the baseband signal. This represents
a kind of inefficiency or redundancy in the transmission. Quadrature modulation
provides one way of removing this redundancy by sending two messages in the
frequency ranges between [— f. — B, — f. + B| and [f. — B, f. + B], thus utilizing
the spectrum more efficiently.

To see how this can work, suppose that there are two message streams ms (t)
and mz(t). Modulate one message with a cosine to create the in-phase signal,
and the other with (the negative of) a sine to form the quadrature signal. These
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cos(2mf, 1) cos(2nf,t)

my(1) x1(0)

si(t)  Figure 5.10 In a quadrature modulation

—
system, two messages m;(t) and mo(t)
are modulated by two sinusoids of the
same frequency, sin(27 f.t) and

; cos(27 f.t). The receiver then
LPF _Sﬁ() demodulates twice and recovers the
original messages after lowpass filtering.

LPF

Transmitter Receiver

(1) x(0)

A

sin(2mf,.1) sin(2mf,.r)

are summed! to form
v(t) = my(t) cos(2m fot) — mo(t) sin(2m f i), (5.6)

which is then transmitted. A receiver structure that can recover the two messages
is shown in Figure 5.10. The signal s1(t) at the output of the receiver is intended
to recover the first message m; (¢). Similarly, the signal so(t) at the output of the
receiver is intended to recover the (negative of the) second message mo(t).

To examine the recovered signals s1(t) and s2(t) in Figure 5.10, first evaluate
the signals before the lowpass filtering. Using the trigonometric identities (A.4)
and (A.8), z1(t) becomes

x1(t) = v(t) cos(2m fot) = my(t) cos®(2m ft) — ma(t) sin(27 fot) cos(27 f.t)
- mlT(t)a + cos(4m ft)) — m2T(t) sin(47 f.t).
Lowpass filtering x1(t) produces

Sl(t) = mlT(t)

Similarly, z2(t) can be rewritten using (A.5) and (A.8) as

zo(t) = v(t) sin(27 fot) = my (t) cos(2m fot) sin(2m ft) — mo(t) sin® (27 f.t)

ma (1) _ ma(t)
2

= sin(4r fet) (1 — cos(4mfct)),

and lowpass filtering x2(¢) produces
—mo(t)
5
Thus, in the ideal situation in which the phases and frequencies of the modu-

lation and the demodulation are identical, both messages can be recovered. But
if the frequencies and/or phases are not exact, then problems analogous to those

s2(t) =

1 These are also sometimes modeled as the “real” and the “imaginary” parts of a single
“complex-valued” signal. This complex representation is explored more fully in Appendix

C.
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cos(2mf1)

x1(1)

Figure 5.11 The transmission
system of Exercise 5.16.
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cos(2mfy1) upper cutoff f; cos(2nfst + ¢)

encountered with AM will occur in the quadrature modulation. For instance,
if the phase of (say) the demodulator z1(t) is not correct, then there will be
some distortion or attenuation in s;(¢). However, problems in the demodulation
of s1(t) may also cause problems in the demodulation of so(t). This is called
cross-interference between the two messages.

Exercise 5.14. Use AM.m as a starting point to create a quadrature modulation
system that implements the block diagram of Figure 5.10.

a. Examine the effect of a phase offset in the demodulating sinusoids of the
receiver, so that x1(t) = v(t) cos(2mft + ¢) and z2(t) = v(t) sin(2w fot + @)
for a variety of ¢. Refer to Exercise 5.6.

b. Examine the effect of a frequency offset in the demodulating sinusoids of
the receiver, so that 1 (t) = v(t) cos(27(fe + 7)t) and z2(t) = v(t) sin(27(f. +
~)t) for a variety of . Refer to Exercise 5.8.

c. Confirm that a £1° phase error in the receiver oscillator corresponds to more
than 1% cross-interference.

Exercise 5.15. TRUE or FALSE: Quadrature amplitude modulation can com-
bine two real, baseband messages of absolute bandwidth B in a radio-frequency
signal of absolute bandwidth B.

Exercise 5.16. Consider the scheme shown in Figure 5.11. The absolute band-
width of the baseband signal x; is 6 MHz and that of the baseband signal z2(¢)
is 4 MHz, f; = 164 MHz, fo = 154 MHz, f3 = 148 MHz, f, = 160 MHz, f5 = 80
MHz, ¢ = 7/2, and fg = 82 MHz.

. What is the absolute bandwidth of x3(¢)?
. What is the absolute bandwidth of z5(t)?
. What is the absolute bandwidth of z4(t)?
. What is the maximum frequency in x3(t)?
. What is the maximum frequency in x5(¢)?

Q

o &0 O

Thus the inefficiency of real-valued double-sided AM transmission can be
reduced using complex-valued quadrature modulation, which recaptures the lost
bandwidth by sending two messages simultaneously. For simplicity and clarity,
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the bulk of Software Receiver Design focuses on the real PAM case and the
complex-valued quadrature case is postponed until Chapter 16. There are also
other ways of recapturing the lost bandwidth: both single-sideband and vestigial-
sideband (discussed in the document Other Modulations on the website) send a
single message, but use only half the bandwidth.

Injection to Intermediate Frequency

All the modulators and demodulators discussed in the previous sections down-
convert to baseband in a single step, that is, the spectrum of the received signal
is shifted by mixing with a cosine of frequency f. that matches the transmission
frequency f.. As suggested in Section 2.8, it is also possible to downconvert to
some desired intermediate frequency (IF) f; (as depicted in Figure 2.9), and to
then later downconvert to baseband by mixing with a cosine of the intermediate
frequency fr. There are several advantages to such a two-step procedure:

¢ all frequency bands can be downconverted to the same IF, which allows use
of standardized amplifiers, modulators, and filters on the IF signals; and

e sampling can be done at the Nyquist rate of the IF rather than the Nyquist
rate of the transmission.

The downconversion to an intermediate frequency (followed by bandpass filtering
to extract the passband around the IF) can be accomplished in two ways: by a
local oscillator modulating from above the carrier frequency (called high-side
injection) or from below (low-side injection). To see this, consider the double
sideband modulation (from Section 5.2) that creates the transmitted signal

v(t) = 2w(t)cos (27 f.t)
from the message signal w(t) and the downconversion to IF via
x(t) = 2[v(t) + n(t)]cos(2m f1t),

where n(t) represents interference such as noise and spurious signals from other
users. By virtue of the frequency-shifting property (A.33),

and the spectrum of the IF signal is

X(H)=V(f+fO)+V(f—=f1)+ N+ fr)+N(f - fr)
:W(f"f_fc*fl)+W(f7fcff1)+w(f+fc+f1)
+W(f = fe+ f1)+ N(f + fr) + N(f = f1)- (5.8)
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Figure 5.12 Example of high-side and low-side injection to an IF at f; = 455 kHz:
(a) transmitted spectrum, (b) low-side injected spectrum, and (c) high-side injected
spectrum.

Example 5.1. Consider a message spectrum W (f) that has a bandwidth of
200 kHz, an upconversion carrier frequency f. = 850 kHz, and an objective to
downconvert to an intermediate frequency of f; = 455 kHz. For low-side injec-
tion, where the frequency of the local oscillator is fy < f., the goal is to cen-
ter W(f — fo+ fe) in (5.8) at fr, so that f, = f. — 455 = 395. For high-side
injection (with fp > f.), the goal is to center W(f + f. — fe) at fr, so that
fe = fe+ 455 = 1305. For illustrative purposes, Figure 5.12 supposes that the
interference N(f) consists of a pair of delta functions at £105 and £1780 kHz.
Figure 5.12 sketches |V(f)] and | X (f)| for both high-side and low-side injection.
In this example, both methods end up with unwanted narrowband interferences
in the passband.
Observe the following.

e Low-side injection results in symmetry in the translated message spectrum
about £ f. on each of the positive and negative half-axes.

e High-side injection separates the undesired images further from the lower-
frequency portion (which will ultimately be retained to reconstruct the mes-
sage). This eases the requirements on the bandpass filter.

® Both high-side and low-side injection can place frequency interferers in unde-
sirable places. This highlights the need for adequate out-of-band rejection by
a bandpass filter before downconversion to IF.
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Figure 5.13 Transmission system for Exercise 5.17.

Exercise 5.17. Consider the system described in Figure 5.13. The message w(t)
has a bandwidth of 22 kHz and a magnitude spectrum as shown. The message is
upconverted by a mixer with carrier frequency f.. The channel adds an interferer
n. The received signal r is downconverted to the IF signal x(t) by a mixer with
frequency f;.

a. With n(t) =0, f, = 36 kHz, and f. = 83 kHz, indicate all frequency ranges
(i)—(x) that include any part of the IF passband signal x(t).

(i) 020 kHz, (ii) 2040 kHz, (iii) 40-60 kHz, (iv) 60-80 kHz, (v) 80-100 kHz,
(vi) 100120 kHz, (vii) 120-140 kHz, (viii) 140-160 kHz, (ix) 160-180 kHz,
(x) 180—200 kHz.

b. With f. =36 kHz and f. = 83 kHz, indicate all frequency ranges (i)—(x) that
include any frequency that causes a narrowband interferer n to appear in the
nonzero portions of the magnitude spectrum of the IF passband signal z(t).

c. With f, = 84 kHz and f. = 62 kHz, indicate every range (i)—(x) that includes
any frequency that causes a narrowband interferer n to appear in the nonzero
portions of the magnitude spectrum of the IF passband signal z(t).

Exercise 5.18. A transmitter operates as a standard AM with suppressed carrier
transmitter (as in AM.m). Create a demodulation routine that operates in two
steps, by mixing with a cosine of frequency 3 f./4 and subsequently mixing with
a cosine of frequency f./4. Where must pass/reject filters be placed in order to
ensure reconstruction of the message? Let f. = 2000.

Exercise 5.19. Consider the scheme shown in Figure 5.14. The absolute band-
width of the baseband signal =1 is 4 kHz, f; = 28 kHz, fo = 20 kHz, and f3 = 26
kHz.

. What is the absolute bandwidth of x2(t)?
. What is the absolute bandwidth of z3(¢)?
. What is the absolute bandwidth of z4(t)?
. What is the maximum frequency in z4(t)?
. What is the maximum frequency in z3(t)

|~

o & o T

Exercise 5.20. Using your MATLAB code from Exercise 5.18, investigate the
effect of a sinusoidal interference
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Figure 5.14 Transmission system
for Exercise 5.19.
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Figure 5.15 Transmission system for Exercise 5.21.

a. at frequency f./6,
b. at frequency f./3,
c. at frequency 3f..

Exercise 5.21. Consider the PAM communication system in Figure 5.15. The
input x4 (¢) has a triangular baseband magnitude spectrum. The frequency spec-
ifications are f; = 100 kHz, fo = 1720 kHz, fs =1940 kHz, f; = 1580 kHz,

fs = 1720 kHz, fs = 1880 kHz, and fr = 1

a. Draw the magnitude spectrum |X5(f)| between £3000 kHz. Be certain to
give specific values of frequency and magnitude at all breakpoints and local

maxima.

b. Specify values of fg and fg for which the system can recover the original

300 kHz.

message without corruption with M = 2.

Exercise 5.22. This problem asks you to build a receiver from a limited number

of components. The parts available are

M

xg(kT)
>

a. two product modulators with input v and output y related by

y(t) = u(t) cos(2m f.t)
and carrier frequencies f. of 12 MHz and 50 MHz,

b. two linear bandpass filters with ideal rectangular magnitude spectrum of unity
gain between — fy and — fr, and between f;, and fy and zero elsewhere with

(fr, fu) of (12 MHz, 32 MHz) and (35 MHz, 50 MHz),
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c. two impulse samplers with input u and output y related by

oo

y(t)= > ult)s(t —kTy)

k=—00
with sample periods of 1/15 and 1/12 ps,

d. one square-law device with input u and output y related by

y(t) = u(t),

e. three summers with inputs u; and us and output y related by
y(t) = u1(t) + ua(t).

The spectrum of the received signal is illustrated in Figure 5.16. The desired
baseband output of the receiver should be a scaled version of the triangular
portion centered at zero frequency with no other signals in the range between
—8 and 8 MHz. Using no more than four parts from the ten available, build
a receiver that produces the desired baseband signal. Draw its block diagram.
Sketch the magnitude spectrum of the output of each part in the receiver.

For Further Reading

A friendly and readable introduction to analog transmission systems can be found
in

e P. J. Nahin, On the Science of Radio, AIP Press, 1996.



Sampling with Automatic Gain
Control

As foreshadowed in Section 2.8, transmission systems cannot be fully digital
because the medium through which the signal propagates is analog. Hence,
whether the signal begins as analog (such as voice or music) or whether it begins
as digital (such as mpeg, jpeg or wav files), it will be converted into a high-
frequency analog signal when it is transmitted. In a digital receiver, the received
signal must be transformed into a discrete-time signal in order to allow subse-
quent digital processing.

This chapter begins by considering the sampling process both in the time
domain and in the frequency domain. Then Section 6.3 discusses how MATLAB
can be used to simulate the sampling process. This is not completely obvious
because analog signals cannot be represented exactly in the computer. Two sim-
ple tricks are suggested. The first expresses the analog signal in functional form
and takes samples at the desired times. The second oversamples the analog signal
so that it is represented at a high data rate; the “sampling” can then be done
on the oversampled signal.

Sampling and quantization are important because they translate the signal
from analog to digital. It is equally important to be able to translate from digital
back into analog, and the celebrated Nyquist sampling theorem shows that this is
possible for any bandlimited signal, assuming the sampling rate is fast enough.
When the goal of this translation is to rebuild a copy of the transmitted signal,
this is called reconstruction. When the goal is to determine the value of the signal
at some particular point, it is called interpolation. Techniques (and MATLAB
code) for both reconstruction and interpolation appear in Section 6.4.

Figure 6.1 shows the received signal passing through a BPF (which removes
out-of-band interference and isolates the desired frequency range) followed by a
fixed demodulation to the intermediate frequency (IF) at which sampling takes
place. The automatic gain control (AGC) accounts for changes in the strength
of the received signal. When the received signal is powerful, the gain a is small;
when the signal strength is low, the gain a is high. The goal is to guarantee that
the analog-to-digital converter does not saturate (the signal does not routinely
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6.7 will also be useful in designing other adaptive elements such as the phase-
tracking loops of Chapter 10, the clock recovery algorithms of Chapter 12, and
the equalization schemes of Chapter 13.

Sampling and Aliasing

Sampling can be modeled as a point-by-point multiplication in the time domain
by a pulse train (a sequence of impulses). (Recall Figure 3.8 on page 49.) While
this is intuitively plausible, it is not terribly insightful. The effects of sampling
become apparent when viewed in the frequency domain. When the sampling
is done correctly, no information is lost. However, if the sampling is done too
slowly, aliasing artifacts are inevitable. This section shows the “how” and “why”
of sampling.
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Signal w(?) /\/\ /\
N

sy I HIIEEEE Do g v o
Impulse

e it 1,

pulse train. This effectively
T T samples the analog signal at a

it
vy V&ll rate 7.

Point sampling
wikl = wkTy) | | LLLLL | N
T i

=w(t)|r = k1

Suppose an analog waveform w(t) is to be sampled every Ty seconds to yield
a discrete-time sequence wlk] = w(kTs) = w(t)|;=xr, for all integers k.! This is
called point sampling because it picks off the value of the function w(t) at the
points kTs. One way to model point sampling is to create a continuous-valued
function that consists of a train of pulses that are scaled by the values w(kTs).
The impulse sampling function is

we(t) = w(t) Y S(t—kT) = Y wt)d(t—kTy)
k=—00 k=-00
= i w(kTL)5(t — KTy), (6.1)
k=—c0

and it is illustrated in Figure 6.2. The effect of multiplication by the pulse train
is clear in the time domain. But the relationship between wg(t) and w(t) is
clearer in the frequency domain, which can be understood by writing W (f) as
a function of W ().

The transform Ws(f) is given in (A.27) and (A.28). With f, = 1/T5, this is

[o.¢]
Wo(f)=Ffs > W(f —nfs). (6.2)
Thus, the spectrum of the sampled signal wg(t) differs from the spectrum of the
original w(t) in two ways:

e Amplitude scaling—each term in the spectrum Wy(f) is multiplied by the
factor fs.
e Replicas—for each n, W(f) contains a copy of W (f) shifted to f — nfs.

Sampling creates an infinite sequence of replicas, each separated by fs Hz. Said

another way, the process of sampling in time creates a periodicity in frequency,

1 Observe that the notation w(kTs) means w(t) evaluated at the time t = kTs. This is also
notated w[k] (with the square brackets), where the sampling rate T is implicit.
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where the period is defined by the sampling rate. Readers familiar with Fourier
series will recognize this as the dual of the property that periodic in time is
the equivalent of sampling in frequency. Indeed, Equation (6.2) shows why the
relationships in Figure 3.9 on page 50 hold.

Figure 6.3 shows these replicas in two possible cases. In (a), fs > 2B, where B
is the bandwidth of w(t), and the replicas do not overlap. Hence, it is possible to
extract the one replica centered at zero by using a lowpass filter. Assuming that
the filtering is without error, W (f) is recovered from the sampled version W(f).
Since the transform is invertible, this means that w(t) can be recovered from
ws(t). Therefore, no loss of information occurs in the sampling process.? This
result is known as the Nyquist sampling theorem, and the minimum allowable
sampling rate is called the Nyquist rate.

2 Be clear about this: the analog signal w(t) is sampled to give ws(t), which is nonzero only
at the sampling instants kTs. If ws(¢) is then input into a perfect analog lowpass filter, its
output is the same as the original w(t). Such filtering cannot be done with any digital filter
operating at the sampling rate fs. In terms of Figure 6.3, the digital filter can remove and
reshape the frequencies between the bumps, but can never remove the periodic bumps.
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Nyquist Sampling Theorem: If the signal w(t) is bandlimited
to B (W(f) =0 for all |f| > B) and the sampling rate is
faster than f, = 2B, then w(t) can be reconstructed exactly
from its samples w(kTs).

On the other hand, in part (b) of Figure 6.3, the replicas overlap because the
repetitions are narrower than the width of the spectrum W (f). In this case, it is
impossible to recover the original spectrum perfectly from the sampled spectrum,
and hence it is impossible to exactly recover the original waveform from the
sampled version. The overlapping of the replicas and the resulting distortions in
the reconstructed waveform are called aliasing.

Bandwidth can also be thought of as limiting the rate at which data can
flow over a channel. When a channel is constrained to a bandwidth 2B, then the
output of the channel is a signal with bandwidth no greater than 2B. Accordingly,
the output can contain no frequencies above fs, and symbols can be transmitted
no faster than one every T seconds, where 1/Ts = f5.

Exercise 6.1. Human hearing extends up to about 20 kHz. What is the min-
imum sampling rate needed to fully capture a musical performance? Compare
this with the CD sampling rate of 44.1 kHz. Some animal sounds, such as the
singing of dolphins and the chirping of bats, occur at frequencies up to about 50
kHz. What does this imply about CD recordings of dolphin or bat sounds?

Exercise 6.2. US high-definition (digital) television (HDTV) is transmitted in
the same frequency bands as conventional television (for instance, Channel 2 is
at 54 MHz), and each channel has a bandwidth of about 6 MHz. What is the
minimum sampling rate needed to fully capture the HDTV signal once it has
been demodulated to baseband?

Exercise 6.3. An analog signal has nonzero values in its magnitude spectrum at
every frequency between —B and B. This signal is sampled with period 7" where
1/T > B. TRUE or FALSE: The discrete-time signal can have components in its
spectrum at frequencies between B and 1/T.

Exercise 6.4. The triangularly shaped magnitude spectrum of a real message
signal w(t) is shown in Figure 6.4, where B = 0.2 MHz. The received signal

r(t) = 0.15w(t) cos(27 ft)

is modulated by an AM with suppressed carrier with f = 1.45 MHz, and atten-
tuated. With 1/f < Ty < 1/(2B), select T1, Ta, T3, and 3 so that the magnitude
spectrum of z3[k] matches the magnitude spectrum of T;-spaced samples of w(t).
Justify your answer by drawing the magnitude spectra of x1, x2, and x3 between

—f and f.
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Figure 6.4 The triangularly shaped magnitude spectrum of the real message signal
w(t) is shown on the left. The receiver structure in Exercise 6.4 is shown on the right.
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Figure 6.5 The signal z(¢) with spectrum X (f) is input into this communication
system. Exercise 6.5 asks for the absolute bandwidth of the signal at each point as it
moves through the system.

Exercise 6.5. The signal z(t) with magnitude spectrum shown in the left part
of Figure 6.5 is input to the transmission system on the right. The lowpass filter
with output vs(kTs) has a cutoff frequency of 200 Hz, a passband gain of 1,
and a stopband gain of zero. Specify all frequencies between zero and 2000 Hz
at which the magnitude spectra of |Vi(f)|, [Va(f)|, |Va(f)|, and |Vi(f)| have
nonzero values.

Downconversion via Sampling

The processes of modulation and demodulation, which shift the frequencies of
a signal, can be accomplished by mixing with a cosine wave that has a fre-
quency equal to the amount of the desired shift, as was demonstrated repeatedly
throughout Chapter 5. But this is not the only way. Since sampling creates a
collection of replicas of the spectrum of a waveform, it changes the frequencies
of the signal.

When the message signal is analog and bandlimited to +B, sampling can be
used as a step in the demodulation process. Suppose that the signal is transmitted
with a carrier at frequency f.. Direct sampling of this signal creates a collection
of replicas, one near DC. This procedure is shown in Figure 6.6 for fs = f./2,
though beware: when fs and f. are not simply related, the replica might not
land exactly at DC.

This demodulation by sampling is diagrammed in Figure 6.7 (with fs = f./n,
where n is a small positive integer), and can be thought of as an alternative to
mixing with a cosine (that must be synchronized in frequency and phase with
the transmitter oscillator). The magnitude spectrum |W(f)| of a message w(t)
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is shown in Figure 6.6(a), and the spectrum after upconversion is shown in part
(b); this is the transmitted signal s(t). At the receiver, s(t) is sampled, which
can be modeled as a multiplication with a train of delta functions in time,

y(t) =s(t) > 6t —nT),
n=—oo
where T is the sample period.
Using (6.2), this can be transformed into the frequency domain as
Y(f) == Y. S(f—nf),
where fs = 1/T,. The magnitude spectrum of Y (f) is illustrated in Figure 6.6(c)
for the particular choice fs = f./2 (and Ts = 2/f.) with B < f./4 = fs/2.
There are three ways in which the sampling can proceed:

1. sample faster than the Nyquist rate of the IF frequency,

2. sample slower than the Nyquist rate of the IF frequency, and then downconvert
the replica closest to DC, and

3. sample so that one of the replicas is directly centered at DC.

The first is a direct imitation of the analog situation where no aliasing will occur.
This may be expensive because of the high sample rates required to achieve
Nyquist sampling. The third is the situation depicted in Figures 6.6 and 6.7,
which permit downconversion to baseband without an additional oscillator. This
may be sensitive to small deviations in frequency (for instance, when fs is not
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Figure 6.7 System diagram showing how sampling can be used to downconvert a

signal. The spectra corresponding to w(t), s(t), and y(¢t) are shown in Figure 6.6. The
output of the LPF contains only the “M”-shaped portion nearest zero.

exactly f./2). The middle method downconverts part of the way by sampling
and part of the way by mixing with a cosine. The middle method is used in the
MO receiver project in Chapter 15.

Exercise 6.6. Create a simulation of a sampling-based modulator that takes a
signal with bandwidth 100 Hz and transforms it into the “same” signal centered
at 5000 Hz. Be careful; there are two “sampling rates” in this problem. One
reflects the assumed sampling rate for the modulation and the other represents
the sampling rate that is used in MATLAB to represent a “continuous time”
signal. You may wish to reuse code from sine100hzsamp.m. What choices have
you made for these two sampling rates?

Exercise 6.7. Implement the procedure diagrammed in Figure 6.7. Comment
on the choice of sampling rates. How have you specified the LPF?

Exercise 6.8. Using your code from Exercise 6.7, examine the effect of “incor-
rect” sampling rates by demodulating with fs + « instead of fs. This is analogous
to the problem that occurs in cosine mixing demodulation when the frequency is
not accurate. Is there an analogy to the phase problem that occurs, for instance,
with nonzero ¢ in (5.4)7

Exercise 6.9. Consider the part of a communication system shown in Figure
a. Sketch the magnitude spectrum |X;(f)| of
x1(t) = w(t)cos(15007t).

Be certain to give specific values of frequency and magnitude at all significant
points in the sketch.
b. Draw the magnitude spectrum | Xs(f)| of

x2(t) = w(t)z1(t).

Be certain to give specific values of frequency and magnitude at all significant
points in the sketch.
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Figure 6.8 Input spectrum and system diagram for Exercise 6.9.
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c. Between —3750 Hz and 3750 Hz, draw the magnitude spectrum |X3(f)| of

wy(t) = wa(t) Y O(t — kT.).
k=—00
for Ts = 400 us. Be certain to give specific values of frequency and magnitude
at all significant points in the sketch.

Exercise 6.10. Consider the digital receiver shown in Figure 6.9. The baseband
signal w(t) has absolute bandwidth B and the carrier frequency is f.. The channel
adds a narrowband interferer at frequency f;. The received signal is sampled with
period T§. As shown, the sampled signal is demodulated by mixing with a cosine
of frequency fi; and the ideal lowpass filter has a cutoff frequency of fo. For the
following designs you are to decide whether they are successful, i.e., whether or
not the magnitude spectrum of the lowpass filter output x4 is the same (up to
a scale factor) as the magnitude spectrum of the sampled w(t) with a sample
period of Tk.

a. Candidate System A: B =7 kHz, f. = 34 kHz, f; =49 kHz, Ts = 1/34 ms,
f1 = O, and fQ = 16 kHz.

b. Candidate System B: B = 11 kHz, f. = 39 kHz, f; = 130 kHz, Ty, = 1/52 ms,
f1 =13 kHz, and f2 = 12 kHz.

Exercise 6.11. Consider the communication system shown in Figure 6.10. In
this problem you are to build a receiver from a limited number of components.
The parts available are

e four mixers with input u and output y related by
y(t) = u(t) cos(2m fot)
and oscillator frequencies f, of 1 MHz, 1.5 MHz, 2 MHz, and 4 MHz,
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Figure 6.10 The digital receiver used in Exercise 6.11.

e four ideal linear bandpass filters with passband (f1, fu) of (0.5 MHz, 6 MHz),
(1.2 MHz, 6.2 MHz), (3.4 MHz, 7.2 MHz), and (4.2 MHz, 8.3 MHz),
e four impulse samplers with input v and output y related by

y(t) = > u(t)s(t — kTy)

k=—oc0
with sample periods of 1/7, 1/5, 1/4, and 1/3.5 microseconds.

The magnitude spectrum |R(f)]| of the received signal r(t) is shown on the left in
Figure 6.10. The objective is to specify the bandpass filter, sampler, and mixer
so that the “M”-shaped segment of the magnitude spectrum is centered at f =0
in the output |Y'(f)| with no other signals within +1.5 MHz of the upper and
lower edges.

a. Specify the three parts from the 12 provided:

(i) bandpass filter passband range (fr, fu) in MHz,
(ii) sampler period T in ps,
(iii) mixer oscillator frequency f, in MHz.

b. For the three components selected in part (a), sketch the magnitude spectrum
of the sampler output between —20 and +20 MHz. Be certain to give specific
values of frequency and magnitude at all significant points in the spectra.

c. For the three components selected in part (a), sketch the magnitude spectrum
of y(t) between between the frequencies —12 and +12 MHz for your design.
Be certain to give specific values of frequency and magnitude at all significant
points in the spectra.

d. Is the magnitude spectrum of y(t) identical to the “M”-shaped segment of
|R(f)] first downconverted to baseband and then sampled?

Exercise 6.12. The message signal u(t) and additive interferer w(¢) with magni-
tude spectra shown in Figure 6.11(a) are applied to the system in Figure 6.11(b).
The analog mixer frequencies are f. = 1600 kHz and f; = 1240 kHz. The BPF
with output z(t) is assumed ideal, is centered at f., and has lower cutoff frequency
fr, upper cutoff frequency fi;, and zero phase at f.. The period of the sampler
is Ty = 71—1 x 107* s . The phase 8 of the discrete-time mixer is assumed to be
adjusted to the value that maximizes the ratio of signal to interferer noise power
in y(kTs). The LPF with output y(kTs) is assumed ideal with cutoff frequency
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. The design objective is for the spectrum of y(kTs) to estimate the spectrum
of a sampled u(t). You are to select the upper and lower cutoff frequencies of the
BPF, the frequency « of the discrete-time mixer, and the cutoff frequency of the
LPF in order to meet this objective.

a. Design the desired BPF by specifying its upper fy and lower fr cutoff fre-
quencies.

b. Compute the desired discrete-time mixer frequency «.

c. Design the desired LPF by specifying its cutoff frequency ~.

Exercise 6.13. Consider the digital receiver in Figure 6.12 producing y(kT5),
which is intended to match the input z(t) sampled every T seconds. The abso-
lute bandwidth of x(t) is B. The carrier frequency f. is 10 times B. The sample
frequency 1/T is 2.5 times f.. Note that the sample frequency 1/75 is above the
Nyquist frequency of the received signal r(t). Determine the maximum cutoff
frequency as a function of the input bandwidth B for the lowpass filter produc-
ing y(kTs) so the design objective of matching samples of x(¢) with a sample
frequency of 1/T is achieved.

Exploring Sampling in MATLAB

It is not possible to capture all of the complexities of analog-to-digital conversion
inside a computer program, because all signals within a (digital) computer are
already “sampled.” Nonetheless, most of the key ideas can be illustrated by using
two tricks to simulate the sampling process:
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e evaluate a function at appropriate values (or times),
® represent a data waveform by a large number of samples and then reduce the
number of samples.

The first is useful when the signal can be described by a known function, while
the second is necessary whenever the procedure is data-driven, that is, when no
functional form is available. This section explores both approaches via a series
of MATLAB experiments.

Consider representing a sine wave of frequency f = 100 Hz. The sampling
theorem asserts that the sampling rate must be greater than the Nyquist rate
of 200 samples per second. But, in order to visualize the wave clearly, it is
often useful to sample considerably faster. The following MATLAB code calculates
and plots the first 1/10 second of a 100 Hz sine wave with a sampling rate of
fs = 1/Ts = 10000 samples per second.

Listing 6.1. sine100hz.m generate 100 Hz sine wave with sampling rate fs=1/Ts

f=100; % frequency of wave
time=0.1; % total time in seconds
Ts=1/10000; % sampling interval
t=Ts:Ts: time; % define a ”"time” vector
w=sin (2% pi*xf*t); % define the sine wave
plot (t,w) % plot the sine vs. time

xlabel (’seconds )

ylabel (’amplitude ’)

Running sine100hz.m plots the first 10 periods of the sine wave. Each period
lasts 0.01 s, and each period contains 100 points, as can be verified by looking
at w(1:100). Changing the variable time or Ts displays different numbers of
cycles of the same sine wave, while changing f plots sine waves with different
underlying frequencies.

Exercise 6.14. What must the sampling rate be so that each period of the wave
is represented by 20 samples? Check your answer using the program above.

Exercise 6.15. Let Ts=1/500. How does the plot of the sine wave appear? Let
Ts=1/100, and answer the same question. How large can Ts be if the plot is to
retain the appearance of a sine wave? Compare your answer with the theoretical
limit. Why are they different?

When the sampling is rapid compared with the underlying frequency of the sig-
nal (for instance, the program sine100hz.m creates 100 samples in each period),
then the plot appears and acts much like an analog signal, even though it is still,
in reality, a discrete-time sequence. Such a sequence is called oversampled relative
to the signal period. The following program simulates the process of sampling
the 100 Hz oversampled sine wave. This is downsampling, as shown in Figure
3.10 on page 51.
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Figure 6.13 Removing all but one
of each N points from an
oversampled waveform simulates
the sampling process.
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Listing 6.2. sine100hzsamp.m simulated sampling of the 100 Hz sine wave
f=100; time=0.05;

Ts=1/10000; t=Ts:Ts:time; % set time vectors
w=sin (2% pi*f*t); % create sine wave w(t)
ss=10; % take 1 in ss samples
wk=w(1l:ss:end); % the ”sampled” sequence
ws=zeros (size (w)); ws(1l:ss:end)=wk; % sampled waveform ws(t)
plot (t,w) % plot the waveform
hold on, plot(t,ws,’r’), hold off % plot ”sampled” wave

Running sine100hzsamp.m results in the plot shown in Figure 6.13, where the
“continuous” sine wave w is downsampled by a factor of ss=10; that is, all but
one of each ss samples is removed. Thus, the waveform w represents the analog
signal that is to be sampled at the effective sampling interval ss*Ts. The spiky
signal ws corresponds to the sampled signal ws(t), while the sequence wk contains
just the amplitude values at the tips of the spikes.

Exercise 6.16. Modify sine100hzsamp.m to create an oversampled sinc wave,
and then sample this with ss=10. Repeat this exercise with ss=30, ss=100, and
ss=200. Comment on what is happening. Hint: in each case, what is the effective
sampling interval?

Exercise 6.17. Plot the spectrum of the 100 Hz sine wave when it is created
with different downsampling rates ss=10, ss=11, ss=30, and ss=200. Explain
what you see.

Interpolation and Reconstruction

The previous sections explored how to convert analog signals into digital signals.
The central result is that, if the sampling is done faster than the Nyquist rate,
then no information is lost. In other words, the complete analog signal w(t)
can be recovered from its discrete samples w[k]. When the goal is to find the
complete waveform, this is called reconstruction; when the goal is to find values
of the waveform at particular points between the sampling instants, it is called
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interpolation. This section explores bandlimited interpolation and reconstruction
in theory and practice.

The samples w(kTs) form a sequence of numbers that represent an underlying
continuous-valued function w(t) at the time instants ¢ = k7. The sampling inter-
val T is presumed to have been chosen so that the sampling rate fs > 2B, where
B is the highest frequency present in w(t). The Nyquist sampling theorem pre-
sented in Section 6.1 states that the values of w(t) can be recovered exactly at
any time 7. The formula (which is justified subsequently) for recovering w(r)
from the samples w(kTy) is

w(T) = /too ws (t) sinc (7 — t) dt,

=—00
where w;(t) (defined in (6.1)) is zero everywhere except at the sampling instants

t = kTs. Substituting (6.1) into w(7) shows that this integral is identical to the
sum

w(r) = i w(kTy)sinc (#) (6.3)

k=—00

In principle, if the sum is taken over all time, the value of w(7) is exact. As a
practical matter, the sum must be taken over a suitable (finite) time window.

To see why interpolation works, note that the formula (6.3) is a convolution
(in time) of the signal w(kTs) and the sinc function. Since convolution in time
is the same as multiplication in frequency by (A.40), the transform of w(7) is
equal to the product of F{ws(kTs)} and the transform of the sinc. By (A.22),
the transform of the sinc function in time is a rect function in frequency. This
rect function is a lowpass filter, since it passes all frequencies below f,/2 and
removes all frequencies above. Since the process of sampling a continuous-time
signal generates replicas of the spectrum at integer multiples of fs by (6.2), the
lowpass filter removes all but one of these replicas. In effect, the sampled data
are passed through an analog lowpass filter to create a continuous-time function,
and the value of this function at time 7 is the required interpolated value. When
7 = nTy, then sinc(t —nTs) = 1, and sinc(r — nTs) = 0 for all kT, with k # n.
When 7 is between sampling instants, the sinc is nonzero at all kT, and (6.3)
combines them to recover w(r).

To see how (6.3) works, the following code generates a sine wave w of frequency
20 Hz with a sampling rate of 100 Hz. This is a modestly sampled sine wave,
having only five samples per period, and its graph is jumpy and discontinuous.
Because the sampling rate is greater than the Nyquist rate, it is possible in
principle to recover the underlying smooth sine wave from which the samples
are drawn. Running sininterp.m shows that it is also possible in practice. The
plot in Figure 6.14 shows the original wave (which appears choppy because it is
sampled only five times per period), and the reconstructed or smoothed waveform
(which looks just like a sine wave). The variable intfac specifies how many extra
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Figure 6.14 A convincing sine wave
can be reconstructed from its
samples using sinc interpolation.
The choppy wave represents the
samples, and the smooth wave
shows the reconstruction.
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interpolated points are calculated, and need not be an integer. Larger numbers
result in smoother curves but also require more computation.

Listing 6.3. sininterp.m demonstrate interpolation/reconstruction using sin wave

f=20; Ts=1/100; time=20; % sampling interval and time

t=Ts:Ts:time; % time vector

w=sin (2% pi*f*t); % w(t) = a sine wave of f Hertz

over=100; % # of data points in smoothing

intfac=10; % how many interpolated points

tnow=10.0/Ts:1/intfac:10.5/Ts; % interpolate from 10 to 10.5

wsmooth=zeros (size (tnow)); % save smoothed data here

for i=1:length (tnow) % and loop for next point
wsmooth(i)=interpsinc (w,tnow (i),over);

end

In implementing (6.3), some approximations are used. First, the sum cannot
be calculated over an infinite time horizon, and the variable over replaces the
sum Y 0 with > 7Y . Each pass through the for loop calculates one
point of the smoothed curve wsmooth using the MATLAB function interpsinc.m,
which is shown below. The value of the sinc is calculated at each time using the
function srrc.m with the appropriate offset tau, and then the convolution is
performed by the conv command. This code is slow and unoptimized. A clever
programmer will see that there is no need to calculate the sinc for every point, and
efficient implementations use sophisticated look-up tables to avoid the calculation

of transcendental functions completely.

Listing 6.4. interpsinc.m interpolate to find a single point using the direct method

function y=interpsinc(x, t, 1, beta)
% x = sampled data

% t = place at which value desired

% 1 = one—sided length of data to interpolate

% beta = rolloff factor for srrc function

% =0 is a sinc

if nargin==3, beta=0; end; % if unspecified, beta is 0
tnow=round (t ); % set index tnow=integer part
tau=t—round (t); % plus tau=fractional part
s_-tau=srrc(1,beta,l tau); % interpolate sinc at offset tau
x_tau=conv(x(tnow—1:tnow+1),s_tau); % interpolate the signal
y=x-tau(2*141); % to get the new sample

While the indexing needed in interpsinc.mis a bit tricky, the basic idea is
not: the sinc interpolation of (6.3) is just a linear filter with impulse response
h(t) = sinc(t). (Remember, convolutions are the hallmark of linear filters.) Thus,
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it is a lowpass filter, since the frequency response is a rect function. The delay 7
is proportional to the phase of the frequency response.

Exercise 6.18. In sininterp.m, what happens when the sampling rate is too
low? How large can the sampling interval Ts be? How high can the frequency f
be?

Exercise 6.19. In sininterp.m, what happens when the window is reduced?
Make over smaller and find out. What happens when too few points are inter-
polated? Make intfac smaller and find out.

Exercise 6.20. Create a more interesting (more complex) wave w(t). Answer
the above questions for this w(t).

Exercise 6.21. Let w(t) be a sum of five sinusoids for ¢ between —10 and 10 s.
Let w(kT) represent samples of w(t) with T = 0.01 s. Use interpsinc.mto inter-
polate the values w(0.011), w(0.013), and w(0.015). Compare the interpolated
values with the actual values. Explain any discrepancies.

Observe that sinc(t) dies away (slowly) in time at a rate proportional to
1/(wt). This is one of the reasons why so many terms are used in the convo-
lution (i.e., why the variable over is large). A simple way to reduce the num-
ber of terms is to use a function that dies away more quickly than the sinc; a
common choice is the square-root raised cosine (SRRC) function, which plays
an important role in pulse shaping in Chapter 11. The functional form of the
SRRC is given in Equation (11.8). The SRRC can easily be incorporated into
the interpolation code by replacing the code interpsinc(w,tnow(i) ,over) with
interpsinc(w,tnow(i),over,beta).

Exercise 6.22. With beta=0, the SRRC is exactly the sinc. Redo the above
exercises trying various values of beta between 0 and 1.

The function srrc.m is available on the website. Its help file is

% s=srrc(syms, beta, P, t_off);
% Generate a Square—Root Raised Cosine Pulse
% ’syms’ is 1/2 the length of srrc pulse

% in symbol durations
% ’beta’ is the rolloff factor:
% beta=0 gives the sinc function

% P’ is the oversampling factor
% t-off is the phase (or timing) offset

MATLAB also has a built-in function called resample, which has the following
help file:
% Change the sampling rate of a signal

% Y = resample(X,P,Q) resamples the sequence
% in vector X at P/Q times the original sample
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% rate using a polyphase implementation .
%Y is P/Q times the length of X.
% P and Q must be positive integers.

This technique is different from that used in (6.3). It is more efficient numer-
ically at reconstructing entire waveforms, but it works only when the desired
resampling rate is rationally related to the original. The method of (6.3) is far
more efficient when isolated (not necessarily evenly spaced) interpolating points
are required, which is crucial for synchronization tasks in Chapter 12.

Iteration and Optimization

An important practical part of the sampling procedure is that the dynamic range
of the signal at the input to the sampler must remain within bounds. This can be
accomplished using an automatic gain control, which is depicted in Figure 6.1 as
multiplication by a scalar a, along with a “quality assessment” block that adjusts
a in response to the power at the output of the sampler. This section discusses
the background needed to understand how the quality assessment works. The
essential idea is to state the goal of the assessment mechanism as an optimization
problem.

Many problems in communications (and throughout engineering) can be
framed in terms of an optimization problem. Solving such problems requires
three basic steps:

1. setting a goal—choosing a “performance” or “objective” function,

2. choosing a method of achieving the goal—minimizing or maximizing the objec-
tive function, and

3. testing to make sure the method works as anticipated.

“Setting the goal” usually consists of finding a function that can be minimized
(or maximized), and for which locating the minimum (or maximum) value pro-
vides useful information about the problem at hand. Moreover, the function
must be chosen carefully so that it (and its derivative) can be calculated from
quantities that are known, or that can be derived from signals that are easily
obtainable. Sometimes the goal is obvious, and sometimes it is not.

There are many ways of carrying out the minimization or maximization pro-
cedure. Some of these are direct. For instance, if the problem is to find the point
at which a polynomial function achieves its minimum value, this can be solved
directly by finding the derivative and setting it equal to zero. Often, however,
such direct solutions are impossible, and, even when they are possible, recursive
(or adaptive) approaches often have better properties when the signals are noisy.
This chapter focuses on a recursive method called steepest descent, which is the
basis of many adaptive elements used in communications systems (and of all the
elements used in Software Receiver Design).
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The final step in implementing any solution is to check that the method
behaves as desired, despite any simplifying assumptions that may have been
made in its derivation. This may involve a detailed analysis of the resulting
methodology, or it may involve simulations. Thorough testing would involve both
analysis and simulation in a variety of settings that mimic, as closely as possible,
the situations in which the method will be used.

Imagine being lost on a mountainside on a foggy night. Your goal is to
get to the village which lies at the bottom of a valley below. Though
you cannot see far, you can reach out and feel the nearby ground. If you
repeatedly step in the direction that heads downhill most steeply, you
eventually reach a depression in which all directions lead up. If the con-
tour of the land is smooth, and without any local depressions that can
trap you, then you will eventually arrive at the village. The optimization
procedure called “steepest descent” implements this scenario mathemat-
ically, where the mountainside is defined by the “performance” function
and the optimal answer lies in the valley at the minimum value. Many
standard communications algorithms (adaptive elements) can be viewed
in this way.

An Example of Optimization: Polynomial Minimization

This first example is too simple to be of practical use, but it does show many
of the ideas starkly. Suppose that the goal is to find the value at which the
polynomial

J(z) =2 —da 4+ 4 (6.4)

achieves its minimum value. Thus step (1) is set. As any calculus book will
suggest, the direct way to find the minimum is to take the derivative, set it
equal to zero, and solve for x. Thus, dJ(z)/dx = 22 — 4 = 0 is solved when z =
2. This is indeed the value of z for which the parabola J(z) reaches bottom.
Sometimes (one might truthfully say “often”), however, such direct approaches
are impossible. Maybe the derivative is just too complicated to solve (which can
happen when the functions involved in J(z) are extremely nonlinear). Or maybe
the derivative of J(x) cannot be calculated precisely from the available data, and
instead must be estimated from a noisy data stream.

One alternative to the direct solution technique is an adaptive method called
“steepest descent” (when the goal is to minimize) or “hill climbing” (when the
goal is to maximize). Steepest descent begins with an initial guess of the loca-
tion of the minimum, evaluates which direction from this estimate is most steeply
“downhill,” and then makes a new estimate along the downhill direction. Simi-
larly, hill climbing begins with an initial guess of the location of the maximum,
evaluates which direction climbs the most rapidly, and then makes a new esti-
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mate along the uphill direction. With luck, the new estimates are better than
the old. The process repeats, ideally getting closer to the optimal location at
each step. The key ingredient in this procedure is to recognize that the uphill
direction is defined by the gradient evaluated at the current location, while the
downhill direction is the negative of this gradient.

To apply steepest descent to the minimization of the polynomial J(z) in (6.4),
suppose that a current estimate of x is available at time k, which is denoted z[k].
A new estimate of x at time k 4+ 1 can be made using

dJ(z)

k+1] =xlk] —
ol 1] =l -u 52|

(6.5)

where 4 is a small positive number called the stepsize, and the gradient (deriva-
tive) of J(x) is evaluated at the current point x[k]. This is then repeated again
and again as k increments. This procedure is shown in Figure 6.15. When the
current estimate x[k] is to the right of the minimum, the negative of the gradient
points left. When the current estimate is to the left of the minimum, the nega-
tive gradient points to the right. In either case, as long as the stepsize is suitably
small, the new estimate z[k + 1] is closer to the minimum than the old estimate
x[k]; that is, J(z[k + 1]) is less than J(z[k]).
To make this explicit, the iteration defined by (6.5) is

e[k + 1] = z[k] — p(22[k] - 4),
or, rearranging,
zlk+1] = (1 — 2p)z[k] + 4u. (6.6)

In principle, if (6.6) is iterated over and over, the sequence x[k] should approach
the minimum value z = 2. Does this actually happen?

There are two ways to answer this question. It is straightforward to simulate
the process. Here is some MATLAB code that takes an initial estimate of x called
x(1) and iterates Equation (6.6) for N=500 steps.

Listing 6.5. polyconverge.m find the minimum of J(z) =% — 4z +4 via steepest
descent

N=500; % number of iterations
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Time
mu=.01; % algorithm stepsize
x=zeros (1,N); % initialize x to zero
x(1)=3; % starting point x(1)
for k=1:N-1
x (k+1)=(1—2*mu)*x (k)+4*mu; % update equation
end

Figure 6.16 shows the output of polyconverge.m for 50 different x(1) starting
values superimposed; all converge smoothly to the minimum at z = 2.

Exercise 6.23. Explore the behavior of steepest descent by running
polyconverge.m with different parameters.

a. Try mu = —0.01, 0, 0.0001, 0.02, 0.03, 0.05, 1.0, 10.0. Can mu be too large or
too small?

b. Try N =5, 40, 100, 5000. Can N be too large or too small?

c. Try a variety of values of x(1). Can x(1) be too large or too small?

As an alternative to simulation, observe that the process (6.6) is itself a linear
time-invariant system, of the general form

zlk + 1] = az[k] + b, (6.7)

which is stable as long as |a| < 1. For a constant input, the final-value theorem of
z-transforms (see (A.55)) can be used to show that the asymptotic (convergent)
output value is limy_,o ¢ = b/(1 — a). To see this without reference to arcane
theory, observe that if z; is to converge, then it must converge to some value,
say x*. At convergence, z[k + 1] = z[k] = 2*, so (6.7) implies that z* = az* +
b, which implies that «* =b/(1 — a). (This holds assuming that |a| < 1.) For
example, for (6.6), * = 4p/[1 — (1 — 2p)] = 2, which is indeed the minimum.
Thus, both simulation and analysis suggest that the iteration (6.6) is a viable
way to find the minimum of the function J(z), as long as p is suitably small. As
will become clearer in later sections, such solutions to optimization problems are
almost always possible—as long as the function J(x) is differentiable. Similarly, it
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is usually quite straightforward to simulate the algorithm to examine its behavior
in specific cases, though it is not always so easy to carry out a theoretical analysis.

By their nature, steepest-descent and hill-climbing methods use only local
information. This is because the update from a point z[k] depends only on the
value of z[k] and on the value of its derivative evaluated at that point. This can
be a problem, since if the objective function has many minima, the steepest-
descent algorithm may become “trapped” at a minimum that is not (globally)
the smallest. These are called local minima. To see how this can happen, consider
the problem of finding the value of x that minimizes the function

J(z) = e Ol sin(z). (6.8)
Applying the chain rule, the derivative is
e 0ol cos(x) — 0.1l sin () sign(z),

where

1 >0
sign(x) = 6.9
ww ={ 170 (6.9
is the formal derivative of |z|. Solving directly for the minimum point is nontrivial
(try it!). Yet implementing a steepest-descent search for the minimum can be
done in a straightforward manner using the iteration

zlk + 1] = z[k] — pe I (cos(z[k]) — 0.1 sin(z[k])sign(z)). (6.10)
To be concrete, replace the update equation in polyconverge.m with

x(k+1) = x(k) — mu * exp(—0.1 * abs(x(k))) *
( cos(x(k)) — 0.1 = sin(x(k)) * sign(x(k)) );

Exercise 6.24. Implement the steepest-descent strategy to find the minimum of
J(x) in (6.8), modeling the program after polyconverge .m. Run the program for
different values of mu, N, and x(1), and answer the same questions as in Exercise
6.23.

One way to understand the behavior of steepest-descent algorithms is to plot
the error surface, which is basically a plot of the objective as a function of the
variable that is being optimized. Figure 6.17(a) displays clearly the single global
minimum of the objective function (6.4) while Figure 6.17(b) shows the many
minima of the objective function defined by (6.8). As will be clear to anyone
who has attempted Exercise 6.24, initializing within any one of the valleys causes
the algorithm to descend to the bottom of that valley. Although true steepest-
descent algorithms can never climb over a peak to enter another valley (even if
the minimum there is lower), it can sometimes happen in practice when there is
a significant amount of noise in the measurement of the downhill direction.

Essentially, the algorithm gradually descends the error surface by moving
in the (locally) downhill direction, and different initial estimates may lead to
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Figure 6.17 Error surfaces corresponding to (a) the objective function (6.4) and (b)
the objective function (6.8).

different minima. This underscores one of the limitations of steepest-descent
methods—if there are many minima, then it is important to initialize near an
acceptable one. In some problems such prior information may easily be obtained,
while in others it may be truly unknown.

The examples of this section are somewhat simple because they involve static
functions. Most applications in communication systems deal with signals that
evolve over time, and the next section applies the steepest-descent idea in a
dynamic setting to the problem of automatic gain control (AGC). The AGC
provides a simple setting in which all three of the major issues in optimization
must be addressed: setting the goal, choosing a method of solution, and verifying
that the method is successful.

Exercise 6.25. Consider performing an iterative maximization of
J(x) =8 — 6|x| + 6 cos(6x)
via (6.5) with the sign on the update reversed (so that the algorithm will maxi-

mize rather than minimize). Suppose the initialization is [0] = 0.7.

a. Assuming the use of a suitably small stepsize u, determine the convergent
value of z.

b. Is the convergent value of z in part (a) the global maximum of J(z)? Justify
your answer by sketching the error surface.

Exercise 6.26. Suppose that a unimodal single-variable performance function
has only one point with zero derivative and that all points have a positive second
derivative. TRUE or FALSE: A gradient-descent method will converge to the
global minimum from any initialization.

Exercise 6.27. Consider the modulated signal

r(t) = w(t) cos(2m f .t + @),
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where the absolute bandwidth of the baseband message waveform w(t) is less
than f./2. The signals x and y are generated via

x(t) = LPF{r(t) cos(2m f.t + 0)},
y(t) = LPF{r(t)sin(2r fot + 0) 1,
where the LPF cutoff frequency is f./2.

a. Determine z(t) in terms of w(t), f., ¢, and 6.
b. Show that

{53220} =~

using the fact that derivatives and filters commute as in (G.5).
c. Determine the values of § maximizing z2(t).

Exercise 6.28. Consider the function
J(z)=(1—|z—2[)%.

a. Sketch J(x) for =5 <z < 5.

b. Analytically determine all local minima and maxima of J(z) for —5 < z < 5.
Hint: w = sign(f(b))dfd—(bb) where sign(a) is defined in (6.9).

c. Is J(z) unimodal as a function of z? Explain your answer.

d. Develop an iterative gradient-descent algorithm for updating z to minimize
J.

e. For an initial estimate of z = 1.2, what is the convergent value of x determined
by an iterative gradient-descent algorithm with a satisfactorily small stepsize?

f. Compute the direction (either increasing x or decreasing z) of the update
from (d) for z = 1.2.

g. Does the direction determined in part (f) point from z = 1.2 toward the con-
vergent value of part (e)? Should it (for a correct answer to (e))? Explain your
answer.

Automatic Gain Control

Any receiver is designed to handle signals of a certain average magnitude most
effectively. The goal of an AGC is to amplify weak signals and to attenuate strong
signals so that they remain (as much as possible) within the normal operating
range of the receiver. Typically, the rate at which the gain varies is slow compared
with the data rate, though it may be fast by human standards.

The power in a received signal depends on many things: the strength of the
broadcast, the distance from the transmitter to the receiver, the direction in
which the antenna is pointed, and whether there are any geographical features
such as mountains (or tall buildings) that block, reflect, or absorb the signal.
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Figure 6.18 The goal of the AGC is to
~—~n~" S~ paintain the dynamic range of the
signal by attenuating it when it is too
large (as in (a)) and by increasing it
\ v’ v “I when it is too small (as in (b)).

——

quantization levels

(a) (b)

Input / Sampler Output . . . .
) SCT) = s[] Figure 6.19 An automatic gain control adjusts the

—| a gain parameter a so that the average energy at
the output remains (roughly) fixed, despite
fluctuations in the average received energy.

Quality
Assessment

While more power is generally better from the point of view of trying to deci-
pher the transmitted message, there are always limits to the power-handling
capabilities of the receiver. Hence, if the received signal is too large (on average),
it must be attenuated. Similarly, if the received signal is weak (on average), then
it must be amplified.

Figure 6.18 shows the two extremes that the AGC is designed oid. In part
(a), the signal is much larger than the levels of the sampling device (indicated
by the horizontal lines). (The gain must be made smaller. In part (b); the signal
is much too small to be captured effectively, and the gain must be increased.

There are two basic approaches to an AGC.|The traditional approach uses ana-
log circuitry to adjust the gain before the sampling. ' The more modern approach
uses the output of the sampler to adjust the gain. The advantage of the analog
method is that the two blocks (the gain and the sampling) are separate and
do not interact. The advantage of the digital adjustment is that less additional
hardware is required since the DSP is already present for other tasks.

A simple digital system for AGC adjustment is shown in Figure 6.19. The
input r(¢) is multiplied by the gain a to give the normalized signal s(¢). This is
then sampled to give the output s[k]. The assessment block measures s[k] and
determines whether a must be increased or decreased.

The goal is to choose a so that the power (or average energy) of s(t) is approx-
imately equal to some specified (2. Since

a® avg{rQ(t)Ht:kT ~ avg{s*(kT)} ~ avg{s?[k]},
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it would be ideal to choose
52
2

N e T (6.11)

because this would imply that ave{s?(kT)} ~ S?. The averaging operation (in
this case a moving average over a block of data of size N) is defined by

E
avglalt} = v > al
i=k—N-+1

and is discussed in Appendix G in amazing detail. Unfortunately, neither the
analog input r(¢) nor its power is directly available to the assessment block in
the DSP portion of the receiver, so it is not possible to directly implement (6.11).

Is there an adaptive element that can accomplish this task? As suggested at
the beginning of Section 6.5, there are three steps to the creation of a viable
optimization approach: setting a goal, choosing a solution method, and testing.
As in any real-life engineering task, a proper mathematical statement of the
goal can be tricky, and this section proposes two (slightly different) possibilities
for the AGC. By comparing the resulting algorithms (essentially, alternative
forms for the AGC design), it may be possible to trade off among various design
considerations.

One sensible goal is to try to minimize a simple function of the difference
between the power of the sampled signal s[k] and the desired power S?. For
instance, the averaged squared error in the powers of s and S,

1 1
Tus@) =ove {§ (4] - 592} = § avel(@r2(7) - ), (612
penalizes values of a that cause s?[k] to deviate from S2. This formally mimics
the parabolic form of the objective (6.4) in the polynomial minimization example
of the previous section. Applying the steepest-descent strategy yields

dJrs(a
i Ls(a)

alk + 1] = alk] — T

, (6.13)
a=alk]

which is the same as (6.5), except that the name of the parameter has changed
from z to a. To find the exact form of (6.13) requires the derivative of Jyg(a) with
respect to the unknown parameter a. This can be approximated by swapping the
derivative and the averaging operations, as formalized in (G.12), to give

dJrs(a) _ 1davg{(a®r*(kT) — 5*)%}
da o da

4
S % avg{d(a ! (kdj;) = &) } = avg{(a®r*(kT) — S%)ar?(kT)}.

The term a?r?(kT) inside the parentheses is equal to s?[k]. The term ar?(kT)
outside the parentheses is not directly available to the assessment mechanism,
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though it can reasonably be approximated by s2[k]/a. Substituting the derivative
into (6.13) and evaluating at a = a[k] gives the algorithm

2
alk + 1] = a[k] — p avg {(82[/{7] - 5?) a[[lji] } . (6.14)

Care must be taken when implementing (6.14) that a[k] does not approach zero.

Of course, Jrg(a) of (6.12) is not the only possible goal for the AGC problem.
What is important is not the exact form of the performance function, but where
the performance function has its optimal points. Another performance function
that has a similar error surface (peek ahead to Figure 6.21) is

PR (V) B B YT P

Taking the derivative gives
dJn(a)  davg{la|(a®r?(kT)/3 — 5?)}
da da

dla|(a?r?(kT)/3 — 52
< g {35

} = avg{sgn(alk])(s*[k] — 5%)},

where the approximation arises from swapping the order of the differentiation
and the averaging (recall (G.12)) and the derivative of | - | is the signum or sign
function, which holds as long as the argument is nonzero. Evaluating this at
a = a[k] and substituting into (6.13) gives another AGC algorithm:

alk +1] = alk] — v avg{sgn(alk])(s*[k] — §*)}. (6.16)

Consider the “logic” of this algorithm. Suppose that a is positive. Since S is
fixed,

avg{sgn(a[k])(s*[k] — §*)} = ave{(s*[k] — §%)} = ave{s”[k]} — 5*.

Thus, if the average energy in s[k] exceeds S2, a is decreased. If the average energy
in s[k] is less than S?, a is increased. The update ceases when avg{s?[k]} ~ S,
that is, where a? ~ S2?/r?, as desired. (An analogous logic applies when a is
negative.)

The two performance functions (6.12) and (6.15) define the updates for the
two adaptive elements in (6.14) and (6.16). Jrg(a) minimizes the square of the
deviation of the power in s[k] from the desired power S2. This is a kind of
“least-square” performance function (hence the subscript LS). Such squared-
error objectives are common, and will reappear in phase-tracking algorithms
in Chapter 10, in clock recovery algorithms in Chapter 12, and in equalization
algorithms in Chapter 13. On the other hand, the algorithm resulting from Jy (a)
has a clear logical interpretation (the N stands for “naive”), and the update is
simpler, since (6.16) has fewer terms and no divisions.

To experiment concretely with these algorithms, agcgrad.m provides an imple-
mentation in MATLAB. It is easy to control the rate at which a[k] changes by
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choice of stepsize: a larger p allows a[k] to change faster, while a smaller u allows
greater smoothing. Thus, p can be chosen by the system designer to trade off
the bandwidth of a[k] (the speed at which a[k] can track variations in the energy
levels of the incoming signal) versus the amount of jitter or noise. Similarly, the
length over which the averaging is done (specified by the parameter lenavg)
will also influence the speed of adaptation; longer averages imply slower-moving,
smoother estimates while shorter averages imply faster-moving, more jittery esti-
mates.

Listing 6.6. agcgrad.m minimize the performance function J(a) = avg{|a|((1/3)a?r? —
ds)} by choice of a

n=10000; % number of steps in simulation
vr=1.0; % power of the input
r=sqrt(vr)*randn(n,1); % generate random inputs
ds=0.15; % desired power of output
mu=0.001; % algorithm stepsize
lenavg=10; % length over which to average
a=zeros(n,1); a(l)=1; % initialize AGC parameter
s=zeros (n,1); % initialize outputs
avec=zeros (1,lenavg); % vector to store averaging terms
for k=1:n—-1
s(k)=a(k)*r(k); % normalize by a(k) & add to avec
avec=[sign(a(k))*(s(k)"2—ds),avec(1l:lenavg —1)];
a(k+1)=a(k)—mu*mean(avec); % average adaptive update of a(k)
end

Typical output of agcgrad.m is shown in Figure 6.20. The gain parameter a
adjusts automatically to make the overall power of the output s roughly equal
to the specified parameter ds. Using the default values above, where the average
power of r is approximately 1, we find that a converges to about 0.38 since
0.382 ~ 0.15 = S2.

The objective Jrg(a) can be implemented similarly by replacing the avec
calculation inside the for loop with

avec=[(s(k)"2—ds)*(s(k)"2)/a(k),avec(l:end—1)];

In this case, with the default values, a converges to about 0.22, which is the
value that minimizes the least-square objective Jps(a). Thus, the answer which
minimizes Jrg(a) is different from the answer which minimizes Jy(a)! More on
this later.

As it is easy to see when playing with the parameters in agcgrad.m, the
size of the averaging parameter lenavg is relatively unimportant. Even with
lenavg=1, the algorithms converge and perform approximately the same! This
is because the algorithm updates are themselves in the form of a lowpass filter.
(See Appendix G for a discussion of the similarity between averagers and lowpass
filters.) Removing the averaging from the update gives the simpler form for Jy (a)

a(k+1)=a(k)-muxsign(a(k))*(s(k)"2—ds);
or, for Jps(a),
a(k+1)=a(k)—mu*(s(k)"2—ds)*(s(k)"2)/a(k);
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Perhaps the best way to formally describe how the algorithms work is to plot
the performance functions. But it is not possible to directly plot Jps(a) or Jy(a),
since they depend on the data sequence s[k]. What is possible (and often leads
to useful insights) is to plot the performance function averaged over a number
of data points (also called the error surface). As long as the stepsize is small
enough and the average is long enough, the mean behavior of the algorithm will
be dictated by the shape of the error surface in the same way that the objective
function of the exact steepest-descent algorithm (for instance, the objectives
(6.4) and (6.8)) dictates the evolution of the algorithms (6.6) and (6.10).

The following code agcerrorsurf.m shows how to calculate the error surface
for Jy(a). The variable n specifies the number of terms to average over, and tot
sums up the behavior of the algorithm for all n updates at each possible param-
eter value a. The average of these (tot/n) is a close (numerical) approximation
to Jn(a) of (6.15). Plotting over all a gives the error surface.

Listing 6.7. agcerrorsurf.m draw the error surface for the AGC

n=10000; % number of steps in simulation
r=randn(n,1); % generate random inputs
ds=0.15; % desired power of output
range=[—0.7:0.02:0.7]; % specify range of values of a
Jagc=zeros (size (range)); j=0;
for a=range % for each value a

ji=j+1; tot=0; % total cost

for i=1:n % over all possibilities

tot=tot+abs(a)*((1/3)*a"2*r(i)"2—ds);
end
Jagc (j)=tot /n; % take average value

end
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Figure 6.21 The error surface for the AGC objective functions (6.12) and (6.15) each
have two minima. As long as a can be initialized with the correct (positive) sign,
there is little danger of converging to the wrong minimum.

Similarly, the error surface for Jrs(a) can be plotted using

tot=tot+0.25%(a"2*r(i)"2—ds)"2; % error surface for JLS

The output of agcerrorsurf.m for both objective functions is shown in Figure
6.21. Observe that zero (which is a critical point of the error surface) is a local
maximum in both cases. The final converged answers (a =~ 0.38 for Jy(a) and a ~
0.22 for Jy,s(a)) occur at minima. Were the algorithm to be initialized improperly
to a negative value, then it would converge to the negative of these values. As
with the algorithms in Figure 6.17, examination of the error surfaces shows why
the algorithms converge as they do. The parameter a descends the error surface
until it can go no further.

But why do the two algorithms converge to different places? The facile answer
is that they are different because they minimize different performance functions.
Indeed, the error surfaces in Figure (.21 show minima in different locations.
The convergent value of a ~ 0.38 for Jy(a) is explicable because 0.38% ~ 0.15 =
S2. The convergent value of a = 0.22 for Jpg(a) is calculated in closed form in
Exercise 6.30, and this value does a good job minimizing its cost, but it has not
solved the problem of making a? close to S2. Rather, Jys(a) calculates a smaller
gain that makes avg{s?} ~ S?. The minima are different. The moral is this: be
wary of your performance functions—they might do what you ask.

Exercise 6.29. Use agcgrad.m to investigate the AGC algorithm.

a. What range of stepsize mu works? Can the stepsize be too small? Can the
stepsize be too large?

b. How does the stepsize mu affect the convergence rate?

c. How does the variance of the input affect the convergent value of a?

d. What range of averages lenavg works? Can lenavg be too small? Can lenavg

be too large?
e. How does lenavg affect the convergence rate?
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Exercise 6.30. Show that the value of a that achieves the minimum of Jrg(a)

can be expressed as
4 S23 ki .
>k Th

Is there a way to use this (closed-form) solution to replace the iteration (6.14)?

Exercise 6.31. Consider the alternative objective function J(a) =
2a?(s%[k]/6 — S?). Calculate the derivative and implement a variation of
the AGC algorithm that minimizes this objective. How does this version
compare with the algorithms (6.14) and (6.16)? Draw the error surface for this

algorithm. Which version is preferable?

Exercise 6.32. Try initializing the estimate a(1)=-2in agcgrad.m. Which min-
imum does the algorithm find? What happens to the data record?

Exercise 6.33. Create your own objective function J(a) for the AGC problem.
Calculate the derivative and implement a variation of the AGC algorithm that
minimizes this objective. How does this version compare with the algorithms
(6.14) and (6.16)? Draw the error surface for your algorithm. Which version do
you prefer?

Exercise 6.34. Investigate how the error surface depends on the input signal.
Replace randn with rand in agcerrorsurf.m and draw the error surfaces for

Jn(a) and Jps(a).

Using an AGC to Combat Fading

One of the impairments encountered in transmission systems is the degradation
due to fading, when the strength of the received signal changes in response
to changes in the transmission path. (Recall the discussion in Section 4.1.5 on
page 64.) This section shows how an AGC can be used to counteract the fading,
assuming the rate of the fading is slow, and provided the signal does not disappear
completely.

Suppose that the input consists of a random sequence undulating slowly up
and down in magnitude, as in the top plot of Figure 6.22. The adaptive AGC
compensates for the amplitude variations, growing small when the power of the
input is large, and large when the power of the input is small. This is shown
in the middle graph. The resulting output is of roughly constant amplitude, as
shown in the bottom plot of Figure 6.22.

This figure was generated using the following code:
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Listing 6.8. agcvsfading.m compensating for fading with an AGC

n=50000; % # steps in simulation
r=randn(n,1); % generate random inputs
env=0.75+abs(sin(2*pi*[1l:n]’/n)); % the fading profile
r=r.*env; % apply to raw input r[k]
ds=0.5; % desired power of output
a=zeros(1l,n); a(l)=1; % initialize AGC parameter
s=zeros (1,n); % initialize outputs
mu=0.01; % algorithm stepsize
for k=1:n—-1
s(k)=a(k)*r(k); % normalize by a to get s
a(k+1)=a(k)—mu*(s(k)"2—ds); % adaptive update of a(k)
end

The “fading profile” defined by the vector env is slow compared with the rate
at which the adaptive gain moves, which allows the gain to track the changes.
Also, the power of the input never dies away completely. The problems that
follow ask you to investigate what happens in more extreme situations.

Exercise 6.35. Mimic the code in agcvsfading.m to investigate what happens
when the input signal dies away. (Try removing the abs command from the
fading profile variable.) Can you explain what you see?

Exercise 6.36. Mimic the code in agcvsfading.m to investigate what happens
when the power of the input signal varies rapidly. What happens if the sign of
the gain estimate is incorrect?

Exercise 6.37. Would the answers to the previous two problems change on
using algorithm (6.14) instead of (6.16)7
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Summary

Sampling transforms a continuous-time analog signal into a discrete-time digital
signal. In the time domain, this can be viewed as a multiplication by a train of
pulses. In the frequency domain this corresponds to a replication of the spectrum.
As long as the sampling rate is fast enough that the replicated spectra do not
overlap, the sampling process is reversible; that is, the original analog signal can
be reconstructed from the samples.

An AGC can be used to make sure that the power of the analog signal remains
in the region where the sampling device operates effectively. The same AGC,
when adaptive, can also provide a protection against signal fades. The AGC can
be designed using a steepest-descent (optimization) algorithm that updates the
adaptive parameter by moving in the direction of the negative of the derivative.
This steepest-descent approach to the solution of optimization problems will be
used throughout Software Receiver Design.

For Further Reading
Details about resampling procedures are available in the published works of

e Smith, J. O. “Bandlimited interpolation—interpretation and algorithm,”
1993, http://ccrma-www.stanford.edu/~jos/resample/ .

A general introduction to adaptive algorithms centered around the steepest-
descent approach can be found in

e B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.
One of our favorite discussions of adaptive methods is

e C.R. Johnson Jr., Lectures on Adaptive Parameter Estimation, Prentice-Hall,
1988.
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Digital Filtering and the DFT

Once the received signal is sampled, the real story of the digital receiver begins.

An analog bandpass filter at the front end of the receiver removes extraneous
signals (for instance, it removes television-frequency signals from a radio receiver)
but some portion of the signal from other FDM users may remain. While it would
be conceptually possible to remove all but the desired user at the start, accurate
retunable analog filters are complicated and expensive to implement. Digital
filters, on the other hand, are easy to design, inexpensive (once the appropriate
DSP hardware is present), and easy to retune. The job of cleaning up out-of-
band interferences left over by the analog BPF can be left to the digital portion
of the receiver.

Of course, there are many other uses for digital filters in the receiver, and
this chapter focuses on how to “build” digital filters. The discussion begins by
considering the digital impulse response and the related notion of discrete-time
convolution. Conceptually, this closely parallels the discussion of linear systems in
Chapter 4. The meaning of the DFT (discrete Fourier transform) closely parallels
the meaning of the Fourier transform, and several examples encourage fluency in
the spectral analysis of discrete data signals. The final section on practical filter-
ing shows how to design digital filters with (more or less) any desired frequency
response by using special MATLAB commands.

Discrete Time and Discrete Frequency

The study of discrete-time (digital) signals and systems parallels that of
continuous-time (analog) signals and systems. Many digital processes are fun-
damentally simpler than their analog counterparts, though there are a few sub-
tleties unique to discrete-time implementations. This section begins with a brief
overview and comparison, and then proceeds to discuss the DFT, which is the
discrete counterpart of the Fourier transform.
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Just as the impulse function 6(¢) plays a key role in defining signals and systems
in continuous time, the discrete pulse

W={y 2o 1)

can be used to decompose discrete signals and to characterize discrete-time
systems.! Any discrete-time signal can be written as a linear combination
of discrete impulses. For instance, if the signal w([k] is the repeating pattern
{-1,1,2,1,-1,1,2,1,.. .}, it can be written

wlk] = — 8[K] + 6k — 1] + 26[k — 2] + o[k — 3] — 6]k — 4]
+ 6]k — 5]+ 26[k — 6] + [k — 7). ..

In general, the discrete-time signal w[k] can be written
o0
wlk] = > wlilok — ).
j=—00
This is the discrete analog of the sifting property (4.4); simply replace the integral
with a sum, and replace 6 (t) with d[k].

Like their continuous-time counterparts, discrete-time systems map input sig-
nals into output signals. Discrete-time LTI (linear time-invariant) systems are
characterized by an impulse response h[k]|, which is the output of the system
when the input is an impulse, though, of course, (7.1) is used instead of (4.2).
When an input z[k] is more complicated than a single pulse, the output y[k] can
be calculated by summing all the responses to all the individual terms, and this
leads directly to the definition of discrete-time convolution:

o0
ylk) = > aljlhlk - j] = @[k] = h[k]. (7.2)
j=—00
Observe that the convolution of discrete-time sequences appears in the recon-
struction formula (6.3), and that (7.2) parallels continuous-time convolution in
(4.8) with the integral replaced by a sum and the impulse response h(t) replaced
by h[k].

The discrete-time counterpart of the Fourier transform is the discrete Fourier
transform (DFT). Like the Fourier transform, the DFT decomposes signals into
their constituent sinusoidal components. Like the Fourier transform, the DFT
provides an elegant way to understand the behavior of LTI systems by looking
at the frequency response (which is equal to the DFT of the impulse response).
Like the Fourier transform, the DFT is an invertible, information-preserving
transformation.

1 The pulse in discrete time is considerably more straightforward than the implicit definition
of the continuous-time impulse function in (4.2) and (4.3).
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The DFT differs from the Fourier transform in three useful ways. First, it
applies to discrete-time sequences, which can be stored and manipulated directly
in computers (rather than to analog waveforms, which cannot be directly stored
in digital computers). Second, it is a sum rather than an integral, and so is easy
to implement either in hardware or in software. Third, it operates on a finite
data record, rather than an integration over all time. Given a data record (or
vector) wk] of length N, the DFT is defined by

N-1
Win] = wlk]e I /Nnk (7.3)
k=0
for n=0,1,2,...,N — 1. For each value n, (7.3) multiplies each term of the
data by a complex exponential, and then sums. Compare this with the Fourier
transform; for each frequency f, (2.1) multiplies each point of the waveform by
a complex exponential, and then integrates. Thus Wn] is a kind of frequency
function in the same way that W (f) is a function of frequency. The next section
will make this relationship explicit by showing how e 7(7/N)"F can be viewed as
a discrete-time sinusoid with frequency proportional to n. Just as a plot of the
frequency function W(f) is called the spectrum of the signal w(t), plots of the
frequency function W{n| are called the (discrete) spectrum of the signal w(k].
One source of confusion is that the frequency f in the Fourier transform can
take on any value while the frequencies present in (7.3) are all integer multiples
n of a single fundamental with frequency 27 /N. This fundamental is precisely
the sine wave with period equal to the length N of the window over which the
DFT is taken. Thus, the frequencies in (7.3) are constrained to a discrete set;
these are the “discrete frequencies” of the section title.

The most common implementation of the DFT is called the fast Fourier trans-
form (FFT), which is an elegant way to rearrange the calculations in (7.3) so that
it is computationally efficient. For all purposes other than numerical efficiency,
the DFT and the FFT are synonymous.

Like the Fourier transform, the DFT is invertible. Its inverse, the IDFT, is
defined by
N-1
Z W[n]ej(ZW/N)"k (7.4)
n=0
for k=0,1,2,...,N — 1. The IDFT takes each point of the frequency function
W {n], multiplies by a complex exponential, and sums. Compare this with the
IFT; (D.2) takes each point of the frequency function W(f), multiplies by a
complex exponential, and integrates. Thus, the Fourier transform and the DFT
translate from the time domain into the frequency domain, while the inverse
Fourier transform and the IDFT translate from frequency back into time.

Many other aspects of continuous-time signals and systems have analogs in
discrete time. Here are some that will be useful in later chapters.

1

wlk] = N
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® Symmetry—if the time signal w[k] is real, then W*[n] = W[N — n]. This is
analogous to (A.35).

e Parseval’s theorem holds in discrete time—Y_, w?[k] = 1/N 5" |W/[n]|?. This
is analogous to (A.43).

e The frequency response H[n] of an LTI system is the DFT of the impulse
response h[k]. This is analogous to the continuous-time result that the fre-
quency response H(f) is the Fourier transform of the impulse response h(t).

e Time-delay property in discrete time—w[k — 1] < Wn]e 7Z™/N)I This is
analogous to (A.37).

e Modulation property—this frequency-shifting property is analogous to (A.34).

e If wlk] = sin(2nfk/T) is a periodic sine wave, then the spectrum is a sum of
two delta impulses. This is analogous to the result in Example 4.1.

¢ Convolution? in (discrete) time is the same as multiplication in (discrete)
frequency. This is analogous to (4.10).

e Multiplication in (discrete) time is the same as convolution in (discrete) fre-
quency. This is analogous to (4.11).

e The transfer function of a LTI system is the ratio of the DFT of the output
and the DFT of the input. This is analogous to (4.12).

Exercise 7.1. Show why Parseval’s theorem is true in discrete time.

Exercise 7.2. Suppose a filter has impulse response