
22
Coupled Antennas

22.1 Near Fields of Linear Antennas

In calculating mutual coupling effects between closely-spaced linear antennas, we need
to know the fields produced by an antenna at near distances. The fields generated by a
thin wire antenna with current I(z) were worked out in Sec. 14.4.

We summarize these results here. All field components can be obtained from the
knowledge of the z-component of the magnetic vector potential Az(z, ρ):

Az(z, ρ)= μ
4π

∫ h
−h
I(z′)

e−jkR

R
dz′ , R =

√
ρ2 + (z− z′)2 (22.1.1)

where h is the half-length of the antenna, h = l/2, and the geometry is shown in
Fig. 22.1.1. We have used the approximate thin-wire kernel because it differs little from
the exact kernel for distances ρ > a (typically, when ρ � 5a.)

Fig. 22.1.1 Fields of a thin wire antenna.
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Then, the non-zero field components Ez, Eρ,Hφ can be constructed from the two
alternative sets of formulas:

jωμεEz = ∂2
zAz + k2Az

jωμεEρ = ∂ρ∂zAz
μHφ = −∂ρAz

,

jωμεEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωερEz
jωεEρ = −∂zHφ

(22.1.2)

As a first approximation, we will assume that the current I(z) is sinusoidal. This
is justified only when the antenna length is near half a wavelength λ/2. Most coupled
antenna arrays that are used in practice, such as Yagi-Uda, satisfy this condition.

We note also that the near fields resulting from the sinusoidal current assumption
do not satisfy the correct boundary conditions on the surface of the antenna, that is
the condition Ez(z, ρ)= 0 at z �= 0 and ρ = a. In Sec. 22.2, we consider an improved
approximation of the near fields that addresses these issues. Thus for now, we will
assume that:

I(z)= I0 sin
(
k(h− |z|))
sinkh

= Im sin
(
k(h− |z|)) (22.1.3)

where we distinguish between the current I0 at z = 0 and the maximum current Im =
I0/ sinkh. For half-wavelength antennas, we have kh = π/2, I0 = Im, and the current
becomes I(z)= I0 coskz.

In principle, one could insert Eq. (22.1.3) into (22.1.1) and perform the required
integrations to get Az. However, for the purpose of determining the fields, this is not
necessary. Combining (22.1.1) and (22.1.2), we obtain:

jωμεEz(z, ρ)= ∂2
zAz + k2Az = μ

4π

∫ h
−h
I(z′)(∂2

z′ + k2)G(z− z′, ρ)dz′ (22.1.4)

where we denoted G(z − z′, ρ)= e−jkR/R and replaced ∂2
z by ∂2

z′ . Next, we use the
differential identity:

I(∂2
z′ + k2)G−G(∂2

z′ + k2)I = ∂z′
[
I∂z′G−G∂z′I

]
(22.1.5)

Because of the assumed form (22.1.3), I(z′) satisfies the Helmholtz equation, (∂2
z′ +

k2)I(z′)= 0, and therefore, the integrand of (22.1.4) becomes a complete derivative:

I(z′)(∂2
z′ +k2)G(z−z′, ρ)= ∂z′

[
I(z′)∂z′G(z−z′, ρ)−G(z−z′, ρ)∂z′I(z′)

]
(22.1.6)

Integrating the first term, we obtain:∫ h
−h
∂z′
[
I(z′)∂z′G(z− z′, ρ)

]
dz′ = I(h)∂z′G(z− h,ρ)−I(−h)∂z′G(z+ h,ρ)= 0

where we used the end-conditions I(h)= I(−h)= 0. The second term in (22.1.6) is a
little trickier because ∂z′I(z′) is discontinuous at z = 0. Splitting the integration range,
we obtain:∫ h

−h
∂z′
[
G(z− z′, ρ)∂z′I(z′)

]
dz′ =

(∫ 0

−h
+
∫ h

0

)
∂z′
[
G(z− z′, ρ)∂z′I(z′)

]
dz′

= [G(z,ρ)I′(0−)−G(z+ h,ρ)I′(−h)]+ [G(z− h,ρ)I′(h)−G(z,ρ)I′(0+)]
= kIm

[
2 coskhG(z, ρ)−G(z− h,ρ)−G(z+ h,ρ)]
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where we used I′(0±)= ∓kIm coskh and I′(±h)= ∓kIm. Inserting this result into
Eq. (22.1.4) and rearranging some constants, we find:

Ez(z, ρ)= − jηIm
4π

[
G(z− h,ρ)+G(z+ h,ρ)−2 coskhG(z, ρ)

]
(22.1.7)

The quantities G(z−h,ρ),G(z+h,ρ),G(z, ρ) can be written conveniently as follows:

G(z,ρ) = e−jkR0

R0
, R0 =

√
ρ2 + z2

G(z− h,ρ) = e−jkR1

R1
, R1 =

√
ρ2 + (z− h)2

G(z+ h,ρ) = e−jkR2

R2
, R2 =

√
ρ2 + (z+ h)2

(22.1.8)

where R0, R1, R2 are recognized to be the distances from the center and the two ends
of the antenna to the observation point, as shown in Fig. 22.1.1. Thus, we can write:

Ez(z, ρ)= − jηIm
4π

[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh

e−jkR0

R0

]
(22.1.9)

Next, we determineHφ from Ampère’s law in (22.1.2) by noting thatρEz is a complete
derivative with respect to ρ. Indeed, for any of the quantities R, we have:

∂ρ(e−jkR)= −jk(∂ρR)e−jkR = −jkρe
−jkR

R
⇒ e−jkR

R
= − 1

jkρ
∂ρ(e−jkR)

Applying this result to all three terms of Eq. (22.1.9), we have:

ρEz(z, ρ)= − jηIm
4π

1

−jk∂ρ
[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]
Inserting this into Ampère’s law, ∂ρ(ρHφ)= jωερEz, and rearranging some con-

stants, we find:

∂ρ(ρHφ)= jIm
4π

∂ρ
[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]
which can be integrated trivially, giving:

Hφ(z, ρ)= jIm
4πρ

[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]
(22.1.10)

A possible integration constant in ρ is dropped because the field must vanish when
its source vanishes, that is, when Im = 0. Finally, we obtain Eρ from Faraday’s law in
(22.1.2). Noting the differentiation property:

∂z(e−jkR)= −jk zRe
−jkR, R =

√
ρ2 + z2
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we obtain from jωεEρ = −∂zHφ:

Eρ(z, ρ)= jηIm
4πρ

[
z− h
R1

e−jkR1 + z+ h
R2

e−jkR2 − 2 coskh
z
R0
e−jkR0

]
(22.1.11)

The field expressions (22.1.9)–(22.1.11) have been used widely primarily for the pur-
pose of calculating mutual impedances. They appear in many textbooks and some early
references are [1309,1311,2,3]; see also [1292].

It is worth also to verify that the exact expressions for the fields give correctly the
radiation fields that were derived in Sec. 16.3. At large distances, we can make the
approximations:

R0 = r, R1 = r − h cosθ, R2 = r + h cosθ

where r is the radial distance and θ the polar angle. Replacing ρ = r sinθ, the magnetic
field (22.1.10) becomes approximately:

Hφ(r,θ)= jIm
4πr sinθ

[
e−jk(r−h cosθ) + e−jk(r+h cosθ) − 2 coskhe−jkr

]
which simplifies into:

Hφ(r,θ)= jIme−jkr

2πr
cos(kh cosθ)− coskh

sinθ
(22.1.12)

This agrees with the results of Sec. 16.3.

22.2 Improved Near-Field Calculation

The current on a thin linear antenna is determined from the solution of the Hallén or
Pocklington integral equations; for example, the latter is,

∫ h
−h
I(z′)(∂2

z′ + k2)G(z− z′, a)dz′ = −4πjωεEin(z) (22.2.1)

For a center-fed antenna, the impressed field is related to the driving voltageV0 at the
antenna terminals by Ein(z)= V0δ(z). The boundary condition that the net tangential
E-field vanish on the antenna surface requires that,

Ez(z, a)= −Ein(z)= −V0δ(z) (22.2.2)

where Ez(z, a) is the field on the antenna surface (i.e., at ρ = a) generated by the
current. Thus, the net field is zero, Ez,tot(z, a)= Ez(z, a)+Ein(z)= 0. It follows then
from Eq. (22.2.2) that Ez(z, a) must vanish along the antenna, except at z = 0.

As we saw in Sec. 21.4, the assumption of a sinusoidal current can be justified on the
basis of Pocklington’s equation, but it represents at best a crude approximation. The
resulting electric field does not satisfy condition (22.2.2), as can be seen setting ρ = a
into Eq. (22.1.9).

King’s three-term approximation, or a three-term fitted to a numerical solution, pro-
vides a better approximation to the current, and one may expect that the fields generated



22.2. Improved Near-Field Calculation 909

by such current would more closely satisfy the boundary condition (22.2.2). This is what
we discuss in this section.

Because the current need not satisfy the Helmholtz equation, I′′(z)+k2I(z)= 0, we
must revisit the calculations of the previous section. We begin by assuming that I(z) is
symmetric in z and that it vanishes at the antenna end-points, that is, I(±h)= 0. The
electric field Ez(z, ρ) at distance ρ is obtained from Eq. (22.1.4):

4πjωεEz(z, ρ) =
∫ h
−h
I(z′)(∂2

z′ + k2)G(z− z′, ρ)dz′

=
∫ h
−h
I(z′)(∂2

z′ + k2)
e−jkR

R
dz′

(22.2.3)

where R = √(z− z′)2+ρ2. Applying the differential identity (22.1.5) and the end-point
conditions I(±h)= 0, we obtain,

4πjωεEz(z, ρ) =
∫ h
−h
G(z− z′, ρ)

[
I′′(z′)+k2I(z′)

]
dz′ −

−
[
G(z− z′, ρ)I′(z′)

]z′=h
z′=−h

(22.2.4)

The assumed symmetry of I(z) implies a discontinuity of its derivative at z = 0. In-
deed, setting I(z)= F(|z|), for some continuous and continuously differentiable func-
tion F(·), we find,

I′(z) = sign(z)F′(|z|) ⇒ I′(0+)= −I′(0−)= F′(0)
I′′(z) = 2δ(z)F′(0)+sign2(z)F′′(|z|)

Using these into Eq. (22.2.4) and splitting the integration range [−h,h] into three
parts, [−h,0−], [0−,0+], [0+, h], we obtain:∫ h

−h
−
[]h

−h
=
∫ 0−

−h
+
∫ 0+

0−
+
∫ h

0+
−
[]0−

−h
−
[]0+

0−
−
[]h

0+
=
∫ 0−

−h
+
∫ h

0+
−
[]0−

−h
−
[]h

0+
where we have canceled the terms over [0−,0+]; indeed, it is easily verified that:∫ 0+

0−
G(z− z′, ρ)

[
I′′(z′)+k2I(z′)

]
dz′ = 2G(z,ρ)F′(0)

[
G(z− z′, ρ)I′(z′)

]0+

0−
= 2G(z,ρ)F′(0)

Using the following notation for the principal-value integral,

−
∫ h
−h
=
∫ 0−

−h
+
∫ h

0+
it follows from Eq. (22.2.4) that,

4πjωεEz(z, ρ) = −
∫ h
−h
G(z− z′, ρ)

[
I′′(z′)+k2I(z′)

]
dz′

−
[
G(z− z′, ρ)I′(z′)

]0−

−h
−
[
G(z− z′, ρ)I′(z′)

]h
0+
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which gives,

4πjωεEz(z, ρ) = −
∫ h
−h
G(z− z′, ρ)

[
I′′(z′)+k2I(z′)

]
dz′ +

+ 2I′(0+)G(z, ρ)−I′(h)
[
G(z− h,ρ)+G(z+ h,ρ)

] (22.2.5)

where we used I′(h)= −I′(−h). Finally, we can write,

4πjωεEz(z, ρ) = −
∫ h
−h
e−jkR

R

[
I′′(z′)+k2I(z′)

]
dz′ +

+ 2I′(0+)e
−jkR0

R0
− I′(h)

[
e−jkR1

R1
+ e

−jkR2

R2

] (22.2.6)

The last three terms are the standard terms found in the previous section. The
principal-value integral term represents the correction that must be added to enable the
boundary conditions. The other field components can now be obtained from Ez using
similar procedures as in the previous section. For Hφ, we find:

−4πjkρHφ(z, ρ) = −
∫ h
−h
e−jkR

[
I′′(z′)+k2I(z′)

]
dz′ +

+ 2I′(0+)e−jkR0 − I′(h)[e−jkR1 + e−jkR2
] (22.2.7)

which may also be written in the form:

− 4πjkρHφ(z, ρ)=
∫ h
−h
I(z′)(∂2

z′ + k2)e−jkRdz′ (22.2.8)

obtained by reversing the above differential identity steps. Similarly, we have:

−4πjωερEρ(z, ρ) = −
∫ h
−h
z− z′
R

e−jkR
[
I′′(z′)+k2I(z′)

]
dz′ +

+ 2I′(0+) z
R0
e−jkR0 − I′(h)

[
z− h
R1

e−jkR1 + z+ h
R2

e−jkR2

] (22.2.9)

which may also be written as,

− 4πjωερEρ(z, ρ)=
∫ h
−h
I(z′)(∂2

z′ + k2)
(
z− z′
R

e−jkR
)
dz′ (22.2.10)

Our procedure for obtaining improved near fields is to first get an improved solution
for the current I(z) and then use it in Eq. (22.2.6) to calculate the field Ez(z, ρ). We will
use the three-term approximation for the current:

I(z)= A1
[
sin(k|z|)− sin(kh)

]+A2
[
cos(kz)− cos(kh)

]+A3

[
cos

(
kz
2

)
−cos

(
kh
2

)]
(22.2.11)

and fix the coefficients A1,A2,A3 by fitting this expression to a numerical solution as
discussed in Sec. 21.6, and then, use Eq. (22.2.11) into (22.2.6) with the integral term
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Fig. 22.2.1 Calculated near field Ez(z, ρ) for l = 0.5λ.

evaluated numerically. Fig. 22.2.1 shows the results of such a calculation for a half-
wave antenna l = 0.5λ with radius a = 0.005λ. Fig. 22.2.2 shows the results for a
full-wave antenna l = 1.0λ with the same radius. The required quantities appearing in
(22.2.6) are calculated as follows:

I′′(z′)+k2I(z′)= −k2A1 sinkh− k2A2 coskh− k2A3

[
cos

(
kh
2

)
− 3

4
cos

(
kz′

2

)]
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Fig. 22.2.2 Calculated near field Ez(z, ρ) for l = 1.0λ.

I′(0+)= −I′(0−)= kA1

I′(h)= −I′(−h)= kA1 coskh− kA2 sinkh− 1

2
kA3 sin

(
kh
2

)

The numerical solutions were obtained by solving the Hallén equation with point-
matching, pulse basis functions, and the exact kernel usingM = 100 upper-half current
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samples In. These current samples were then used as in Eq. (21.6.15) to obtain the
parameters A1,A2,A3.

The upper-left graphs show the current I(z) of Eq. (22.2.11) together with the sam-
ples In to which it was fitted.

The upper-right graphs show the magnitude of Ez(z, ρ) as a function of ρ for z fixed
at z = 0.2h. The behavior of Ez(z, ρ) is consistent initially with a logarithmic depen-
dence on ρ as predicted by King and Wu [1238,1239] and discussed below, followed then
by the expected 1/ρ decrease arising from the last three standard terms of Eq. (22.2.6),
which are represented by the dashed curves.

The left middle-row graphs display the logarithmic dependence more clearly by plot-
ting the real and imaginary parts of Ez(z, ρ) versus ln(ρ/a), including the King-Wu
approximation of Eq. (22.2.15).

The right middle-row graphs show the magnitude of the field Ez(z, a) at the surface
of the antenna as a function of z over the interval 0 ≤ z ≤ h. Except at the feed and end
points, the field is effectively zero as required by the boundary conditions.

To observe the importance of the correction term, that is, the principal-value integral
in Eq. (22.2.6), the third-row graphs display the real and imaginary parts of Ez(z, a)
versus z. Plotted separately are also the correction and standard terms, which appear
always to have opposite signs canceling each other so that the net field is zero.

The graphs for Fig. 22.2.1 were generated by the following MATLAB code (for Figure
22.2.2 simply set L=1):

L = 0.5; h = L/2; a = 0.005; k = 2*pi; eta = 377;
M = 100; [In,zn] = hdelta(L,a,M,’e’,’p’); % Hallen solution
Inp = In(M+1:end); znp = zn(M+1:end); % keep upper-half only

z = 0:h/100:h;
A = kingfit(L,Inp,znp,3); I = kingeval(L,A,z); % 3-term fit

s = 1000; % scale in units of mA
plot(z,abs(I)*s,’-’, znp,abs(Inp)*s,’.’, ’markersize’,11); % upper-left graph

I1h = k*(A(1)*cos(k*h) - A(2)*sin(k*h) - A(3)/2 * sin(k*h/2)); % I’(h)
I10 = A(1)*k; % I’(0+)

G = @(x,r) exp(-j*k*sqrt(x.^2 + r.^2))./sqrt(x.^2 + r.^2); % kernel function
Helm = @(z) -k^2*(A(1)*sin(k*h) + A(2)*cos(k*h) + A(3)*(cos(k*h/2)-3/4*cos(k*z/2)));

z = 0.2*h; r = linspace(a,200*a, 1001); logr = log(r/a);
S = -j*eta/4/pi/k; % scale factor, note omega*epsilon = k/eta

[wi,zi] = quadrs([-h,0,h],32); % quadrature weights and evaluation points

for i=1:length(r),
GHelm = G(z-zi,r(i)) .* Helm(zi);
E1(i) = (wi’*GHelm) * S; % correction term
E2(i) = (- I1h * (G(z-h,r(i)) + G(z+h,r(i))) + 2*I10 * G(z,r(i))) * S;
E(i) = E1(i) + E2(i);

end

Eapp = E(1) - Helm(z) * logr * 2*S; % King-Wu approximation adjusted by Ez(z,a)

figure; plot(r,abs(E), r,abs(Eapp),’:’, r,abs(E2),’--’); % upper-right graph
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figure; plot(logr,real(E), logr,real(Eapp),’--’,...
logr,imag(E),’-.’, logr,imag(Eapp),’:’); % middle-left graph

clear E E1 E2;
z = linspace(0,h,201); r = a;

for i=1:length(z),
GHelm = G(z(i)-zi,r) .* Helm(zi);
E1(i) = (wi’*GHelm) * S;
E2(i) = (- I1h * (G(z(i)-h,r) + G(z(i)+h,r)) + 2*I10 * G(z(i),r)) * S;
E(i) = E1(i) + E2(i);

end

figure; plot(z,abs(E),’-’); % middle-right graph
figure; plot(z,real(E), z,real(E1),’--’, z,real(E2),’:’); % lower-left graph
figure; plot(z,imag(E), z,imag(E1),’--’, z,imag(E2),’:’); % lower-right graph

Next, we discuss the King-Wu small-ρ approximation [1238,1239]; see also McDonald
[1293]. First, we note that the Hφ and Eρ components in Eqs. (22.2.8) and (22.2.10)
were obtained by using Maxwell’s equations (22.1.2), that is, Ampère’s laws ∂ρ(ρHφ)=
jωερEz and jωεEρ = −∂zHφ. We may also verify Faraday’s law, which has only a φ
component in this case:

∂ρEz − ∂zEρ = jωμHφ (22.2.12)

Indeed, this can be derived from Eqs. (22.2.3), (22.2.8), and (22.2.10) by using the identity:

ρ
∂
∂ρ

(
e−jkR

R

)
+ ∂
∂z

(
z− z′
R

e−jkR
)
= −jke−jkR

For a thin antenna, the small-ρ dependence of Hφ is obtained by taking the limit
ρ → 0 in the right-hand side of Eq. (22.2.8). In this limit, we have e−jkR = e−jk|z−z′|,
which is recognized as the Green’s function of the one-dimensional Helmholtz equation
discussed in Sec. 21.3 that satisfies (∂2

z′ +k2)e−jk|z−z′| = −2jkδ(z−z′). It follows then,

−4πjkρHφ(z, ρ) =
∫ h
−h
I(z′)(∂2

z′ + k2)e−jkRdz′ →
∫ h
−h
I(z′)(∂2

z′ + k2)e−jk|z−z
′|dz′

= −2jk
∫ h
−h
I(z′)δ(z− z′)dz′ = −2jkI(z)

or, for small ρ,

Hφ(z, ρ)= I(z)
2πρ

(22.2.13)

Let Q(z) denote the charge density per unit z-length along the antenna, which is
related to I(z) via the charge conservation equation I′(z)+jωQ(z)= 0. Then, the Eρ
component can be obtained from Maxwell’s equation:

jωεEρ = −∂zHφ = − I
′(z)

2πρ
= jωQ(z)

2πρ

that is, for small ρ:

Eρ(z, ρ)= Q(z)
2περ

(22.2.14)
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The same result can also be derived from Eq. (22.2.10) by recognizing the small-ρ
limit (z− z′)e−jkR/R→ sign(z− z′)e−jk|z−z′|, which satisfies the Helmholtz identity:

(∂2
z′ + k2)sign(z− z′)e−jk|z−z′| = 2∂zδ(z− z′)

Combining Eqs. (22.2.13) and (22.2.14) into the Faraday equation (22.2.12), we have,

∂ρEz = ∂zEρ + jωμHφ = Q′(z)
2περ

+ jωμI(z)
2πρ

= j
ωε

I′′(z)+k2I(z)
2πρ

Integrating from ρ = a, we obtain the small-ρ King-Wu approximation:

Ez(z, ρ)= Ez(z, a)+ j
2πωε

[
I′′(z)+k2I(z)

]
ln
(
ρ
a

)
(22.2.15)

Strictly speaking, we must set Ez(z, a)= 0 because of the boundary condition. How-
ever, in our numerical solution, we have kept the term Ez(z, a), which is small but not
necessarily exactly zero, in order to compare the analytical calculation (22.2.15) with
the numerical solution. The left middle-row graphs confirm the linear dependence on
ln(ρ/a) with the right slope.

For longer antennas, up to about l = 3λ, the four-term approximation discussed in
Sec. 21.6 can be used and leads to similar results. In this case, the following current
expressions should be used:

I(z) = A1
[
sin(k|z|)− sin(kh)

]+A2
[
cos(kz)− cos(kh)

]+
+A3

[
cos

(
kz
4

)
− cos

(
kh
4

)]
+A4

[
cos

(
3kz

4

)
− cos

(
3kh

4

)]

I′′(z′)+k2I(z′) = −k2A1 sinkh− k2A2 coskh− k2A3

[
cos

(
kh
4

)
− 15

16
cos

(
kz′

4

)]

− k2A4

[
cos

(
3kh

4

)
− 7

16
cos

(
3kz′

4

)]

I′(0+)= −I′(0−)= kA1

I′(h)= −I′(−h)= kA1 coskh− kA2 sinkh− 1

4
kA3 sin

(
kh
4

)
− 3

4
kA4 sin

(
3kh

4

)

We observe in the upper-right figures that the maximum values of |Ez(z, ρ)| occur
roughly at distance:

ρ = λ
20

(22.2.16)

and this remains roughly true for antenna lengths 0.5 ≤ l/λ ≤ 1.3 and radii 0.001 ≤
a/λ ≤ 0.007 and for a variety of distances along the antenna, such as, 0.2h ≤ z ≤ 0.7h.

Thus, this distance may be taken as a rough measure of the distance beyond which
the standard terms begin to take over and the sinusoidal current approximation becomes
justified.

The mutual impedance formulas that we develop in succeeding sections are based
on the sinusoidal assumption, and therefore, they can be used more reliably for antenna
separations d that are greater than that of Eq. (22.2.16). For example, to increase one’s
confidence, one could take the separations to be greater than, say, double the above
value, that is, d ≥ λ/10.
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22.3 Self and Mutual Impedance

The mutual coupling between antennas cannot be ignored if the antennas are near each
other. The mutual impedance is a measure of such proximity effects [2,1308–1320].

Consider two parallel center-driven linear dipoles, as shown in Fig. 22.3.1. Their
distance along the x-direction is d and their centers are offset by b along the z-direction.

Fig. 22.3.1 Parallel linear dipoles.

If antenna-1 is driven and antenna-2 is open-circuited, the near field generated by
the current on antenna-1 will cause an open-circuit voltage, sayV21,oc on antenna-2. The
mutual impedance of antenna-2 due to antenna-1 is defined to be:

Z21 = V21,oc

I1
(22.3.1)

where I1 is the input current on antenna-1. Reciprocity implies that Z12 = Z21. More
generally, if both antennas are driven, then, the relationship of the driving voltages to
the input currents is given by:

V1 = Z11I1 + Z12I2
V2 = Z21I1 + Z22I2

(22.3.2)

The quantities Z11, Z22 are the self impedances of the two antennas and are approx-
imately equal to the input impedances of the isolated antennas, that is, when the other
antenna is absent. If antenna-2 is open-circuited, so that I2 = 0, then the second of
Eqs. (22.3.2) gives (22.3.1).

In order to derive convenient expressions that allow the calculation of the mutual
and self impedances, we use the reciprocity result given in Eq. (21.5.6) for the short-
circuit current and open-circuit voltage induced on a receiving antenna in the presence
of an incident field.

If antenna-2 is open-circuited and the z-component of the electric field generated
by antenna-1 and incident on antenna-2 is E21(z), then according to Eq. (21.5.6), the
induced open-circuit voltage will be:

V21,oc = − 1

I2

∫ h2

−h2

E21(z)I2(z)dz (22.3.3)
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where h2 = l2/2, and I2(z), I2 = I2(0) are the current and input current on antenna-2
when it is transmitting. It follows from definition (22.3.1) that:

Z21 = V21,oc

I1
= − 1

I1I2

∫ h2

−h2

E21(z)I2(z)dz (22.3.4)

Assuming that the currents are sinusoidal,

I1(z) = I1 sin
(
k(h1 − |z|)

)
sinkh1

= Im1 sin
(
k(h1 − |z|)

)

I2(z) = I2 sin
(
k(h2 − |z|)

)
sinkh2

= Im2 sin
(
k(h2 − |z|)

)
then, according to Eq. (22.1.9) the electric field E21(z) along antenna-2 will be:

Ez(z)= − jηIm1

4π

[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
(22.3.5)

where −h2 ≤ z ≤ h2, and R1, R2, R0 are defined in Fig. 22.3.1:

R0 =
√
d2 + (z+ b)2

R1 =
√
d2 + (z+ b− h1)2

R2 =
√
d2 + (z+ b+ h1)2

(22.3.6)

Inserting Eq. (22.3.5) into (22.3.4) and rearranging some constants, we find the final
expression for the mutual impedance Z21:

Z21 = jη
4π sinkh1 sinkh2

∫ h2

−h2

F(z)dz (22.3.7)

F(z)=
[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
sin
(
k(h2 − |z|)

)
(22.3.8)

This is the mutual impedance referred to the input terminals of the antennas. If
one or both of the antennas have lengths that are multiples of λ, then one or both of
the denominator factors sinkh1, sinkh2 will vanish resulting in an infinite value for the
mutual impedance.

This limitation is caused by the sinusoidal current assumption. We saw in Chap. 21
that the actual input currents are not zero in a real antenna. On the other hand, in most
applications of Eq. (22.3.7) the lengths differ slightly from half-wavelength for which the
sinusoidal approximation is good.

The definition (22.3.4) can also be referred to the maximum currents by normalizing
by the factor Im1Im2, instead of I1I2. In this case, the mutual impedance is Z21m =
Z21 sinkh1 sinkh2, that is,

Z21m = jη
4π

∫ h2

−h2

F(z)dz (22.3.9)
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The self-impedance of a single antenna can be calculated also by the same formula
(22.3.7). Evaluating the near-field on the surface of the single antenna, that is, at d = a,
where a is the antenna radius, and setting h2 = h1 and b = 0 in Eq. (22.3.6), we find:

Z11 = − 1

I2
1

∫ h1

−h1

E11(z)I1(z)dz = jη
4π sin2 kh1

∫ h1

−h1

F(z)dz (22.3.10)

F(z)=
[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
sin
(
k(h1 − |z|)

)
(22.3.11)

R0 =
√
a2 + z2 , R1 =

√
a2 + (z− h1)2 , R2 =

√
a2 + (z+ h1)2 (22.3.12)

The MATLAB function imped implements Eq. (22.3.7), as well as (22.3.10). It returns
both Z21 and Z21m and has usage:

[Z21,Z21m] = imped(L2,L1,d,b) % mutual impedance of dipole 2 due to dipole 1

[Z21,Z21m] = imped(L2,L1,d) % b = 0, side-by-side arrangement

[Z,Zm] = imped(L,a) % self impedance

where all the lengths are in units of λ. The function uses 16-point Gauss-Legendre
integration, implemented with the help of the function quadr, to perform the integral
in Eq. (22.3.7).

In evaluating the self impedance of an antenna with a small radius, the integrand
F(z) varies rapidly around z = 0. To maintain accuracy in the integration, we split the
integration interval into three subintervals, as we mentioned in Sec. 21.10.

Example 22.3.1: Because the function imped uses an even length (that is, 16) for the Gauss-
Legendre integration, the integrand F(z) is never evaluated at z = 0, even if the antenna
radius is zero. This allows us to estimate the self-impedance of an infinitely thin half-
wavelength antenna by setting L = 0.5 and a = 0:

Z = imped(0.5,0)= 73.0790+ 42.5151j Ω

Similarly, for radii a = 0.001λ and 0.005λ, we find:

Z = imped(0.5,0.001)= 73.0784+ 42.2107j Ω
Z = imped(0.5,0.005)= 73.0642+ 40.6319j Ω

A resonant antenna is obtained by adjusting the length L such that the reactance part of Z
becomes zero. The resonant length depends on the antenna radius. For zero radius, this
length is L = 0.48574823 and the corresponding impedance, Z = 67.1843 Ω. 
�

Example 22.3.2: Consider two identical parallel half-wavelength dipoles in side-by-side arrange-
ment separated by distance d. The antenna radius is a = 0.001 and therefore, its self
impedance is as in the previous example. If antenna-1 is driven and antenna-2 is parasitic,
that is, short-circuited, then Eq. (22.3.2) gives:

V1 = Z11I1 + Z12I2
0 = Z21I1 + Z22I2
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Solving the second for the parasitic current I2 = −I1Z21/Z22 and substituting in the first,
we obtain driving-point impedance of the first antenna:

Zin = V1

I1
= Z11 − Z12Z21

Z22
= Z11

(
1− Z

2
21

Z2
11

)

where we used Z12 = Z21 and Z22 = Z11. The ratio Z2
21/Z2

11 quantifies the effect of the
coupling and the deviation of Zin from Z11. For example, we find the values:

d 0.125λ 0.25λ 0.50λ 0.75λ 1.00λ
|Z21/Z11|2 0.58 0.35 0.15 0.08 0.05

Thus, the ratio decreases rapidly with increasing distance d. Fig. 22.3.2 shows a plot of
Z21 versus distance d. 
�

0 1 2 3 4
−40

0

40

80
Mutual Impedance,  Z21 = R21 + jX21

d/λ

 resistance R
21

 reactance X
21

 

 1/d envelope     

Fig. 22.3.2 Mutual impedance between identical half-wave dipoles vs. separation.

For separations d that are much larger than the antenna lengths, the impedance Z21

falls like 1/d. Indeed, it follows from Eq. (22.3.6) that for large d, all three distances
R0, R1, R2 become equal to d. Therefore, (22.3.8) tends to:

F(z)→ e−jkd

d
(
2− 2 coskh1

)
sin
(
k(h2 − |z|)

)
which, when inserted into (22.3.7), gives the asymptotic form:

Z21 → jη(1− coskh1)(1− coskh2)
π sinkh1 sinkh2

e−jkd

kd
, for large d (22.3.13)

The envelope of this asymptotic form was superimposed on the graph of Fig. 22.3.2.
The oscillatory behavior of Z21 with distance is essentially due to the factor e−jkd.

An alternative computation method of the mutual impedance is to reduce the inte-
grals (22.3.7) to the exponential integral E1(z) defined in Appendix F, taking advantage
of MATLAB’s built-in function expint.
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By folding the integration range [−h1, h1] in half and writing sin
(
k(h2 − |z|)

)
as a

sum of exponentials, Eq. (22.3.7) can be reduced to a sum of terms of the form:

G(z0, s)=
∫ h1

0

e−jkR

R
e−jksz dz , R =

√
d2 + (z− z0)2 , s = ±1 (22.3.14)

which can be evaluated in terms of E1(z) as:

G(z0, s)= se−jksz0
[
E1(ju0)−E1(ju1)

]
(22.3.15)

with

u0 = k
[√
d2 + z2

0 − sz0

]

u1 = k
[√
d2 + (h1 − z0)2 + s(h1 − z0)

]
Indeed, the integral in (22.3.7) can be written as a linear combination of 10 such terms:

∫ h1

−h1

F(z)dz =
10∑
i=1

ci G(zi, si) (22.3.16)

with the following values of zi, ci, and si, where c1 = ejkh2/(2j):

i zi si ci
1 h1 − b 1 c1

2 −h1 + b 1 c1

3 −h1 − b 1 c1

4 h1 + b 1 c1

5 b 1 −4c1 coskh1

i zi si ci
6 h1 − b −1 c∗1
7 −h1 + b −1 c∗1
8 −h1 − b −1 c∗1
9 h1 + b −1 c∗1
10 b −1 −4c∗1 coskh1

The MATLAB function Gi implements the “Green’s function integral” of (22.3.14).
The function imped2, which is an alternative to imped, uses (22.3.16) to calculate (22.3.7).

The input impedance (22.3.10) deserves a closer look. Replacing the exponential
integrals in (22.3.16) in terms of their real and imaginary parts,

E1(ju)= −γ− lnu+Cin(u)+j
(
Si(u)−π

2

)
as defined in Eq. (F.27), then (22.3.10) can be expressed in the following form, where we
set Z11 = Zin = Rin + jXin, h1 = h, and l = 2h:

Zin = Rin + jXin = η
2π

A+ jB
sin2 kh

(22.3.17)

With the definitions l± =
√
a2 + h2 ± h and L± =

√
a2 + 4h2 ± 2h, we obtain:

A =Cin(kl+)+Cin(kl−)−2Cin(ka)

+ 1

2
coskl

[
2Cin(kl+)−Cin(kL+)+2Cin(kl−)−Cin(kL−)−2Cin(ka)

]

+ 1

2
sinkl

[
2Si(kl−)−Si(kL−)+Si(kL+)−2Si(kl+)

]
(22.3.18)
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B =Si(kl+)+Si(kl−)−2Si(ka)

+ 1

2
coskl

[
2Si(kl+)−Si(kL+)+2Si(kl−)−Si(kL−)−2Si(ka)

]

+ 1

2
sinkl

[
2Cin(kl+)−Cin(kL+)+Cin(kL−)−2Cin(kl−)+2 ln

(
aL+
l2+

)] (22.3.19)

These expressions simplify substantially if we assume that the radius a is small, as
is the case in practice. In particular, assuming that ka 1 and a h, the quantities
l± and L± can be approximated by:

l+ � 2h = l , l− = a2

l+
� a2

l

L+ � 4h = 2l , L− = a2

L+
� a2

2l

(22.3.20)

Noting that Si(x) and Cin(x) vanish at x = 0, we may neglect all the terms whose
arguments are kl−, kL−, or ka, and replace kl+ = kl and kL+ = 2kl, obtaining:

A = Cin(kl)+1

2
coskl

[
2Cin(kl)−Cin(2kl)

]+ 1

2
sinkl

[
Si(2kl)−2Si(kl)

]
(22.3.21)

B = Si(kl)+1

2
coskl

[
2Si(kl)−Si(2kl)]+1

2
sinkl

[
2Cin(kl)−Cin(2kl)+2 ln

(
2a
l

)]
(22.3.22)

We note that A is independent of the radius a and leads to the same expression for
the radiation resistance that we found in Sec. 16.3 using Poynting methods.

An additional approximation can be made for the case of a small dipole. Assuming
that kh 1, in addition to ka 1 and a h, we may expand each of the above terms
into a Taylor series in the variable kh using the following Taylor series expansions of
the functions Si(x) and Cin(x):

Si(x)� x− 1

18
x3 + 1

600
x5 , Cin(x)� 1

4
x2 − 1

96
x4 + 1

4320
x6 (22.3.23)

Such expansions, lead to the following input impedance Z = R + jX to the lowest
non-trivial order in kl :

Zin = Rin + jXin = η
2π

[
1

12
(kl)2+j4(1+ L)

kl

]
(small dipole) (22.3.24)

where L = ln(2a/l). The resistance R is identical to that obtained using the Poynting
method and assuming a linear approximation to the sinusoidal antenna current, which
is justified when kh 1:

I(z)= I0 sin
(
k(h− |z|))
sinkh

� I0 k(h− |z|)kh
= I0

(
1− |z|

h

)
(22.3.25)
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22.4 Coupled Two-Element Arrays

Next, we consider a more precise justification of Eq. (22.3.2) and generalize it to the
case of an arbitrary array of parallel linear antennas. Fig. 22.4.1 shows two z-directed
parallel dipoles with centers at locations (x1, y1) and (x2, y2).

We assume that the dipoles are center-driven by the voltage generators V1, V2. Let
I1(z), I2(z) be the currents induced on the dipoles by the generators and by their mu-
tual interaction, and let h1, h2 be the half-lengths of the antennas, and a1, a2, their
radii. Then, assuming the thin-wire model, the total current density will have only a
z-component given by:

Jz(x′, y′, z′)= I1(z′)δ(x′ − x1)δ(y′ − y1)+I2(z′)δ(x′ − x2)δ(y′ − y2) (22.4.1)

Fig. 22.4.1 Array of two linear antennas.

It follows that the magnetic vector potential will be:

Az(z,ρρρ)= μ
4π

∫
e−jkR

R
Jz(x′, y′, z′)dx′dy′dz′ , R = |r− r′|

where ρρρ = x x̂ + y ŷ is the cylindrical radial vector. Inserting (22.4.1) and performing
the x′, y′ integrations, we obtain:

Az(z,ρρρ)= μ
4π

∫ h1

−h1

e−jkR1

R1
I1(z′)dz′ + μ

4π

∫ h2

−h2

e−jkR2

R2
I2(z′)dz′ (22.4.2)

where, as shown in Fig. 22.4.1,R1, R2 are the distances from the z′ point on each antenna
to the (x, y, z) observation point, that is,

R1 =
√
(z− z′)2+(x− x1)2+(y − y1)2 =

√
(z− z′)2+|ρρρ− d1|2

R2 =
√
(z− z′)2+(x− x2)2+(y − y2)2 =

√
(z− z′)2+|ρρρ− d2|2

(22.4.3)

where d1 = (x1, y1) and d2 = (x2, y2) are the xy-locations of the antenna centers. The
z-component of the electric field generated by the two antenna currents will be:

jωεμEz(z,ρρρ)= (∂2
z + k2)Az(z,ρρρ)
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Working with the rescaled vector potential V(z,ρρρ)= 2jcAz(z,ρρρ), we rewrite:

V(z,ρρρ)= jη
2π

∫ h1

−h1

e−jkR1

R1
I1(z′)dz′ + jη

2π

∫ h2

−h2

e−jkR2

R2
I2(z′)dz′ (22.4.4)

(∂2
z + k2)V(z,ρρρ)= −2kEz(z,ρρρ) (22.4.5)

Denoting by V1(z) and V2(z) the values of V(x, y, z) on the surfaces of antenna-1
and antenna-2, we obtain from Eq. (22.4.4):

V1(z)= V11(z)+V12(z)

V2(z)= V21(z)+V22(z)
(22.4.6)

The z-components of the electric fields induced on the surfaces of antenna-1 and
antenna-2 are obtained by applying Eq. (22.4.5) to each term of (22.4.6):

E1(z)= E11(z)+E12(z)

E2(z)= E21(z)+E22(z)
(22.4.7)

where we defined, for p,q = 1,2:

Vpq(z)= jη
2π

∫ hq
−hq

Gpq(z− z′)Iq(z′)dz′

(∂2
z + k2)Vpq(z)= −2kEpq(z)

(22.4.8)

and the impedance kernels:

Gpq(z− z′)= e−jkRpq
Rpq

, Rpq =
√
(z− z′)2+d2

pq (22.4.9)

If p �= q, then dpq is the xy-distance between the antennas, and if p = q, it is the
radius of the corresponding antenna, that is,

d12 = d21 = |d1 − d2| =
√
(x1 − x2)2+(y1 − y2)2

d11 = a1, d22 = a2

(22.4.10)

Thus,Vpq(z) andEpq(z) are the vector potential and the z-component of the electric
field induced on antenna-p by the current Iq(z) on antenna-q.

To clarify these definitions, Fig. 22.4.2 shows a projected view of Fig. 22.4.1 on the
xy plane. The point P with radial vector ρρρ is the projection of the observation point
(z,ρρρ). When P coincides with a point, such as P2, on the surface of antenna-2 defined
by the radial vectorρρρ2, then the distance (P2O2)= |ρρρ2−d2| will be equal to the antenna
radius a2, regardless of the location of P2 around the periphery of the antenna.

On the other hand, the distance (P2O1)= |ρρρ2−d1| varies with P2. However, because
the separation d12 is typically d12 � a2, such variation is minor and we may replace
|ρρρ2−d1| by |d2−d1|. Thus, in evaluatingV(z,ρρρ2) on antenna-2, we may use Eq. (22.4.4)
with R1, R2 defined by:
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R1 =
√
(z− z′)2+|d2 − d1|2 =

√
(z− z′)2+d2

12

R2 =
√
(z− z′)2+|ρρρ2 − d2|2 =

√
(z− z′)2+a2

2

(22.4.11)

Fig. 22.4.2 Array of two linear antennas.

Now, on the surface of the first antenna, the electric field Ez must cancel the field of
the delta-gap generator in order for the total tangential field to vanish, that is, E1(z)=
−E1,in(z)= −V1δ(z). Similarly, on the surface of the second antenna, we must have
E2(z)= −E2,in(z)= −V2δ(z). Then, Eq. (22.4.7) becomes:

E11(z)+E12(z)= E1(z)= −V1δ(z)
E21(z)+E22(z)= E2(z)= −V2δ(z)

(22.4.12)

Combining these with the Eq. (22.4.8), we obtain the coupled version of the Hallén-
Pocklington equations:

(∂2
z + k2)

[
V11(z)+V12(z)

] = 2kV1δ(z)

(∂2
z + k2)

[
V21(z)+V22(z)

] = 2kV2δ(z)
(22.4.13)

We will solve these numerically in Sec. 22.7. Next, we derive Eq. (22.3.2). Accord-
ing to definitions (22.3.4) and (22.3.10), the mutual impedance between antenna-p and
antenna-q can be restated as follows, for p,q = 1,2:

Zpq = − 1

IpIq

∫ hp
−hp

Epq(z)Ip(z)dz (22.4.14)

and, more explicitly:

Z11 = − 1

I1I1

∫ h1

−h1

E11(z)I1(z)dz , Z12 = − 1

I1I2

∫ h1

−h1

E12(z)I1(z)dz

Z21 = − 1

I2I1

∫ h2

−h2

E21(z)I2(z)dz , Z22 = − 1

I2I2

∫ h2

−h2

E22(z)I2(z)dz
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Using these definitions and Eq. (22.4.12), we find:

Z11I1 + Z12I2 = − 1

I1

∫ h1

−h1

[
E11(z)+E12(z)

]
I1(z)dz

= − 1

I1

∫ h1

−h1

[−V1δ(z)
]
I1(z)dz = 1

I1
V1I1(0)= V1

where, by definition, I1(0)= I1. Similarly, we can show the second of Eq. (22.3.2).
The mutual impedance defined in Eq. (22.4.14) actually satisfies the reciprocity sym-

metry condition, Zpq = Zqp. To write it in a form that shows this condition explicitly,
we replace Epq(z) by (22.4.8) and obtain the alternative symmetric form:

Zpq = jη
4πk

∫ hp
−hp

∫ hq
−hq

Ip(z)Iq(z′)
IpIq

(∂2
z + k2)Gpq(z− z′)dzdz′ (22.4.15)

If we assume that the currents are sinusoidal, that is, for p = 1,2,

Ip(z)= Ip sin
(
k(hp − |z|)

)
sinkhp

(22.4.16)

then, in Eq. (22.4.15) the ratios Ip(z)/Ip and henceZpq become independent of the input
currents at the antenna terminals and depend only on the geometry of the antennas.

22.5 Arrays of Parallel Dipoles

The above results on two antennas generalize in a straightforward fashion to several
antennas. Fig. 22.5.1 depicts the case of K parallel dipoles in side-by-side arrangement
with centers at positions (xp, yp), and driving voltages, lengths, half-lengths, and radii,
Vp, lp, hp, ap, where p = 1,2 . . . , K.

Fig. 22.5.1 Two-dimensional array of parallel dipoles.

Assuming sinusoidal currents as in Eq. (22.4.16), we define the mutual impedances
Zpq by Eq. (22.4.14) or (22.4.15), where p,q take on the values p,q = 1,2 . . . , K. The
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Hallén-Pocklington equations (22.4.13) generalize into:

(∂2
z + k2)

K∑
q=1

Vpq(z)= −2k
K∑
q=1

Epq(z)= 2kVpδ(z) , p = 1,2, . . . , K (22.5.1)

where Vpq(z) is defined by Eqs. (22.4.8) and (22.4.9). The mutual distances are:

dpq =
{ √

(xp − xq)2+(yp − yq)2 , if p �= q
ap, if p = q (22.5.2)

Multiplying Eq. (22.5.1) by Ip(z) and integrating along the length of the pth antenna,
and using the mutual impedance definitions (22.4.14), we obtain the generalization of
Eq. (22.3.2) to the case of K antennas:

Vp =
K∑
q=1

ZpqIq , p = 1,2, . . . , K (22.5.3)

where Iq is the input current at the center of the qth antenna. Eq. (22.5.3) may be written
in a compact matrix form:

V = ZI (22.5.4)

where Z is the impedance matrix. For example, in the case K = 4, we have:

V =

⎡
⎢⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎥⎦ = ZI

We note that Z is a symmetric matrix, Z = ZT, as a consequence of the reciprocity
relations Zpq = Zqp.

Given the driving voltages Vp, Eq. (22.5.4) may be solved for the input currents Ip,
which completely define the assumed sinusoidal currents Ip(z) of Eq. (22.4.16). From
the knowledge of the currents Ip(z), one can obtain the radiation pattern of the array.
Indeed, the radiation fields are obtained from Eq. (16.1.6), that is,

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ,φ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ,φ)sinθ

(22.5.5)

where the radiation vector F = ẑFz has only a z-component given by:

Fz(θ,φ)=
∫
V′
Jz(r′)ejk·r

′
dr′ (22.5.6)

But, in the thin-wire approximation, the total current density of the array is:

Jz(r′)=
K∑
p=1

Ip(z′)δ(x′ − xp)δ(y′ − yp)
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Inserting this into Eq. (22.5.6) and performing the x′, y′ integrations, we obtain:

Fz(θ,φ)=
K∑
p=1

ejkxxp+jkyyp
∫ hp
−hp

Ip(z′)ejkzz
′
dz′ (22.5.7)

Using Eq. (22.4.16) for Ip(z) and replacing kz = k cosθ, we obtain:

Fz(θ,φ)=
K∑
p=1

ejkxxp+jkyyp
2Ip

k sinkhp
cos(khp cosθ))− coskhp

sin2 θ
(22.5.8)

The radiation intensity is given, in general, by Eq. (15.1.4):

U(θ,φ)= ηk2

32π2

∣∣sinθFz(θ,φ)
∣∣2

Replacing kx = k sinθ cosφ and ky = k sinθ sinφ, we obtain:

U(θ,φ)= η
8π2

∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2

Thus, the normalized gain of the array will be, up to a proportionality constant:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2

(22.5.9)

Equations (22.5.4) and (22.5.9) provide a complete solution to the problem of cou-
pled antenna arrays, based on the sinusoidal approximation for the currents. In the
special case of identical antennas, Eq. (22.5.9) factors as usual into an array factor and
an element factor:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ipejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2 ∣∣∣∣∣cos(kh cosθ))− coskh

sinkh sinθ

∣∣∣∣∣
2

The MATLAB function impedmat calculates the K×K mutual impedance matrix Z of
such an array, given the antenna lengths and radii, lp, ap, and the coordinates (xp, yp),
for p = 1,2, . . . , K. It has usage:

Z = impedmat(L,a,d); % mutual impedance matrix of array of parallel dipoles

where all the lengths must be given in units ofλ. It calls imped to calculate the individual
matrix elements Zpq.

The input parameters L, a, d are the vectors of antenna lengths, antenna radii, and
(xp, yp) pairs, or the xp positions, if the array is along the x-axis:

L =

⎡
⎢⎢⎢⎢⎢⎣
L1

L2

...
LK

⎤
⎥⎥⎥⎥⎥⎦ , a =

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

...
aK

⎤
⎥⎥⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎢⎢⎣
x1, y1

x2, y2

...
xK, yK

⎤
⎥⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎢⎣
x1

x2

...
xK

⎤
⎥⎥⎥⎥⎥⎦
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The MATLAB function gain2s calculates the E-plane and H-plane array gains using
Eq. (22.5.9) and assumes that the input currents Ip have been obtained by solving
Eq. (22.5.4). It has usage:

[ge,gh,th] = gain2s(L,d,I,N,ph0); % gain of 2D array of dipoles with sinusoidal currents

[ge,gh,th] = gain2s(L,d,I,N); % equivalent to φ0 = 0

where the input parameters L, a have the same meaning as in impedmat, and I is the
vector of input currents I = [I1, I2, . . . , IK]. The output angle parameter th is either the
polar or the azimuthal angle and takes N equally-spaced values in the interval [0,2π].

The H-plane gain gH(φ) is defined to be the azimuthal gain on the xy-plane corre-
sponding to θ = π/2, and the E-plane gain gE(θ) is defined to be the polar gain on any
fixed azimuthal plane φ = φ0, that is,

gH(φ)= g(π/2,φ), 0 ≤ φ ≤ 2π

gE(θ)= g(θ,φ0), 0 ≤ θ ≤ 2π
(22.5.10)

Note that by allowing θ to vary over [0,2π], the E-plane gain can give both the
forward and backward gain. The polar angle range [0,π] covers the forward direction
φ = φ0, whereas, the range [π,2π] covers the backward direction φ = φ0 +π, that
is, we have the equivalence:

g(θ,φ0)= g(θ−π,φ0 +π), π ≤ θ ≤ 2π

This follows from the trigonometric identities:

sin(θ−π)cos(φ0 +π)= sinθ cosφ0

sin(θ−π)sin(φ0 +π)= sinθ sinφ0

Because both gains are defined over a 2π-angular range, they must be plotted with
the MATLAB functions abp2 and abz2, or in dB, with dbp2 and dbz2.

Example 22.5.1: Three-element parasitic array. Undriven parasitic antennas located near trans-
mitting ones can act as reflectors or directors, directing the radiation towards certain
preferred directions. Fig. 22.5.2 shows an array of three half-wavelength dipoles. The
geometry is the same as that of Example 19.3.3. The xy-coordinates of the elements are
d1 = (0,0), d2 = (0.5λ,0), and d3 = (0,0.5λ).
Let V = [V1, V2, V3]T be the driving voltages of the three elements. If only element-1 is
driven and the others parasitic, we may take V = [1,0,0]T .

If the mutual couplings between the antennas are ignored, that is, the impedance matrix Z
of Eq. (22.5.4) is taken to be diagonal, then, the input currents, will be I = [I1,0,0] and the
parasitic elements will be completely passive as though they were absent. The radiation
pattern would be that of a single half-wave dipole. In particular, the azimuthal pattern
would be omnidirectional.

This is not the case if the mutual couplings are taken into account. The parasitic elements
act as reflectors, reflecting the radiation back towards the active element-1. By the sym-
metry of the arrangement, the maximum directivity will be in the direction with azimuthal
angle φ = −135o. Fig. 22.5.3 shows the resulting H-plane and E-plane radiation patterns



22.5. Arrays of Parallel Dipoles 929

Fig. 22.5.2 Three-element array.
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Fig. 22.5.3 H-plane and E-plane radiation patterns, V = [1,0,0]T .

demonstrating this behavior. The dashed gains were computed by solving the coupled sys-
tem of Hallén equations for the exact currents on each of the three antennas, as discussed
in Example 22.7.1.

Assuming equal radii, a = 0.001λ, the 3×3 impedance matrix Z is found to be:

Z =
⎡
⎢⎣ 73.08+ 42.21j −12.52− 29.91j −12.52− 29.91j
−12.52− 29.91j 73.08+ 42.21j −24.62+ 0.78j
−12.52− 29.91j −24.62+ 0.78j 73.08+ 42.21j

⎤
⎥⎦

Then, the solution of Eq. (22.5.4) is:

I =
⎡
⎢⎣ I1I2
I3

⎤
⎥⎦ = Z−1V = Z−1

⎡
⎢⎣ 1

0
0

⎤
⎥⎦ =

⎡
⎢⎣ 0.0133∠−7.46o

0.0066∠18.23o

0.0066∠18.23o

⎤
⎥⎦

The typical MATLAB code used to generate these graphs was as follows:

L = [0.5, 0.5, 0.5]; % lengths

a = [0.001, 0.001, 0.001]; % radii

d = [0,0; 0.5,0; 0,0.5]; % xy locations

930 22. Coupled Antennas

Z = impedmat(L,a,d); % impedance matrix

V = [1; 0; 0]; % driving voltages

I = Z\V; % input currents

ph0 = 45; % 45o azimuthal plane for polar gain

[ge1,gh1,ph] = gain2s(L,d,I,360,ph0); % gain2s assumes sinusoidal currents

M = 40; % number of upper-half samples

[I,z] = hcoupled2(L,a,d,V,M); % solves for currents on all antennas

[ge2,gh2,ph] = gain2d(L,d,I,360,ph0); % gain2d uses Hallén currents

figure; dbz2(ph,gh1,30,12); dbadd2(2,’--’,ph,gh2,30,12);
figure; dbp2(ph,ge1,30,12); dbadd2(1,’--’,ph,ge2,30,12);

Anticipating the symmetry about the 45o azimuthal plane, the E-plane gain was computed
withφ0 = 45o. As expected, the polar plot shows that the maximum gain is in the backward
φ0 direction, that is, toward φ0 + 180o = 225o = −135o. 
�

Example 22.5.2: Next, consider the case when element-one is parasitic, but elements two and
three are driven by equal voltages, V = [0,1,1]T . If the mutual coupling is ignored, then
the two active elements act as an array which is broadside to the line joining them, that
is, maximum directivity is in the 45o azimuthal direction, but with both the forward and
the backward (i.e., −135o) directions being equal. This pattern is shown in the upper-right
graph of Fig. 19.3.4.

If the mutual couplings are taken into account, element-1 will act as a reflector, reflecting
towards the φ0 = 45o direction and reducing the gain in the opposite direction. This is
demonstrated in Fig. 22.5.4. As in the previous example, the dashed gains correspond to
the exact coupled Hallén solution.
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Fig. 22.5.4 H-plane and E-plane radiation patterns, V = [0,1,1]T .

Because of the identical geometry, the impedance matrix Z is the same as that of the
previous example. But, the input currents are different:
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I =
⎡
⎢⎣ I1I2
I3

⎤
⎥⎦ = Z−1V = Z−1

⎡
⎢⎣ 0

1
1

⎤
⎥⎦ =

⎡
⎢⎣ 0.0133∠18.23o

0.0173∠−19.04o

0.0173∠−19.04o

⎤
⎥⎦

The only change in the previous MATLAB code was to use V = [0,1,1]T . 
�

Example 22.5.3: One of the earliest experimental studies of parasitic reflectors was by Nagy
[1312]. One of his arrangements is shown in Fig. 22.5.5 in which the driven element is at
the origin and the other three elements are parasitic. The antenna lengths were l = 1.19
m, and their radii a = 0.395 cm. The operating wavelength was λ = 2.5 meters, (i.e.,
frequency of 120 MHz.)

Fig. 22.5.5 Four-element parasitic array.

It follows that, l = 0.476λ and a = 0.00158λ. Elements two and four were placed symmet-
rically along the y-axis at distances ±0.535λ, and element three was on the negative side
of the x-axis at distance 0.248λ from the origin. Fig. 22.5.6 shows the calculated patterns.
We observe that the three parasitic antennas act as reflectors, enhancing the radiation in
the φ = 0 direction.
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Fig. 22.5.6 H-plane and E-plane radiation patterns, V = [1,0,0,0]T .
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This array was later studied theoretically by Brown [1313], using the same methods as
those presented here. Brown treated monopole antennas (i.e, half dipoles above a ground
plane,) and therefore, the values of his mutual impedances are half of ours. The inputs to
the design equations were the parameters:

L =

⎡
⎢⎢⎢⎣

0.476
0.476
0.476
0.476

⎤
⎥⎥⎥⎦ , a =

⎡
⎢⎢⎢⎣

0.00158
0.00158
0.00158
0.00158

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

0.000, 0.000
0.000, 0.535

−0.248, 0.000
0.000, −0.535

⎤
⎥⎥⎥⎦

The impedance matrix elements are:

Z11 = Z22 = Z33 = 63.42∠0.65o, Z12 = Z14 = 26.76∠−123.87o

Z13 = 43.56∠−34.69o, Z23 = Z34 = 24.78∠−141.96o

Z24 = 14.74∠53.15o

With V = [1,0,0,0]T , the solution of ZI = V is:

I =

⎡
⎢⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.0135∠−26.26o

0.0043∠74.61o

0.0126∠116.70o

0.0043∠4.61o

⎤
⎥⎥⎥⎦

and we find for the ratios:

I2
I1
= I4
I1
= 0.3180∠100.87o ,

I3
I1
= 0.9343∠142.96o

These numerical results are in close agreement with Brown’s [1313]. The dashed Hallén
gains are not shown, as in the previous examples, because they are virtually indistinguish-
able from the sinusoidal ones (for M = 40.) 
�

Example 22.5.4: Coupled Dolph-Chebyshev array. In this example, we study the impact of
mutual coupling on the array design methods of Chap. 20. For a typical array spacing of
half-wavelength, the mutual impedance matrix is diagonally dominant and therefore, there
will be some but minor impact on the design.

Fig. 22.5.7 shows a 15-element array of z-directed half-wavelength dipoles with spacing
d = λ/2 arranged along the x-axis. The antenna radii are a = 0.001λ.

Fig. 22.5.7 Fifteen-element Dolph-Chebyshev array.
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We take the feed voltages V = [V1, V2, . . . , V15]T to be Dolph-Chebyshev weights that
would steer the azimuthal array gain towards φ0 = 120o and would achieve a 20-dB side-
lobe level. These weights can be designed with the function dolph.

If the mutual coupling is ignored, the impedance matrix Z will be proportional to the
identity matrix because the antenna elements are identical. Then, the input currents I will
be essentially equal to the driving voltages V and the array will behave according to the
desired design.

If the mutual coupling is taken into account, the currents must be calculated from the
solution of ZI = V and some distortions on the desired angular pattern may occur because
Z is no longer diagonal.

Fig. 22.5.8 shows the azimuthal and polar gain patterns with and without mutual coupling.
The primary effect is to distort the sidelobe levels so that they are no longer equal. But
they are still acceptable as a close approximation to the desired Dolph-Chebyshev pattern.
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Fig. 22.5.8 H-plane and E-plane patterns with and without coupling.

The typical MATLAB code used in this example was as follows:

K = 15;
ph0 = 120; % steering angle

934 22. Coupled Antennas

L = 0.5 * ones(1,K); % vector of antenna lengths

a = 0.001 * ones(1,K); % antenna radii

d = (0:K-1)*0.5; % equally-spaced with λ/2 spacing

V = dolph(0.5, ph0, K, 20).’; % Dolph design with 20-dB sidelobes

Z = impedmat(L,a,d); % 15×15 impedance matrix

I = Z\V; % input currents

[ge,gh,ph] = gain2s(L,d,I,400,ph0); % gains with coupling

figure; dbz2(ph,gh); % azimuthal gain

figure; dbp2(ph,ge); % polar gain

[ge,gh,ph] = gain2s(L,d,V,400,ph0); % gains without coupling

figure; dbz2(ph,gh);
figure; dbp2(ph,ge);

The E-plane polar gains were computed on the plane of the desired steering angle, that is,
φ0 = 120o. The figures show that maximum gain is at θ = 90o in the φ0 direction. In the
case without coupling, we set I = V inside gain2s because any proportionality constant
gets canceled out. 
�

22.6 Yagi-Uda Antennas

A special type of parasitic array is the Yagi-Uda array shown in Fig. 22.6.1. The z-
directed dipoles are arranged along the x-axis. The second dipole is driven; all others
are parasitic.

Fig. 22.6.1 Five-element Yagi-Uda array.

The first dipole has length slightly longer than that of the driven dipole, and acts as a
“reflector”. The elements to the right of the driven dipole have lengths slightly shorter,
and act as “directors.” The reflector and directors direct the radiation preferentially
towards endfire, that is, along the x-axis.

The Yagi-Uda array is widely used as a TV reception antenna and achieves fairly good
directivity with such a simple structure. Good directivity characteristics are realized
with certain choices for the antenna lengths and separations.
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The analysis of the Yagi-Uda array follows the steps of the previous section. We
assume that there are K dipoles, with the last K − 2 being the directors, and that the
currents are sinusoidal as in Eq. (22.4.16) because the antenna lengths are of the order
of half-wavelength. Then, we compute the mutual impedance matrix Z and the input
currents I = Z−1V. Because only the second element is driven, the vector of voltages is:

V = [0,1,0,0, . . . ,0︸ ︷︷ ︸
(K−2) zeros

]T (22.6.1)

Once we have the input currents I = [I1, I2, . . . , IK]T, the gain of the array is com-
puted by Eq. (22.5.9), which simplifies into the following form because the dipoles lie
along the x-axis:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejkxp sinθ cosφ

∣∣∣∣∣∣
2

(22.6.2)

We assume that the lengths and separations are such that the maximum gain is
towards endfire, that is, towards θ = 90o, φ = 0o. The forward and backward gains,
and the forward-backward or front-to-back ratio are defined as:

gf = gmax = g(90o,0o), gb = g(90o,180o), Rfb = gf
gb

(22.6.3)

It follows that the normalized gain will be gn(θ,φ)= g(θ,φ)/gf . Integrating it
over all solid angles, we obtain the beam solid angle and hence the directivity of the
Yagi-Uda array:

ΔΩ =
∫ π

0

∫ 2π

0
gn(θ,φ)sinθdθdφ, D = 4π

ΔΩ
(22.6.4)

In dB, the directivity and forward-backward ratio are 10 log10D and 10 log10Rfb.
The MATLAB function yagi implements the above design steps. It computes the input
currents I as well as the directivity and forward-backward ratio. Its usage is:

[I,D,Rfb] = yagi(L,a,d); % Yagi-Uda array design

The function always assumes that the second element is the driven element and sets
the value of V according to Eq. (22.6.1). The double integral in Eq. (22.6.4) is done with a
16-point Gauss-Legendre quadrature integration formula for each integration variable.

Example 22.6.1: Reflectors and directors. The simplest possible Yagi-Uda array has one driven
element and either one reflector and no directors, or a single director and no reflector.
Fig. 22.6.2 depicts the two cases.

If the reflector is slightly longer than the driven element, and if the director is slightly
shorter, then in both cases the radiation will be directed to the right, along the x-axis.
Fig. 22.6.3 shows the resulting radiation patterns.

The length of the driven element was 0.50λ and that of the reflector and director, 0.54λ
and 0.46λ, respectively. The antenna radii were a = 0.003λ and their separation d = 0.1λ.
The mutual impedances were calculated with impedmat:
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Fig. 22.6.2 The simplest Yagi-Uda arrays.
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Fig. 22.6.3 H-plane and E-plane gains of simple Yagi-Uda arrays.

Z =
[

92.47+ 104.19j 75.68+ 11.63j
75.68+ 11.63j 73.07+ 41.37j

]
, Z =

[
73.07+ 41.37j 59.77+ 4.35j
59.77+ 4.35j 57.65− 17.01j

]

The typical MATLAB code that was used was:

L = [0.54,0.50] % reflector case
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a = 0.003*[1,1]; % radii

d = [0,0.1]; % x-coordinates of locations

Z = impedmat(L,a,d); % impedance matrix

I = Z\[0,1]’; % input currents

[ge,gh,th] = gain2s(L,d,I,400); % gain computation

figure; dbz2(th,gh,30,16); % azimuthal gain

figure; dbp2(th,ge,30,16); % polar gain

The driving voltages were in the two cases: V = [0,1]T and V = [1,0]T . 
�

Example 22.6.2: Three-element Yagi. Here, we consider a three-element Yagi-Uda array with
one reflector, one driven element, and one director. The corresponding antenna lengths,
radii, and locations along the x-axis (with the driven element at the origin) were in units of
λ:

L =
⎡
⎢⎣ 0.50

0.48
0.46

⎤
⎥⎦ , a =

⎡
⎢⎣ 0.003

0.003
0.003

⎤
⎥⎦ , d =

⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ −0.125

0
0.125

⎤
⎥⎦

The azimuthal and polar gains are shown in Fig. 22.6.4. The dashed gains correspond to the
exact coupled Hallén equations, as discussed in Example 22.7.3. The computed directivity
and front/back ratio wereD = 8.18 dB and Rfb = 18.69 dB. Thus, the array achieves a gain
of D− 2.15 = 6.03 dB over a single half-wavelength dipole.
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Fig. 22.6.4 Azimuthal and polar gains of three-element Yagi-Uda array.

The impedance matrix was:

Z =
⎡
⎢⎣ 73.07+ 41.37j 60.47− 0.97j 36.25− 25.53j

60.47− 0.97j 64.93+ 11.75j 53.72− 2.71j
36.25− 25.53j 53.72− 2.71j 57.65− 17.01j

⎤
⎥⎦

The input currents and input impedance of the driving element were:
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I =
⎡
⎢⎣ I1I2
I3

⎤
⎥⎦ =

⎡
⎢⎣ −0.0290+ 0.0176j

0.1062− 0.0182j
−0.0801− 0.0256j

⎤
⎥⎦ , Z2 = V2

I2
= 1

I2
= 9.15+ 1.57j

The typical MATLAB code for this example was:

L = [0.50, 0.48, 0.46]; % antenna lengths

a = 0.003*[1,1,1]; % radii

d = [-0.125, 0, 0.125]; % x-locations

[I,D,Rfb] = yagi(L,a,d); % solve ZI = V

[ge,gh,th] = gain2s(L,d,I,360); % compute gains at 1o increments

M = 40; % number of upper-half samples

[I,z] = hcoupled(L,a,d,[0,1,0],M); % compute Hallén currents

[ge2,gh2,ph] = gain2d(L,d,I,360); % gain of Hallén currents

figure; dbz2(ph,gh); dbadd2(2,’--’,ph,gh2);
figure; dbp2(ph,ge); dbadd2(1,’--’,ph,ge2);

The driving voltages were defined within yagi to be V = [0,1,0]T . 
�

Example 22.6.3: Optimized six-element Yagi. Chen and Cheng [1327] applied King’s three-term
current approximation [4] and devised procedures for optimizing the choices of the an-
tenna lengths and separations of Yagi-Uda arrays. Fig. 22.6.5 shows the gains before and
after optimization of a six-element Yagi-Uda array calculated with the functions yagi and
gain2s. The antenna radii were a = 0.003369λ.

For the unoptimized case, the antenna lengths and x-locations were in units of λ:

L = [L1, L2, L3, L4, L5, L6]= [0.510,0.490,0.430,0.430,0.430,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.310,0.620,0.930,1.240]

The directors were identical and equally spaced at spacing of 0.31λ. The computed direc-
tivity and front/back ratio were 11 dB and 9.84 dB, respectively. The optimized case has
slightly different lengths and x-locations:

L = [L1, L2, L3, L4, L5, L6]= [0.476,0.452,0.436,0.430,0.434,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.289,0.695,1.018,1.440]

Typical MATLAB code was as follows:

L = [0.476, 0.452, 0.436, 0.430, 0.434, 0.430];
a = 0.003369 * [1,1,1,1,1,1];
d = [-0.25, 0, 0.289, 0.695, 1.018, 1.440];

[I,D,Rfb] = yagi(L,a,d);
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Fig. 22.6.5 Gains of six-element Yagi-Uda array.

[ge,gh,th] = gain2s(L,d,I,360);

figure; dbz2(th,gh,30,40);
figure; dbp2(th,ge,30,40);

The optimized directivity was 12.54 dB and the forward/backward ratio 17.6 dB. 
�

22.7 Hallén Equations for Coupled Antennas

In Sects. 22.4 and 22.5, we developed the Hallén-Pocklington equations for coupled an-
tennas, that is, Eqs. (22.4.8)–(22.4.9) and (22.5.1). Here, we discuss their numerical solu-
tion. On the pth antenna, we have:

(∂2
z + k2)Vp(z)= 2kVpδ(z), p = 1,2, . . . , K (22.7.1)
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where Vp is the driving delta-gap input and Vp(z) is the sum of the (scaled) vector
potentials due to the currents on all antennas:

Vp(z)=
K∑
q=0

Vpq(z)= jη
2π

K∑
q=0

∫ hq
−hq

Gpq(z− z′)Iq(z′)dz′ (22.7.2)

where we recall the definition of the impedance kernel:

Gpq(z− z′)= e−jkR

R
, R =

√
(z− z′)2+d2

pq (22.7.3)

and dpq are the mutual distances or radii, as defined in Eq. (22.5.2). The use of the ap-
proximate kernel in (22.7.3) is well-justified for the off-diagonal terms (p �= q) because
the distances dpq are typically much greater than the radii. However, for the diagonal
term (p = q), one could use the exact kernel given as in (21.7.10) by,

Gpp(z− z′)= 2

π

∫ π/2
0

e−jkR

R
dθ , R =

√
(z− z′)2+4a2

p − 4a2
p sin2 θ (22.7.4)

Following the discussion of Sec. 21.3, the solution of (22.7.1) is of the form:

Vp(z)= Cp coskz+Vp sink|z|, −hp ≤ z ≤ hp (22.7.5)

where we assumed that all the antennas are center-driven, and therefore, Vp(z) will
be even in z. Combining (22.7.5) with (22.7.2), we obtain the coupled system of Hallén
equations, for p = 1,2, . . . , K:

jη
2π

K∑
q=0

∫ hq
−hq

Gpq(z− z′)Iq(z′)dz′ = Cp coskz+Vp sink|z| (22.7.6)

The K constants C1, C2, . . . , CK are determined by imposing the end conditions on
the K currents: Ip(hp)= 0, for p = 1,2, . . . , K.

To solve this system, we use a basis-function expansion of the form of Eq. (21.8.3)
and apply point matching. For simplicity, we take the same number of sampling points
on each antenna,N = 2M+1. Because the antenna lengths may be different, the sample
spacings will also be different. On the qth antenna we have,

zm =mΔq , Δq = 2hq
2M + 1

= lq
N
, −M ≤m ≤M (22.7.7)

The basis-function expansion for the qth current is

Iq(z′)=
M∑

m=−M
Iq(zm)Bq(z′ − zm), q = 1,2, . . . , K (22.7.8)

We are going to use only the pulse and the triangular bases defined by Eqs. (21.8.4)
and (21.11.2), respectively, with sample spacing Δ = Δq. For the triangular basis, we
must set Δq = hq/M instead of Δq = 2hq/(2M + 1).
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Inserting (22.7.8) into (22.7.6) and sampling along the p-th antenna, that is, at the
points zn = nΔp, for −M ≤ n ≤M, we obtain the discretized system:

jη
2π

K∑
q=0

M∑
m=−M

Iq(zm)
∫ hq
−hq

Gpq(zn − z′)Bq(z′ − zm)dz′ = Cp coskzn +Vp sink|zn|

We define the N×N impedance matrix Zpq whose nmth matrix element is:

Zpq(n,m) = jη
2π

∫ hq
−hq

Gpq(zn − z′)Bq(z′ − zm)dz′

= jη
2π

∫ hq
−hq

Gpq(zn − zm − z)Bq(z)dz
(22.7.9)

with −M ≤ n,m ≤M. In particular, for the pulse basis, these take the form:

Zpq(n,m)= jη
2π

∫ Δq/2
−Δq/2

Gpq(zn − zm − z)dz (22.7.10)

and, for the triangular basis:

Zpq(n,m)= jη
2π

∫ Δq
−Δq

(
1− |z|

Δq

)
Gpq(zn − zm − z)dz (22.7.11)

Denoting Iq(m)= Iq(zm), the discretized Hallén system becomes:

K∑
q=0

M∑
m=−M

Zpq(n,m)Iq(m)= Cp coskzn +Vp sink|zn| (22.7.12)

where p = 1,2, . . . , K. And, written in a more compact form:

K∑
q=0

ZpqIq = Cpcp +Vpsp (22.7.13)

where we defined the N-dimensional vectors:

Iq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq(M)
...

Iq(1)
Iq(0)
Iq(1)

...
Iq(M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, cp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coskzM
...

coskz1

coskz0

coskz1

...
coskzM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, sp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinkzM
...

sinkz1

sinkz0

sinkz1

...
sinkzM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22.7.14)

and used the even symmetry in z. The vectors cp and sp depend on p through the sample
spacing in zn = nΔp, −M ≤ n ≤M.
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The system (22.7.13) providesK coupled matrix equations by which to determine the
K sampled current vectors I1, I2, . . . , IK on each antenna. TheN×NmatricesZpq are not
Toeplitz, unless the antennas are identical, in which case Δp = Δq and the Zpq(n,m)
depends only on the difference n−m. Of course, for p = q, Zpp is both symmetric and
Toeplitz.

However, while not Toeplitz, the matrix Zpq is reversal-invariant because of the
property Zpq(n,m)= Zpq(−n,−m), which follows from Eq. (22.7.9). Therefore, the
matrix system (22.7.13) can be wrapped in half by the procedure discussed in Sec. 21.9,
which replaced the matrix equation (21.9.6) by (21.9.7).

Here, each N×N matrix Zpq is wrapped to size (M + 1)×(M + 1) by the same
process. The resulting system looks identical to (22.7.13), except the currents and right-
hand sides are essentially half those of (22.7.14):

Iq =

⎡
⎢⎢⎢⎢⎢⎣
Iq(0)
Iq(1)

...
Iq(M)

⎤
⎥⎥⎥⎥⎥⎦ , cp =

⎡
⎢⎢⎢⎢⎢⎣

coskz0

coskz1

...
coskzM

⎤
⎥⎥⎥⎥⎥⎦ , sp =

⎡
⎢⎢⎢⎢⎢⎣

sinkz0

sinkz1

...
sinkzM

⎤
⎥⎥⎥⎥⎥⎦ (22.7.15)

In particular, if all antennas are identical, then the wrapping process can be made
even more efficient using the Toeplitz-Hankel properties of the wrapped matrices, as
discussed in Example 21.9.1. In any case, we will assume in the sequel that the system
(22.7.13) has been wrapped in half.

If the constants Cp were known, the solution of the system (22.7.13) could be ob-
tained by writing it as a single block-matrix linear system of the form:

ZI = Cc+Vs (22.7.16)

where Z is the K×K block matrix whose pqth matrix element is the (M + 1)×(M + 1)
matrix Zpq, and C, V are appropriate block-diagonal matrices. The vectors I, c, s are the
concatenations of Ip, cp, sp. For example, in the case K = 3, the system (22.7.13) reads:

Z11I1 +Z12I2 +Z13I3 = C1c1 +V1s1

Z21I1 +Z22I2 +Z23I3 = C2c2 +V2s2

Z31I1 +Z32I2 +Z33I3 = C3c3 +V3s3

This can be written in the 3×3 block-matrix form:⎡
⎢⎣Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤
⎥⎦
⎡
⎢⎣ I1

I2

I3

⎤
⎥⎦ =

⎡
⎢⎣C1I 0 0

0 C2I
0 0 C3I

⎤
⎥⎦
⎡
⎢⎣ c1

c2

c3

⎤
⎥⎦+

⎡
⎢⎣V1I 0 0

0 V2I 0
0 0 V3I

⎤
⎥⎦
⎡
⎢⎣ s1

s2

s3

⎤
⎥⎦

where I is the (M + 1)×(M + 1) identity matrix.
Next, we discuss the determination of the constants Cp. The condition Ip(M)= 0

can be written vectorially in the form uTIp = 0, where u = [0, . . . ,0,1]T, as was done in
Sec. 21.9. Separating the pth term of the pth equation in (22.7.13), we have:

ZppIp +
∑
q�=p

ZpqIq = Cpcp +Vpsp (22.7.17)
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Solving for Ip and multiplying by uT, we obtain the condition:

uTIp = CpuTZ−1
ppcp +VpuTZ−1

ppsp −
∑
q�=p

uTZ−1
ppZpqIq = 0

Defining the quantity up = Z−1
ppu, we solve this condition for Cp:

Cp = 1

uTpcp

⎛
⎝∑
q�=p

uTpZpqIq −VpuTpsp

⎞
⎠

Inserting Cp into Eq. (22.7.17) and rearranging terms, we obtain:

ZppIp +
∑
q�=p

(
I − cpuTp

cTpup

)
ZpqIq = Vp

(
I − cpuTp

cTpup

)
sp (22.7.18)

To simplify it, we define the (M + 1)×(M + 1) projection matrices:

Pp = I −
cpuTp
cTpup

, p = 1,2, . . . , K (22.7.19)

Then, Eq. (22.7.18) can be written in the form:

ZppIp +
∑
q�=p

PpZpqIq = VpPpsp (22.7.20)

Thus, eliminating the constants Cp by enforcing the end conditions, amounts to
replacing the impedance matrices Zpq by the projected ones:

Z̄pq =
{ Zpp, if q = p
PpZpq, if q �= p (22.7.21)

and the term sp by the projected one, s̄p = Ppsp. Then, Eq. (22.7.20) can be written in
the form:

K∑
q=0

Z̄pqIq = Vps̄p , p = 1,2, . . . , K (22.7.22)

or, compactly in the block-matrix form:

Z̄I = Vs̄ (22.7.23)

with solution:

I =

⎡
⎢⎢⎢⎢⎢⎣

I1

I2

...
IK

⎤
⎥⎥⎥⎥⎥⎦ = Z̄

−1Vs̄ = Z̄−1

⎡
⎢⎢⎢⎢⎢⎣
V1s̄1

V2s̄2

...
VKs̄K

⎤
⎥⎥⎥⎥⎥⎦ (22.7.24)

The MATLAB function hcoupled implements the above solution procedure. First, it
constructs the impedance matricesZpq by calculating the integrals in Eq. (22.7.9) using a
32-point Gauss-Legendre quadrature integration formula. Second, it wraps the matrices
Zpq in half and puts them together into the block-matrix Z. And third, it constructs the
projected matrix Z̄ and the solution (22.7.24). Its usage is:
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[I,z] = hcoupled(L,a,d,V,M,ker,basis); % solve Hallén equations for coupled dipoles

where L, a,d are the vectors of antenna lengths, radii, and xy-locations, and V is the
vector of the driving voltages V = [V1, V2, . . . , VK]. The parameters L, a,d have the
same usage as in the functions yagi and gain2s. The string input ker takes the val-
ues ’e’,’a’ for using the exact or the approximate kernel in the computation of the
diagonal elements of the impedance matrix. The basis parameter can take only the two
values ’p’,’t’ for pulse or triangular basis.

The output I is the (2M+1)×Kmatrix whose pth column is the double-sided vector
of current samples Ip(zm), zm = mΔp, −M ≤ m ≤ M. Thus, the matrix elements of
I are I(m,p)= Ip(zm). Similarly, the pth column of the output matrix z holds the
sampled z-locations on the pth antenna, that is, z(m,p)=mΔp.

The output matrix I is obtained by using the MATLAB function reshape to reshape
the

(
K(M+1)

)
-dimensional column vector solution (22.7.24) into a matrix of size (M+

1)×K, and then, symmetrizing it to size (2M + 1)×K.
A faster version of hcoupled is the function hcoupled2, which assumes that the

antennas are identical. It is faster because it makes use of the Toeplitz-Hankel structure
of the wrapped matrices Zpq to construct them more efficiently. Its usage is:

[I,z] = hcoupled2(L,a,d,V,M,ker,basis)); % Hallén equations for coupled identical dipoles

where I has the same meaning as in hcoupled, but z is now a single column vector, that
is, zm = mΔ, −M ≤ m ≤ M. In both hcoupled2 and hcoupled, the final solution is
obtained by solving the system (22.7.23), which is

(
K(M+1)

)×(K(M+1)
)
-dimensional.

In order to conveniently manipulate the block impedance matrices, we developed a
MATLAB function, blockmat, which is used extensively inside hcoupled2 and hcoupled.
It allows one to create block matrices and to extract or insert sub-blocks. Its usage is as
follows:

Z = blockmat(K,K,M+1,M+1); % create a
(
K(M + 1)

)×(K(M + 1)
)

matrix of zeros

Zpq = blockmat(K,K,p,q,Z); % extract pqth submatrix of Z

Z = blockmat(K,K,p,q,Z,Zpq); % insert Zpq into pqth submatrix of Z

s = blockmat(K,1,M+1,1); % create a
(
K(M + 1)

)
-dimensional column of zeros

sp = blockmat(K,1,p,1,s); % extract the pth subvector of s

s = blockmat(K,1,p,1,s,sp); % insert sp into pth subvector of s

Once the sampled currents Ip(m) are known, the gain of the array can be computed
by finding the total current density, J(r)= ẑJz(r) :

Jz(r)=
K∑
p=1

Ip(z)δ(x− xp)δ(y − yp)=
K∑
p=1

M∑
m=−M

Ip(m)Bp(z− zm)δ(x− xp)δ(y − yp)

where we used Eq. (22.7.8). The corresponding radiation vector is:

Fz(θ,φ) =
∫
Jz(r)ejk·r d3r =

M∑
m=−M

K∑
p=1

Ip(m)ejkxxp+jkyyp
∫ hp
−hp

Bp(z− zm)ejkzz dz

=
M∑

m=−M

K∑
p=1

Ip(m)ejkxxp+jkyypejkzzm
∫ hp
−hp

Bp(z)ejkzz dz
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Performing the z-integration, we finally get:

Fz(θ,φ)=
M∑

m=−M

K∑
p=1

Ip(m)ejkzmΔpejkxxp+jkyyp Δp

[
sin(kzΔp/2)
kzΔp/2

]b
(22.7.25)

where kx = k sinθ cosφ, ky = k sinθ sinφ, and kz = k cosθ, and b = 1 for the pulse
basis and b = 2 for the triangular one. The corresponding normalized gain of the array
will be, up to a constant:

g(θ,φ)= ∣∣sinθFz(θ,φ)
∣∣2

(22.7.26)

The MATLAB function gain2d computes the E-plane polar gain and the H-plane
azimuthal gain from Eqs. (22.7.25) and (22.7.26). Its usage is:

[ge,gh,th] = gain2d(L,d,I,N,ph0,basis) % gain of 2D array of antennas with Hallén currents

[ge,gh,th] = gain2d(L,d,I,N,ph0) % equivalent to basis=’p’ (pulse basis)

[ge,gh,th] = gain2d(L,d,I,N,basis) % equivalent to ph0=0

[ge,gh,th] = gain2d(L,d,I,N) % equivalent to ph0=0, basis=’p’

where the current input I is exactly the same as the output matrix from hcoupled
or hcoupled2. The meaning of the outputs are exactly the same as in the function
gain2s discussed in Sec. 22.5. The string basis takes the values ’p’ or ’t’, for pulse
or triangular basis.

The difference between gain2s and gain2d is that the former assumes the currents
are sinusoidal and I represents only the input currents, I = [I1, I2, . . . , IK]. whereas in
the latter, the full (2M + 1)×K current matrix is needed, I = [I1, I2, . . . , IK].

Example 22.7.1: Hallén solution of parasitic array. Consider the three-element array of Example
22.5.1 and shown in Fig. 22.5.2. The Hallén currents on each antenna can be computed
by using hcoupled2 because the elements are identical. Fig. 22.7.1 shows the computed
sampled currents with N = 2M + 1 = 81 or M = 40.
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Fig. 22.7.1 Currents on driven and parasitic antennas.

Because of the symmetry, the currents on the two parasitic antennas are the same. For all
three antennas, the currents are essentially sinusoidal, justifying the use of this assump-
tion. The gains computed with gain2d, and under the sinusoidal assumption with gain2s,
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were shown in Fig. 22.5.3. The MATLAB code used to generate the currents and the gains
was given in Example 22.5.1. 
�

Example 22.7.2: Full-wavelength parasitic array. If one or more of the antennas has length
equal to a multiple of λ, the analysis methods based on the sinusoidal assumption break
down because the impedance matrix computed with Eq. (22.4.15) becomes infinite.

On the other hand, the numerical solution of the Hallén system can still be carried through
giving a finite answer. Fig. 22.7.2 shows the gains and currents of the parasitic array of
Example 22.5.1, but all the antennas being full-wavelength elements, l = λ. The distance of
the parasitic antennas to the driven element was also changed to d = 0.25λ from d = 0.5λ.
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Fig. 22.7.2 Gains and currents of full-wavelength parasitic array.

The sinusoidal assumption for the driven element is fairly accurate except near z = 0,
where the current has an non-zero value. But on the parasitic element, the sinusoidal
assumption is completely wrong. 
�

Example 22.7.3: Three-element Yagi-Uda array. Here, we compute the currents on the three
antennas of the Yagi-Uda array of Example 22.6.2. Because the antennas are not identical,
the function hcoupled must be used. The gains were computed with gain2s and gain2d

in Example 22.6.2. and shown in Fig. 22.6.4. The sampled currents on the three antennas
are shown in Fig. 22.7.3.



22.8. Problems 947

We observe that the sinusoidal assumption is fairly accurate. The MATLAB code used to
generate the current graphs was as follows:

L = [0.50, 0.48, 0.46]; h = L/2;
a = 0.003 * [1, 1, 1];
d = [-0.125, 0, 0.125];
V = [0, 1, 0]; % can be defined as column or row

k = 2*pi;
M = 40;

[I,z] = hcoupled(L,a,d,V,M);

I1 = abs(I(M+1:end,1)); m1 = max(I1); z1 = z(M+1:end,1);
I2 = abs(I(M+1:end,2)); m2 = max(I2); z2 = z(M+1:end,2);
I3 = abs(I(M+1:end,3)); m3 = max(I3); z3 = z(M+1:end,3);

s1 = 0:h(1)/50:h(1); Is1 = m1*abs(sin(k*(h(1)-s1)));
s2 = 0:h(2)/50:h(2); Is2 = m2*abs(sin(k*(h(2)-s2)));
s3 = 0:h(3)/50:h(3); Is3 = m3*abs(sin(k*(h(3)-s3)));

figure; plot(z1, I1, ’.’, s1, Is1, ’:’);
figure; plot(z2, I2, ’.’, s2, Is2, ’:’);
figure; plot(z3, I3, ’.’, s3, Is3, ’:’);

Note that I1, I2, and I3 are obtained from the three columns of I, and z1, z2, and z3 from
the three columns of z. Only the currents on the upper-half of each antenna are plotted.
The sinusoidal currents are scaled to the maximum values of the corresponding Hallén
currents.
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Fig. 22.7.3 Currents on the Yagi antennas.

These examples demonstrate the remark made earlier that the sinusoidal assumption is
justified only for antennas with lengths near half a wavelength. 
�

22.8 Problems

22.1 Show that the asymptotic form of Eq. (22.3.7) for the mutual impedance between two parallel
dipoles separated by a distance d is given by

Z21 = jη
π

tan
(
kh1

2

)
tan

(
kh2

2

)
e−jkd

kd
, for large d
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22.2 Using the higher-order terms in the series (22.3.23), show that the input impedance Zin =
R+ jX of a small dipole is given as follows to order (kl)4, where L = ln(2a/l):

R = η
2π

[
1

12
(kl)2+ 1

360
(kl)4

]
, X = η

2π

[
4(1+ L)
kl

− 1

3

(
L+ 2

3

)
(kl)− 1

180

(
L− 11

30

)
(kh)3

]

22.3 Consider a small dipole with a linear current given by Eq. (22.3.25). Determine the radiation
vector, and the radiated electric and magnetic fields at a far distance r from the dipole. Cal-
culate the radiated power Prad by integrating the radial Poynting vector over a large sphere.
Then identify the radiation resistance R through the definition:

Prad = 1

2
R|I0|2

and show R is the same as that given by Eq. (22.3.24)


