
19
Antenna Arrays

19.1 Antenna Arrays

Arrays of antennas are used to direct radiated power towards a desired angular sector.
The number, geometrical arrangement, and relative amplitudes and phases of the array
elements depend on the angular pattern that must be achieved.

Once an array has been designed to focus towards a particular direction, it becomes
a simple matter to steer it towards some other direction by changing the relative phases
of the array elements—a process called steering or scanning.

Figure 19.1.1 shows some examples of one- and two-dimensional arrays consisting
of identical linear antennas. A linear antenna element, say along the z-direction, has
an omnidirectional pattern with respect to the azimuthal angle φ. By replicating the
antenna element along the x- or y-directions, the azimuthal symmetry is broken. By
proper choice of the array feed coefficients an, any desired gain pattern g(φ) can be
synthesized.

If the antenna element is replicated along the z-direction, then the omnidirectionality
with respect toφ is maintained. With enough array elements, any prescribed polar angle
pattern g(θ) can be designed.

In this section we discuss array design methods and consider various design issues,
such as the tradeoff between beamwidth and sidelobe level.

For uniformly-spaced arrays, the design methods are identical to the methods for
designing FIR digital filters in DSP, such as window-based and frequency-sampling de-
signs. In fact, historically, these methods were first developed in antenna theory and
only later were adopted and further developed in DSP.

19.2 Translational Phase Shift

The most basic property of an array is that the relative displacements of the antenna ele-
ments with respect to each other introduce relative phase shifts in the radiation vectors,
which can then add constructively in some directions or destructively in others. This is
a direct consequence of the translational phase-shift property of Fourier transforms: a
translation in space or time becomes a phase shift in the Fourier domain.
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Fig. 19.1.1 Typical array configurations.

Figure 19.2.1 shows on the left an antenna translated by the vector d, and on the
right, several antennas translated to different locations and fed with different relative
amplitudes.

Fig. 19.2.1 Translated antennas.

The current density of the translated antenna will be Jd(r)= J(r− d). By definition,
the radiation vector is the three-dimensional Fourier transform of the current density,
as in Eq. (14.7.5). Thus, the radiation vector of the translated current will be:

Fd =
∫
ejk·r Jd(r)d3r =

∫
ejk·r J(r− d)d3r =

∫
ejk·(r

′+d)J(r′)d3r′

= ejk·d
∫
ejk·r

′
J(r′)d3r′ = ejk·d F
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where we changed variables to r′ = r− d. Thus,

Fd(k)= ejk·d F(k) (translational phase shift) (19.2.1)

19.3 Array Pattern Multiplication

More generally, we consider a three-dimensional array of several identical antennas lo-
cated at positions d0,d1,d2, . . . with relative feed coefficients a0, a1, a2, . . . , as shown
in Fig. 19.2.1. (Without loss of generality, we may set d0 = 0 and a0 = 1.)

The current density of the nth antenna will be Jn(r)= anJ(r − dn) and the corre-
sponding radiation vector:

Fn(k)= anejk·dn F(k)

The total current density of the array will be:

Jtot(r)= a0J(r− d0)+a1J(r− d1)+a2J(r− d2)+· · ·

and the total radiation vector:

Ftot(k)= F0 + F1 + F2 + · · · = a0ejk·d0 F(k)+a1ejk·d1 F(k)+a2ejk·d2 F(k)+· · ·

The factor F(k) due to a single antenna element at the origin is common to all terms.
Thus, we obtain the array pattern multiplication property:

Ftot(k)= A(k)F(k) (array pattern multiplication) (19.3.1)

where A(k) is the array factor :

A(k)= a0ejk·d0 + a1ejk·d1 + a2ejk·d2 + · · · (array factor) (19.3.2)

Since k = kr̂, we may also denote the array factor asA(r̂) orA(θ,φ). To summarize,
the net effect of an array of identical antennas is to modify the single-antenna radiation
vector by the array factor, which incorporates all the translational phase shifts and
relative weighting coefficients of the array elements.

We may think of Eq. (19.3.1) as the input/output equation of a linear system with
A(k) as the transfer function. We note that the corresponding radiation intensities and
power gains will also be related in a similar fashion:

Utot(θ,φ) = |A(θ,φ)|2U(θ,φ)
Gtot(θ,φ) = |A(θ,φ)|2G(θ,φ)

(19.3.3)

where U(θ,φ) and G(θ,φ) are the radiation intensity and power gain of a single el-
ement. The array factor can dramatically alter the directivity properties of the single-
antenna element. The power gain |A(θ,φ)|2 of an array can be computed with the help
of the MATLAB function gain1d of Appendix I with typical usage:

[g, phi] = gain1d(d, a, Nph); % compute normalized gain of an array
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Example 19.3.1: Consider an array of two isotropic antennas at positions d0 = 0 and d1 = x̂d
(alternatively, at d0 = −(d/2)x̂ and d1 = (d/2)x̂), as shown below:

The displacement phase factors are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd sinθ cosφ

or, in the symmetric case:

ejk·d0 = e−jkxd/2 = e−jk(d/2)sinθ cosφ , ejk·d1 = ejkxd/2 = ejk(d/2)sinθ cosφ

Let a = [a0, a1] be the array coefficients. The array factor is:

A(θ,φ) = a0 + a1ejkd sinθ cosφ

A(θ,φ) = a0e−jk(d/2)sinθ cosφ + a1ejk(d/2)sinθ cosφ , (symmetric case)

The two expressions differ by a phase factor, which does not affect the power pattern. At
polar angle θ = 90o, that is, on the xy-plane, the array factor will be:

A(φ)= a0 + a1ejkd cosφ

and the azimuthal power pattern:

g(φ)= |A(φ)|2 = ∣∣a0 + a1ejkd cosφ∣∣2

Note that kd = 2πd/λ. Figure 19.3.1 shows g(φ) for the array spacings d = 0.25λ,
d = 0.50λ, d = λ, or kd = π/2,π,2π, and the following array weights:

a = [a0, a1]= [1,1]
a = [a0, a1]= [1,−1]

a = [a0, a1]= [1,−j]
(19.3.4)

The first of these graphs was generated by the MATLAB code:

d = 0.25; a = [1,1]; % d is in units of λ
[g, phi] = gain1d(d, a, 400); % 400 phi’s in [0,π]
dbz(phi, g, 30, 20); % 30o grid, 20-dB scale

As the relative phase of a0 and a1 changes, the pattern rotates so that its main lobe is in
a different direction. When the coefficients are in phase, the pattern is broadside to the
array, that is, towards φ = 90o. When they are in anti-phase, the pattern is end-fire, that
is, towards φ = 0o and φ = 180o.
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Fig. 19.3.1 Azimuthal gain patterns of two-element isotropic array.

The technique of rotating or steering the pattern towards some other direction by intro-
ducing relative phases among the elements is further discussed in Sec. 19.9. There, we
will be able to predict the steering angles of this example from the relative phases of the
weights.

Another observation from these graphs is that as the array pattern is steered from broad-
side to endfire, the widths of the main lobes become larger. We will discuss this effect in
Sects. 19.9 and 19.10.

When d ≥ λ, more than one main lobes appear in the pattern. Such main lobes are called
grating lobes or fringes and are further discussed in Sec. 19.6. Fig. 19.3.2 shows some
additional examples of grating lobes for spacings d = 2λ, 4λ, and 8λ. ��
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Fig. 19.3.2 Grating lobes of two-element isotropic array.

Example 19.3.2: Consider a three-element array of isotropic antennas at locations d0 = 0,
d1 = dx̂, and d2 = 2dx̂, or, placed symmetrically at d0 = −dx̂, d1 = 0, and d2 = dx̂, as
shown below:

The displacement phase factors evaluated at θ = 90o are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd cosφ ejk·d2 = ej2kxd = ej2kd cosφ

Let a = [a0, a1, a2] be the array weights. The array factor is:

A(φ)= a0 + a1ejkd cosφ + a2e2jkd cosφ

Figure 19.3.3 shows g(φ)= |A(φ)|2 for the array spacings d = 0.25λ, d = 0.50λ, d = λ,
or kd = π/2,π,2π, and the following choices for the weights:

a = [a0, a1, a2]= [1,1,1]
a = [a0, a1, a2]= [1, (−1), (−1)2]= [1,−1,1]

a = [a0, a1, a2]= [1, (−j), (−j)2]= [1,−j,−1]

(19.3.5)

where in the last two cases, progressive phase factors of 180o and 90o have been introduced
between the array elements.

The MATLAB code for generating the last graph was:

d = 1; a = [1,-j,-1];
[g, phi] = gain1d(d, a, 400);
dbz(phi, g, 30, 20);
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Fig. 19.3.3 Azimuthal gains of three-element isotropic array.

The patterns are similarly rotated as in the previous example. The main lobes are narrower,
but we note the appearance of sidelobes at the level of −10 dB. We will see later that as
the number of array elements increases, the sidelobes reach a constant level of about −13
dB for an array with uniform weights.

Such sidelobes can be reduced further if we use appropriate non-uniform weights, but at
the expense of increasing the beamwidth of the main lobes. ��

Example 19.3.3: As an example of a two-dimensional array, consider three z-directed half-
wave dipoles: one at the origin, one on the x-axis, and one on the y-axis, both at a distance
d = λ/2, as shown below.
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The relative weights are a0, a1, a2. The displacement vectors are d1 = x̂d and d2 = ŷd.
Using Eq. (16.1.4), we find the translational phase-shift factors:

ejk·d1 = ejkxd = ejkd sinθ cosφ , ejk·d2 = ejkyd = ejkd sinθ sinφ

and the array factor:

A(θ,φ)= a0 + a1ejkd sinθ cosφ + a2ejkd sinθ sinφ

Thus, the array’s total normalized gain will be up to an overall constant:

gtot(θ,φ)= |A(θ,φ)|2 g(θ,φ)= |A(θ,φ)|2
∣∣∣∣ cos(0.5π cosθ)

sinθ

∣∣∣∣2

The gain pattern on the xy-plane (θ = 90o) becomes:

gtot(φ)=
∣∣a0 + a1ejkd cosφ + a2ejkd sinφ∣∣2

Note that because d = λ/2, we have kd = π. The omnidirectional case of a single element
is obtained by setting a1 = a2 = 0 and a0 = 1. Fig. 19.3.4 shows the gain gtot(φ) for
various choices of the array weights a0, a1, a2.

Because of the presence of the a2 term, which depends on sinφ, the gain is not necessarily
symmetric for negative φ’s. Thus, it must be evaluated over the entire azimuthal range
−π ≤ φ ≤ π. Then, it can be plotted with the help of the function dbz2 which assumes
the gain is over the entire 2π range. For example, the last of these graphs was computed
by:

d = 0.5; a0=1; a1=2; a2=2;
phi = (0:400) * 2*pi/400;
psi1 = 2*pi*d*cos(phi);
psi2 = 2*pi*d*sin(phi);
g = abs(a0 + a1 * exp(j*psi1) + a2 * exp(j*psi2)).^2;
g = g/max(g);
dbz2(phi, g, 45, 12);

When a2 = 0, we have effectively a two-element array along the x-axis with equal weights.
The resulting array pattern is broadside, that is, maximum along the perpendicular φ =
90o to the array. Similarly, when a1 = 0, the two-element array is along the y-axis and the
pattern is broadside to it, that is, along φ = 0. When a0 = 0, the pattern is broadside to
the line joining elements 1 and 2. ��

Example 19.3.4: The analysis of the rhombic antenna in Sec. 16.7 was carried out with the
help of the translational phase-shift theorem of Eq. (19.2.1). The theorem was applied to
antenna pairs 1,3 and 2,4.
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Fig. 19.3.4 Azimuthal gain patterns of two-dimensional array.

A more general version of the translation theorem involves both a translation and a rotation
(a Euclidean transformation) of the type r′ = R−1(r − d), or, r = Rr′ + d, where R is a
rotation matrix.

The rotated/translated current density is then defined as JR,d(r)= R−1J(r′) and the cor-
responding relationship between the two radiation vectors becomes:

FR,d(k)= ejk·dR−1F
(
R−1k

)
The rhombic as well as the vee antennas can be analyzed by applying such rotational
and translational transformations to a single traveling-wave antenna along the z-direction,
which is rotated by an angle ±α and then translated. ��

Example 19.3.5: Ground Effects Between Two Antennas. There is a large literature on radio-
wave propagation effects [19,34,44,1216–1232]. Consider a mobile radio channel in which
the transmitting vertical antenna at the base station is at height h1 from the ground and
the receiving mobile antenna is at height h2, as shown below. The ray reflected from the
ground interferes with the direct ray and can cause substantial signal cancellation at the
receiving antenna.
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The reflected ray may be thought of as originating from the image of the transmitting
antenna at −h1, as shown. Thus, we have an equivalent two-element transmitting array.
We assume that the currents on the actual and image antennas are I(z) and ρI(z), where
ρ = −ρTM is the reflection coefficient of the ground for parallel polarization (the negative
sign is justified in the next example), given in terms of the angle of incidence α by:

ρ = −ρTM = n
2 cosα−

√
n2 − sin2α

n2 cosα+
√
n2 − sin2α

, n2 = ε
ε0
− j σ
ωε0

= εr − j η0

2π
σλ

where n is the complex refractive index of the ground, and we replaced ωε0 = 2πfε0 =
2πc0ε0/λ and c0ε0 = 1/η0. Numerically, we may set η0/2π � 60 Ω. From the geometry
of the figure, we find that the angle α is related to the polar angle θ by:

tanα = r sinθ
h1 + r cosθ

In the limit of large r, α tends to θ. For a perfectly conducting ground (σ = ∞), the
reflection coefficient becomes ρ = 1, regardless of the incidence angle.

On the other hand, for an imperfect ground and for low grazing angles (α � 90o), the
reflection coefficient becomes ρ = −1, regardless of the conductivity of the ground. This
is the relevant case in mobile communications.

The array factor can be obtained as follows. The two displaced antennas are at locations
d1 = h1ẑ and d2 = −h1ẑ, so that the displacement phase factors are:

ejk·d1 = ejkzh1 = ejkh1 cosθ , ejk·d2 = e−jkzh1 = e−jkh1 cosθ

where we replaced kz = k cosθ. The relative feed coefficients are 1 and ρ. Therefore, the
array factor and its magnitude will be:

A(θ) = ejkh1 cosθ + ρe−jkh1 cosθ = ejkh1 cosθ(1+ ρe−jΔ)
|A(θ)|2 = ∣∣1+ ρe−jΔ∣∣2 , where Δ = 2kh1 cosθ

(19.3.6)

The gain of the transmitting antenna becomesGtot(θ)= |A(θ)|2G(θ), whereG(θ) is the
gain with the ground absent. For the common case of low grazing angles, or ρ = −1, the
array factor becomes:

|A(θ)|2 = ∣∣1− e−jΔ∣∣2 = 2− 2 cos(Δ)= 4 sin2
(
Δ
2

)

At the location of the mobile antenna which is at height h2, the geometry of the figure
implies that cosθ = h2/r. Thus, we have Δ = 2kh1 cosθ = 2kh1h2/r, and

|A(θ)|2 = 4 sin2
(
Δ
2

)
� Δ2 =

(
2kh1h2

r

)2
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where we assumed that kh1h2/r 	 1 and used the approximation sinx � x. Therefore,
for fixed antenna heights h1, h2, the gain at the location of the receiving antenna drops
like 1/r2. This is in addition to the 1/r2 drop arising from the power density. Thus, the
presence of the ground reflection causes the overall power density at the receiving antenna
to drop like 1/r4 instead of 1/r2.

For two antennas pointing towards the maximum gain of each other, the Friis transmission
formula must be modified to read:

P2

P1
= G1G2

(
λ

4πr

)2 ∣∣1+ ρe−jΔ∣∣2 , Δ = 2kh1h2

r
= 4πh1h2

λr
(19.3.7)

The direct and ground-reflected rays are referred to as the space wave. When both antennas
are close to the ground, one must also include a term in A(θ) due to the so-called Norton
surface wave [1227–1232]:

A(θ)= 1+ ρe−jΔ︸ ︷︷ ︸
space wave

+ (1− ρ)Fe−jΔ︸ ︷︷ ︸
surface wave

where F is an attenuation coefficient that, for kr
 1, can be approximated by [1219]:

F = sin2α
jkr(cosα+ u)2

, u = 1

n2

√
n2 − sin2α

At grazing angles, the space-wave terms of A(θ) tend to cancel and the surface wave be-
comes the only means of propagation. A historical review of the ground-wave propagation
problem and some of its controversies can be found in [1217]. ��

Example 19.3.6: Vertical Dipole Antenna over Imperfect Ground. Consider a vertical linear an-
tenna at a height h over ground as shown below. When the observation point is far from
the antenna, the direct and reflected rays r1 and r2 will be almost parallel to each other,
forming an angle θ with the vertical. The incidence angle α of the previous example is
then α = θ, so that the TM reflection coefficient is:

ρTM =
√
n2 − sin2 θ− n2 cosθ√
n2 − sin2 θ+ n2 cosθ

, n2 = εr − j η0

2π
σλ

The relative permittivity εr = ε/ε0 and conductivity σ (in units of S/m) are given below
for some typical grounds and typical frequencies:†

†ITU Recommendation ITU-R P.527-3 on the “Electrical Characteristics of the Surface of the Earth,” 1992.
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1 MHz 100 MHz 1 GHz

ground type εr σ εr σ εr σ

very dry ground 3 10−4 3 10−4 3 1.5×10−4

medium dry ground 15 10−3 15 1.5×10−3 15 3.5×10−3

wet ground 30 10−2 30 1.5×10−2 30 1.5×10−1

fresh water 80 3×10−3 80 5×10−3 80 1.5×10−1

sea water 70 5 70 5 70 5

According to Eq. (16.1.6), the electric fields E1 and E2 along the direct and reflected rays
will point in the direction of their respective polar unit vector θ̂θθ, as seen in the above figure.
According to the sign conventions of Sec. 7.2, the reflected field ρTME2 will be pointing in
the −θ̂θθ direction, opposing E1. The net field at the observation point will be:

E = E1 − ρTME2 = θ̂θθ jkη e
−jkr1

4πr1
Fz(θ)sinθ− θ̂θθ jkη e

−jkr2

4πr2
ρTM Fz(θ)sinθ

where F(θ)= ẑFz(θ) is the assumed radiation vector of the linear antenna. Thus, the
reflected ray appears to have originated from an image current −ρTMI(z). Using the ap-
proximations r1 = r−h cosθ and r2 = r+h cosθ in the propagation phase factors e−jkr1
and e−jkr2 , we obtain for the net electric field at the observation point (r,θ):

E = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

[
ejkh cosθ − ρTM e−jkh cosθ]

It follows that the (unnormalized) gain will be:

g(θ)= ∣∣Fz(θ)sinθ
∣∣2
∣∣∣1− ρTM(θ)e−2jkh cosθ

∣∣∣2

The results of the previous example are obtained if we set ρ = −ρTM. For a Hertzian dipole,
we may replace Fz(θ) by unity. For a half-wave dipole, we have:

g(θ)=
∣∣∣∣ cos(0.5π cosθ)

sinθ

∣∣∣∣2 ∣∣∣1− ρTM(θ)e−2jkh cosθ
∣∣∣2

Fig. 19.3.5 shows the resulting gains for a half-wave dipole at heights h = λ/4 and h = λ/2
and at frequencies f = 1 MHz and f = 100 MHz. The ground parameters correspond to
the medium dry case of the above table. The dashed curves represent the gain of a single
dipole, that is, G(θ)= ∣∣cos(0.5π cosθ)/ sinθ

∣∣2
.

The following MATLAB code illustrates the generation of these graphs:

sigma=1e-3; ep0=8.854e-12; er=15; f=1e6; h = 1/4;
n2 = er - j*sigma/ep0/2/pi/f;

th = linspace(0,pi/2,301); c =cos(th); s2 = sin(th).^2;
rho = (sqrt(n2-s2) - n2*c)./(sqrt(n2-s2) + n2*c);
A = 1 - rho .* exp(-j*4*pi*h*cos(th)); % array factor

G = cos(pi*cos(th)/2)./sin(th); G(1)=0; % half-wave dipole gain

g = abs(G.*A).^2; g = g/max(g); % normalized gain

dbp(th, g, 30, 12); % polar plot in dB
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Fig. 19.3.5 Vertical dipole over imperfect ground

Thus, the presence of the ground significantly alters the angular gain of the dipole. For
the case h = λ/2, we observe the presence of grating lobes, arising because the effective
separation between the dipole and its image is 2h > λ/2.

The number of grating lobes increases with the height h. These can be observed by running
the above example code with f = 1 GHz (i.e., λ = 30 cm) for a cell phone held vertically at
a height of h = 6λ = 1.8 meters. ��

19.4 One-Dimensional Arrays

Next, we consider uniformly-spaced one-dimensional arrays. An array along the x-axis
(see Fig. 19.3.4) with elements positioned at locations xn, n = 0,1,2, . . . , will have dis-
placement vectors dn = xnx̂ and array factor:

A(θ,φ)=
∑
n
anejk·dn =

∑
n
anejkxxn =

∑
n
anejkxn sinθ cosφ

where we set kx = k sinθ cosφ. For equally-spaced arrays, the element locations are
xn = nd, where d is the distance between elements. In this case, the array factor be-
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comes:

A(θ,φ)=
∑
n
anejnkd sinθ cosφ (19.4.1)

Because the angular dependence comes through the factor kxd = kd sinθ cosφ, we are
led to define the variable:

ψ = kxd = kd sinθ cosφ (digital wavenumber) (19.4.2)

Then, the array factor may be thought of as a function of ψ:

A(ψ)=
∑
n
anejψn (array factor in digital wavenumber space) (19.4.3)

The variable ψ is a normalized version of the wavenumber kx and is measured in
units of radians per (space) sample. It may be called a normalized digital wavenumber, in
analogy with the time-domain normalized digital frequency ω = ΩT = 2πf/fs, which
is in units of radians per (time) sample.† The array factor A(ψ) is the wavenumber
version of the frequency response of a digital filter defined by

A(ω)=
∑
n
ane−jωn (19.4.4)

We note the difference in the sign of the exponent in the definitions (19.4.3) and
(19.4.4). This arises from the difference in defining time-domain and space-domain
Fourier transforms, or from the difference in the sign for a plane wave, that is,

ejωt−jk·r

The wavenumber ψ is defined similarly for arrays along the y- or z-directions. In
summary, we have the definitions:

ψ = kxd = kd sinθ cosφ (array along x-axis)
ψ = kyd = kd sinθ sinφ (array along y-axis)
ψ = kzd = kd cosθ (array along z-axis)

(19.4.5)

The array factors for the y- and z-axis arrays shown in Fig. 19.1.1 will be:

A(θ,φ) =
∑
n
anejkyyn =

∑
n
anejkyn sinθ sinφ

A(θ,φ) =
∑
n
anejkzzn =

∑
n
anejkzn cosθ

where yn = nd and zn = nd. More generally, for an array along some arbitrary direction,
we have ψ = kd cosγ, where γ is the angle measured from the direction of the array.
The two most commonly used conventions are to assume either an array along the z-
axis, or an array along the x-axis and measure its array factor only on the xy-plane, that
is, at polar angle θ = 90o. In these cases, we have:

ψ = kxd = kd cosφ (array along x-axis, with θ = 90o)
ψ = kzd = kd cosθ (array along z-axis)

(19.4.6)

†Here, Ω denotes the physical frequency in radians/sec.
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For the x-array, the azimuthal angle varies over−π ≤ φ ≤ π, but the array response
is symmetric in φ and can be evaluated only for 0 ≤ φ ≤ π. For the z-array, the polar
angle varies over 0 ≤ θ ≤ π.

In analogy with time-domain DSP, we may also define the spatial analog of the z-plane
by defining the variable z = ejψ and the corresponding z-transform:

A(z)=
∑
n
anzn (array factor in spatial z-domain) (19.4.7)

The difference in sign between the space-domain and time-domain definitions is also
evident here, where the expansion is in powers of zn instead of z−n. The array factor
A(ψ) may be called the discrete-space Fourier transform (DSFT) of the array weighting
sequence an, just like the discrete-time Fourier transform (DTFT) of the time-domain
case. The corresponding inverse DSFT is obtained by

an = 1

2π

∫ π
−π
A(ψ)e−jψndψ (inverse DSFT) (19.4.8)

This inverse transform forms the basis of most design methods for the array coeffi-
cients. As we mentioned earlier, such methods are identical to the methods of designing
FIR filters in DSP. Various correspondences between the fields of array processing and
time-domain digital signal processing are shown in Table 19.4.1.

Example 19.4.1: The array factors and z-transforms for Example 19.3.1 are for the three choices
for the coefficients:

A(ψ) = 1+ ejψ ,
A(ψ) = 1− ejψ ,
A(ψ) = 1− jejψ ,

A(z) = 1+ z
A(z) = 1− z
A(z) = 1− jz

where z = ejψ and ψ = kd cosφ. ��

19.5 Visible Region

Because the correspondence from the physical angle-domain to the wavenumber ψ-
domain is through the mapping (19.4.5) or (19.4.6), there are some additional subtleties
that arise in the array processing case that do not arise in time-domain DSP. We note
first that the array factor A(ψ) is periodic in ψ with period 2π, and therefore, it is
enough to know it within one Nyquist interval, that is, −π ≤ ψ ≤ π.

However, the actual range of variation of ψ depends on the value of the quantity
kd = 2πd/λ. As the azimuthal angle φ varies from 0o to 180o, the quantity ψ =
kd cosφ, defined in Eq. (19.4.6), varies from ψ = kd to ψ = −kd. Thus, the overall
range of variation of ψ—called the visible region—will be:

− kd ≤ ψ ≤ kd (visible region) (19.5.1)
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discrete-time signal processing discrete-space array processing

time-domain sampling tn = nT space-domain sampling xn = nd
sampling time interval T sampling space interval d
sampling rate 1/T [samples/sec] sampling rate 1/d [samples/meter]
frequency Ω wavenumber kx
digital frequencyω = ΩT digital wavenumber ψ = kxd
Nyquist interval −π ≤ω ≤ π Nyquist interval −π ≤ ψ ≤ π
sampling theorem Ω ≤ π/T sampling theorem kx ≤ π/d
spectral images grating lobes or fringes
frequency response A(ω) array factor A(ψ)
z-domain z = ejω z-domain z = ejψ
transfer function A(z) transfer function A(z)
DTFT and inverse DTFT DSFT and inverse DSFT
pure sinusoid ejω0n narrow beam e−jψ0n

windowed sinusoid w(n)ejω0n windowed narrow beam w(n)e−jψ0n

resolution of multiple sinusoids resolution of multiple beams
frequency shifting by AM modulation phased array scanning
filter design by window method array design by window method
bandpass FIR filter design angular sector array design
frequency-sampling design Woodward-Lawson design
DFT Blass matrix
FFT Butler matrix

Table 19.4.1 Duality between time-domain and space-domain signal processing.

The total width of this region is ψvis = 2kd. Depending on the value of kd, the
visible region can be less, equal, or more than one Nyquist interval:

d < λ/2 ⇒ kd < π ⇒ ψvis < 2π (less than Nyquist)
d = λ/2 ⇒ kd = π ⇒ ψvis = 2π (full Nyquist)
d > λ/2 ⇒ kd > π ⇒ ψvis > 2π (more than Nyquist)

(19.5.2)

The visible region can also be viewed as that part of the unit circle covered by the
angle range (19.5.1), as shown in Fig. 19.5.1. If kd < π, the visible region is the arc
zazzb with the point z = ejψ moving clockwise from za to zb as φ varies from 0 to π.
In the case kd = π, the starting and ending points, za and zb, coincide with the ψ = π
point on the circle and the visible region becomes the entire circle. If kd > π, the visible
region is one complete circle starting and ending at za and then continuing on to zb.

In all cases, the inverse transform (19.4.8) requires that we know A(ψ) over one
complete Nyquist interval. Therefore, in the case kd < π, we must specify appropriate
values of the array factor A(ψ) over the invisible region.
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Fig. 19.5.1 Visible regions on the unit circle.

19.6 Grating Lobes

In the case kd > π, the values of A(ψ) are over-specified and repeat over the visible
region. This can give rise to grating lobes or fringes, which are mainbeam lobes in
directions other than the desired one. We saw some examples in Figs. 19.3.1 and 19.3.2.

Grating lobes are essentially the spectral images generated by the sampling process
(in this case, sampling in space.) Inψ-space, these images fall in Nyquist intervals other
than the central one.

The number of grating lobes in an array pattern is the number of complete Nyquist
intervals fitting within the width of the visible region, that is, m = ψvis/2π = kd/π =
2d/λ. For example in Fig. 19.3.2, the number of grating lobes are m = 4,8,16 for
d = 2λ,4λ,8λ (the two endfire lobes count as one.)

In most array applications grating lobes are undesirable and can be avoided by re-
quiring that kd < 2π, or d < λ. It should be noted, however, that this condition does
not necessarily avoid aliasing—it only avoids grating lobes. Indeed, if d is in the range
λ/2 < d < λ, or, π < kd < 2π, part of the Nyquist interval repeats as shown in
Fig. 19.5.1. To completely avoid repetitions, we must have d ≤ λ/2, which is equivalent
to the sampling theorem condition 1/d ≥ 2/λ.

Grating lobes are desirable and useful in interferometry applications, such as radio
interferometry used in radio astronomy. A simple interferometer is shown in Fig. 19.6.1.
It consists of an array of two antennas separated by d 
 λ, so that hundreds or even
thousands of grating lobes appear.

These lobes are extremely narrow allowing very small angular resolution of radio
sources in the sky. The receiver is either an adder or a cross-correlator of the two
antenna outputs. For an adder and identical antennas with equal weights, the output
will be proportional to the array gain:

g(φ)= ∣∣1+ ejkd cosφ∣∣2 = 2+ 2 cos(kd cosφ)

For a cross-correlator, the output will be proportional to cos(Ωτ), where τ is the
time delay between the received signals. This delay is the time it takes the wavefront to
travel the distance d cosφ, as shown in Fig. 19.6.1, that is, τ = (d cosφ)/c. Therefore,

cos(Ωτ)= cos
(

2πfd cosφ
c

)
= cos(kd cosφ)
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Fig. 19.6.1 Two-element interferometer and typical angular pattern.

In either case, the output is essentially cos(kd cosφ), and thus, exhibits the grating-
lobe behavior. Cross-correlating interferometers are more widely used because they are
more broadband.

The Very Large Array (VLA) radio telescope in New Mexico consists of 27 dish an-
tennas with 25-m diameters. The antennas are on rails extending in three different
directions to distances of up to 21 km. For each configuration, the number of possible
interferometer pairs of antennas is 27(27−1)/2 = 351. These 351 outputs can be used
to make a “radio” picture of the source. The achievable resolution is comparable to that
of optical telescopes (about 1 arc second.)

The Very Long Baseline Array (VLBA) consists of ten 25-m antennas located through-
out the continental US, Puerto Rico, and Hawaii. The antennas are not physically con-
nected to each other. Rather, the received signals at each antenna are digitally recorded,
with the antennas being synchronized with atomic frequency standards, and then the
recorded signals are digitally cross-correlated and processed off-line. The achievable
resolution is about one milli-arc-second.

We note finally that in an interferometer, the angular pattern of each antenna element
must also be taken into account because it multiplies the array pattern.

Example 19.6.1: In Fig. 19.3.2, we assumed isotropic antennas. Here, we look at the effect of
the element patterns. Consider an array of two identical z-directed half-wavelength dipole
antennas positioned along the z-axis at locations z0 = 0 and z1 = d. The total polar gain
pattern will be the product of the array gain factor and the gain of each dipole:

gtot(θ)= |A(θ)|2gdipole(θ)=
∣∣a0 + a1ejkd cosθ∣∣2

∣∣∣∣ cos(0.5π cosθ)
sinθ

∣∣∣∣2

Fig. 19.6.2 shows the effect of the element pattern for the case d = 8λ and uniform weights
a = [a0, a1]= [1,1]. The figure on the left represents the array factor, with the element
pattern superimposed (dashed gain). On the right is the total gain.

The MATLAB code used to generate the right graph was as follows:

d=8; a=[1,1];
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Fig. 19.6.2 Grating lobes of two half-wavelength dipoles separated by d = 8λ.

[g, th] = gain1d(d, a, 400);
gdip = dipole(0.5, 400);
gtot = g .* gdip;
dbp(th, gtot, 30, 12);
dbadd(1, ’--’, th, gdip, 30, 12); ��

19.7 Uniform Arrays

The simplest one-dimensional array is the uniform array having equal weights. For an
array of N isotropic elements at locations xn = nd, n = 0,1, . . . ,N − 1, we define:

a = [a0, a1, . . . , aN−1]= 1

N
[1,1, . . . ,1] (19.7.1)

so that the sum of the weights is unity. The corresponding array polynomial and array
factor are:

A(z) = 1

N
[
1+ z+ z2 + · · · + zN−1] = 1

N
zN − 1

z− 1

A(ψ) = 1

N
[
1+ ejψ + e2jψ + · · · + e(N−1)jψ] = 1

N
ejNψ − 1

ejψ − 1

(19.7.2)

where z = ejψ andψ = kd cosφ for an array along the x-axis and look direction on the
xy-plane. We may also write A(ψ) in the form:

A(ψ)=
sin
(
Nψ

2

)

N sin
(
ψ
2

) ej(N−1)ψ/2 (uniform array) (19.7.3)

The array factor (19.7.2) is the spatial analog of a lowpass FIR averaging filter in
discrete-time DSP. It may also be viewed as a window-based narrow-beam design using a
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rectangular window. From this point of view, Eq. (19.7.3) is the DSFT of the rectangular
window.

The array factor has been normalized to have unity gain at dc, that is, at zero
wavenumber ψ = 0, or at the broadside azimuthal angle φ = 90o. The normalized
power gain of the array will be:

g(φ)= |A(ψ)|2 =
∣∣∣∣∣ sin(Nψ/2)
N sin(ψ/2)

∣∣∣∣∣
2

=
∣∣∣∣∣ sin

(
(Nkd/2)cosφ

)
N sin

(
(kd/2)cosφ

)
∣∣∣∣∣

2

(19.7.4)

Although (19.7.2) defines the array factor for all ψ over one Nyquist interval, the
actual visible region depends on the value of kd.

Fig. 19.7.1 showsA(ψ) evaluated only over its visible region for an 8-element (N = 8)
array, for the following three choices of the element spacing: d = 0.25λ, d = 0.5λ, and
d = λ. The following MATLAB code generates the last two graphs:

d=1; N=8;
a = uniform(d, 90, N);
[g, phi] = gain1d(d, a, 400);
A = sqrt(g);
psi = 2*pi*d*cos(phi);
plot(psi/pi, A);
figure(2);
dbz(phi, g, 45, 20);

Fig. 19.7.1 Array factor and angular pattern of 8-element uniform array.
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As φ varies from 0o to 180o, the visible regions for the three cases are:

d = 0.25λ, ψ = (π/2)cosφ ⇒ −π/2 ≤ ψ ≤ π/2
d = 0.5λ, ψ = π cosφ ⇒ −π ≤ ψ ≤ π
d = λ, ψ = 2π cosφ ⇒ −2π ≤ ψ ≤ 2π

Thus, in the first case the visible region is only half of the Nyquist interval; in the
second case, it is the full interval; and in the third case, the Nyquist interval is covered
twice, and therefore, grating lobes will appear. Becauseψ = 2π cosφ, the grating lobes
at ψ = ±2π correspond to the endfire angles of φ = 0o and 180o (the larger width of
the endfire lobes is explained in Sec. 19.10.)

The N − 1 zeros of the array polynomial A(z) are the N-th roots of unity, except
for the root at z = 1, that is,

zi = ejψi , ψi = 2πi
N
, i = 1,2, . . . ,N − 1

Because these zeros lie on the unit circle, they will correspond to nulls in the angular
pattern, as long as they lie in the visible region. For d = 0.25λ, and in general for any
d < λ/2, only a subset of these zeros will fall in the visible region. The zeros of the
8-element array patterns of Fig. 19.7.1 are shown in Fig. 19.7.2.

Fig. 19.7.2 Zero locations and visible regions of 8-element uniform array.

The two most important features of the uniform array are its 3-dB beamwidthΔψ3dB,
or Δφ3dB in angle-space, and its sidelobe level R. These parameters are shown in
Fig. 19.7.3, for an 8-element uniform array with d = 0.5λ.

For N larger than about 5–6, the sidelobe level becomes independent of N and has
the limiting value of R = 13 dB. Similarly, the beamwidth in ψ-space—defined as the
full width of the mainlobe at the half-power level—takes the simple form:

Δψ3dB = 0.886
2π
N

(3-dB width in ψ-space) (19.7.5)

The first nulls in the array factor about the mainlobe are at ±ψ1 = ±2π/N, and
therefore, 2π/N represents half of the base of the mainlobe.

The 3-dB widthΔφ3dB in angle space can be obtained by differentiating the equation
ψ = kd cosφ, that is, dψ = (∂ψ/∂φ)dφ = (−kd sinφ)dφ. Evaluating the derivative
at broadside (φ = 90o) and assuming a narrow mainlobe, we have:

Δψ3dB =
∣∣∣∣∣∂ψ∂φ

∣∣∣∣∣Δφ3dB = kdΔφ3dB
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Fig. 19.7.3 Mainlobe width and sidelobe level of uniform array.

Solving for Δφ3dB, we obtain Δφ3dB = Δψ3dB/(kd)= 0.886(2π/N)/(2πd/λ), or

Δφ3dB = 0.886
λ
Nd

(3-dB width at broadside) (19.7.6)

The mainlobe beamwidth gets narrower with increasingN, while the relative sidelobe
level remains the same. To achieve better (lower) sidelobe levels, one must use non-
uniform weights obtained from non-rectangular windows.

The quantity D = Nd is the effective aperture of the array. Thus, we recognize
Eq. (19.7.6) as the classical Rayleigh limit on the resolving power of an optical system,
which states that the angular resolution achieved by an aperture of lengthD is essentially
λ/D.

The beamwidth expression (19.7.5) and the 13-dB sidelobe level can be justified as
follows. The peak of the first sidelobe occurs approximately half-way between the first
two nulls, that is, at ψ = 3π/N. More precisely, it occurs at ψ = 2.8606π/N. Thus,
the sidelobe level in dB will be:

R = −20 log10

∣∣∣∣A(ψ)A(0)

∣∣∣∣
ψ=2.8606π/N

= −20 log10

∣∣∣∣ sin(1.4303π)
N sin(1.4303π/N)

∣∣∣∣
� −20 log10

∣∣∣∣ sin(1.4303π)
N(1.4303π/N)

∣∣∣∣ = −20 log10

∣∣∣∣sin(1.4303π)
1.4303π

∣∣∣∣ = 13.26 dB

where we used the small-x approximation, sinx � x, in the denominator, which is justi-
fied whenN is large. Setting x = Nψ/2, the sidelobe peak corresponds to the secondary
maximum of the approximate array factor sinx/x, which by differentiation leads to the
equation x = tanx, having solution x = 1.4303π, or ψ = 2x/N = 2.8606π/N.

The 3-dB width Δψ3dB is twice the 3-dB or half-power frequency ψ3, defined to be
the solution of the equation:

|A(ψ3)|2 =
∣∣∣∣∣ sin(Nψ3/2)
N sin(ψ3/2)

∣∣∣∣∣
2

= 1

2

Becauseψ3 is always smaller than 2π/N, it will be small for large N, and therefore,
we may make the same approximation in the denominator as above, giving the simplified
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equation: ∣∣∣∣∣sin(Nψ3/2)
Nψ3/2

∣∣∣∣∣
2

=
∣∣∣∣sinx3

x3

∣∣∣∣2

= 1

2

where x3 = Nψ3/2. The quantity x3 is determined to be the constant x3 = 0.443π.
Thus, ψ3 = 2x3/N = 0.443(2π/N), and Δψ3dB = 2ψ3 = 0.886(2π/N).

19.8 Array Directivity

The value of kd has an impact also on the directivity of an array. In the array processing
literature, the directivity of an array is usually defined with reference to a z-directed
array consisting of isotropic radiators. The wavenumber is ψ = kd cosθ and the max-
imum of the array factor is assumed to occur at broadside θ = 90o, or ψ = 0. This
basically means that the array factor will have a lowpass shape as a function of ψ, with
a maximum value at dc given by

|A(0)| =
∣∣∣∣∣∣
N−1∑
n=0

an

∣∣∣∣∣∣
It follows that the normalized power gain of the array will be:

g(θ)= c|A(θ)|2

where c = 1/|A(0)|2. The corresponding beam solid angle will be:

ΔΩ = 2π
∫ π

0
g(θ)sinθdθ = 2π

∫ π
0
c|A(θ)|2 sinθdθ

Changing variables of integration from θ to ψ, which varies over the visible region
(19.5.1), we obtain:

ΔΩ = 2π
kd

∫ kd
−kd
c|A(ψ)|2 dψ = 2πc

kd

∫ kd
−kd

∑
n,m
ana∗mej(n−m)ψ dψ

Performing the integration, we get

ΔΩ = 4πc
∑
n,m
ana∗m

sin
(
kd(n−m))
kd(n−m)

Therefore, the directivity of the array becomes:

D = 4π
ΔΩ

=

∣∣∑
n
an
∣∣2

∑
n,m
ana∗m

sin
(
kd(n−m))
kd(n−m)

(19.8.1)

In the particular case of half-wavelength spacing d = λ/2 or kd = π, the sinc function
acts as a delta function δ(n−m), and the sum simplifies into:

D =
∣∣∑N−1

n=0 an
∣∣2∑N−1

n=0 |an|2
(19.8.2)
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The maximum of this quantity is reached when all the coefficients are equal to each
other. The common value may be adjusted so that their sum is unity, that is:

an = 1

N
, n = 0,1, . . . ,N − 1

The maximized value of D becomes:

Dmax = N (19.8.3)

Thus, the uniform array with half-wavelength spacing achieves maximum directivity
equal to the number of array elements. This result is analogous to finding the optimum
N-tap lowpass FIR filter that minimizes the noise reduction ratio, that is, the sum of the
squares of its coefficients.

For arbitrary spacing d, it is shown in Problem 19.6 that the optimum array vec-
tor a = [a0, a1, . . . , aN−1]T that maximizes (19.8.1), and the corresponding maximum
directivity, are given by:

a = A−1u , Dmax = uTA−1u (19.8.4)

where u = [1,1, . . . ,1]T is a vector of N ones and A is the so-called prolate matrix
[1123] with matrix elements:

Anm = sin
(
kd(n−m))
kd(n−m) , 0 ≤ n,m ≤ N − 1 (19.8.5)

The coefficients a may be renormalized such that their sum is unity. When d is an
integer multiple ofλ/2, the prolate matrix reduces to theN×N identity matrix, resulting
into (19.8.3).

19.9 Array Steering

An array is typically designed to have maximum directive gain at broadside, that is,
at φ = 90o (for an array along the x-axis.) The maximum of the array factor A(ψ)
corresponds to ψ = kd cosφ = 0, so that |A|max = |A(0)|.

We wish to “electronically” rotate, or steer, the array pattern towards some other
direction, say φ0, without physically rotating it. The corresponding wavenumber at the
desired look-direction will be:

ψ0 = kd cosφ0 (steering phase) (19.9.1)

Such steering operation can be achieved by wavenumber translation inψ-space, that
is, replacing the broadside pattern A(ψ) by the translated pattern A(ψ −ψ0). Thus,
we define:

A′(ψ)= A(ψ−ψ0) (steered array factor) (19.9.2)

and the translated wavenumber variable,

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (steered wavenumber) (19.9.3)
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Then, A′(ψ)= A(ψ′). The maximum of A′(ψ) will coincide with the maximum of
A(ψ′), which occurs at ψ′ = 0, or equivalently at ψ = ψ0, or at angle φ = φ0.
Fig. 19.9.1 illustrates this wavenumber translation process and the corresponding ro-
tation of the angular pattern, for an 11-element uniform array with d = λ/2, steered
from broadside to φ0 = 60o. The MATLAB code for the last two graphs was:

d=0.5; N=11; ph0=60;
a = uniform(d, ph0, N); % steered uniform weights

[g, phi] = gain1d(d, a, 400); % calculate normalized gain g(φ)
psi = 2*pi*d*cos(phi); % φ to ψ transformation

figure; plot(psi/pi, sqrt(g)); % plot in ψ space

figure; dbz(phi, g, 30, 20); % azimuthal gain plot in dB

Fig. 19.9.1 Array steering or scanning by translation in wavenumber space.

It follows from the translation theorem of Fourier transforms that the weight coef-
ficients a′n of the translated pattern A′(ψ) will be given by:

a′n = ane−jψ0n (steered array weights) (19.9.4)

so that we have:

A′(ψ)=
∑
n
a′nejψn =

∑
n
anej(ψ−ψ0)n =

∑
n
anejψ

′n = A(ψ′)

Because of the progressive phase factors e−jψ0n in the weights a′n, the steered or
scanned array is sometimes called a phased or scanning array.

The time-domain version of array steering is AM modulation, in which a baseband
signal is translated up in frequency by modulating with it a sinusoidal carrier, much like
Eq. (19.9.4). Frequency translation is also used in DSP for mapping a lowpass filter into
a bandpass one and for designing filter banks. We will use it in Sec. 20.4 to design arrays
with angular sector patterns.
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The MATLAB functions steer.m and scan.m of Appendix I can be used to implement
Eq. (19.9.4). Their usage for even or odd number of array elements is discussed in
Sec. 20.1.

Example 19.9.1: In Examples 19.3.1 and 19.3.2, we considered the three cases having progres-
sive phasesψ0 = 0,π,π/2. These may or may not correspond to a physical steering angle
φ0, depending on whether or not ψ0 lies in the visible region.

In the caseψ0 = π and d = 0.25λ, we haveψ = 0.5π cosφ, and therefore it is not possible
to find a solution for 0.5π cosφ0 = ψ0 = π. However, the array factor does correspond
to a pattern rotated towards endfire. This can be seen from the expression,

|A(ψ)| = |1− ejψ| = 2
∣∣sin(ψ/2)

∣∣ = 2
∣∣sin(0.25π cosφ)

∣∣
which is maximum towards endfire and minimum towards broadside. In the case ψ0 =
π/2 and d = 0.25λ, there is a solution to 0.5π cosφ0 = ψ0 = 0.5π, that is, φ0 = 0o,
which corresponds to the maximum of the steered array.

In the case ψ0 = π and d = 0.5λ, we have ψ = π cosφ, and the solution to the equation
π cosφ0 = π is φ0 = 0o. However, because the phase ψ0 = π is indistinguishable
from the phase ψ0 = −π (both lead to e−jψ0 = −1), we will also have the solution to
π cosφ0 = −π, which is φ0 = 180o.

In the case ψ0 = π/2 and d = 0.5λ, the solution to π cosφ0 = π/2 is φ0 = 60o, which
corresponds to the maximum, as can be seen in Fig. 19.3.1.

In the case ψ0 = ±π and d = λ, we have ψ = 2π cosφ, and the solutions to 2π cosφ0 =
±π are φ0 = 60o and 120o.

Finally, in the case ψ0 = π/2 and d = λ, the solution to 2π cosφ0 = π/2 is φ0 = 75.5o.
However, there is another grating lobe maximum towardsφ0 = 138.6o, which corresponds
to the solution of 2π cosφ0 = −3π/2. This is so becauseψ0 = π/2 andψ0 = −3π/2 are
indistinguishable phases, both leading to e−jψ0 = −j. ��

The concepts of visible region, beamwidth, and the condition for absence of grating
lobes, translate with minor modifications to the case of a steered array. As the angle φ
varies over 0o ≤ φ ≤ 180o, the translated wavenumberψ′ of Eq. (19.9.3) varies over the
shifted visible region:

−kd(1+ cosφ0)≤ ψ′ ≤ kd(1− cosφ0) (shifted visible region) (19.9.5)

where its total width is again 2kd. The condition for absence of grating lobes is obtained
with the help of the inequality:

|ψ′| ≤ kd| cosφ− cosφ0| ≤ kd
(| cosφ| + | cosφ0|

) ≤ kd(1+ | cosφ0|
)

To ensure no grating lobes, ψ′ must remain strictly less than 2π, which results in
the sufficient condition: kd

(
1+ | cosφ0|

)
< 2π, or replacing kd = 2πd/λ,

d <
λ

1+ | cosφ0| (no grating lobes) (19.9.6)

At broadside, φ0 = 90o, this reduces to the earlier condition d < λ. At endfire,
φ0 = 0o or 180o, it reduces to d < λ/2.



19.10. Array Beamwidth 797

19.10 Array Beamwidth

Because the steered array has a mainlobe towards the directionφ0, the beamwidth must
be calculated by linearizing the map ψ = kd cosφ about φ0, that is,

Δψ =
∣∣∣∣∣∂ψ∂φ

∣∣∣∣∣
φ0

Δφ = | − kd sinφ0|Δφ

which leads to the 3-dB beamwidth in angle-space:

Δφ3dB = 1

kd sinφ0
Δψ3dB , (3-dB width of steered array) (19.10.1)

For window-based narrow-beam design methods, the beamwidth Δψ3dB is approxi-
mately equal to the product of the beamwidth of the uniform array, Eq. (19.7.5), and a
so-called broadening factor b, whose value depends on the choice of the window. Thus,
we have:

Δψ3dB = bΔψ3-dB, uniform = 0.886
2πb
N

(3-dB width in ψ-space) (19.10.2)

Combining Eqs. (19.10.1) and (19.10.2) and replacing kd by 2πd/λ, we get:

Δφ3dB = 0.886

sinφ0

λ
Nd

b , (3-dB width in angle-space) (19.10.3)

The 3-dB angles will be approximately φ0 ± Δφ3dB/2. Because of the presence of
sinφ0 in the denominator, the beamwidth Δφ3dB will broaden as the array is steered
from broadside to endfire.

Exactly at endfire, φ0 = 0o or 180o, Eq. (19.10.3) fails and the beamwidth must be
calculated by a different procedure. At φ0 = 0o, the translated wavenumber ψ′ =
ψ −ψ0 becomes ψ′ = kd(cosφ − 1). Using the approximation cosx = 1 − x2/2, we
may relate the 3-dB angle φ3 to the corresponding 3-dB wavenumber by:

ψ′3 = kd(cosφ3 − 1)= kd((1−φ2
3/2)−1

) = −1

2
kdφ2

3

It follows that the 3-dB width inψ-space will beΔψ3dB = 2|ψ′3| = kdφ2
3. Solving for

φ3, we haveφ3 =
√
Δψ3dB/kd. Thus, the 3-dB width in angle space will beΔφ3dB = 2φ3,

Δφ3dB = 2

√
Δψ3dB

kd
, (3-dB width at endfire) (19.10.4)

The same expression also holds for endfire towards φ0 = 180o. Replacing Δψ3dB

from Eq. (19.10.2), we find the width in angle space:

Δφ3dB = 2

√
0.886

λ
Nd

b , (3-dB width in angle-space) (19.10.5)
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To summarize, the angular 3-dB width of the steered array can be computed in terms
of the broadside 3-dB width in wavenumber space by:

Δφ3dB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

kd sinφ0
Δψ3dB , for 0o < φ0 < 180o

2

√
Δψ3dB

kd
, for φ0 = 0o, 180o

(19.10.6)

In particular, if Eq. (19.10.2) is used:

Δφ3dB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.886

sinφ0

λ
Nd

b , for 0o < φ0 < 180o

2

√
0.886

λ
Nd

b , for φ0 = 0o, 180o

(19.10.7)

In degrees, Eq. (19.10.7) reads as:

Δφ3dB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

50.76o

sinφ0

λ
Nd

b , for 0o < φ0 < 180o

107.86o

√
λ
Nd

b , for φ0 = 0o, 180o

(19.10.8)

In some designs such as binomial arrays, it is easier to determine Δψ3dB directly
from the array factor A(ψ). In other designs, it is more convenient to estimate Δψ3dB

using Eq. (19.10.2).
The broadening factor b depends on the choice of the window and its sidelobe level.

The larger the sidelobe attenuation, the larger the broadening factor. Some examples of
broadening factors for different windows are given as follows:

Rectangular: b = 1, (R = 13 dB)

Hamming: b = 2, (R = 40 dB)

Taylor-Kaiser [1114]: b = 6(R+ 12)
155

Dolph-Chebyshev [1112]: b = 1+ 0.636
[

2

Ra
cosh

(√
acosh2(Ra)−π2

)]2

where R and Ra represent the sidelobe level in dB and absolute units, respectively,

R = 20 log10(Ra) � Ra = 10R/20 (sidelobe level) (19.10.9)

Here, R and Ra represent the attenuation of the sidelobe and, therefore, R > 0 and
Ra > 1. The corresponding gain of the sidelobe relative to the mainlobe peak will be
R−1
a = 10−R/20, which is less than one.

The MATLAB function bwidth.m of Appendix I implements Eq. (19.10.6). Its inputs
are the quantities d, φ0, Δψ3dB and its output is the 3-dB width in degrees Δφ3dB. Its
usage is:

Dphi = bwidth(d, phi0, Dpsi); % map Δψ beamwidth to Δφ beamwidth
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19.11 Problems

19.1 Show that the modified Friis formula (19.3.7) for two antennas over imperfect ground takes
the following frequency-independent form in the limit of low grazing angles and h1h2 	 λr:

P2

P1
= G1G2

(
h1h2

r2

)2

19.2 Consider two horizontal dipoles I over imperfect ground, oriented along the x and y direc-
tions, as shown below. Show that the effect of the direct and ground-reflected rays can be
obtained by considering an image dipole ρI.

By considering the relative directions of the electric field along the direct and reflected rays,
show that the resulting in array factor has the form:

A(θ)= ejkh cosθ + ρe−jkh cosθ

with ρ = ρTM for the x-directed case and ρ = ρTE for the y-directed one, where ρTM, ρTE are
given by Eq. (7.4.4) with n2 = εr − j60σλ.

19.3 A z-directed half-wave dipole is positioned in front of a 90o corner reflector at a distance
d from the corner, as shown below. The reflecting conducting sheets can be removed and
replaced by three image dipoles of alternating signs, as shown.

a. Thinking of the equivalent image problem as an array, determine an analytical expres-
sion for the array factorA(θ,φ) as a function of the polar and azimuthal angles θ,φ.

b. For the values d = 0.5λ, d = λ, and d = 1.5λ, plot the azimuthal pattern A(90o,φ)
at polar angle θ = 90o and for −45o ≤ φ ≤ 45o.

c. For the cases d = 0.5λ and d = 1.5λ, calculate the directivity D (in dB and in absolute
units) and compare it with the directivity of a single half-wave dipole in the absence
of the reflector.

d. Suppose that the corner reflector is flattened into a conducting sheet lying on the yz
plane, i.e., the 90o angle between the sheets is replaced by a 180o angle. Repeat parts
(a–c) in this case.
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19.4 Four identical isotropic antennas are positioned on the xy-plane at the four corners of a
square of sides a, as shown below. Determine the array factor A(φ) of this arrangement as
a function of the azimuthal angle φ. (Assume the look direction is on the xy-plane.)

19.5 The array factor of a two-element array is given by:

g(φ)= ∣∣a0 + a1ejψ
∣∣2 = 1+ sinψ

2
, ψ = π

2
cosφ

whereφ is the azimuthal angle (assume θ = 90o) andψ, the digital wavenumber. The array
elements are along the x-axis at locations x0 = 0 and x1 = d.

a. What is the spacing d in units of λ? Determine the values of the array weights, a =
[a0, a1], assuming that a0 is real-valued and positive.

b. Determine the visible region and display it on the unit circle. Plot |A(ψ)|2 versus ψ
over the visible region. Based on this plot, make a rough sketch of the radiation pattern
of the array (i.e., the polar plot of g(φ) versus 0 ≤ φ ≤ 2π).

c. Determine the exact 3-dB width of this array in angle space.

19.6 Defining the array vector a and the prolate matrix A via Eqs. (19.8.4) and (19.8.5), show that
the directivity defined in Eq. (19.8.1) can be written in the compact form, where the dagger
† indicates the conjugate transposed operation:

D =
∣∣u†a

∣∣2

a†Aa
(19.11.1)

a. Show that the maximum of D is attained for a = A−1u and that the maximized D is
Dmax = u†A−1u. Show that the value of Dmax is not affected if a is defined with an
arbitrary normalization factor μ, that is, a = μA−1u.

b. Show that an equivalent problem is the minimization problem:

a†Aa = min , subject to u†a = 1

c. Show that (19.11.1) is a special case of the more general problem of the maximization
of the Rayleigh quotient :

D = a†Qa

a†Aa
= max

where A,Q are positive-definite Hermitian matrices. Show that the solution of this
problem is the eigenvector corresponding to the maximum eigenvalue λ = λmax of the
generalized eigenvalue problem Qa = λAa. Explain how this formulation leads to the
same solution in the case of (19.11.1).

d. Show that the directivity (19.11.1) of a uniform array (a = u) is given by the two equiv-
alent forms:

Dunif = |u†u|2
u†Au

= N2

N + 2
N−1∑
n=1

(
N − |n|) sin(kdn)

kdn
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19.7 Computer Experiment—Optimum Directivity. Using the matrix formulation of the previous
problem, calculate the optimum directivity for anN-element array over the range of spacing
values: 0.1 ≤ d/λ ≤ 2 and plot it versus d. Carry this out for the values N = 5,10,15 and
place the results on the same graph.

The directivityD of (19.11.1) can be evaluated for any given vector of array weights. Evaluate
it for the uniform array a = u and plot the results on the same graph as above. You should
observe that directivity of the uniform array comes close to that of the optimum one for
most (but not all) of the spacings d.

For each d and for the caseN = 15, calculate the directivities of the array weights a designed
with the MATLAB function taylor1p of the next chapter, with sidelobe attenuations of R =
20 R = 30 dB, and place them on the same graph.


