
16: A Digital QAM Radio

A DIGITAL QUADRATURE AMPLITUDE MODULATION
(QAM) RADIO

“Building a better radio ...”

⋆ Carrier Recovery

⋆ Baud Timing

⋆ Equalization

⋆ Prototype
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16: A Digital QAM Radio

QAM Radio (cont’d)

Coming Attractions:

⋆ Improved bandwidth utilization of quadrature modulation (QM)

⋆ Quadrature modulated PAM

⋆ Phase modulation as QM

⋆ Carrier offset impairments for QM

⋆ Costas loop for 4-QAM

⋆ Phase recovery ambiguity resolution

⋆ Quadruple frequency carrier extraction from fourth-power of QAM
signal

⋆ Phase-locked-loop for 4-QAM

⋆ Constellation design for higher-order QAM

⋆ Power optimization timing for QAM

⋆ “Complex” equalization for QAM

⋆ Various QAM receiver architectures

⋆ QPSK prototype
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16: A Digital QAM Radio

QAM Radio (cont’d)

Reference Texts:

◮ J. B. Anderson, Digital Transmission Engineering, Prentice Hall, 1999.

◮ J. A. C. Bingham, The Theory and Practice of Modem Design, Wiley,
1988.

◮ R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication

Principles, Plenum Press, 1992.

◮ E. A. Lee and D. G. Messerschmitt, Digital Communication, 2nd
edition, Kluwer Academic, 1994.

◮ H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication

Receivers: Synchronization, Channel Estimation, and Signal

Processing, Wiley, 1998.

◮ J. G. Proakis and M. Salehi, Communication Systems Engineering,
2nd edition, Prentice Hall, 2002.
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16: A Digital QAM Radio

Improved Bandwidth Utilization of Quadrature Modulation
(QM)

◮ One problem with double sideband AM (aka AM with suppressed
carrier) of the real message signal w(t) (with even symmetric
magnitude spectrum) into the passband signal

v(t) = Acw(t) cos(2πfct)

is that V (f) has twice the bandwidth of W (f).
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16: A Digital QAM Radio

Improved Bandwidth Utilization of QM (cont’d)

◮ Quadrature modulation (QM) sends two message signals in same 2B
passband bandwidth using orthogonal carriers cosine and sine

v(t) = Ac[m1(t)cos(2πfct+ θ)−m2(t)sin(2πfct+ θ)]

◮ The phase offset of a carrier does not effect the frequency translation
of the baseband magnitude spectrum (or the resultant passband
bandwidth), so upconverted m1 and m2 magnitude spectra will both
be centered at (and even symmetric about) fc.
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16: A Digital QAM Radio

Quadrature Modulated PAM

◮ The two message signals in QM could be composed as
pulse-amplitude-modulated (PAM) signals

mi(t) =
∑

k

si[k]p(t− kT )

where si[k] is the symbol sequence of the ith message drawn from a
finite alphabet (e.g. ±1, ±3), T is the symbol interval, and p(t) is the
(time-limited) pulse-shape.

◮ The resulting transmitted quadrature modulated signal (with Ac = 1)
is

v(t) =
∑

k

p(t− kT )[s1[k]cos(2πfct+ θ)

−s2[k]sin(2πfct+ θ)]

where θ is the fixed (arbitrary) transmitter carrier phase.
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16: A Digital QAM Radio

Quadrature Modulated PAM (cont’d)

◮ The two data streams could be considered separate messages or a
combined message. In either case, we will presume that the two data
streams are both of zero average and are such that (e.g.
uncorrelated) their average product is zero.

◮ The alphabet constellation can be plotted in a two-dimensional plane
as a combined message. With each si binary (±1), the four possible
pairs (s1, s2) = (1,−1), (1,1), (−1,1), (−1,−1) could be associated
with the four pairs possible with 2 bits (00, 01, 11, 10) in different
ways, e.g.
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16: A Digital QAM Radio

Phase Modulation as QM

◮ Consider a pulse-phase-modulated sequence

v(t) = g
∑

k

p(t− kT )cos(2πfct+ γ(t))

where g is a fixed scaling gain and γ is a time-varying phase signal

γ(t) = α[k] kT ≤ t < (k + 1)T

with α[k] chosen from a set of, e.g., four possibilities: π/4, 3π/4,
5π/4, and 7π/4.

◮ Four phase choices could be associated with the four pairs of two bits
(00, 10, 11, 01) in a conversion from message bits to transmitted
signal.

◮ This phase modulation with 4 choices is called quadrature phase shift
keying (QPSK).
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16: A Digital QAM Radio

Phase Modulation as QM (cont’d)

◮ Recall
cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

so

cos(2πfct+ γ(t)) = cos(2πfct) cos(γ(t))− sin(2πfct) sin(γ(t))

◮ With g =
√
2,

g cos([π/4, 3π/4, 5π/4, 7π/4]) = [1,−1,−1, 1]

g sin([π/4, 3π/4, 5π/4, 7π/4]) = [1, 1,−1,−1]

and
cos(2πfct+ γ(t)) = ± cos(2πfct)± sin(2πfct))

◮ The resulting QPSK signal can be described as
∑

k

p(t− kT )[s1[k]cos(2πfct)− s2[k]sin(2πfct)]

with si = ±1, i.e. 4-QAM with θ = 0.
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16: A Digital QAM Radio

Carrier Offset Impairments for QM

◮ To start, we will review ideal demodulation using sine and cosine
mixer (with frequency and phase matching that at transmitter) each
followed by LPF

⊙ x1(t) = v(t) cos(2πfct)

= Acm1(t) cos
2(2πfct)−Acm2(t) sin(2πfct) cos(2πfct)

=
Acm1(t)

2
(1 + cos(4πfct))−

Acm2(t)

2
(sin(4πfct))

⊕ s1(t) = LPF{x1(t)} = Acm1(t)
2

⊙ x2(t) = v(t) sin(2πfct)

= Acm1(t) cos(2πfct) sin(2πfct)−Acm2(t) sin
2(2πfct)

=
Acm1(t)

2
sin(4πfct)−

Acm2(t)

2
(1− cos(4πfct))

⊕ s2(t) = LPF{−x2(t)} = Acm2(t)
2
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Presume receiver downconverter specification of frequency and phase
offset from actual carrier frequency and phase.

◮ Transmitted signal

v(t) = m1(t) cos(2πfct+ θ)−m2(t) sin(2πfct+ θ)

◮ Downconverted signal on “cosine” path x1(t) = v(t) cos(2πf0t+ φ)

= m1(t) cos(2πfct+ θ) cos(2πf0t+ φ)

−m2(t) sin(2πfct+ θ) cos(2πf0t+ φ)
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Downconverted signal on “sine” path x2(t) = v(t) sin(2πf0t+ φ)

= m1(t) cos(2πfct+ θ) sin(2πf0t+ φ)

−m2(t) sin(2πfct+ θ) sin(2πf0t+ φ)

◮ Recall

sin(x) cos(y) =
1

2
(sin(x− y) + sin(x+ y))

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y))

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y))

◮ So
x1(t) = (1/2)m1(t){cos(2π(fc − f0)t+ θ − φ)

+ cos(2π(fc + f0)t+ θ+ φ)} − (1/2)m2(t){sin(2π(fc − f0)t+ θ− φ)

+ sin(2π(fc + f0)t+ θ + φ)}
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Similarly
x2(t) = (1/2)m1(t){sin(2π(f0 − fc)t+ φ− θ)

+ sin(2π(fc + f0)t+ θ + φ)}
−(1/2)m2(t){cos(2π(fc − f0)t+ θ − φ)

− cos(2π(fc + f0)t+ θ + φ)}
◮ Recall sin(−x) = − sin(x)
◮ With fc + f0 ≈ 2f0, for a LPF with cutoff well below 2f0

LPF{x1(t)} = (1/2)m1(t) cos(2π(fc − f0)t+ θ − φ)

−(1/2)m2(t) sin(2π(fc − f0)t+ θ − φ)

LPF{−x2(t)}
= (1/2)m1(t) sin(2π(fc − f0)t+ θ − φ)

+(1/2)m2(t) cos(2π(fc − f0)t+ θ − φ)
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Consider two points in (x, y)-space on a circle of radius r. One is at
angle α and the other at angle β with α > β.

◮ We wish to confirm that the matrix

R =

[

cos(α− β) − sin(α− β)
sin(α− β) cos(α− β)

]

rotates the point at radius r and angle β to the point at radius r and
angle α, i.e. that

[

cos(α)
sin(α)

]

r = R

[

cos(β)
sin(β)

]

r
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Assuming r 6= 0, reduces our objective to confirmation of two
equations: cos(α) = cos(α− β) cos(β)− sin(α− β) sin(β)

sin(α) = sin(α− β) cos(β) + cos(α− β) sin(β)

◮ Recall:
cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

cos2(x) + sin2(x) = 1

◮ So: cos(α− β) cos(β)− sin(α− β) sin(β)

= (cos(α) cos(β) + sin(α) sin(β)) cos(β)

−(sin(α) cos(β)− cos(α) sin(β)) sin(β)

= cos(α) cos2(β) + sin(α) sin(β) cos(β)

− sin(α) sin(β) cos(β) + sin2(β) cos(α)

= cos(α)(sin2(β) + cos2(β)) = cos(α)
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Similarly
sin(α− β) cos(β) + cos(α− β) sin(β)

= (sin(α) cos(β)− cos(α) sin(β)) cos(β)

+(cos(α) cos(β) + sin(α) sin(β)) sin(β)

= sin(α) cos2(β)− cos(α) cos(β) sin(β)

+ cos(α) cos(β) sin(β) + sin2(β) sin(α)

= sin(α)(sin2(β) + cos2(β)) = sin(α)

◮ This confirms that pre-multiplication of an [x y]T -vector by the
matrix

R =

[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

rotates the [x y]T vector about the origin by the angle ψ.
◮ If ψ is positive the rotation is counterclockwise, or if ψ < 0 rotation is

clockwise.
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ Recall
s1(t) = LPF{x1(t)}

= (1/2)m1(t) cos(ψ(t))− (1/2)m2(t) sin(ψ(t))

s2(t) = LPF{−x2(t)}

= (1/2)m1(t) sin(ψ(t)) + (1/2)m2(t) cos(ψ(t))

where ψ(t) = 2π(fc − f0)t+ θ − φ

◮ Gather into a single matrix equation
[

s1(t)
s2(t)

]

= 1
2

[

cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

] [

m1(t)
m2(t)

]

=
1

2
R(t)

[

m1(t)
m2(t)

]
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16: A Digital QAM Radio

Carrier Offset Impairments for QM (cont’d)

◮ The relationship

[

s1(t)
s2(t)

]

=
1

2
R(t)

[

m1(t)
m2(t)

]

with

R(t) =

[

cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

]

and
ψ(t) = 2π(fc − f0)t+ θ − φ

reveals that the alteration due to carrier offset is a rotation of
(s1(t), s2(t)) at a particular t by 2π(f0 − fc)t+ θ − φ.

◮ When f0 = fc but φ 6= θ, the tilt of the (s1(t), s2(t)) relative to the
message (m1(t),m2(t)) is fixed.

◮ When f0 6= fc, (s1(t), s2(t)) is spinning relative to (m1(t),m2(t)).
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16: A Digital QAM Radio

Costas Loop for 4-QAM

◮ Sampling perfectly downconverted 4-QAM signals s1(t) and s2(t) at
the proper times should produce one of four pairs (1, 1), (1,−1),
(−1, 1), (−1,−1).

◮ For this time-synchronized sampled 4-QAM constellation, a rotation
of an integer multiple of 90◦ in the carrier recovery offset
(2π(fc − f0)t+ θ − φ) will produce samples at the alphabet values.

◮ To exploit this symmetry, we will extend the Costas loop for PAM to
4-QAM by seeking a scheme that causes the carrier recovery offset to
converge to an integer multiple of 90◦ (where for PAM, the carrier
recovery offset was designed to converge to an offset of an integer
multiple of 180◦). We will resolve this ambiguity later.
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Our objective is to adjust the receiver mixer phase φ(t) to assure

φ(t) = 2π(fc − f0)t+ θ + ρπ/2

where ρ is a fixed integer.

◮ We will begin by assuming that fc = f0 and θ is fixed but unknown,
so our objective is φ = θ + ρ(π/2).

◮ Consider the cost function JC = cos2(2(θ − φ)) which, given
cos2(x) = (1/2)(1 + cos(2x)), is (1/2)(1 + cos(4(θ − φ)).

◮ JC has a maximum of one whenever cos(4(θ − φ)) = 1 or

4(θ − φ) = 0, 2π, 4π, ... ⇒ φ = θ + ρ(π/2)

for ρ an integer, as desired.
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Our adaptive update would be

φ[k + 1] = φ[k] + µ
∂JC
∂φ

|φ=φ[k]

◮ So, our algorithm development reduces to a need to generate
∂JC
∂φ

|φ=φ[k].

◮ Using d
dx
(cos(y)) = −(sin(y)) dy

dx

∂JC
∂φ

= 2 cos(2(θ − φ))
∂ cos(2(θ − φ))

∂(2(θ − φ))

·∂(2(θ − φ))

∂φ

= 4 cos(2(θ − φ)) sin(2(θ − φ))

◮ So, we need to generate a signal proportional to the product of the
cosine and sine of twice θ − φ.
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ The received 4-QAM signal is

v(t) = m1(t) cos(2πfct+ θ)−m2(t) sin(2πfct+ θ)

where each mi(t) is a binary PAM signal.
◮ Define the four signals

x1(t) = LPF{v(t) cos(2πfct+ φ)}
x2(t) = LPF{v(t) cos(2πfct+ φ+ π/4)}
x3(t) = LPF{v(t) cos(2πfct+ φ+ π/2)}
x4(t) = LPF{v(t) cos(2πfct+ φ+ 3π/4)}

◮ Recall

sin(x) cos(y) =
1

2
(sin(x− y) + sin(x+ y))

and

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y))
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ We can manipulate x1 to reveal

x1(t) = LPF{m1(t) cos(2πfct+ θ) cos(2πfct+ φ)

−m2(t) sin(2πfct+ θ) cos(2πfct+ φ)}
= LPF{(1/2)(m1(t)[cos(θ − φ) + cos(4πfct+ θ + φ)]

−m2(t)[sin(θ − φ) + sin(4πfct+ θ + φ)]}
= (1/2)[m1(t) cos(θ − φ)−m2(t) sin(θ − φ)]

◮ Similarly,
x2(t) = (1/2)[m1(t) cos(θ − φ− (π/4))

−m2(t) sin(θ − φ− (π/4))]

x3(t) = (1/2)[m1(t) cos(θ − φ− (π/2))

−m2(t) sin(θ − φ− (π/2))]

x4(t) = (1/2)[m1(t) cos(θ − φ− (3π/4))

−m2(t) sin(θ − φ− (3π/4))]
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Now form the product
x1(t)x3(t) = (1/4)[m1(t) cos(θ − φ)−m2(t) sin(θ − φ)]

·[m1(t) cos(θ − φ− (π/2))−m2(t) sin(θ − φ− (π/2))]

= (1/4)[m2
1(t) cos(θ − φ) cos(θ − φ− (π/2))

+m2
2(t) sin(θ − φ) sin(θ − φ− (π/2))

−m1(t)m2(t) cos(θ − φ) sin(θ − φ− (π/2))

−m1(t)m2(t) sin(θ − φ) cos(θ − φ− (π/2))]

= (1/8)[m2
1(t)(cos(π/2) + cos(2(θ − φ)− (π/2))

+m2
2(t)(cos(π/2)− cos(2(θ − φ)− (π/2))

−m1(t)m2(t)(sin(−π/2) + sin(2(θ − φ)− (π/2))

−m1(t)m2(t)(sin(π/2) + sin(2(θ − φ)− (π/2))]

◮ Because cos(π2 ) = 0, sin(±π
2 ) = ±1, sin(x) = cos(x− π

2 ), and
cos(x) = − sin(x− π

2 )

x1(t)x3(t) = (1/8)[(m2
1(t)−m2

2(t)) sin(2(θ − φ))

+2m1(t)m2(t) cos(2(θ − φ))]
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Similarly manipulate x2(t)x4(t)

x2(t)x4(t) = (1/4)[m1(t) cos(θ − φ− (π/4))

−m2(t) sin(θ − φ− (π/4))]

·[m1(t) cos(θ − φ− (3π/4))

−m2(t) sin(θ − φ− (3π/4))]

= (1/4)[m2
1(t) cos(θ − φ− (π/4)) cos(θ − φ− (3π/4))

+m2
2(t) sin(θ − φ− (π/4)) sin(θ − φ− (3π/4))

−m1(t)m2(t) cos(θ − φ− (π/4)) sin(θ − φ− (3π/4))

−m1(t)m2(t) sin(θ − φ− (π/4)) cos(θ − φ− (3π/4))]

= (1/8)[m2
1(t)(cos(π/2) + cos(2(θ − φ)− π)

+m2
2(t)(cos(π/2)− cos(2(θ − φ)− π)

−m1(t)m2(t)(sin(−π/2) + sin(2(θ − φ)− π)

−m1(t)m2(t)(sin(π/2) + sin(2(θ − φ)− π)]
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Because cos(π/2) = 0, sin(±π/2) = ±1, sin(x− π) = − sin(x), and
cos(x− π) = − cos(x),

x2(t)x4(t) = (1/8)[−(m2
1(t)−m2

2(t)) cos(2(θ − φ))

+2m1(t)m2(t) sin(2(θ − φ))]

◮ And now form

x1(t)x2(t)x3(t)x4(t) = (1/64)[(m2
1(t)−m2

2(t)) sin(2(θ − φ))

+2m1(t)m2(t) cos(2(θ − φ))]

·[−(m2
1(t)−m2

2(t)) cos(2(θ − φ))

+2m1(t)m2(t) sin(2(θ − φ))]

= (1/64)[(−(m2
1(t)−m2

2(t))
2 + 4m2

1(t)m
2
2(t))

· sin(2(θ − φ)) cos(2(θ − φ))

+2m1(t)m2(t)(m
2
1(t)−m2

2(t))

·(sin2(2(θ − φ))− cos2(2(θ − φ)))]
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Because
−(m2

1(t)−m2
2(t))

2 − 4m2
1(t)m

2
2(t)

= −m4
1(t)− 2m2

1(t)m
2
2(t)−m4

2(t)

= −(m2
1(t) +m2

2(t))
2

and from
cos(2x) = cos2(x)− sin2(x)

the four-term product becomes x1(t)x2(t)x3(t)x4(t)

= (8m2
1(t)m

2
2(t)− (m2

1(t) +m2
2(t))

2)

· sin(2(θ − φ)) cos(2(θ − φ))

−2m1(t)m2(t)(m
2
1(t)−m2

2(t)) cos(4(θ − φ))

◮ Recall that we are attempting to produce a signal proportional to
sin(2(θ − φ)) cos(2(θ − φ)) to use as the gradient term in the
adaptation of φ.

Software Receiver Design Johnson/Sethares/Klein 27 / 110



16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ For the moment, consider any pulse shape, such as a rectangle or the
Hamming blip, that is time-limited to within one symbol interval of T
seconds, i.e. p(x) = 0 for x < 0 or x > T .

◮ Recall
mi(t) =

∑

k

si[k]p(t− kT )

where si[k] = 1 or −1.

◮ For T -wide pulse shapes

m2
i (t) =

∑

k

s2i [k]p
2(t− kT )

◮ For 4-QAM
m2

i (t) =
∑

k

p2(t− kT ) = η(t)

which is periodic with period T .
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ Thus,
m2

1(t)−m2
2(t) = 0

m2
1(t)m

2
2(t) = η2(t)

m2
1(t) +m2

2(t) = 2η(t)

◮ So, the four-term product x1(t)x2(t)x3(t)x4(t)

= (8m2
1(t)m

2
2(t)− (m2

1(t) +m2
2(t))

2) · sin(2(θ − φ)) cos(2(θ − φ))

−2m1(t)m2(t)(m
2
1(t)−m2

2(t)) cos(4(θ − φ))

= 4η2(t) sin(2(θ − φ)) cos(2(θ − φ))

which is proportional via a nonnegative factor to
sin(2(θ − φ)) cos(2(θ − φ)).

◮ In this special case using a symbol interval limited pulse shape, we
can update φ via

φ[k + 1] = φ[k] + µx1(t)x2(t)x3(t)x4(t)|t=kTs,φ=φ[k]

with Ts the sample period (typically less than the symbol period T ).
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ We can also resort to an explanation based on averaging the
four-term product, as the adaptive algorithm will.

◮ As the basic approximate gradient descent update is a lowpass
integration akin to a short-term time average, the proportionality of
the created signal to the desired sin(2(θ− φ)) cos(2(θ− φ)) need only
be true for the average of the four-term product.

◮ We assume that m1(t) and m2(t) are such that their individual
averages are zero and the average of the product of two terms each
composed of only one mi is the product of their averages. For
example, the average of mim

3
j (for i 6= j) equals the average of mi

times the average of m3
j . Because the average of mi is zero, such a

term would vanish on average.
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ This reduces the average of the four-term product to
avg{x1(t)x2(t)x3(t)x4(t)}

= avg{(8m2
1(t)m

2
2(t)− (m2

1(t) +m2
2(t))

2)}

· sin(2(θ − φ)) cos(2(θ − φ))

◮ With the average over time of m2
i (t) = α and the average of

m4
i (t) = β (with β not necessarily equal to α2)

avg{(8m2
1(t)m

2
2(t)− (m2

1(t) +m2
2(t))

2)}

= 6α2 − 2β

◮ So, without regard for the specific pulse shape, the average of
x1(t)x2(t)x3(t)x4(t) is proportional to sin(2(θ− φ)) cos(2(θ− φ)) (as
long as 3α2 6= β) and therefore suitable for use in the quadriphase
Costas loop adaptation law (as presented above in conjunction with
the symbol-time-limited pulse shape case).
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ We will now test

avg{(8m2
1(t)m

2
2(t)− (m2

1(t) +m2
2(t))

2)}

numerically using cos4qam

s1=sign(rand([1,100])-0.5); %symbols in message 1

s2=sign(rand([1,100])-0.5); %symbols in message 2

N=length(s1);

% zero pad T-spaced symbol sequence to create

% upsampled T/M-spaced sequence of scaled

% T-spaced pulses (with T = 1 time unit)

M=100; mup1=zeros(1,N*M); mup1(1:M:end)=s1;

mup2=zeros(1,N*M); mup2(1:M:end)=s2;

unp=ones(1,M); %unnormalized pulse

p=sqrt(M)*unp/sqrt(sum(unp.^2)); %normalized pulse shape

m1=filter(p,1,mup1); %convolve pulse shape with data

m2=filter(p,1,mup1); %convolve pulse shape with data

yo=8*sum((m1.^2).*(m2.^2))/length(m1);

yoyo=sum(((m1.^2)+(m2.^2)).^2)/length(m1);

average_scale_factor=yo-yoyo

terms_ratio=yo/yoyo
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ We can try other pulse shapes by replacing the line defining the
unnormalized rectangular pulse shape

unp=ones(1,M);

with a Hamming blip

unp=hamming(M);

or a square root raised cosine 20 symbols wide with a rollof factor of
0.3

unp=srrc(10,0.3,M,0);

◮ In every case, the average scale factor is positive and the ratio of
8m2

1(t)m
2
2(t) to (m2

1(t) +m2
2(t))

2 is always 2 to 1, as expected in our
case where (avg(m2

i (t)))
2 = avg(m4

i (t)).
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ QAM transmitter

◮ QAM downconverter with carrier recovery
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ QAM downconverter
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16: A Digital QAM Radio

Costas Loop for 4-QAM (cont’d)

◮ 4-QAM Costas loop carrier recovery

◮ Variants on this quadriphase Costas loop appear in chapter 6 of
Bingham and section 4.2.3 of Anderson.
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16: A Digital QAM Radio

Phase Recovery Ambiguity Resolution

◮ We can resolve the phase ambiguity by

⊙ checking the demodulated sampled signal phase/polarity against a
known/training signal or

⊙ differentially encoding the message source so the information is carried
in how the successive symbols change (or not) from one sample to the
next or

⊙ letting a trained equalizer automatically add a rotational phase to
achieve a match to the training symbols

◮ Our QPSK Prototype Receiver includes the first and the last
methods. Correlation of the in-phase training signal with both the
in-phase and quadrature downsampled signals will reveal which is
stronger and of what polarity for correction prior to passing signals on
to the equalizer. The trained equalizer is not expected to be left with
a phase ambiguity to resolve.
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16: A Digital QAM Radio

Phase Recovery Ambiguity Resolution (cont’d)

◮ Regarding differential coding, consider 2-PAM alphabet ±1. Send +1
if current symbol same as previous; −1 if different.

◮ Sample sequence:
1, −1, −1, 1, −1, −1, 1, 1, 1, ...

◮ Differentially encoded sequence (given knowledge of starting value of
1):
?, −1, 1, −1, −1, 1, −1, 1, 1, ...

◮ Decoding reverses process given knowledge of starting value of 1.

◮ An extension to 4-QAM is described in conjunction with Figure 16-4
in Lee and Messerschmitt.

◮ An isolated error in one symbol in a differentially encoded sequence
will cause 2 symbol errors in recovered sequence.
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal

◮ As an alternative to the Costas loop, we return to the approach of
attempting to extract a replica of the carrier from the received signal
and track that.

◮ For double sideband PAM we preprocessed the received signal by
squaring it and narrowly bandpass filtering about twice the carrier
frequency to extract a signal proportional to the cosine of twice the
carrier frequency with twice the carrier phase.

◮ For 4-QAM we will take the fourth power of the received/transmitted
signal and use a narrow bandpass filter about 4 times the carrier
frequency to extract a cosine with 4 times the carrier freqeuncy and
phase.
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal (cont’d)

◮ Presume the transmitted signal

v(t) = m1(t) cos(2πfct+ θ)−m2(t) sin(2πfct+ θ)

is received without any additive interference.

◮ For notational convenience, we will write the received signal (which
matches the transmitted v) as

v = a cos(γ)− b sin(γ)

with a for m1(t), b for m2(t), and γ for 2πfct+ θ.

◮ Squaring v

v2 = a2 cos2(γ)− 2ab cos(γ) sin(γ) + b2 sin2(γ)
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal (cont’d)

◮ Using cos2(γ), sin2(γ), and sin(γ) cos(ρ) formulas

v2 = a2(1/2)(1 + cos(2γ))

−2ab(1/2)(sin(0) + sin(2γ))

+b2(1/2)(1− cos(2γ))

= (1/2)(a2 − b2) cos(2γ) + (1/2)(a2 + b2)

−ab sin(2γ)
◮ Why not use v2?
◮ We could bandpass filter at 2fc (with γ = 2πfct+ θ), which rejects

the DC term (1/2)(a2 + b2).
◮ With a and b representing uncorrelated, zero-mean signals

average(ab) = 0. The zero DC content of ab implies that a
sufficiently narrow BPF will remove ab sin(2γ) as well.
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal (cont’d)

◮ Similarly, with a and b and identically distributed, the average of a2

matches that of b2 and the remaining term will also have zero average
and be removed by a narrow bandpass filter.

◮ Nothing is left after narrowly bandpass filtering v2, so we are on to
squaring v2 and again using cos2, sin2, and sin · cos formulas

v4 = (1/4)(a2 − b2)2 cos2(2γ) + (1/4)(a2 + b2)2

+a2b2 sin2(2γ) + (1/2)(a2 − b2)(a2 + b2) cos(2γ)

−ab(a2 − b2) cos(2γ) sin(2γ)− ab(a2 + b2) sin(2γ)

= (1/8)(a2 − b2)2(1 + cos(4γ)) + (1/4)(a2 + b2)2

+(1/2)a2b2(1− cos(4γ))

+(1/2)(a2 − b2)(a2 + b2) cos(2γ)

−(1/2)ab(a2 − b2) sin(4γ)− ab(a2 + b2) sin(2γ)
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal (cont’d)

◮ Bandpass filtering narrowly about 4γ will remove all terms not
multiplying either sin(4γ) or cos(4γ).

◮ In our previous discussion of v2 we noted that a and b represent
zero-mean, uncorrelated signals expected to have an average product
of zero. So, a sufficiently narrow bandpass filtering will remove the
term including sin(4γ).

◮ Thus, narrow bandpass filtering of v4 will leave

{(1/8)(a2 − b2)2 − (1/2)a2b2} cos(4γ)

= {(1/8)(a4 − 2a2b2 + b4)− (1/2)a2b2} cos(4γ)
= {(1/8)(a4 + 2a2b2 + b4)− (1/2)a2b2

−(1/2)a2b2} cos(4γ)
= −{(1/8)(8a2b2 − (a2 + b2)2)} cos(4γ)
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16: A Digital QAM Radio

Quadruple Frequency Carrier Extraction from
Fourth-power of 4-QAM Signal (cont’d)

◮ For the independent, identically distributed m1 and m2 represented
by a and b, we previously (in the 4-QAM Costas loop derivation)
utilized (and verified numerically) the fact that the term inside the
braces is positive for 4-QAM.

◮ Thus, we have extracted a signal proportional (through a nonpositive
scale factor) to the quadrupled carrier with four times the frequency
and four times the phase.

◮ If f0 at the receiver is used to specify center frequency of BPF, we
should redefine γ as 2πf0t+ θ + 2π(fc − f0)t = 2πf0t+ θ(t). If the
bandwidth of the BPF is wide enough, cos(4γ) will still be passed.
But, if too wide, unwanted extraneous signals will be passed too.
Thus, we have a design tradeoff between uncertain fc and a desired
narrow BPF.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM

◮ Having extracted a sampled sinusoid scaled by a time-varying gain
(that is on average sign definite) at a multiple (4) of the carrier
frequency and phase, we are ready to apply this signal to a phase
tracking loop such as a digital phase-locked loop (PLL).

◮ To have built a digital BPF to extract samples of a cosine at 4f0,
sampling must occur above the Nyquist rate for 4f0 (i.e. 8f0) or
undesirable aliasing will occur.

◮ The fourth-power PLL will use as cost function

(1/4) cos(4(θ − φ))

which is to be maximized by choice of φ as θ.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ An approximate gradient descent strategy updates φ via

φ[k + 1] = φ[k] + µ
∂(1/4) cos(4(θ − φ))

∂φ
|φ=φ[k]

= φ[k] + µ(1/4){∂ cos(4(θ − φ))

∂(θ − φ)
· ∂(θ − φ)

∂φ
}|φ=φ[k]

= φ[k] + µ{(− sin(4(θ − φ)))(−1)|φ=φ[k]

= φ[k] + µ sin(4(θ − φ[k]))

◮ Our previous analysis suggests that the output (on average) of the
BPF driven by the fourth-power of the received signal can be written
as −2g cos(8πf0kTs + 4θ[k]) where g is a nonnegative gain.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ Given this BPF output, we can form the product

−2g cos(8πf0kTs + 4θ) sin(8πf0kTs + 4φ[k])

and using sin · cos formula reduce this to

−(1/2)2g(sin(4(φ[k]− θ))

+ sin(16πf0kTs + 4θ + 4φ[k]))

◮ Lowpass filtering this cosine-sine product with a transfer function the
frequency response of which is flat with unit gain over its passband
and using sin(−x) = − sin(x) produces

LPF{−2g cos(8πf0kTs + 4θ)

· sin(8πf0kTs + 4φ[k])}
≈ g sin(4θ − 4φ[k])

This can be plugged in the adaptive update of φ for the approximate
gradient.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ The associated update of φ is diagrammed in

◮ Consider a non-ideal lowpass filter F (z) that still passes no signals
above some frequency below 4f0, but filters low frequency content
through an impulse response f [k] (with a potentially non-constant
low frequency response)

gf [k] ∗ sin(4(θ[k]− φ[k]))

where ∗ indicates convolution.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ With φ̃ ≡ θ − φ and φ[k] ≈ θ, sin(4φ̃[k]) ≈ 4φ̃[k] so

gf [k] ∗ sin(4φ̃[k]) ≈ 4gf [k] ∗ φ̃[k]

◮ The resulting block diagram description with slowly time-varying θ[k]
as the input and φ̃[k] as the output is
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ To reduce this block diagram to a transfer function as a single ratio
of two polynomials in z, we will use the basic feedback loop reduction
rule

y = f(r ± gy) = fr ± fgy

⇒ (1∓ fg)y = fr ⇒ y =

(

f

1∓ fg

)

r

◮ Thus, the transfer function from the output of the block with transfer
function 4µgF (z) to φ[k] is z−1/(1− z−1) or 1/(z − 1).

◮ The transfer function from φ̃ to φ is 4µgF (z)/(z − 1).

◮ With F (z) a ratio of two polynomials FN (z)/FD(z), the transfer
function from θ to φ̃ is

1

1 +
(

4µgFN (z)
(z−1)FD(z)

) =
(z − 1)FD(z)

(z − 1)FD(z) + 4µgFN (z)
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ To evaluate the asymptotic output of this transfer function to a
specific input, we will use the final value theorem.

◮ Final value theorem (of z-transforms):

lim
k→∞

x[k] = lim
z→1

(1− z−1)X(z)

where Z{x[k]} = X(z) and (1− z−1)X(z) has all poles strictly inside
the unit circle in the z-plane.

◮ For θ[k] a step with height α, i.e. 0 for k < 0 and α for k ≥ 0,
Z{θ[k]} = αz/(z − 1) so

Z{φ̃[k]} =
αz

z − 1

(z − 1)FD(z)

(z − 1)FD(z) + 4µgFN (z)

=
αzFD(z)

(z − 1)FD(z) + 4µgFN (z)
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ Applying the final value theorem

lim
k→∞

φ̃[k] = lim
z→1

z − 1

z

αzFD(z)

(z − 1)FD(z) + 4µgFN (z)

= lim
z→1

α(z − 1)FD(z)

(z − 1)FD(z) + 4µgFN (z)

As long as FN (1) 6= 0, limk→∞ φ̃[k] = 0.

◮ For θ[k] a ramp with slope α, i.e. 0 for k < 0 and αk for k ≥ 0,
Z{θ[k]} = αz/(z − 1)2 so

Z{φ̃[k]} =
αz

(z − 1)2
(z − 1)FD(z)

(z − 1)FD(z) + 4µgFN (z)

=
αzFD(z)

(z − 1)((z − 1)FD(z) + 4µgFN (z))
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ Applying the final value theorem
limk→∞ φ̃[k]

= lim
z→1

z − 1

z

αzFD(z)

(z − 1)((z − 1)FD(z) + 4µgFN (z))

= lim
z→1

αFD(z)

(z − 1)FD(z) + 4µgFN (z)

=
αFD(1)

4µgFN (1)

as long as FN (1) 6= 0 and the roots of
∆(z) = (z − 1)FD(z) + 4µgFN (z) are strictly inside the unit circle.

◮ If FD(1) 6= 0, then limk→∞ φ̃[k] is nonzero and gets smaller with
larger µ.

◮ If FD(z) = (z − 1) so FD(1) = 0, then limk→∞ φ̃[k] is zero.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ The choice of F (z) which includes a pole at z = 1 (aka an integrator)
results in a “type II” PLL. The name arises for its ability to track a
type 1 polynomial (i = 1 in input αki with k the time index) with
zero error asymptotically and a type 2 polynomial (αk2) with
asymptotically constant (and finite) offset.

◮ Changing µ will shift closed-loop poles. Closer to the origin of the
z-plane means faster decay of the transient response. Outside the
unit circle means instability.

◮ Poles closer to the z-plane origin than z = 1 de-emphasize lowpass
nature of θ to φ̃ transfer function.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ With F (z) = b/(z − a),

∆(z) = (z − 1)FD(z) + 4µgFN (z)

= (z − 1)(z − a) + 4µgb

As µ increases, the roots become complex with constant real part and
increasing imaginary part that takes them outside the unit circle.

◮ With F (z) = b/(z − 1),

∆(z) = (z − 1)2 + 4µgb

For all positive µ the closed loop poles are a complex conjugate pair
with unity real part and complex portion proportional to µ, i.e. always
unstable for µ > 0.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ With F (z) = b(z − c)/(z − 1),

∆(z) = (z − 1)2 + 4µgb(z − c)

◮ In particular with 4µgb = 2 and c = 0.5, ∆(z) = z2 which puts the
closed-loop poles at the z-plane origin.

◮ Alternatively, with 4µgb = 0.3 and c = 0.6, ∆(z) = z2 − 1.7z + 0.82
which puts the closed-loop poles at z ≈ 0.85± j0.31.

◮ For any c, sufficiently large µgb will cause a root of ∆(z) to be outside
the unit circle.
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ We have limited our investigation of fourth-power PLL carrier
recovery primarily to 4-QAM. However, our ultimate design objective
will be 16-QAM. As an indication of the application of this
fourth-power PLL approach to 16-QAM, we cull some comments from
some of our reference texts.

◮ From p. 149 of Anderson:
“When the ... modulation is, for instance 16-QAM instead of QPSK,
the PLL reference signal is not a steady cos(4ω0t+ 4ψ0) and the
phase difference signal has other components besides sin(4ψ0 − 4θ0).
Nonetheless, the synchronizer still works passably well.”
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16: A Digital QAM Radio

Phase-Locked Loop for QAM (cont’d)

◮ From p. 173 of Bingham (1988):
“This simple method [PLL tracking of quadrupled frequency] can be
used for constellations with 16 points ... but it has been generally
assumed that the pattern jitter would be intolerable. However, it can
be shown that, at least for 16QAM, the outer points dominate, and
the fourth-power signal has a component at 4fc that is usable if a
very narrow band PLL is used to refine it. Whether the independence
from data decisions and equalizer convergence that this
forward-acting method offers outweighs the problems of such a
narrow-band PLL remains to be seen.”
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16: A Digital QAM Radio

QAM Constellation Design

◮ Assuming that soft decision symbol errors in recovering each message
pair (s1[k], s2[k]) are circularly distributed about each constellation
point makes the minimum distance between any two points an
important indicator of hard decision symbol error susceptibility.

◮ If the symbol errors are (circularly) uniformly distributed over a fixed
radius, until the maximum of this range exceeds half the minimum
distance between any two constellation points, a nearest element
decision device will sustain no hard decision symbol errors.

◮ If the symbol errors are circularly gaussian, hard decision errors will
always occur due to the presumed unbounded nature of the gaussian
“noise”, but are infrequent if the variance of this noise is much less
than half the minimum distance between any 2 points in the
constellation.
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ For 4-QAM, the constellation should be a square to avoid one pair of
symbol errors (on the otherwise shorter side of the rectangle)
becoming more likely.

◮ From p. 422 of Proakis and Salehi, the probability of an incorrect
decision or symbol error rate (SER) for an M -QAM system is

1−
[

1−
(

1− 1√
M

)

erfc

(
√

3σ2s
2(M − 1)σ2a

)]2

where σ2s is the variance of the white, zero-mean, symbol sequence
and σ2a is the variance of the sum of everything (including ISI and
noise gain) that causes the soft decision not to be a constellation
point (and is assumed to be circularly gaussian distributed).
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ “erfc” function in this SER formula is the complementary error
function (see help erfc in Matlab).

◮ Because erfc(x) monotonically decreases as x increases,
◮ As M increases with SNR (= σ2

s
/σ2

a
) unaltered, symbol error rate

(SER), i.e.

1−
[

1−
(

1− 1√
M

)

erfc

(
√

3σ2
s

2(M − 1)σ2
a

)]2

increases.
◮ As SNR increases (because σ2

s
increases or σ2

a
decreases) with M

unaltered, SER decreases.
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ The following plot of SER versus SNR (= σ2s/σ
2
a) for square

constellations 4-QAM, 16-QAM, and 256-QAM confirms the need for
higher SNR to achieve the same bit error rate with a higher-order
QAM constellation.
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ Preceding plot from sersnr
snr=[100:10:2000];

M=[16 64 256];

for Mind=1:length(M)

for snrind=1:length(snr)

yo=1-(1/sqrt(M(Mind)));

efa=sqrt(3*snr(snrind)/(2*(M(Mind)-1)));

ser(Mind,snrind)=1-(1-yo*erfc(efa))^2; end end

semilogy(10*log10(snr),ser’,’k’)

◮ A crude SNR estimate (actually an upper bound) is available from eye
diagram and its cluster variance, i.e. average squared difference
between soft and associated hard decisions.

◮ To inhibit common symbol errors from turning into multiple bit
errors, we could try to keep the bit changes between symbols at the
minimum distance from each other in the constellation to only one if
possible. For 4-QAM, consider 45◦ → 00, 135◦ → 01, −135◦ → 11,
and −45◦ → 10.
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ A mapping from the constellation points to the symbols that
minimizes adjacent symbol errors is termed a Gray coding of the data
bits. For example, for 16QAM

◮ Could choose to omit corner points to reduce maximum to minimum
signal power range over which system analog electronics must retain
linearity.

◮ Non-square QAM constellations can prove simpler for synchronization
but exhibit higher SER for same SNR than square constellations.
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16: A Digital QAM Radio

QAM Constellation Design (cont’d)

◮ From p. 97 of Anderson: The V.29 modem standard “has worse error
performance in AWGN than does ... [square] 16-QAM, but it is easier
to synchronize”

◮ V.29

◮ V.32alt
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16: A Digital QAM Radio

Power Optimization Timing for QAM

◮ We presume successful digital downconversion has occured with
carrier recovery, producing two sampled sequences each with the same
fixed sample period and same timing offset in the designation of
sample index zero relative to a universal clock.

◮ Both baseband signals are presumed to have the same bandwidth.
The fixed sampler period is shorter than the maximum possible
satisfying the Nyquist condition on the bandlimited baseband
pulse-shaped signal.

◮ This oversampled sequence will be filtered by the matched filter
associated with the transmitter pulse shape.
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ The matched filter output will be put into an interpolator designed to
extract a baud-spaced sequence of samples with the synchronization
of these symbol-sample times to the zero index of the universal clock
off by some time increment (that is some fraction of a symbol period).

◮ For a PAM signal (as we saw in Software Receiver Design), the
selection of this baud-timing increment can be done by optimizing the
average of the absolute value or the 2nd or 4th powers of the
resulting baud-spaced sequence values.

◮ Whether we minimize or maximize depends on the pulse shape and
the power used.
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ With successfully downconverted QAM, we have two (presumably
independent) PAM signals with the same timing offset.

◮ With real PAM, optimizing the average of the absolute value of the
single PAM signal raised to the 1st, 2nd, or 4th power can produce
desirable timing selection.

◮ For QAM, we could consider the sum of the average of the 1st, 2nd,
or 4th powers of the absolute values of the two constituent signals s1
and s2, i.e. the average of |s1|n + |s2|n for n = 1, 2, 4.

◮ Or we could consider the average of the 1st, 2nd, or 4th powers of
the length of the vector in the 2-dimensional I-Q space, i.e. the
average of (|

√

(s21 + s22)|)n for n = 1, 2, 4.

◮ For n = 2 and our presumption that s1 and s2 are white and
uncorrelated with each other, these two performance measures are the
same.

Software Receiver Design Johnson/Sethares/Klein 68 / 110



16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ To check their utility, draw these candidate costs with basetimcost
with a 20 times oversampled hamming pulse shape.
unp=hamming(m);

cp=conv(unp,unp); % pulse shape combo

ps=sqrt(m)*cp/sqrt(sum(cp.^2));

cost1=zeros(1,m+1); cost2=zeros(1,m+1);

cost3=zeros(1,m+1); cost4=zeros(1,m+1);

cost5=zeros(1,m+1);

n=1000; x=zeros(1,n); % "monte carlo" method

for i=1:m+1 % for each offset

% create +/-1 sequence

s1=sign(rand([1,n/m])-0.5); s2=sign(rand([1,n/m])-0.5);

% zero pad T-spaced symbol sequence to create

% upsampled T/m-spaced sequence of scaled T-spaced pulses

mup1=zeros(1,n); mup1(1:m:end)=s1;

mup2=zeros(1,n); mup2(1:m:end)=s2;

m1=filter(ps,1,mup1); % convolve pulse shape with data

m2=filter(ps,1,mup2); % convolve pulse shape with data

%sampled baseband data with timing offset iT/m

sm1=m1((length(ps)-1)/2+i:m:end);

sm2=m2((length(ps)-1)/2+i:m:end); end

cost1(i)=sum(sqrt(sm1.^2+sm2.^2))/length(sm1); % abs

cost2(i)=sum(sm1.^2+sm2.^2)/length(sm1); % square

cost3(i)=sum((sm1.^2+sm2.^2).^2)/length(sm1); % 4th pow

cost4(i)=sum(abs(sm1)+abs(sm2))/length(sm1); % sum of abs

cost5(i)=sum(sm1.^4+sm2.^4)/length(sm1); % sum of 4th

end
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ dashed: absolute value (average |
√

(s21 + s22)|)
◮ dotted (little dots): square (average (|

√

(s21 + s22)|)2)
◮ solid: 4th power (average (|

√

(s21 + s22)|)4)
◮ dotted (big dots): sum of absolute values (average |s1|+ |s2|
◮ dash-dot: sum of 4th powers (average |s1|4 + |s2|4)
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ For these plots, the zero sample was set to be half the length of the
pulse shape, which is the desired setting.

◮ The fourth power curve has the steepest decline from the desired
answer and therefore should exhibit fastest convergence.

◮ The same curves can be drawn for a square root raised cosine pulse
shape. The combination of the transmit and matched receive filter
will produce a raised cosine “transfer function”, and just as observed
in the PAM case in Software Receiver Design, the 1st and 2nd power
curves will require maximization, while minimization is to be used
with the 4th power.

Software Receiver Design Johnson/Sethares/Klein 71 / 110



16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ Assuming the desire for minimization of the the sum of the average
fourth powers of the two baseband signal streams (already
successfully downconverted from the received RF signal), we can form
the approximate gradient descent algorithm
τ [k + 1] = τ [k]

−µ̄∂(1/4)(m
4
1(kT + τ)) +m4

2(kT + τ)

∂τ
|τ=τ [k]

= τ [k]− µ̄[(m3
1(kT + τ) +m3

2(kT + τ))

·∂(m1(kT + τ) +m2(kT + τ))

∂τ
]|τ=τ [k]

◮ If we were pursuing maximization, the minus in front of the positive µ̄
would be a plus.
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ As in Software Receiver Design, we can use a numerical estimate of
the derivative of mi(kT + τ) with respect to τ , resulting in

τ [k + 1] = τ [k]− µ(m3
1(kT + τ [k]) +m3

2(kT + τ [k]))

·[m1(kT + τ + δ)−m1(kT + τ − δ) +m2(kT + τ + δ)

−m2(kT + τ − δ)]

where µ = µ̄/δ and δ is small and positive.

◮ All of the values for the mi(t) for the offsets τ [k], τ [k]− δ, and
τ [k] + δ are computed from the available oversampled mi via
interpolation.
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ While the sampled baseband signal passing through the receiver
matched filter and the timing recovery interpolators is presumed
sampled well above its Nyquist frequency, this is not typically true for
the downsampled to the symbol rate output of the timing recovery
block preceding a baud-spaced equalizer.

◮ Consider a common square root raised cosine pulse shape with excess
bandwidth (typically in the 10 to 50% range). The spectrum after
downsampling will suffer aliasing in a limited region about the
frequency 1/2T where T is the symbol period.
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ If the timing recovery downsampler is to be followed by a
baud-spaced equalizer, our biggest concern is with deep nulls in the
apparent channel transfer function seen by the equalizer. Deep nulls
are leveled out by large gains in a baud-spaced equalizer over the
frequency band of the channel null. Any channel noise in this channel
null band will be heavily amplified and degrade the capabilities of a
memoryless decision device at the equalizer output.

◮ When the transmission channel is distortionless, the only frequencies
over which such nulling might occur would be where the magnitudes
of the overlapping segments of the total downsampled spectrum are
comparable. This occurs only within a band of twice the excess
bandwidth centered at 1/(2T ).
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ Can destructive cancellation occur with timing offset which does not
effect the magnitude of the spectrum, only its phase, but in a
frequency dependent way? Yes; adding aliased portions from the
leading edge and the rear edge of the baseband center lobe that suffer
sufficient relative phase shift can create a null. See section 7.5.1 of
Bingham for such an example.

◮ Thus, a useful variant of power maximization for timing recovery
pre-filters the downconverted signals with a bandpass filter centered
at 1/2T with a bandwidth of twice (or less) the excess bandwidth of
the pulse shape (from (1/2T )− σ to (1/2T ) + σ).

◮ As excess bandwidth approaches 100% of 1/T , the BPF becomes an
all-pass and does not effect the power optimization.

Software Receiver Design Johnson/Sethares/Klein 76 / 110



16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ This bandedge, bandpass filtering can effect the need for
maximization or minimization, just as changing the pulse shape can.

◮ In terms of our adaptive algorithm, this BPF preprocesing can be seen
as beneficial in its reduction of signals that would require reduced
stepsizes (and the resulting slowed convergence) to accommodate in
our approximate gradient descent scheme with modest timing jitter.

◮ From Lee and Messerschmitt, p. 745: “For some signals, particularly
when the excess bandwidth is low, a fourth power nonlinearity ... is
better than the magnitude squared. In fact, fourth-power timing
recovery can even extract timing tones from signals with zero excess
bandwidth. ... Simulations for QPSK ... suggest that fourth-power
circuits out-perform absolute-value circuits for signals with less than
about 20% excess bandwidth.”
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16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ From Lee and Messerschmitt, p. 745: “If timing recovery is done in
discrete-time, aliasing must be considered... Any nonlinearity will
increase the bandwidth of the ... signal ... In the presence of
sampling, however, the high frequency components due to the
nonlinearity can alias back into the bandwidth of the bandpass filter,
resulting in additional timing jitter. ... Therefore, in a discrete-time
realization, a magnitude-squared nonlinearity usually has a
considerable advantage over either absolute-value or fourth-power
nonlinearity.”

Software Receiver Design Johnson/Sethares/Klein 78 / 110



16: A Digital QAM Radio

Power Optimization Timing (cont’d)

◮ From Lee and Messerschmitt, p. 747: “The same relative merits of
squaring, absolute-value, and fourth-power techniques apply to
passband timing recovery as to baseband. In particular,
absolute-value and fourth-power are usually better than squaring,
except when aliasing is a problem in discrete-time implementations.
As with baseband signals, it is sometimes advantageous to prefilter
the signal before squaring.”
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16: A Digital QAM Radio

“Complex” QAM Equalizer

◮ Consider this advice from Bingham, p. 231: “A complex equalizer ...
can compensate for any demodulating carrier phase, but it is easier to
deal with frequency offset by using a separate circuit or algorithm
that, because it deals with only one variable, carrier phase, can move
faster without causing jitter.”

◮ To interpret this design guidance, we reconsider the rotation caused by
carrier recovery offset for a distortionless channel. Here this situation
is presumed to have been achieved by imperfect downconversion
accompanied by acceptable baud-timing and equalization.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ For a recovered symbol pair vector x = [x1 x2]
T off by a rotation of

ψ radians from the “true” symbol pair vector s = [s1 s2]
T

x =

[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

s = Rs

◮ Thus, we would like to recover s from x via a derotation by −ψ or
[

cos(−ψ) − sin(−ψ)
sin(−ψ) cos(−ψ)

]

x

=

[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]

x = Px

◮ Confirm that

P =

[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]

= R−1

as expected, by showing that PR = I.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ The matrix multiplication Px can be written out as

ŝ1 = cos(−ψ)x1 − sin(−ψ)x2
ŝ2 = sin(−ψ)x1 + cos(−ψ)x2

where the ŝi are the recovered estimates of s1 and s2.
◮ Rather than interpret the pairs as vectors, we can consider them as

the real and imaginary parts of a complex number, e.g. s = s1 + js2
and x = x1 + jx2.

◮ Consider multiplying the complex x by a complex gain f

(x1 + jx2)(f1 + jf2) = x1f1 − x2f2 + j(x1f2 + x2f1)

= ŝ1 + jŝ2

or
ŝ1 = f1x1 − f2x2

ŝ2 = f2x1 + f1x2
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ This matches the format of the necessary rotation when
f1 = cos(−ψ) and f2 = sin(−ψ).

◮ So, multiplying all of the (complex) equalizer coefficients by the same
complex gain factor can correct for rotational offset, as noted by
Bingham (before the “but” in the quotation above).

◮ If this rotational offset is changing with time, as we would expect with
even a slight carrier frequency offset, then adjustment of this gain
factor will require that all of the otherwise well-set equalizer gains
move. This observation stimulates the second part of the quote from
Bingham, which supports consideration of a single-complex-coefficient
(trained or decision-directed) derotator after a complex equalizer.
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16: A Digital QAM Radio

“Complex QAM Equalizer (cont’d)

◮ Consider the two received signals, in-phase r1 and quadrature r2,
composed as a complex number r1 + jr2 and multiplied by a
(de)rotator ejθ to produce x1 + jx2.

◮ Using ejx = cos(x) + j sin(x), form

x1 + jx2 = (r1 + jr2)e
jθ = (r1 + jr2)(cos(θ) + j sin(θ))

= (r1 cos(θ) + j2r2 sin(θ) + j(r2 cos(θ) + r1 sin(θ))

So,
x1 = r1 cos(θ)− r2 sin(θ)

x2 = r2 cos(θ) + r1 sin(θ)

◮ The derotated signals x1 and x2 would be quantized to form hard
decisions s1 (= sign(x1)) and s2 (= sign(x2)) or s = sign(x) with
s = s1 + js2.

◮ Consider as cost function the average of (1/2)(s− x)(s− x)∗ where
the superscript ∗ indicates complex conjugation.
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16: A Digital QAM Radio

“Complex QAM Equalizer (cont’d)

◮ A stochastic gradient descent algorithm for adapting derotator angle
θ is

θ[k + 1] = θ[k]− µ
∂(1/2)(s− x)(s− x)∗

∂θ
|θ=θ[k]

◮ Observe
(s− x)(s− x)∗ = (s1 + js2 − x1 − jx2)

·(s1 − js2 − x1 + jx2)

= s21 − js1s2 − s1x1 + js1x2 + js2s1 − j2s22

−js2x1 + j2s2x2 − x1s1 + js2x1 + x21 − jx1x2

−jx2s1 + j2x2s2 + jx2x1 − j2x22

= (s21 − 2s1x1 + x21) + (s22 − 2s2x2 + x22)

= (s1 − x1)
2 + (s2 − x2)

2

◮ Thus,

∂(1/2)(s− x)(s− x)∗

∂θ
= (s1 − x1)(−1)

∂x1
∂θ

+ (s2 − x2)(−1)
∂x2
∂θ
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16: A Digital QAM Radio

“Complex QAM Equalizer (cont’d)

◮ Given d
dx
(cos(x)) = − sin(x) and d

dx
(sin(x)) = cos(x),

∂x1
∂θ

= −r1 sin(θ)− r2 cos(θ) = −x2
∂x2
∂θ

= −r2 sin(θ) + r1 cos(θ) = x1

◮ Thus,

∂(1/2)(s− x)(s− x)∗

∂θ
= (s1 − x1)x2 − (s2 − x2)x1

= s1x2 − x1x2 − s2x1 + x2x1 = s1x2 − s2x1

◮ The decision-directed adaptive derotator update algorithm for 4-QAM
can be written as θ[k + 1] = θ[k]− µ(s1[k]x2[k]− s2[k]x1[k])
where x[k] = r[k]ejθ[k] or

x1[k] = r1[k] cos(θ[k])− r2[k] sin(θ[k])

x2[k] = r2[k] cos(θ[k]) + r1[k] sin(θ[k])
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16: A Digital QAM Radio

“Complex QAM Equalizer (cont’d)

◮ An alternative cost function can be based on dispersion minimization
by considering as cost function the average of

((Re(re−jθ)2 − γ)2

where γ is a real constant and Re(a+ jb) = a.

◮ This dispersion cost function can be justified by visualizing the
projection onto the real axis of a rotated, but otherwise perfect,
symbol constellation relative to the single point of the positive real
axis projection of a desirably squared-off perfect 4-QAM constellation.

◮ The associated dispersion-minimizing stochastic gradient descent
scheme is

θ[k + 1] = θ[k]− µ((Re(re−jθ)2 − γ)

·Re(re−jθ[k])Im(re−jθ[k])

where Im(a+ jb) = b
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Having motivated the consideration of a complex signal model as
mathematically convenient for the QAM derotation task, we continue
with this complex system modelling with a “complex” model of real
passband QAM signal creation

v(t) = cos(2πfct)
∑

i

Re(s[i])p(t−iT )−sin(2πfct)
∑

i

Im(s[i])p(t−iT )

◮ In the complex transmitter model

x1(t) =
∑

i

Re(s[i])p(t− iT ) + j
∑

i

Im(s[i])p(t− iT )
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Given ejx = cos(x) + j sin(x)

x2(t) = cos(2πfct)
∑

i

Re(s[i])p(t− iT )

+j sin(2πfct)
∑

i

Re(s[i])p(t− iT )

+j cos(2πfct)
∑

i

Im(s[i])p(t− iT )

+j2 sin(2πfct)
∑

i

Im(s[i])p(t− iT )

◮ Thus, Re(x2(t)) = v(t) and the complex source transmitter creates a
real passband QAM signal.

◮ One model for a complex QAM downconverter model uses a phase
splitter with impulse response φ(t) and Fourier transform

Φ(f) = 1 for f ≥ 0 and 0 for f < 0
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ The phase splitter is followed by exponential multiplication

◮ An alternative complex QAM downconverter model follows
exponential multiplication with a lowpass filter
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Their effects on the passband spectrum

Recall that multiplication by ejxt shifts the entire spectrum to the left
for x < 0.

◮ The baseband spectrum of the recovered complex source sequence is
asymmetric, as expected. Symmetry about zero frequency would
indicate a real baseband signal.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ To restore the asymmetric-baseband of the complex source model
from its distortion by the commonly assymetric dynamics of a linear
channel in the signal passband requires a complex equalizer.

◮ One exception is a passband channel with its real frequency portion
symmetric about the carrier frequency which will result in a symmetric
equivalent baseband model following successful downconversion.

◮ For a complex equalizer, computation of a nonnegative cost function
utilizes, e.g., the product of the error and its complex conjugate
rather than the straight square of its error. This results in adaptive
updates that effectively add complex conjugations in the right places
to adaptation laws for “real” equalizers.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ As an example, consider the complex version of LMS with training for
adapting a linear combiner with training error

e[k] = d[k]−XT [k]f

where
e[k] = eR[k] + jeI [k]

d[k] = dR[k] + jdI [k]

X[k] = XR[k] + jXI [k]

f [k] = fR[k] + jfI [k]

◮ The stochastic gradient descent update minimizing the nonnegative
avg{e[k]e∗[k]} is

f [k+1] = f [k]− µ̄{ ∂

∂fR
[e[k]e∗[k]]|fR=fR[k]+ j

∂

∂fI
[e[k]e∗[k]]|fI=fI [k]}

where ∗ indicates complex conjugation.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ To facilitate algorithm derivation expand Xf as
XT [k]f = (XT

R [k] + jXT
I [k])(fR + jfI)

= XT
R [k]fR + jXT

I [k]fR + jXT
R [k]fI

+j2XT
I [k]fI

= (XT
R [k]fR −XT

I [k]fI) + j(XT
I [k]fR +XT

R [k]fI)

which also yields (XT [k]f)∗ = (XT
R [k]fR −XT

I [k]fI)

−j(XT
I [k]fR +XT

R [k]fI)

◮ Recall that
e[k]e∗[k] = (eR[k] + jeI [k])(eR[k]− jeI [k])

= e2R[k] + jeI [k]eR[k]− jeI [k]eR[k]− j2e2I [k]

= e2R[k] + e2I [k]
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ So
eR[k] = Re{e[k]} = Re{d[k]} − Re{XT [k]f}

= dR[k]−XT
R [k]fR +XT

I [k]fI

eI [k] = Im{e[k]} = Im{d[k]} − Im{XT [k]f}
= dI [k]−XT

I [k]fR +XT
R [k]fI

◮ With
∂dR
∂fR

=
∂dR
∂fI

=
∂dI
∂fR

=
∂dI
∂fI

= 0

we can form

∂

∂fR
{e[k]e∗[k]} =

∂

∂fR
{e2R[k] + e2I [k]}

=
∂

∂eR[k]
{e2R[k]}

∂

∂fR
{eR[k]}+

∂

∂eI [k]
{e2I [k]}

∂

∂fR
{eI [k]}

= −2eR[k]XR[k]− 2eI [k]XI [k]
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Similarly, with respect to the imaginary component of the equalizer
parameter vector

∂

∂fI
{e[k]e∗[k]} =

∂

∂fI
{e2R[k] + e2I [k]}

=
∂

∂eR[k]
{e2R[k]}

∂

∂fI
{eR[k]}

+
∂

∂eI [k]
{e2I [k]}

∂

∂fI
{eI [k]}

= 2eR[k]XI [k]− 2eI [k]XR[k]

◮ Therefore,

f [k+1] = f [k]− µ̄{ ∂

∂fR
[e[k]e∗[k]]|fR=fR[k]+ j

∂

∂fI
[e[k]e∗[k]]|fI=fI [k]}

= f [k] + µ̄(2)(eR[k]XR[k] + eI [k]XI [k]

+j(−eR[k]XI [k] + eI [k]XR[k]))
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Because

e[k]X∗[k] = (eR[k] + jeI [k])(XR[k]− jXI [k])

= eR[k]XR[k] + eI [k]XI [k]

+j(eI [k]XR[k]− eR[k]XI [k])

we can write
f [k + 1] = f [k] + µe[k]X∗[k]

◮ Relative to the real version of trained LMS, a complex conjugation
has been added to the regressor vector. That is all.
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16: A Digital QAM Radio

“Complex” QAM Equalizer (cont’d)

◮ Fractionally-spaced equalizers can replace the sequential combination
of an oversampled matched filter, an interpolator/downsampler, and
baud-spaced equalizer.

◮ With downconversion split between a principal (but inexact)
downconversion prior to equalization and a post-equalizer derotator
the training/decision error used to adapt the equalizer must be
rotated into the pre-derotated signal frame of the equalizer. This
assumes that the rotation is slow enough that it is effectively constant
over the time window covered by the equalizer’s impulse response.
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16: A Digital QAM Radio

Various QAM Receiver Architectures

◮ Analog receiver (from chapter 5 of Bingham)

(1) bandpass filter
(2) downconversion with carrier recovery
(3) forward sampler adjustment
(4) decision device
(5) decoder

◮ Analog receiver with decision-directed carrier recovery (from chapter
5 of Bingham)

(1) bandpass filter
(2) automatic gain control
(3) downconversion with decision-directed carrier recovery
(4) forward sampler adjustment
(5) decision device
(6) decoder
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Nearly-all-digital receiver with linear equalizer (from chapter 5 of
Bingham)

(1) free-running sampler

(2) bandpass filter

(3) phase splitter

(4) interpolator with feedback passband timing recovery

(5) automatic gain control with feedback from decision device

(6) preliminary free-running downconversion

(7) linear equalizer with post-derotator decision-directed adaptation

(8) carrier recovery via decision-directed rotation
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ All-digital receiver with decision feedback equalizer (from chapter 5 of
Bingham)

(1) free-running RF-sub-Nyquist sampler

(2) bandpass filter

(3) automatic gain control with feedback from decision device

(4) phase splitter

(5) interpolator with feedback passband timing recovery

(6) preliminary free-running downconversion

(7) linear equalizer with post-derotator decision-directed adaptation

(8) carrier recovery via decision-directed rotation

(9) decision feedback equalization adapted via decision-direction
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Typical Digital QAM Receiver (from section 4.1 of Meyr, Moeneclaey,
and Fechtel)

(1) analog preliminary downconversion with possible analog forward
correction and/or digital feedback correction

(2) free-running sampler
(3) digital downconversion with frequency adjust
(4) interpolator-matched filter-decimator
(5) derotator
(6) detection/decoding (also equalization)
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Generic equalized data demodulator (from Treichler, Larimore, and
Harp, “Practical Demodulators for High-Order QAM Signals,” Proc.
IEEE, October 1998)

(1) analog bandpass filter
(2) analog automatic gain control
(3) analog downconversion with decision-directed carrier tracking
(4) sampler with timing recovery
(5) equalizer with (hard or decoded) decision-directed adaptation
(6) optional digital downconversion with decision-directed carrier recovery
(7) optional decision feedback equalization
(8) optional error-correcting decoding

Software Receiver Design Johnson/Sethares/Klein 103 / 110



16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Generic demodulator for QAM signals (from Treichler, Larimore, and
Harp, “Practical Demodulators for High-Order QAM Signals,” Proc.
IEEE, October 1998)

(1) analog bandpass filter
(2) analog AGC with feedback correction from free-running sampler output
(3) quadrature free-running downconversion
(4) resampler with “four-corners” timing recovery
(5) FIR equalizer with selected blind adaptation algorithms
(6) digital downconversion with decision-directed carrier recovery
(7) decision device
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Multipoint network modem (from Jablon, “Joint Blind Equalization,
Carrier Recovery, and Timing Recovery for High-Order QAM Signal
Constellations,” IEEE Trans. on Signal Processing, June 1992)

(1) sampler and AGC with adjusted sampler clock
(2) passband equalizer with de-spun error
(3) post-equalization carrier recovery
(4) decoding

Software Receiver Design Johnson/Sethares/Klein 105 / 110



16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ Typical passband QAM receiver (from section 6.4.6 of Lee and
Messerschmitt)

(1) analog bandpass filter
(2) sampler with decision-directed adjustment
(3) phase splitter
(4) preliminary free-running downconversion
(5) downsampling to T/2 sampling with decision-directed adjustment
(6) fractionally-spaced linear (precursor) equalizer with de-spun

decision-directed adjustment
(7) digital downconversion with decision-directed carrier recovery
(8) decision device
(9) decision feedback (postcursor) equalizer with decision-directed

adjustment
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

Some receiver architectures are more suited to particular operating
circumstances than others.

◮ From p. 731-2 of Lee and Messerschmitt:
“One practical difficulty arises when an adaptive equalizer is used in
conjunction with a decision-directed carrier recovery loop. Baseband
adaptive equalizers assume that the input has been demodulated.
The solution to this difficulty ... is to use a passband equalizer. ... By
placing the forward equalizer before the carrier recovery
demodulation, we avoid having the equalizer inside the carrier
recovery loop. By contrast, a baseband equalizer would follow the
demodulator and precede the slicer. This means that it is inside the
carrier recovery loop. Consequently, the loop transfer function of the
carrier recovery includes the time-varying equalizer, causing
considerable complication.”
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16: A Digital QAM Radio

Various QAM Receiver Architectures (cont’d)

◮ (continuing from p. 731-2 of Lee and Messerschmitt):
“At the very least, the long delay (several symbol intervals)
associated with the baseband equalizer would force the loop gain of
the carrier recovery to be reduced to ensure stability, impairing its
ability to track rapidly varying carrier phase. The passband equalizer
... mitigates this problem by equalizing prior to demodulation.”

◮ From p. 429 of Gitlin, Hayes, and Weinstein:
“At low SNR, the designer can of course use the nonlinear/PLL
carrier recovery scheme ... but at moderate-to-high SNR levels, when
data decisions reliably replicate the transmitted data, the
data-directed loop has become the preferred carrier recovery system.”
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16: A Digital QAM Radio

QPSK Prototype

◮ Possible received signal impairments
◮ carrier freq and initial phase offset from specified values used in receiver
◮ clock freq and initial phase offset from specified values used in receiver
◮ phase noise random walk
◮ timing offset random walk
◮ multipath FIR channel
◮ time varying multipath gains
◮ wideband additive (gaussian) channel noise

◮ Receiver schematic
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16: A Digital QAM Radio

QPSK Prototype (cont’d)

◮ Receiver processing sequence

(1) free-running 4 times oversampled (relative to baud interval) received
passband signal

(2) mixer with phase adaptation via dual quadriphase Costas loop
(3) lowpass filtering for downconversion, matched filter, and interpolation

all provided by matched filter with adjusted timing offset adapted with
maximization of fourth power of downsampled signals in dual loop
configuration

(4) correlation used to resolve phase ambiguity and to locate training
sequence start in equalizer input

(5) linear equalizer adaptation via LMS; switched to decision-directed LMS
adaptation during data (i.e. non-training) portion

(6) frame-synchronized descrambler and (5,2) linear block code decoder
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