
11: Pulse Shaping and Receive Filtering

PULSE SHAPING AND RECEIVE FILTERING

⋆ Pulse and Pulse Amplitude Modulated Message Spectrum

⋆ Eye Diagram

⋆ Nyquist Pulses

⋆ Matched Filtering

⋆ Matched, Nyquist Transmit and Receive Filter Combination

adaptive components
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11: Pulse Shaping and Receive Filtering

Pulse Shaping and Receive Filtering
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We will focus on the situation where up and downconversion have been
flawlessly performed and the effect of transmission from baseband PAM
message waveform to received signal is presumed described by a linear
transfer function and the addition of interferers, in particular spectrally flat
broadband noise.
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Pulse and pulse amplitude modulated (PAM) message
spectrum
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The spectral footprint of a baseband PAM signal is no wider than that of
the pulse shape.

◮ Compose the analog pulse train entering the pulse shaping filter as

wa(t) =
∑

k

w(kT )δ(t− kT )

which is w(kT ) for t = kT and 0 for t 6= kT
◮ Pulse shaping filter output

x(t) = wa(t) ∗ p(t) ⇒ X(f) = Wa(f)P (f)

◮ X(f) cannot be nonzero at frequencies where P (f) is zero.
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Pulse ... message spectrum (cont’d)

One-symbol wide Hamming blip pulse shape (with 10 samples per symbol)
and frequency response (from freqz)
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Pulse ... message spectrum (cont’d)

Spectrally flat 4-PAM symbol sequence triggering baud-spaced 10-times
oversampled Hamming blip pulse shape as (baseband) output of pulse
shaping filter
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Message signal spectrum has scalloped contours of Hamming blip pulse
frequency response.
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Pulse ... message spectrum (cont’d)

Triple-wide Hamming blip
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Wider pulse shape ⇒ narrower passband in magnitude spectrum
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Pulse ... message spectrum (cont’d)

Spectrally flat 4-PAM symbol sequence triggering three-baud-wide
10-times oversampled Hamming blip pulse shape as (baseband) output of
pulse shaping filter
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Compare message with single-baud-wide Hamming pulse to observe how
intersymbol interference of triple-baud-wide Hamming pulse can cause
decision errors.
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Eye Diagram

Eye diagram is a popular robustness evaluation tool.
For 4-PAM, single-baud-wide Hamming blip with additive broadband
channel noise, retriggering oscilloscope after every 2 baud intervals
produces
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Observe illustrative vertical (amplitude) and horizontal (timing) margins
for correct decision at sample times.
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Eye Diagram (cont’d)

Reconsider multiple-baud-wide Hamming pulse example.

◮ Top: Double → open-eye
◮ Middle: Triple → partial eye closure
◮ Bottom: Quintuple → fully closed eye
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Eye Diagram (cont’d)

Consider 20-symbol wide, 10 times oversampled, truncated, sinc pulse
(sin(πt/T )/(πt/T )) with zero-crossings at kT for k = 1, 2, ..., 10) for
4-PAM symbol sequence
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A multi-baud-wide pulse shape, but no ISI!
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Nyquist Pulses

The impulse response of a Nyquist pulse creating no ISI at other sample
times is zero at those instants and nonzero only at the one particular
sample time.

◮ The impulse response p(t) is a Nyquist pulse for a T -spaced symbol
sequence if there exists a τ such that

p(t)|t=kT+τ =

{

c, k = 0
0, k 6= 0

◮ Rectangular pulse:

pR(t) =

{

1, 0 ≤ t < T
0, otherwise

⊙ Rectangular pulse is a Nyquist pulse.
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Nyquist Pulses (cont’d)

◮ Sinc pulse:

pS(t) =
sinπf0t

πf0t

where f0 = 1/T .

⊙ Sinc is Nyquist pulse because pS(0) = 1 and pS(kT ) =
sin(πk)

πk
= 0.

⊙ Sinc envelope decays as 1/t.

◮ Raised-cosine pulse:

pRC(t) = 2f0

(

sin(2πf0t)

2πf0t

)[

cos(2πf∆t)

1− (4f∆t)2

]

with roll-off factor β = f∆/f0.
⊙ Raised-cosine is Nyquist pulse for T = 1/2f0 because pRC has a sinc

factor sin(πk)/πk which is zero for all nonzero integers k.
⊙ Raised-cosine envelope decays at 1/|t3|.
⊙ As β → 0, raised-cosine → sinc.
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Nyquist Pulses (cont’d)

◮ Raised-cosine pulse (cont’d):

⊙ Fourier transform

PRC(f) =







1, |f | < f1
1+cos(α)

2 , f1 < |f | < B
0, |f | > B

where

B is the absolute bandwidth,

f0 is the 6db bandwidth,

f∆ = B − f0,

f1 = f0 − f∆, and

α =

π(|f |−f1)
2f∆
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Nyquist Pulses (cont’d)

◮ Raised-cosine pulse (cont’d):

⊙ Time and Frequency Plots:
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Nyquist pulses (cont’d)

The sum of the frequency responses of a Nyquist pulse shape and its
replicas shifted by an integer multiple of the symbol frequency (i.e. the
inverse of the symbol period) is a real constant.

◮ Consider a candidate Nyquist pulse v(t) that is nonzero at time zero
and zero for all other times that are integer multiples of the symbol
period T .

◮ Using the sifting property of (A.56) rewritten with frequency as the
independent variable and utilizing the fact that δ is an even function
as

V (f) ∗ δ(f − f0) = V (f − f0)

yields
∞
∑

n=−∞

V (f − nf0) = V (f) ∗ [
∞
∑

n=−∞

δ(f − nf0)]
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Nyquist pulses (cont’d)

◮ From (A.28) with w(t) = 1 and f0 = 1/T

F{T
∞
∑

n=−∞

δ(t− nT )} =
∞
∑

n=−∞

δ(f − nf0)

◮ Given (A.15) and (A.39)
V (f) ∗ [

∑∞
n=−∞ δ(f − nf0)]

=
∫∞
t=−∞[v(t)(T

∑∞
k=−∞ δ(t− kT ))]e−j2πftdt

=
∑∞

k=−∞ Tv(kT )e−j2πfkT

◮ Because v(kT ) is nonzero only for v(0),

∞
∑

n=−∞

V (f − nf0) = Tv(0)

◮ Thus, sum of V (f − nf0) is a real constant if v(t) is a Nyquist pulse.
Converse is also true.
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Matched Filter

Suppose the channel simply adds broadband noise n(t). The symbol to
reconstructed downsample system is described by

P(f )

Pulse
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Receive
filter
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m(kT )

g(t)

n(t)

y(t) y(kT )

y(kT )

n(t)

P(f )

Pulse
shaping

HR(f )

Receive
filter

m(kT ) g(t) v(t)

1

1

HR(f )

Receive
filter

Downsample

w(t) w(kT )

v(kT )

Downsample

so y(t) = v(t) + w(t) = hR(t) ∗ g(t) + hR(t) ∗ n(t).

◮ Our objective is to choose hR(t) to maximize the power of the signal
v(t) at a specific time t = τ , i.e. v2(τ), relative to the total power of
w(t) where the power spectral density of n(t) is a constant η over all
frequencies.
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Matched Filter (cont’d)

With spectrally flat channel noise the SNR-maximizing receive filter
impulse response is the time-reversal of that of the pulse shape.

◮ The Fourier transform of the autocorrelation function of w(t)

Rw(τ) = lim
T→∞

1

T

∫ T/2

−T/2
w(t)w(t+ τ)dt

equals the power spectral density of w(t)

Pw(f) = lim
T→∞

|WT (f)|
2

T

where WT (f) is the Fourier transform of the truncated w(t)

wT (t) =

{

w(t) −T/2 < t < T/2
0 otherwise
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Matched Filter (cont’d)

◮ From (E.4), the power spectral density of the output y of a linear
filter h with input u is

Py(f) = Pu(f)|H(f)|2

◮ Thus, with noise n having a flat power spectral density

Pw(f) = Pn(f)|HR(f)|
2 = η|HR(f)|

2

◮ From (E.2), total power in w is

Pw =

∫ ∞

f=−∞
Pw(f)df

◮ With our objective of choosing hR(t) to maximize the power of the
signal v(t) at a specific time t = τ , i.e. v2(τ), relative to the total
power of w(t), we now need to compute v2(τ).
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Matched Filter (cont’d)

◮ Turning to calculation of v2, from (A.16)

v(τ) =

∫ ∞

f=−∞
V (f)ej2πfτdf

where V (f) = HR(f)G(f), so

v2(τ) = |

∫ ∞

−∞
HR(f)G(f)ej2πfτdf |2

◮ The quantity to be maximized is

v2(τ)

Pw
=

|
∫∞
−∞HR(f)G(f)ej2πfτdf |2

∫∞
−∞ η|HR(f)|2df

◮ Schwarz’s inequality (A.57) is
∣

∣

∣

∫∞
−∞ a(x)b(x)dx

∣

∣

∣

2
≤

{

∫∞
−∞ |a(x)|2dx

}{

∫∞
−∞ |b(x)|2dx

}

and equality occurs only when a(x) = kb∗(x) where superscript ∗
denotes complex conjugation.
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Matched Filter (cont’d)

◮ By Schwarz’s inequality

v2(τ)

Pw
≤

(

∫∞
−∞ |HR(f)|

2df
)(

∫∞
−∞ |G(f)ej2πfτ |2df

)

η
∫∞
−∞ |HR(f)|2df

with the maximum of v2(τ)/Pw when

HR(f) = k(G(f)ej2πfτ )∗

◮ Combining the symmetry property (A.35) for real w

F−1{W ∗(−f)} = w∗(t) ⇒ F−1{W ∗(f)} = w∗(−t)

and the time shift property (A.38)

F−1{W (f)e−j2πfTd} = w(t− Td)

yields

F−1{(W (f)ej2πfTd)∗} = w∗(−(t− Td))

= w∗(Td − t)
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Matched Filter (cont’d)

◮ Thus, when g(t) is real

F−1{k(G(f)ej2πfτ )∗} = kg∗(τ − t) = kg(τ − t)

◮ Example:

Minimum τ for causality of matched filter is pulse width for pulse
initiated at t = 0.
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Matched Nyquist Transmit and Receive Filter
Combinations

A preferred receive filter impulse response (in the absence of channel ISI
but with broadband channel noise) (i) will match the reversed impulse
response of the transmitter pulse shape and (ii) when convolved with the
transmitter pulse shape will form a Nyquist pulse.

◮ Want convolution of candidate pulse shape g(t) and its matched filter
g(t− τ) to equal even symmetric Nyquist pulse p(t).

◮ Since convolution of two even symmetric pulse shapes is even
symmetric, presume g(t) is even symmetric, so with particular τ ,
g(t) = g(τ − t).

◮ Objective becomes

p(t) = g(t) ∗ g(t) ⇒ P (f) = G2(f)
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Matched ... Combinations (cont’d)

◮ So, choose

G(f) =
√

P (f) ⇒ g(t) = F−1{
√

P (f)}

◮ For example, consider the square-root raised cosine (SRRC)

v(t) =



























1√
T

sin(π(1−α)t/T )+(4αt/T )cos(π(1+α)t/T )
(πt/T )(1−(4αt/T )2)

for t 6= 0, t 6= ± T
4α

1√
T
(1− α+ (4α/π)) for t = 0

α√
2T

[(

1 + 2
π

)

sin
(

π
4α

)

+
(

1− 2
π

)

cos
(

π
4α

)]

for t = ± T
4α

which has a magnitude spectrum the square of which equals the
magnitude spectrum of a raised cosine.

◮ The square root raised cosine is the most commonly used pulse in
bandwidth constrained communication systems.

NEXT... We concoct various timing (aka clock) recovery schemes.
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