
16
Linear and Loop Antennas

16.1 Linear Antennas

The radiation angular pattern of antennas is completely determined by the transverse
component F⊥ = θ̂θθFθ + φ̂φφFφ of the radiation vector F, which in turn is determined by
the current density J. Here, we consider some examples of current densities describing
various antenna types, such as linear antennas, loop antennas, and linear arrays.

For linear antennas, we may choose the z-axis to be along the direction of the an-
tenna. Assuming an infinitely thin antenna, the current density will have the form:

J(r)= ẑ I(z)δ(x)δ(y) (thin linear antenna) (16.1.1)

where I(z) is the current distribution along the antenna element. It is shown in Sec. 21.4
that I(z) satisfies approximately the Helmholtz equation along the antenna:

d2I(z)
dz2

+ k2I(z)= 0 (16.1.2)

Some examples of current distributions I(z) are as follows:

I(z)= Ilδ(z) Hertzian dipole
I(z)= I Uniform line element
I(z)= I(1− 2|z|/l) Small linear dipole
I(z)= I sin

(
k(l/2− |z|)) Standing-wave antenna

I(z)= I cos(kz) Half-wave antenna (l = λ/2)
I(z)= Ie−jkz Traveling-wave antenna

where l is the length of the antenna element and the expressions are assumed to be valid
for −l/2 ≤ z ≤ l/2, so that the antenna element straddles the xy-plane.
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The Hertzian dipole, uniform line element, and small linear dipole examples do not
satisfy Eq. (16.1.2), except when the antenna length is electrically short, that is, l� λ.

For loop antennas, we may take the loop to lie on the xy-plane and be centered at the
origin. Again, we may assume a thin wire. For a circular loop of radius a, the current
flows azimuthally. The corresponding current density can be expressed in cylindrical
coordinates r = (ρ,φ, z) as:

J(r)= φ̂φφIδ(ρ− a)δ(z) (circular loop) (16.1.3)

The delta functions confine the current on the ρ = a circle on the xy-plane. We will
discuss loop antennas in Sec. 16.8.

Antenna arrays may be formed by considering a group of antenna elements, such as
Hertzian or half-wave dipoles, arranged in particular geometrical configurations, such
as along a particular direction. Some examples of antenna arrays that are made up from
identical antenna elements are as follows:

J(r) = ẑ
∑
n
anI(z)δ(x− xn)δ(y) array along x-direction

J(r) = ẑ
∑
n
anI(z)δ(y − yn)δ(x) array along y-direction

J(r) = ẑ
∑
n
anI(z− zn)δ(x)δ(y) array along z-direction

J(r) = ẑ
∑
mn
amnI(z)δ(x− xm)δ(y − yn) 2D planar array

The weights an, amn are chosen appropriately to achieve desired directivity proper-
ties for the array. We discuss arrays in Sec. 19.1.

It is evident now from Eq. (16.1.1) that the radiation vector F will have only a z-
component. Indeed, we have from the definition Eq. (14.7.5):

F =
∫
V

J(r′)ej k·r
′
d3r′ = ẑ

∫
I(z′)δ(x′)δ(y′)ej(kxx

′+kyy′+kzz′)dx′dy′dz′

The x′ and y′ integrations are done trivially, whereas the z′ integration extends over
the length l of the antenna. Thus,

F = ẑFz = ẑ

∫ l/2
−l/2

I(z′)ejkzz
′
dz′

Using Eq. (14.8.3), the wave vector k can be resolved in cartesian components as:

k = k r̂ = x̂k cosφ sinθ+ ŷk sinφ sinθ+ ẑk cosθ = x̂kx + ŷky + ẑkz

Thus,

kx = k cosφ sinθ

ky = k sinφ sinθ

kz = k cosθ

(16.1.4)
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It follows that the radiation vector Fz will only depend on the polar angle θ:

Fz(θ)=
∫ l/2
−l/2

I(z′)ejkzz
′
dz′ =

∫ l/2
−l/2

I(z′)ejkz
′ cosθdz′ (16.1.5)

Using Eq. (14.8.2) we may resolve ẑ into its spherical coordinates and identify the
radial and transverse components of the radiation vector:

F = ẑFz = (r̂ cosθ− θ̂θθ sinθ)Fz(θ)= r̂Fz(θ)cosθ− θ̂θθFz(θ)sinθ

Thus, the transverse component of F will be have only a θ-component:

F⊥(θ)= θ̂θθFθ(θ)= −θ̂θθFz(θ)sinθ

It follows that the electric and magnetic radiation fields (14.10.5) generated by a
linear antenna will have the form:

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ)sinθ

(16.1.6)

The fields are omnidirectional, that is, independent of the azimuthal angle φ. The
factor sinθ arises from the cartesian to spherical coordinate transformation, whereas
the factor Fz(θ) incorporates the dependence on the assumed current distribution I(z).
The radiation intensity U(θ,φ) has θ-dependence only and is given by Eq. (15.1.4):

U(θ)= ηk2

32π2
|Fz(θ)|2 sin2 θ (radiation intensity of linear antenna) (16.1.7)

To summarize, the radiated fields, the total radiated power, and the angular distri-
bution of radiation from a linear antenna are completely determined by the quantity
Fz(θ) defined in Eq. (16.1.5).

16.2 Hertzian Dipole

The simplest linear antenna example is the Hertzian dipole that has a current distri-
bution I(z)= Ilδ(z) corresponding to an infinitesimally small antenna located at the
origin. Eq. (16.1.5) yields:

Fz(θ)=
∫ l/2
−l/2

I(z′)ejkzz
′
dz′ =

∫ l/2
−l/2

Ilδ(z′)ejkz
′ cosθdz′ = Il

Thus, Fz is a constant independent of θ. The radiation intensity is obtained from
Eq. (16.1.7):

U(θ)= ηk2

32π2
|Il|2 sin2 θ
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Its maximum occurs at θ = π/2, that is, broadside to the antenna:

Umax = ηk2

32π2
|Il|2

It follows that the normalized power gain will be:

g(θ)= U(θ)
Umax

= sin2 θ (Hertzian dipole gain) (16.2.1)

The gain g(θ) is plotted in absolute and dB units in Fig. 16.2.1. Note that the 3-dB
or half-power circle intersects the gain curve at 45o angles. Therefore, the half-power
beam width (HPBW) will be 90o—not a very narrow beam. We note also that there is no
radiated power along the direction of the antenna element, that is, the z-direction, or
θ = 0.
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Fig. 16.2.1 Gain of Hertzian dipole in absolute and dB units.

In these plots, the gain was computed by the function dipole and plotted with abp
and dbp. For example the left figure was generated by:

[g, th, c] = dipole(0, 200);
abp(th, g, 45);

Next, we calculate the beam solid angle from:

ΔΩ =
∫ π

0

∫ 2π

0
g(θ) sinθdθdφ = 2π

∫ π
0
g(θ) sinθdθ = 2π

∫ π
0

sin3 θdθ , or,

ΔΩ = 8π
3

It follows that the directivity will be:

Dmax = 4π
ΔΩ

= 4π
8π/3

= 1.5 ≡ 1.76 dB
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The total radiated power is then found from Eq. (15.2.17):

Prad = UmaxΔΩ = ηk2

32π2
|Il|2 8π

3
= ηk

2|Il|2
12π

(16.2.2)

Because of the proportionality to |I|2, we are led to define the radiation resistance
of the antenna, Rrad, as the resistance that would dissipate the same amount of power
as the power radiated, that is, we define it through:

Prad = 1

2
Rrad|I|2 (16.2.3)

Comparing the two expressions for Prad, we find:

Rrad = ηk
2l2

6π
= 2πη

3

(
l
λ

)2

(16.2.4)

where we replaced k = 2π/λ. Because we assumed an infinitesimally small antenna,
l� λ, the radiation resistance will be very small.

A related antenna example is the finite Hertzian, or uniform line element, which has
a constant current I flowing along its entire length l, that is, I(z)= I, for−l/2 ≤ z ≤ l/2.
We can write I(z)more formally with the help of the unit-step function u(z) as follows:

I(z)= I [u(z+ l/2)−u(z− l/2)]

The Hertzian dipole may be thought of as the limiting case of this example in the limit
l → 0. Indeed, multiplying and dividing by l, and using the property that the derivative
of the unit-step is u′(z)= δ(z), we have

I(z)= Il u(z+ l/2)−u(z− l/2)
l

→ Ildu(z)
dz

= Ilδ(z)

and we must assume, of course, that the product Il remains finite in that limit.

16.3 Standing-Wave Antennas

A very practical antenna is the center-fed standing-wave antenna, and in particular, the
half-wave dipole whose length is l = λ/2. The current distribution along the antenna
length is assumed to be a standing wave, much like the case of an open-ended parallel
wire transmission line. Indeed, as suggested by the figure below, the center-fed dipole
may be thought of as an open-ended transmission line whose ends have been bent up
and down. The current distribution is:

I(z)= I sin
(
k(l/2− |z|)) (standing-wave antenna) (16.3.1)
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Defining the half-length h = l/2, the radiation vector z-component Fz(θ) is:

Fz(θ)=
∫ h
−h
I sin

(
k(l/2− |z′|))ejkz′ cosθdz′ = 2I

k
cos(kh cosθ)− cos(kh)

sin2 θ

Inserting Fz(θ) into Eq. (16.1.7), and canceling some common factors, we obtain:

U(θ)= η|I|
2

8π2

∣∣∣∣cos(kh cosθ)− cos(kh)
sinθ

∣∣∣∣
2

(16.3.2)

It follows that the normalized power gain g(θ) will have a similar form:

g(θ)= cn
∣∣∣∣cos(kh cosθ)− cos(kh)

sinθ

∣∣∣∣
2

(normalized gain) (16.3.3)

where cn is a normalization constant chosen to make the maximum of g(θ) equal to
unity. Depending on the value of l, this maximum may not occur at θ = π/2.

In the limit l→ 0, we obtain the gain of the Hertzian dipole, g(θ)= sin2 θ. For small
values of l, we obtain the linear-current case. Indeed, using the approximation sinx � x,
the current (16.3.1) becomes:

I(z)= Ik
(
l
2
− |z|

)
, − l

2
≤ z ≤ l

2

For a general dipole of length l, the current at the input terminals of the antenna is
not necessarily equal to the peak amplitude I. Indeed, setting z = 0 in (16.3.1) we have:

Iin = I(0)= I sin(kl/2)= I sinkh (16.3.4)

The radiation resistance may be defined either in terms of the peak current or in
terms of the input current through the definitions:

Prad = 1

2
Rpeak|I|2 = 1

2
Rin|Iin|2 ⇒ Rin = Rpeak

sin2 kh
(16.3.5)

When l is a half-multiple of λ, the input and peak currents are equal and the two defi-
nitions of the radiation resistance are the same. But when l is a multiple of λ, Eq. (16.3.4)
gives zero for the input current, which would imply an infinite input resistance Rin. In
practice, the current distribution is only approximately sinusoidal and the input current
is not exactly zero.

The input impedance of an antenna has in general both a resistive part Rin and a
reactive part Xin, so that Zin = Rin + jXin. The relevant theory is discussed in Sec. 22.3.
Assuming a sinusoidal current, Zin can be computed by Eq. (22.3.10), implemented by
the MATLAB function imped:

Zin = imped(l,a); % input impedance of standing-wave antenna

where l, a are the length and radius of the antenna in units ofλ. For example, a half-wave
dipole (l = λ/2) with zero radius has Zin = imped(0.5,0)= 73.1+ j 42.5 Ω.

For l 
 a, the input resistance remains largely independent of the radius a. The
reactance has a stronger dependence on a. Fig. 16.3.1 shows a plot of Rin andXin versus
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Fig. 16.3.1 Input impedance of standing-wave dipole antenna.

the antenna length l plotted over the interval 0.3λ ≤ l ≤ 0.7λ, for the three choices of
the radius: a = 0, a = 0.0005λ, and a = 0.005λ.

We observe that the reactance Xin vanishes for lengths that are a little shorter than
l = λ/2. Such antennas are called resonant antennas in analogy with a resonant RLC
circuit whose input impedance Z = R+ j(ωL− 1/ωC) has a vanishing reactance at its
resonant frequencyω = 1/

√
LC.

For the three choices of the radius a, we find the following resonant lengths and
corresponding input resistances:

a = 0, l = 0.4857λ, Rin = 67.2 Ω
a = 0.0005λ, l = 0.4801λ, Rin = 65.0 Ω
a = 0.005λ, l = 0.4681λ, Rin = 60.5 Ω

An analytical expression for the peak and input radiation resistances can be obtained
by integrating the radiation intensity (16.3.2) over all solid angles to get the total radiated
power:

Prad =
∫
U(θ)dΩ =

∫ π
0

∫ 2π

0
U(θ)sinθdθdφ = 2π

∫ π
0
U(θ)sinθdθ

= η|I|
2

4π

∫ π
0

(
cos(kh cosθ)− cos(kh)

)2

sinθ
dθ

Comparing with (16.3.5), we obtain the peak resistance:

Rpeak = η
2π

∫ π
0

(
cos(kh cosθ)− cos(kh)

)2

sinθ
dθ

Using the trigonometric identity,

(
cos(kh cosθ)− cos(kh)

)2

= 1

2

(
cos(2kh cosθ)− cos(2kh)

)− 2
(
cos(kh cosθ)− cos(kh)

)
coskh
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the above integral can be expressed as a sum of two integrals of the form:
∫ π

0

cos(α cosθ)− cosα
sinθ

dθ = Si(2α)sinα−Cin(2α)cosα

which is derived in Appendix F. This leads to the integral:

∫ π
0

(
cos(kh cosθ)− cos(kh)

)2

sinθ
dθ =

Cin(kl)+1

2
coskl

[
2Cin(kl)−Cin(2kl)

]+ 1

2
sinkl

[
Si(2kl)−2Si(kl)

] (16.3.6)

and to the radiation resistance:

Rpeak = η
2π

[
Cin(kl)+1

2
coskl

[
2Cin(kl)−Cin(2kl)

]+ 1

2
sinkl

[
Si(2kl)−2Si(kl)

]]
(16.3.7)

which agrees with Eq. (22.3.21) derived by a different method. The radiation resistance
Rpeak also determines the directivity of the dipole antenna. Using (16.3.3) for the nor-
malized gain, we find the beam solid angle:

ΔΩ =
∫ π

0

∫ 2π

0
g(θ)dΩ = 2πcn

∫ π
0

(
cos(kh cosθ)− cos(kh)

)2

sinθ
dθ = 2πcn

2πRpeak

η

which leads to the directivity-impedance relationship:

Dmax = 4π
ΔΩ

= 1

cn
η

πRpeak
(16.3.8)

The normalization constant cn is equal to unity for a half-wave dipole; for other
antenna lengths, it may be computed numerically.

The MATLAB function dipdir calculates cn, the directivity Dmax, the angle θmax at
which the directivity is maximum (the angle 180−θmax also corresponds to Dmax), and
the radiation resistance Rpeak. It has usage:

[Rpeak,Dmax,thmax,cn] = dipdir(L) % standing-wave dipole of length L

The radiation resistance is computed from Eq. (16.3.7) with the help of the sine and
cosine integral functions Si(x) and Cin(x), and Dmax is computed from (16.3.8).

The table below shows some representative values, with the corresponding angular
patterns shown in Fig. 16.4.2.

l/λ Rpeak (Ω) Dmax Dmax (dB) θmax cn
0.50 73.08 1.64 2.15 90.00o 1.0000
0.75 185.68 1.88 2.75 90.00o 0.3431
1.00 198.95 2.41 3.82 90.00o 0.2500
1.25 106.46 3.28 5.16 90.00o 0.3431
1.50 105.42 2.23 3.48 42.57o 0.5109
1.75 229.94 2.37 3.75 50.94o 0.2200
2.00 259.45 2.53 4.03 57.42o 0.1828
2.25 143.48 3.07 4.87 62.28o 0.2723
2.50 120.68 3.06 4.86 32.22o 0.3249



16.4. Half-Wave Dipole 645

16.4 Half-Wave Dipole

The half-wave dipole corresponding to l = λ/2, or kl = π, is one of the most common
antennas. In this case, the current distribution along the antenna takes the form:

I(z)= I cos(kz) (half-wave dipole) (16.4.1)

with −λ/4 ≤ z ≤ λ/4. The normalized gain is:

g(θ)= cos2(0.5π cosθ)
sin2 θ

(half-wave dipole gain) (16.4.2)

Note that the maximum does occur at θ = π/2 and the normalization constant is
cn = 1. Fig. 16.4.1 shows the gain in absolute and dB units. The 3-dB or half-power
circle intersects the gain at an angle of θ3dB = 50.96o, which leads to a half-power beam
width of HPBW = 180o − 2θ3dB = 78.08o, that is, somewhat narrower than the Hertzian
dipole.
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Fig. 16.4.1 Gain of half-wave dipole in absolute and dB units.

Because sin(kl/2)= 1, sin(kl)= 0, and cos(kl)= −1, Eq. (16.3.7) reduces to:

Rin = Rpeak = η
4π
Cin(2kl)= η

4π
Cin(2π)= 73.0790 ohm

The directivity is found from (16.3.8) with cn = 1:

Dmax = η
πRpeak

= 1.64 ≡ 2.15 dB

In practice, the value Rin = 73 ohm can be matched easily to the characteristic
impedance of the feed line. For arbitrary values of the length l, the following example
MATLAB code used to calculate the gain function g(θ), as well as the constant cn and
the beam solid angle, is as follows:
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N = 200; % divide [0,pi] in N angle bins

dth = pi / N; % bin width

th = (1:N-1) * dth; % excludes th=0

g = ((cos(pi*L*cos(th)) - cos(pi*L)) ./ sin(th)).^2;
th = [0, th]; % N equally-spaced angles in [0,pi)

g = [0, g]; % avoids division by 0

cn = 1 / max(g);
g = cn * g; % normalized to unity maximum

Om = 2 * pi * sum(g .* sin(th)) * dth; % beam solid angle

where the beam solid angle is computed by the approximation to the integral:

ΔΩ = 2π
∫ π

0
g(θ)sinθdθ � 2π

N−1∑
i=0

g(θi)sinθi Δθ

where Δθ = π/N and θi = iΔθ, i = 0,1, . . . ,N − 1. These operations are carried out
by the functions dipole and dmax. For example, the right graph in Fig. 16.4.1 and Dmax

and ΔΩ were generated by the MATLAB code:

[g, th, c] = dipole(0.5, 200);
dbp(th, g, 45, 12);
[D, Omega] = dmax(th, g);

Gauss-Legendre quadrature integration also produces accurate results. For exam-
ple, assuming the normalization constant cn is known, the following code fragment
integrates the gain function (16.3.3) to compute the beam solid angle:

G = inline(’(cos(pi*L*cos(th)) - cos(pi*L)).^2./sin(th).^2’, ’L’,’th’);

[w,th] = quadrs([0,pi/2,pi],32); % use 32 points in the subintervals [0,π/2] and [π/2,π]
DOm = cn * 2*pi* w’*(G(L,th).*sin(th)); % find ΔΩ = 7.6581 for L = 0.5

Fig. 16.4.2 shows the gains of a variety of dipoles of different lengths. The corre-
sponding directivities are indicated on each plot.

16.5 Monopole Antennas

A monopole antenna is half of a dipole antenna placed on top of a ground plane, as
shown in Fig. 16.5.1. Assuming the plane is infinite and perfectly conducting, the
monopole antenna will be equivalent to a dipole whose lower half is the image of the
upper half.

Thus, the radiation pattern (in the upper hemisphere) will be identical to that of a
dipole. Because the fields are radiated only in the upper hemisphere, the total radiated
power will be half that of a dipole, and hence the corresponding radiation resistance
will also be halved:

Pmonopole = 1

2
Pdipole , Rmonopole = 1

2
Rdipole

Similarly, the directivity doubles because the isotropic radiation intensity in the de-
nominator of Eq. (15.2.2) becomes half its dipole value:

Dmonopole = 2Ddipole
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Fig. 16.4.2 Standing-wave dipole antenna patterns and directivities.

The quarter-wave monopole antenna whose length is λ/4 is perhaps the most widely
used antenna. For AM transmitting antennas operating in the 300 m or 1 MHz band, the
antenna height will be large, λ/4 = 75 m, requiring special supporting cables.

In mobile applications in the 30 cm or 1 GHz band, the antenna length will be fairly
small, λ/4 = 7.5 cm. The roof of a car plays the role of the conducting plane in this
case.

We note also in Fig. 16.4.2 that the l = 1.25λ = 10λ/8 dipole has the largest gain. It
can be used as a monopole in mobile applications requiring higher gains. Such antennas
are called 5/8-wave monopoles because their length is l/2 = 5λ/8.
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Fig. 16.5.1 Quarter-wave monopole above ground plane and the equivalent half-wave dipole.

16.6 Traveling-Wave Antennas

The standing-wave antenna current may be thought of as the linear superposition of a
forward and a backward moving current. For example, the half-wave dipole current can
be written in the form:

I(z)= I cos(kz)= I
2

(
e−jkz + ejkz)

The backward-moving component may be eliminated by terminating the linear an-
tenna at an appropriate matched load resistance, as shown in Fig. 16.6.1. The resulting
antenna is called a traveling-wave antenna or a Beverage antenna. The current along its
length has the form:

I(z)= Ie−jkz , 0 ≤ z ≤ l (16.6.1)

The corresponding radiation vector becomes:

F = ẑ

∫ l
0
Ie−jkz

′
ejk cosθz′dz′ = ẑ

I
jk

1− e−jkl(1−cosθ)

1− cosθ
(16.6.2)

The transverse θ-component is:

Fθ(θ)= −Fz(θ)sinθ = − I
jk

sinθ
1− e−2πjL(1−cosθ)

1− cosθ
≡ − I

jk
F(θ) (16.6.3)

where as before, L = l/λ and kl = 2πl/λ = 2πL. The radiation intensity, given by
Eq. (15.1.4) or (16.1.7), becomes now:

U(θ)= η|I|
2

32π2
|F(θ)|2 = η|I|

2

8π2

∣∣∣∣∣sinθ sin
(
πL(1− cosθ)

)
1− cosθ

∣∣∣∣∣
2

(16.6.4)

Fig. 16.6.1 Traveling-wave antenna with matched termination.
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Therefore, the normalized power gain will be:

g(θ)= cn
∣∣∣∣∣sinθ sin

(
πL(1− cosθ)

)
1− cosθ

∣∣∣∣∣
2

(16.6.5)

where cn is a normalization constant. Fig. 16.6.2 shows the power gains and directivities
for the cases l = 5λ and l = 10λ, or L = 5 and L = 10.
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Fig. 16.6.2 Traveling-wave antenna gain examples.

The MATLAB function travel calculates the gain (16.6.5). For example, the left
graph in Fig. 16.6.2 was generated by the MATLAB code:

[g, th, c, th0] = travel(5, 400);
dbp(th, g, 45, 12);
addray(90-th0,’-’); addray(90+th0,’-’);

The longer the length l, the more the main lobes tilt towards the traveling direction
of the antenna. The main lobes occur approximately at the polar angle (in radians) [5–7]:

θ0 = arccos
(

1− 0.371λ
l

)
= arccos

(
1− 0.371

L

)
(16.6.6)

For the two examples of Fig. 16.6.2, this expression gives for L = 5 and L = 10,
θ0 = 22.2o and θ0 = 15.7o. As L increases, the angle θ0 tends to zero.

There are other antenna structures that act as traveling-wave antennas, as shown
in Fig. 16.6.3. For example, a waveguide with a long slit along its length will radiate
continuously along the slit. Another example is a corrugated conducting surface along
which a surface wave travels and gets radiated when it reaches the discontinuity at the
end of the structure.

In all of these examples, the radiation pattern has an angular dependence similar to
that of a linear antenna with a traveling-wave current of the form:

I(z)= Ie−jβz = Ie−jpkz , 0 ≤ z ≤ l (16.6.7)
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Fig. 16.6.3 Surface-wave and leaky-wave antennas.

where β is the wavenumber along the guiding structure and p = β/k = c/vphase is
the ratio of the speed of light in vacuum to the phase velocity along the guide. The
corresponding radiation power pattern will now have the form:

g(θ)= cn
∣∣∣∣∣sinθ sin

(
πL(p− cosθ)

)
p− cosθ

∣∣∣∣∣
2

(16.6.8)

For long lengths L (and for p < 1), it peaks along the direction θ0 = arccos(p).
Note that p can take the values: (a) p > 1 (slow waves), as in the case of the corrugated
plane structure or the case of a Beverage antenna wrapped in a dielectric, (b) p < 1 (fast

waves), as in the case of the leaky waveguide, where p =
√

1−ω2
c/ω2 , and (c) p = 1,

for the Beverage antenna.

16.7 Vee and Rhombic Antennas

A vee antenna consists of two traveling-wave antennas forming an angle 2α with each
other, as shown in Fig. 16.7.1. It may be constructed by opening up the matched ends
of a transmission line at an angle of 2α (each of the terminating resistances is RL/2 for
a total of RL.)

Fig. 16.7.1 Traveling-wave vee antenna with l = 5λ, θ0 = 22.2o, and α = 0.85θ0 = 18.9o.

By choosing the angle α to be approximately equal to the main lobe angle θ0 of
Eq. (16.6.6), the two inner main lobes align with each other along the middle direction
and produce a stronger main lobe, thus increasing the directivity of the antenna. The
outer main lobes will also be present, but smaller.

The optimum angle α of the arms of the vee depends on the length l and is related
to main lobe angle θ0 via α = aθ0, where the factor a typically falls in the range
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a = 0.80–1.00. Figure 16.7.2 shows the optimum angle factor a that corresponds to
maximum directivity (in the plane of the vee) as a function of the length l.

0 2.5 5 7.5 10 12.5 15 17.5 20
0.75

0.8
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0.9

0.95

1
Optimum Angle Factor

l/λ

a

Fig. 16.7.2 Optimum angle factor as a function of antenna length.

Figure 16.7.3 shows the actual power patterns for the cases l = 5λ and l = 10λ. The
main lobe angles were θ0 = 22.2o and θ0 = 15.7o. The optimum vee angles were found
to be approximately (see Fig. 16.7.2), α = 0.85θ0 = 18.9o and α = 0.95θ0 = 14.9o, in
the two cases.
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Fig. 16.7.3 Traveling-wave vee antenna gains in dB.

The combined radiation pattern can be obtained with the help of Fig. 16.7.4. Let
ẑ1 and ẑ2 be the two unit vectors along the two arms of the vee, and let θ1, θ2 be the
two polar angles of the observation point P with respect to the directions ẑ1, ẑ2. The
assumed currents along the two arms have opposite amplitudes and are:

I1(z1)= Ie−jkz1 , I2(z2)= −Ie−jkz2 , for 0 ≤ z1, z2 ≤ l
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Fig. 16.7.4 Radiation vectors of traveling-wave vee antenna.

Applying the result of Eq. (16.6.2), the radiation vectors of the two arms will be:

F1 = ẑ1

∫ l
0
Ie−jkz

′
1ejk cosθ1z′1dz′1 = ẑ1

I
jk

1− e−jkl(1−cosθ1)

1− cosθ1

F2 = −ẑ2

∫ l
0
Ie−jkz

′
2ejk cosθ2z′2dz′2 = −ẑ2

I
jk

1− e−jkl(1−cosθ2)

1− cosθ2

Therefore, the θ-components will be as in Eq. (16.6.3):

F1θ = − Ijk F(θ1) , F2θ = I
jk
F(θ2)

where the function F(θ) was defined in Eq. (16.6.3). From Fig. 16.7.4, we may express
θ1, θ2 in terms of the polar angle θ with respect to the z-axis as:

θ1 = θ−α, θ2 = θ+α
Adding the θ-components, we obtain the resultant:

Fθ = F1θ + F2θ = I
jk
[
F(θ2)−F(θ1)

] = I
jk
[
F(θ+α)−F(θ−α)]

Thus, the radiation intensity will be:

U(θ)= ηk2

32π2
|Fθ(θ)|2 = η|I|

2

32π2

∣∣F(θ+α)−F(θ−α)∣∣2

and the normalized power pattern:

g(θ)= cn
∣∣F(θ+α)−F(θ−α)∣∣2

(16.7.1)

This is the gain plotted in Fig. 16.7.3 and can be computed by the MATLAB function
vee. Finally, we consider briefly a rhombic antenna made up of two concatenated vee
antennas, as shown in Fig. 16.7.5. Now the two inner main lobes of the first vee (lobes
a,b) and the two outer lobes of the second vee (lobes c, d) align with each other, thus
increasing the directivity of the antenna system.

The radiation vectors F3 and F4 of arms 3 and 4 may be obtained by noting that
these arms are the translations of arms 1 and 2, and therefore, the radiation vectors are
changed by the appropriate translational phase shift factors, as discussed in Sec. 19.2.
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Fig. 16.7.5 Traveling-wave rhombic antenna.

Arm-3 is the translation of arm-1 by the vector d2 = l ẑ2 and arm-4 is the translation
of arm-2 by the vector d1 = l ẑ1. Thus, the corresponding radiation vectors will be:

F3 = −ejk·d2F1 , F4 = −ejk·d1F2 (16.7.2)

where the negative signs arise because the currents in those arms have opposite signs
with their parallel counterparts. The phase shift factors are:

ejk·d2 = ejkl̂r·ẑ2 = ejkl cosθ2 , ejk·d1 = ejkl̂r·ẑ1 = ejkl cosθ1

It follows that the θ-components of F3 and F4 are:

F3θ = −ejkl cosθ2F1θ = I
jk
ejkl cosθ2F(θ1)

F4θ = −ejkl cosθ1F2θ = − Ijke
jkl cosθ1F(θ2)

Thus, the resultant θ-component will be:

Fθ = F1θ + F2θ + F3θ + F4θ = I
jk
[
F(θ2)−F(θ1)+ejkl cosθ2F(θ1)−ejkl cosθ1F(θ2)

]

The corresponding normalized power pattern will be:

g(θ)= cn
∣∣F(θ+α)−F(θ−α)+ejkl cos(θ+α)F(θ−α)−ejkl cos(θ−α)F(θ+α)∣∣2

Figure 16.7.6 shows the power gain g(θ) for the cases L = 5 and L = 10. The
optimum vee angle in both cases was found to be α = θ0, that is, α = 22.2o and
α = 15.7o. The function rhombic may be used to evaluate this expression.

16.8 Loop Antennas

Figure 16.8.1 shows a circular and a square loop antenna. The feed points are not
shown. The main oversimplifying assumption here is that the current is constant around
the loop. We will mainly consider the case when the dimension of the loop (e.g., its
circumference) is small relative to the wavelength.
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Fig. 16.7.6 Rhombic antenna gains in dB.

For such small loops, the radiation pattern turns out to be independent of the shape
of the loop and the radiation vector takes the simple form:

F = jm× k (16.8.1)

where m is the loop’s magnetic moment defined with respect to Fig. 16.8.1 as follows:

m = ẑ IS , (magnetic moment) (16.8.2)

where S is the area of the loop. Writing k = k r̂ and noting that ẑ× r̂ = φ̂φφ sinθ, we have:

F = jm× k = jmk sinθφ̂φφ ≡ Fφ(θ)φ̂φφ (16.8.3)

Fig. 16.8.1 Circular and square loop antennas.
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Thus, F is fully transverse to r̂, so that F⊥ = F. It follows from Eq. (14.10.4) that the
produced radiation fields will be:

E = φ̂φφEφ = −jkη e
−jkr

4πr
Fφ φ̂φφ = ηmk2 sinθ

e−jkr

4πr
φ̂φφ

H = θ̂θθHθ = jk e
−jkr

4πr
Fφ θ̂θθ = −mk2 sinθ

e−jkr

4πr
θ̂θθ

(16.8.4)

The radiation intensity of Eq. (15.1.4) is in this case:

U(θ,φ)= ηk2

32π2
|Fφ|2 = ηk

4|m|2
32π2

sin2 θ (loop intensity) (16.8.5)

Thus, it has the same sin2 θ angular dependence, normalized power gain, and direc-
tivity as the Hertzian dipole. We may call such small loop antennas “Hertzian loops”,
referring to their infinitesimal size. The total radiated power can be computed as in
Sec. 16.2. We have:

Prad = UmaxΔΩ = ηk
4|m|2

32π2

8π
3
= ηk

4|m|2
12π

Replacingm by IS, we may obtain the loop’s radiation resistance from the definition:

Prad = 1

2
Rrad|I|2 = ηk

4|IS|2
12π

⇒ Rrad = ηk
4S2

6π

Comparing Eq. (16.8.4) to the Hertzian dipole, the loop’s electric field is in the φ-
direction, whereas the Hertzian dipole’s is in the θ-direction. The relative amplitudes
of the electric fields are:

Edipole
θ

Eloop
φ

= j Il
mk

If we choose Il = mk, then the electric fields are off by a 90o-degree phase. If
such a Hertzian dipole and loop are placed at the origin, the produced net electric field
will be circularly polarized. We note finally that the loop may have several turns, thus
increasing its radiation resistance and radiated power. For a loop with n turns, we must
make the replacementm→ nm.

16.9 Circular Loops

Next, we consider the circular loop in more detail, and derive Eq. (16.8.3). Assuming an
infinitely thin wire loop of radius a, the assumed current density can be expressed in
cylindrical coordinates as in Eq. (16.1.3):

J(r′)= I φ̂φφ′δ(ρ′ − a)δ(z′)

The radiation vector will be:

F =
∫
V

J(r′)ejk·r
′
d3r′ =

∫
I φ̂φφ

′
ejk·r

′
δ(ρ′ − a)δ(z′)ρ′dρ′dφ′dz′ (16.9.1)
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Using Eq. (14.8.2), we have:

k · r′ = k(ẑ cosθ+ ρ̂ρρ sinθ)·(z′ẑ′ + ρ′ρ̂ρρ′)
= kz′ cosθ+ kρ′ sinθ(ρ̂ρρ′ · ρ̂ρρ)
= kz′ cosθ+ kρ′ sinθ cos(φ′ −φ)

where we set ρ̂ρρ′ · ρ̂ρρ = cos(φ′ −φ), as seen in Fig. 16.8.1. The integration in Eq. (16.9.1)
confines r′ to the xy-plane and sets ρ′ = a and z′ = 0. Thus, we have in the integrand:

k · r′ = ka sinθ cos(φ′ −φ)

Then, the radiation vector (16.9.1) becomes:

F = Ia
∫ 2π

0
φ̂φφ
′
ejka sinθ cos(φ′−φ)dφ′ (16.9.2)

We note in Fig. 16.8.1 that the unit vector φ̂φφ
′
varies in direction withφ′. Therefore, it

proves convenient to express it in terms of the unit vectors φ̂φφ,ρ̂ρρ of the fixed observation

point P. Resolving φ̂φφ
′

into the directions φ̂φφ,ρ̂ρρ, we have:

φ̂φφ
′ = φ̂φφ cos(φ′ −φ)−ρ̂ρρ sin(φ′ −φ)

Changing integration variables from φ′ to ψ = φ′ −φ, we write Eq. (16.9.2) as:

F = Ia
∫ 2π

0
(φ̂φφ cosψ− ρ̂ρρ sinψ)ejka sinθ cosψdψ

The second term is odd in ψ and vanishes. Thus,

F = Iaφ̂φφ
∫ 2π

0
cosψejka sinθ cosψdψ (16.9.3)

Using the integral representation of the Bessel function J1(x),

J1(x)= 1

2πj

∫ 2π

0
cosψejx cosψdψ

we may replace the ψ-integral by 2πjJ1(ka sinθ) and write Eq. (16.9.3) as:

F = Fφφ̂φφ = 2πj IaJ1(ka sinθ)φ̂φφ (16.9.4)

This gives the radiation vector for any loop radius. If the loop is electrically small,
that is, ka� 1, we may use the first-order approximation J1(x)� x/2, to get

F = Fφφ̂φφ = 2πj Ia
1

2
ka sinθφ̂φφ = jIπa2k sinθφ̂φφ (16.9.5)

which agrees with Eq. (16.8.3), withm = IS = Iπa2.
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16.10 Square Loops

The square loop of Fig. 16.8.1 may be thought of as four separate linear antennas repre-
senting the four sides. Assuming that each side is a Hertzian dipole and that the sides
are at distances ±l/2 from the origin, we can write the current densities of the sides
1,2,3,4 as follows:

J1(r) = ŷ Il δ(x− l/2)δ(y)δ(z)
J2(r) = −x̂ Il δ(x)δ(y − l/2)δ(z)
J3(r) = −ŷ Il δ(x+ l/2)δ(y)δ(z)
J4(r) = x̂ Il δ(x)δ(y + l/2)δ(z)

The currents on the parallel sides 1 and 3 combine to give:

J1(r)+J3(r)= −Il2 ŷ
[
δ(x+ l/2)−δ(x− l/2)

l

]
δ(y)δ(z)

where we multiplied and divided by a factor of l. In the limit of small l, we may replace
the quantity in the bracket by the derivative δ′(x) of the delta function δ(x):

J1(r)+J3(r)= −Il2 ŷδ′(x)δ(y)δ(z)

Similarly, we find for sides 2 and 4:

J2(r)+J4(r)= Il2 x̂δ(x)δ′(y)δ(z)

Thus, the net current density of all sides is:

J(r)= Il2[x̂δ(x)δ′(y)−ŷδ′(x)δ(y)
]
δ(z) (16.10.1)

The corresponding radiation vector will be:

F = Il2
∫ [

x̂δ(x′)δ′(y′)−ŷδ′(x′)δ(y′)
]
δ(z′)ej(kxx

′+kyy′+kzz′)dx′dy′dz′

The delta-function integrations can be done easily yielding:

F = Il2(−jkyx̂+ jkxŷ)

Using Eq. (16.1.4), we obtain

F = jIl2k sinθ(−x̂ sinφ+ ŷ cosφ)= jIl2k sinθφ̂φφ (16.10.2)

which agrees with Eq. (16.8.3), withm = IS = Il2.
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16.11 Dipole and Quadrupole Radiation

The radiation vector F of a current/charge distribution can be evaluated approximately
by expanding the exponential ejk·r′ to successive powers of k :

F =
∫
V

J(r′)ejk·r
′
d3r′ =

∫
V

[
1+ jk · r′ + 1

2!
(jk · r′)2+· · · ]J(r′)d3r′

=
∫
V

J(r′)d3r′
︸ ︷︷ ︸

elec. dipole

+
∫
V
j(k · r′)J(r′)d3r′

︸ ︷︷ ︸
magn. dipole & elec. quadrupole

+· · · (16.11.1)

The first term is the electric dipole radiation term and corresponds to the Hertzian
dipole antenna. The second term incorporates both the magnetic dipole (corresponding
to a Hertzian loop antenna) and the electric quadrupole terms.

Higher multipoles arise from the higher-order terms in the above expansion. A sys-
tematic discussion of all multipole radiation terms requires the use of spherical har-
monics.

Keeping only a few terms in the above expansion is a good approximation to F pro-
vided kr′ � 1, or l � λ, where l is the typical dimension of the current source. In
general, any radiating system will emit radiation of various multipole types.

The electric dipole and electric quadrupole moments of a charge distribution are de-
fined in terms of the following first- and second-order moments of the charge density:

p =
∫
V

r′ρ(r′)d3r′ (electric dipole moment) (16.11.2)

Dij =
∫
V
r′i r

′
jρ(r

′)d3r′ (electric quadrupole moment) (16.11.3)

The identity of Problem 14.2 is useful here in manipulating the successive expansion
terms of F. Applying the identity with the two choices: g(r′)= r′i and g(r′)= r′i r′j , we
obtain the relationships:

∫
V
Ji d3r′ = jω

∫
V
r′i ρ(r

′)d3r′ = jωpi
∫
V
(r′i Jj + r′jJi) d3r′ = jω

∫
V
r′i r

′
jρ(r

′)d3r′ = jωDij
(16.11.4)

Thus, the lowest-order term in Eq. (16.11.1) is the electric dipole:
∫
V

J(r′)d3r′ = jωp = Fel

In the second term of Eq. (16.11.1), we may apply the vectorial identity:

(k · r′)J = 1

2
(r′ × J)×k+ 1

2

[
(k · r′)J+ (k · J)r′]

and in integrated form:
∫
V
(k · r′)Jd3r′ = 1

2

∫
V
(r′ × J)×kd3r′ + 1

2

∫
V

[
(k · r′)J+ (k · J)r′]d3r′ (16.11.5)
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The magnetic moment of a current distribution is defined in general by

m = 1

2

∫
V

r′ × J(r′)d3r′ (magnetic moment) (16.11.6)

Therefore, the first term in Eq. (16.11.5) may be written as m × k. With the help of
the second identity of Eq. (16.11.4), the last term of (16.11.5) may be written in terms of
the quadrupole matrix D acting on the vector k. We have then for the second term in
the expansion (16.11.1):∫

V
j(k · r′)Jd3r′ = jm× k− 1

2
ωDk = Fmag + Fquad (16.11.7)

Thus, the three lowest-order terms of F are:

F = Fel + Fmag + Fquad = jωp+ jm× k− 1

2
ωDk (16.11.8)

We briefly discuss each term. For a Hertzian dipole antenna with J(r′)= ẑ Il δ3(r′),
only the first term of (16.11.8) is non-zero and is the same as that of Sec. 16.2:

Fel =
∫
V

J(r′)d3r′ = ẑ Il = jωp

The relationship Il = jωp may be understood by thinking of the Hertzian dipole as
two opposite time-varying charges ±q separated by a distance l (along the z-direction),
so that p = ql. It follows that jωp = ṗ = q̇l = Il.

The result p = qlmay also be applied to the case of an accelerated charge. Now q is
constant but l varies with time. We have ṗ = ql̇ = qv and p̈ = qv̇ = qa, where a is the
acceleration a = v̇. For harmonic time dependence, we have (jω)2p = qa. The total
radiated power from a dipole was obtained in Eq. (16.2.2). Setting k2|Il|2 = k2|qv|2 =
q2ω2|v|2/c2 = q2|a|2/c2, we can rewrite Eq. (16.2.2) in the form:

P = ηq
2|a|2

12πc2
= ηq

2a2
rms

6πc2

where arms = |a|/√2 is the rms value of the acceleration. This is Larmor’s classical
expression for the radiated power from a nonrelativistic accelerated charge.

For a Hertzian loop, only the magnetic moment term is present in F. We may verify
the result that m = ẑ IS using the definition (16.11.6). Indeed, for a circular loop:

m = 1

2

∫
r′ × [I φ̂φφ′δ(ρ′ − a)δ(z′)]ρ′dρ′dφ′dz′

The integrations over z′ and ρ′ force z′ = 0 and ρ′ = a, and therefore, r′ = aρ̂ρρ′.
Noting that ρ̂ρρ′×φ̂φφ′ = ẑ and that theφ′-integration contributes a factor of 2π, we obtain:

m = 1

2
aρ̂ρρ′ × φ̂φφ′ Ia2π = ẑ I(πa2)

Similarly, inserting Eq. (16.10.1) into (16.11.6), we find for the square loop:

m = 1

2

∫
(x x̂+ y ŷ+ z ẑ)×[Il2(x̂δ(x)δ′(y)−ŷδ′(x)δ(y)

)
δ(z)

]
dxdydz = ẑ Il2
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For the electric quadrupole term, the matrixD is sometimes replaced by its traceless
version defined by

Qij = 3Dij − δijtr(D)=
∫
V

(
3r′i r

′
j − δij r′ · r′

)
ρ(r′)d3r′ ⇒ Q = 3D− I tr(D)

so that tr(Q)= 0. In this case, the vector Dk may be expressed as

Dk = 1

3
Qk+ 1

3
tr(D)k

The second term may be ignored because it does not contribute to the radiation
fields, which depend only on the part of F transverse to k. Thus, without loss of gener-
ality we may also write:

F = jωp+ jm× k− 1

6
ωQk

The electric and magnetic dipoles have angular gain patterns that are identical to
the Hertzian dipole and Hertzian loop antennas, that is, sin2 θ. The quadrupole term,
on the other hand, can have a complicated angular pattern as can be seen by expressing
the vector Qk = kQr̂ explicitly in terms of the angles θ,φ:

Qr̂ =
⎡
⎢⎣
Qxx Qxy Qxz
Qyx Qyy Qyz
Qzx Qzy Qzz

⎤
⎥⎦
⎡
⎢⎣

sinθ cosφ
sinθ sinφ

cosθ

⎤
⎥⎦

16.12 Problems

16.1 Computer Experiment—Dipoles. Reproduce the results and graphs of Fig. 16.4.2, and calcu-
late the corresponding directivities in dB.

16.2 Derive Eq. (16.3.7) for the input resistance of a dipole antenna.

16.3 Derive Eq. (16.6.6) for the tilt angle of a traveling wave antenna by reducing the problem to
that of finding the maximum of the function sin2(πx)/x in the interval [0,1].

16.4 Computer Experiment–Traveling Wave Antennas. Reproduce the results and graphs of Fig. 16.6.2.


