
11
Coupled Lines

11.1 Coupled Transmission Lines

Coupling between two transmission lines is introduced by their proximity to each other.
Coupling effects may be undesirable, such as crosstalk in printed circuits, or they may
be desirable, as in directional couplers where the objective is to transfer power from one
line to the other.

In Sections 11.1–11.3, we discuss the equations, and their solutions, describing cou-
pled lines and crosstalk [904–921]. In Sec. 11.4, we discuss directional couplers, as well
as fiber Bragg gratings, based on coupled-mode theory [922–943]. Fig. 11.1.1 shows an
example of two coupled microstrip lines over a common ground plane, and also shows
a generic circuit model for coupled lines.

Fig. 11.1.1 Coupled Transmission Lines.

For simplicity, we assume that the lines are lossless. Let Li,Ci, i = 1,2 be the
distributed inductances and capacitances per unit length when the lines are isolated from
each other. The corresponding propagation velocities and characteristic impedances
are: vi = 1/

√
LiCi, Zi =

√
Li/Ci, i = 1,2. The coupling between the lines is modeled

by introducing a mutual inductance and capacitance per unit length, Lm,Cm. Then, the
coupled versions of telegrapher’s equations (10.15.1) become:†

†C1 is related to the capacitance to ground C1g via C1 = C1g + Cm, so that the total charge per unit
length on line-1 is Q1 = C1V1 −CmV2 = C1g(V1 −Vg)+Cm(V1 −V2), where Vg = 0.
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When Lm = Cm = 0, they reduce to the uncoupled equations describing the isolated
individual lines. Eqs. (11.1.1) may be written in the 2×2 matrix forms:

∂V

∂z
= −

[
L1 Lm
Lm L2

]
∂I

∂t

∂I

∂z
= −

[
C1 −Cm

−Cm C2

]
∂V

∂t

(11.1.2)

where V, I are the column vectors:

V =
[
V1

V2

]
, I =

[
I1
I2

]
(11.1.3)

For sinusoidal time dependence ejωt, the system (11.1.2) becomes:

dV

dz
= −jω

[
L1 Lm
Lm L2

]
I

dI

dz
= −jω

[
C1 −Cm
−Cm C2

]
V

(11.1.4)

It proves convenient to recast these equations in terms of the forward and backward
waves that are normalized with respect to the uncoupled impedances Z1, Z2 :

a1 = V1 + Z1I1
2
√

2Z1
, b1 = V1 − Z1I1

2
√

2Z1

a2 = V2 + Z2I2
2
√

2Z2
, b2 = V2 − Z2I2

2
√

2Z2

⇒ a =
[
a1

a2

]
, b =

[
b1

b2

]
(11.1.5)

The a,b waves are similar to the power waves defined in Sec. 13.7. The total average
power on the line can be expressed conveniently in terms of these:

P = 1

2
Re[V †I]= 1

2
Re[V∗1 I1]+

1

2
Re[V∗2 I2]= P1 + P2

= (|a1|2 − |b1|2
)+ (|a2|2 − |b2|2

) = (|a1|2 + |a2|2
)− (|b1|2 + |b2|2

)
= a†a− b†b

(11.1.6)

where the dagger operator denotes the conjugate-transpose, for example, a† = [a∗1 , a∗2 ].
Thus, the a-waves carry power forward, and the b-waves, backward. After some algebra,
it can be shown that Eqs. (11.1.4) are equivalent to the system:

da

dz
= −jF a+ jGb

db

dz
= −jG a+ jF b

⇒ d
dz

[
a
b

]
= −j

[
F −G
G −F

][
a
b

]
(11.1.7)
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with the matrices F,G given by:

F =
[
β1 κ
κ β2

]
, G =

[
0 χ
χ 0

]
(11.1.8)

where β1, β2 are the uncoupled wavenumbers βi = ω/vi = ω
√
LiCi, i = 1,2 and the

coupling parameters κ,χ are:

κ = 1

2
ω
(

Lm√
Z1Z2

−Cm
√
Z1Z2

)
= 1

2

√
β1β2

(
Lm√
L1L2

− Cm√
C1C2

)

χ = 1

2
ω
(

Lm√
Z1Z2

+Cm
√
Z1Z2

)
= 1

2

√
β1β2

(
Lm√
L1L2

+ Cm√
C1C2

) (11.1.9)

A consequence of the structure of the matrices F,G is that the total power P defined
in (11.1.6) is conserved along z. This follows by writing the power in the following form,
where I is the 2×2 identity matrix:

P = a†a− b†b = [a†,b†]
[
I 0
0 −I

][
a
b

]

Using (11.1.7), we find:

dP
dz

= j[a†,b†]
([

F† G†

−G† −F†
][

I 0
0 −I

]
−
[
I 0
0 −I

][
F −G
G −F

])[
a
b

]
= 0

the latter following from the conditions F† = F and G† = G. Eqs. (11.1.6) and (11.1.7)
form the basis of coupled-mode theory.

Next, we specialize to the case of two identical lines that have L1 = L2 ≡ L0 and
C1 = C2 ≡ C0, so that β1 = β2 =ω

√
L0C0 ≡ β and Z1 = Z2 =

√
L0/C0 ≡ Z0, and speed

v0 = 1/
√
L0C0. Then, the a,b waves and the matrices F,G take the simpler forms:

a = V+ Z0I

2
√

2Z0
, b = V− Z0I

2
√

2Z0
⇒ a = V+ Z0I

2
, b = V− Z0I

2
(11.1.10)

F =
[
β κ
κ β

]
, G =

[
0 χ
χ 0

]
(11.1.11)

where, for simplicity, we removed the common scale factor
√

2Z0 from the denominator
of a,b. The parameters κ,χ are obtained by setting Z1 = Z2 = Z0 in (11.1.9):

κ = 1

2
β
(
Lm
L0

− Cm
C0

)
, χ = 1

2
β
(
Lm
L0

+ Cm
C0

)
, (11.1.12)

The matrices F,G commute with each other. In fact, they are both examples of
matrices of the form:

A =
[
a0 a1

a1 a0

]
= a0I + a1J , I =

[
1 0
0 1

]
, J =

[
0 1
1 0

]
(11.1.13)
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where a0, a1 are real such that |a0| �= |a1|. Such matrices form a commutative subgroup
of the group of nonsingular 2×2 matrices. Their eigenvalues are λ± = a0±a1 and they
can all be diagonalized by a common unitary matrix:

Q = 1√
2

[
1 1
1 −1

]
= [e+, e−] , e+ = 1√

2

[
1
1

]
, e− = 1√

2

[
1

−1

]
(11.1.14)

so that we have QQ† = Q†Q = I and Ae± = λ±e±.
The eigenvectors e± are referred to as the even and odd modes. To simplify sub-

sequent expressions, we will denote the eigenvalues of A by A± = a0 ± a1 and the
diagonalized matrix by Ā. Thus,

A = QĀQ† , Ā =
[
A+ 0
0 A−

]
=
[
a0 + a1 0

0 a0 − a1

]
(11.1.15)

Such matrices, as well as any matrix-valued function thereof, may be diagonalized
simultaneously. Three examples of such functions appear in the solution of Eqs. (11.1.7):

B =
√
(F +G)(F −G) = Q

√
(F̄ + Ḡ)(F̄ − Ḡ)Q†

Z = Z0

√
(F +G)(F −G)−1 = Z0Q

√
(F̄ + Ḡ)(F̄ − Ḡ)−1Q†

Γ = (Z − Z0 I)(Z + Z0 I)−1= Q(Z̄ − Z0 I)(Z̄ + Z0 I)−1Q†

(11.1.16)

Using the property FG = GF, and differentiating (11.1.7) one more time, we obtain
the decoupled second-order equations, with B as defined in (11.1.16):

d2a

dz2
= −B2 a ,

d2b

dz2
= −B2 b

However, it is better to work with (11.1.7) directly. This system can be decoupled by
forming the following linear combinations of the a,b waves:

A = a− Γb

B = b− Γa
⇒

[
A
B

]
=
[

I −Γ
−Γ I

][
a
b

]
(11.1.17)

The A,B can be written in terms of V, I and the impedance matrix Z as follows:

A = (2D)−1(V+ ZI)

B = (2D)−1(V− ZI)
⇒

V = D(A+ B)

ZI = D(A− B)
D = Z + Z0 I

2Z0
(11.1.18)

Using (11.1.17), we find that A,B satisfy the decoupled first-order system:

d
dz

[
A
B

]
= −j

[
B 0
0 −B

][
A
B

]
⇒ dA

dz
= −jBA ,

dB

dz
= jBB (11.1.19)

with solutions expressed in terms of the matrix exponentials e±jBz:

A(z)= e−jBzA(0) , B(z)= ejBzB(0) (11.1.20)
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Using (11.1.18), we obtain the solutions for V, I :

V(z) = D[e−jBzA(0)+ejBzB(0)]
ZI(z) = D[e−jBzA(0)−ejBzB(0)] (11.1.21)

To complete the solution, we assume that both lines are terminated at common
generator and load impedances, that is, ZG1 = ZG2 ≡ ZG and ZL1 = ZL2 ≡ ZL. The
generator voltagesVG1, VG2 are assumed to be different. We define the generator voltage
vector and source and load matrix reflection coefficients:

VG =
[
VG1

VG2

]
,

ΓG = (ZGI − Z)(ZGI + Z)−1

ΓL = (ZLI − Z)(ZLI + Z)−1 (11.1.22)

The terminal conditions for the line are at z = 0 and z = l :
VG = V(0)+ZGI(0) , V(l)= ZLI(l) (11.1.23)

They may be re-expressed in terms of A,B with the help of (11.1.18):

A(0)−ΓGB(0)= D−1Z(Z + ZGI)−1VG , B(l)= ΓLA(l) (11.1.24)

But from (11.1.19), we have:†

ejBlB(0)= B(l)= ΓLA(l)= ΓLe−jBlA(0) ⇒ B(0)= ΓLe−2jBlA(0) (11.1.25)

Inserting this into (11.1.24), we may solve for A(0) in terms of the generator voltage:

A(0)= D−1[I − ΓGΓLe−2jBl]−1Z(Z + ZGI)−1VG (11.1.26)

Using (11.1.26) into (11.1.21), we finally obtain the voltage and current at an arbitrary
position z along the lines:

V(z) = [e−jBz + ΓLe−2jBlejBz
][
I − ΓGΓLe−2jBl]−1Z(Z + ZGI)−1VG

I(z) = [e−jBz − ΓLe−2jBlejBz
][
I − ΓGΓLe−2jBl]−1(Z + ZGI)−1VG

(11.1.27)

These are the coupled-line generalizations of Eqs. (10.9.7). Resolving VG and V(z)
into their even and odd modes, that is, expressing them as linear combinations of the
eigenvectors e±, we have:

VG = VG+e+ +VG−e− , where VG± = VG1 ±VG2√
2

V(z)= V+(z)e+ +V−(z)e− , V±(z)= V1(z)±V2(z)√
2

(11.1.28)

In this basis, the matrices in (11.1.27) are diagonal resulting in the equivalent solution:

V(z)= V+(z)e+ +V−(z)e− =e
−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
Z+

Z+ + ZG VG+e+

+e
−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
Z−

Z− + ZG VG−e−

(11.1.29)

†The matrices D,Z, ΓG, ΓL, Γ,B all commute with each other.
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where β± are the eigenvalues of B, Z± the eigenvalues of Z, and ΓG±, ΓL± are:

ΓG± = ZG − Z±
ZG + Z± , ΓL± = ZL − Z±

ZL + Z± (11.1.30)

The voltages V1(z),V2(z) are obtained by extracting the top and bottom compo-
nents of (11.1.29), that is, V1,2(z)=

[
V+(z)±V−(z)

]
/
√

2 :

V1(z) = e−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ + e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

V2(z) = e−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ − e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

(11.1.31)

where we defined:

V± =
(

Z±
Z± + ZG

)
VG±√

2
= 1

4
(1− ΓG±)(VG1 ±VG2) (11.1.32)

The parametersβ±, Z± are obtained using the rules of Eq. (11.1.15). From Eq. (11.1.12),
we find the eigenvalues of the matrices F ±G:

(F +G)± = β± (κ+ χ)= β
(

1± Lm
L0

)
=ω 1

Z0
(L0 ± Lm)

(F −G)± = β± (κ− χ)= β
(

1∓ Cm
C0

)
=ωZ0(C0 ∓Cm)

Then, it follows that:

β+ =
√
(F +G)+(F −G)+ =ω

√
(L0 + Lm)(C0 −Cm)

β− =
√
(F +G)−(F −G)− =ω

√
(L0 − Lm)(C0 +Cm)

(11.1.33)

Z+ = Z0

√
(F +G)+
(F −G)+ =

√
L0 + Lm
C0 −Cm

Z− = Z0

√
(F +G)−
(F −G)− =

√
L0 − Lm
C0 +Cm

(11.1.34)

Thus, the coupled system acts as two uncoupled lines with wavenumbers and char-
acteristic impedances β±, Z±, propagation speeds v± = 1/

√
(L0 ± Lm)(C0 ∓Cm), and

propagation delays T± = l/v±. The even mode is energized when VG2 = VG1, or,
VG+ �= 0, VG− = 0, and the odd mode, when VG2 = −VG1, or, VG+ = 0, VG− �= 0.

When the coupled lines are immersed in a homogeneous medium, such as two parallel
wires in air over a ground plane, then the propagation speeds must be equal to the speed
of light within this medium [914], that is, v+ = v− = 1/√με. This requires:

(L0 + Lm)(C0 −Cm)= με
(L0 − Lm)(C0 +Cm)= με

⇒
L0 = μεC0

C2
0 −C2

m

Lm = μεCm
C2

0 −C2
m

(11.1.35)

Therefore, Lm/L0 = Cm/C0, or, equivalently, κ = 0. On the other hand, in an
inhomogeneous medium, such as for the case of the microstrip lines shown in Fig. 11.1.1,
the propagation speeds may be different, v+ �= v−, and hence T+ �= T−.
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11.2 Crosstalk Between Lines

When only line-1 is energized, that is, VG1 �= 0, VG2 = 0, the coupling between the lines
induces a propagating wave in line-2, referred to as crosstalk, which also has some minor
influence back on line-1. The near-end and far-end crosstalk are the values of V2(z) at
z = 0 and z = l, respectively. Setting VG2 = 0 in (11.1.32), we have from (11.1.31):

V2(0) = 1

2

(1− ΓG+)(1+ ΓL+ζ−2+ )
1− ΓG+ΓL+ζ−2+

V − 1

2

(1− ΓG−)(1+ ΓL−ζ−2− )
1− ΓG−ΓL−ζ−2

V

V2(l) = 1

2

ζ−1+ (1− ΓG+)(1+ ΓL+)
1− ΓG+ΓL+ζ−2+

V − 1

2

ζ−1− (1− ΓG−)(1+ ΓL−)
1− ΓG−ΓL−ζ−2−

V

(11.2.1)

where we defined V = VG1/2 and introduced the z-transform delay variables ζ± =
ejωT± = ejβ±l. Assuming purely resistive termination impedances ZG,ZL, we may use
Eq. (10.15.15) to obtain the corresponding time-domain responses:

V2(0, t) = 1

2
(1− ΓG+)

⎡
⎣V(t)+(1+ 1

ΓG+

) ∞∑
m=1

(ΓG+ΓL+)m V(t − 2mT+)

⎤
⎦

− 1

2
(1− ΓG−)

⎡
⎣V(t)+(1+ 1

ΓG−

) ∞∑
m=1

(ΓG−ΓL−)m V(t − 2mT−)

⎤
⎦

V2(l, t) = 1

2
(1− ΓG+)(1+ ΓL+)

∞∑
m=0

(ΓG+ΓL+)m V(t − 2mT+ −T+)

− 1

2
(1− ΓG−)(1+ ΓL−)

∞∑
m=0

(ΓG−ΓL−)m V(t − 2mT− −T−)

(11.2.2)

where V(t)= VG1(t)/2.† Because Z± �= Z0, there will be multiple reflections even when
the lines are matched to Z0 at both ends. Setting ZG = ZL = Z0, gives for the reflection
coefficients (11.1.30):

ΓG± = ΓL± = Z0 − Z±
Z0 + Z± = −Γ± (11.2.3)

In this case, we find for the crosstalk signals:

V2(0, t) = 1

2
(1+ Γ+)

⎡
⎣V(t)−(1− Γ+)

∞∑
m=1

Γ2m−1+ V(t − 2mT+)

⎤
⎦

− 1

2
(1+ Γ−)

⎡
⎣V(t)−(1− Γ−)

∞∑
m=1

Γ2m−1− V(t − 2mT−)

⎤
⎦

V2(l, t) = 1

2
(1− Γ2+)

∞∑
m=0

Γ2m+ V(t − 2mT+ −T+)

− 1

2
(1− Γ2−)

∞∑
m=0

Γ2m− V(t − 2mT− −T−)

(11.2.4)

†V(t) is the signal that would exist on a matched line-1 in the absence of line-2, V = Z0VG1/(Z0+ZG)=
VG1/2, provided ZG = Z0.
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Similarly, the near-end and far-end signals on the driven line are found by adding,
instead of subtracting, the even- and odd-mode terms:

V1(0, t) = 1

2
(1+ Γ+)

⎡
⎣V(t)−(1− Γ+)

∞∑
m=1

Γ2m−1+ V(t − 2mT+)

⎤
⎦

+ 1

2
(1+ Γ−)

⎡
⎣V(t)−(1− Γ−)

∞∑
m=1

Γ2m−1− V(t − 2mT−)

⎤
⎦

V1(l, t) = 1

2
(1− Γ2+)

∞∑
m=0

Γ2m+ V(t − 2mT+ −T+)

+ 1

2
(1− Γ2−)

∞∑
m=0

Γ2m− V(t − 2mT− −T−)

(11.2.5)

These expressions simplify drastically if we assume weak coupling. It is straightfor-
ward to verify that to first-order in the parameters Lm/L0, Cm/C0, or equivalently, to
first-order in κ,χ, we have the approximations:

β± = β±Δβ = β± κ , Z± = Z0 ±ΔZ = Z0 ± Z0
χ
β
, v± = v0 ∓ v0

κ
β

Γ± = 0±ΔΓ = ± χ
2β
, T± = T ±ΔT = T ±T κβ

(11.2.6)

where T = l/v0. Because the Γ±s are already first-order, the multiple reflection terms
in the above summations are a second-order effect, and only the lowest terms will con-
tribute, that is, the term m = 1 for the near-end, and m = 0 for the far end. Then,

V2(0, t) = 1

2
(Γ+ − Γ−)V(t)−1

2

[
Γ+V(t − 2T+)−Γ−V(t − 2T−)

]

V2(l, t) = 1

2

[
V(t −T+)−V(t −T−)]

Using a Taylor series expansion and (11.2.6), we have to first-order:

V(t − 2T±)= V(t − 2T ∓ΔT)	 V(t − 2T)∓(ΔT)V̇(t − 2T) , V̇ = dV
dt

V(t −T±)= V(t −T ∓ΔT)	 V(t −T)∓(ΔT)V̇(t −T)
Therefore, Γ±V(t − 2T±)= Γ±

[
V(t − 2T)∓(ΔT)V̇] 	 Γ±V(t − 2T), where we

ignored the second-order terms Γ±(ΔT)V̇. It follows that:

V2(0, t) = 1

2
(Γ+ − Γ−)

[
V(t)−V(t − 2T)

] = (ΔΓ)[V(t)−V(t − 2T)
]

V2(l, t) = 1

2

[
V(t −T)−(ΔT)V̇ −V(t −T)−(ΔT)V̇] = −(ΔT)dV(t −T)

dt
These can be written in the commonly used form:

V2(0, t)= Kb
[
V(t)−V(t − 2T)

]

V2(l, t)= Kf dV(t −T)dt

(near- and far-end crosstalk) (11.2.7)
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where Kb,Kf are known as the backward and forward crosstalk coefficients:

Kb = χ
2β

= v0

4

(
Lm
Z0

+CmZ0

)
, Kf = −T κβ = −

v0T
2

(
Lm
Z0

−CmZ0

)
(11.2.8)

where we may replace l = v0T. The same approximations give for line-1,V1(0, t)= V(t)
and V1(l, t)= V(t −T). Thus, to first-order, line-2 does not act back to disturb line-1.

Example 11.2.1: Fig. 11.2.1 shows the signals V1(0, t), V1(l, t), V2(0, t), V2(l, t) for a pair of
coupled lines matched at both ends. The uncoupled line impedance was Z0 = 50 Ω.
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Fig. 11.2.1 Near- and far-end crosstalk signals on lines 1 and 2.

For the left graph, we chose Lm/L0 = 0.4, Cm/C0 = 0.3, which results in the even and odd
mode parameters (using the exact formulas):

Z+ = 70.71 Ω , Z− = 33.97 Ω , v+ = 1.01v0 , v− = 1.13v0

Γ+ = 0.17 , Γ− = −0.19 , T+ = 0.99T , T− = 0.88T , Kb = 0.175 , Kf = 0.05

The right graph corresponds to Lm/L0 = 0.8, Cm/C0 = 0.7, with parameters:

Z+ = 122.47 Ω , Z− = 17.15 Ω , v+ = 1.36v0 , v− = 1.71v0

Γ+ = 0.42 , Γ− = −0.49 , T+ = 0.73T , T− = 0.58T , Kb = 0.375 , Kf = 0.05

The generator input to line-1 was a rising step with rise-time tr = T/4, that is,

V(t)= 1

2
VG1(t)= t

tr

[
u(t)−u(t − tr)

]+ u(t − tr)
The weak-coupling approximations are more closely satisfied for the left case. Eqs. (11.2.7)
predict for V2(0, t) a trapezoidal pulse of duration 2T and height Kb, and for V2(l, t), a
rectangular pulse of width tr and height Kf/tr = −0.2 starting at t = T:

V2(l, t)= Kf dV(t −T)dt
= Kf
tr

[
u(t −T)−u(t −T − tr)]

These predictions are approximately correct as can be seen in the figure. The approxima-
tion predicts also that V1(0, t)= V(t) and V1(l, t)= V(t −T), which are not quite true—
the effect of line-2 on line-1 cannot be ignored completely.
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The interaction between the two lines is seen better in the MATLAB movie xtalkmovie.m,
which plots the waves V1(z, t) and V2(z, t) as they propagate to and get reflected from
their respective loads, and compares them to the uncoupled case V0(z, t)= V(t − z/v0).
The waves V1,2(z, t) are computed by the same method as for the movie pulsemovie.m

of Example 10.15.1, applied separately to the even and odd modes. 
�

11.3 Weakly Coupled Lines with Arbitrary Terminations

The even-odd mode decomposition can be carried out only in the case of identical lines
both of which have the same load and generator impedances. The case of arbitrary
terminations has been solved in closed form only for homogeneous media [911,914]. It
has also been solved for arbitrary media under the weak coupling assumption [921].

Following [921], we solve the general equations (11.1.7)–(11.1.9) for weakly coupled
lines assuming arbitrary terminating impedances ZLi, ZGi, with reflection coefficients:

ΓLi = ZLi − Zi
ZLi + Zi , ΓGi = ZGi − Zi

ZGi + Zi , i = 1,2 (11.3.1)

Working with the forward and backward waves, we write Eq. (11.1.7) as the 4×4
matrix equation:

dc

dz
= −jMc , c =

⎡
⎢⎢⎢⎣
a1

a2

b1

b2

⎤
⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎣
β1 κ 0 −χ
κ β2 −χ 0
0 χ −β1 −κ
χ 0 −κ −β2

⎤
⎥⎥⎥⎦

The weak coupling assumption consists of ignoring the coupling of a1, b1 on a2, b2.
This amounts to approximating the above linear system by:

dc

dz
= −jM̂c , M̂ =

⎡
⎢⎢⎢⎣
β1 0 0 0
κ β2 −χ 0
0 0 −β1 0
χ 0 −κ −β2

⎤
⎥⎥⎥⎦ (11.3.2)

Its solution is given by c(z)= e−jM̂zc(0), where the transition matrix e−jM̂z can be
expressed in closed form as follows:

e−jM̂z =

⎡
⎢⎢⎢⎢⎢⎣

e−jβ1z 0 0 0

κ̂(e−jβ1z − e−jβ2z) e−jβ2z χ̂(ejβ1z − e−jβ2z) 0

0 0 ejβ1z 0

χ̂(e−jβ1z − ejβ2z) 0 κ̂(ejβ1z − ejβ2z) ejβ2z

⎤
⎥⎥⎥⎥⎥⎦ ,

κ̂ = κ
β1 − β2

χ̂ = χ
β1 + β2

The transition matrix e−jM̂l may be written in terms of the z-domain delay variables
ζi = ejβil = eiωTi , i = 1,2, where Ti are the one-way travel times along the lines, that is,
Ti = l/vi. Then, we find:⎡

⎢⎢⎢⎣
a1(l)
a2(l)
b1(l)
b2(l)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ζ−1
1 0 0 0

κ̂(ζ−1
1 − ζ−1

2 ) ζ−1
2 χ̂(ζ1 − ζ−1

2 ) 0
0 0 ζ1 0

χ̂(ζ−1
1 − ζ2) 0 κ̂(ζ1 − ζ2) ζ2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a1(0)
a2(0)
b1(0)
b2(0)

⎤
⎥⎥⎥⎦ (11.3.3)
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These must be appended by the appropriate terminating conditions. Assuming that
only line-1 is driven, we have:

V1(0)+ZG1I1(0)= VG1 , V1(l)= ZL1I1(l)
V2(0)+ZG2I2(0)= 0 , V2(l)= ZL2I2(l)

which can be written in terms of the a,b waves:

a1(0)−ΓG1b1(0)= U1 , b1(l)= ΓL1a1(l)
a2(0)−ΓG2b2(0)= 0 , b2(l)= ΓL2a2(l)

, U1 =
√

2

Z1
(1− ΓG1)

VG1

2
(11.3.4)

Eqs. (11.3.3) and (11.3.4) provide a set of eight equations in eight unknowns. Once
these are solved, the near- and far-end voltages may be determined. For line-1, we find:

V1(0)=
√
Z1

2

[
a1(0)+b1(0)

] = 1+ ΓL1ζ−2
1

1− ΓG1ΓL1ζ−2
1
V

V1(l)=
√
Z1

2

[
a1(l)+b1(l)

] = ζ−1
1 (1+ ΓL1)

1− ΓG1ΓL1ζ−2
1
V

(11.3.5)

where V = (1− ΓG1)VG1/2 = Z1VG1/(Z1 + ZG1). For line-2, we have:

V2(0) = κ̄(ζ−1
1 − ζ−1

2 )(ΓL1ζ−1
1 + ΓL2ζ−1

2 )+χ̄(1− ζ−1
1 ζ−1

2 )(1+ ΓL1ΓL2ζ−1
1 ζ−1

2 )
(1− ΓG1ΓL1ζ−2

1 )(1− ΓG2ΓL2ζ−2
2 )

V20

V2(l) = κ̄(ζ−1
1 − ζ−1

2 )(1+ ΓL1ΓG2ζ−1
1 ζ−1

2 )+χ̄(1− ζ−1
1 ζ−1

2 )(ΓL1ζ−1
1 + ΓG2ζ−1

2 )
(1− ΓG1ΓL1ζ−2

1 )(1− ΓG2ΓL2ζ−2
2 )

V2l

(11.3.6)
where V20 = (1 + ΓG2)V = (1 + ΓG2)(1 − ΓG1)VG1/2 and V2l = (1 + ΓL2)V, and we
defined κ̄, χ̄ by:

κ̄ =
√
Z2

Z1
κ̂ =

√
Z2

Z1

κ
β1 − β2

= ω
β1 − β2

1

2

(
Lm
Z1

−CmZ2

)

χ̄ =
√
Z2

Z1
χ̂ =

√
Z2

Z1

χ
β1 + β2

= ω
β1 + β2

1

2

(
Lm
Z1

+CmZ2

) (11.3.7)

In the case of identical lines with Z1 = Z2 = Z0 and β1 = β2 = β =ω/v0, we must
take the limit:

lim
β2→β1

e−jβ1l − e−jβ2l

β1 − β2
= d
dβ1

e−jβ1l = −jle−jβ1l

Then, we obtain:

κ̄(ζ−1
1 − ζ−1

2 )→ jωKfe−jβl = −jω l
2

(
Lm
Z0

−CmZ0

)
e−jβl

χ̄→ Kb = v0

4

(
Lm
Z0

+CmZ0

) (11.3.8)

where Kf ,Kb were defined in (11.2.8). Setting ζ1 = ζ2 = ζ = ejβl = ejωT, we obtain the
crosstalk signals:
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V2(0) = jωKf(ΓL1 + ΓL2)ζ−2 +Kb(1− ζ−2)(1+ ΓL1ΓL2ζ−2)
(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)

V20

V2(l) = jωKf(1+ ΓL1ΓG2ζ−2)ζ−1 +Kb(1− ζ−2)(ΓL1 + ΓG2)ζ−1

(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)
V2l

(11.3.9)

The corresponding time-domain signals will involve the double multiple reflections
arising from the denominators. However, if we assume the each line is matched in at
least one of its ends, so that ΓG1ΓL1 = ΓG2ΓL2 = 0, then the denominators can be
eliminated. Replacing jω by the time-derivative d/dt and each factor ζ−1 by a delay by
T, we obtain:

V2(0, t)= Kf(ΓL1 + ΓL2 + ΓL1ΓG2)V̇(t − 2T)

+Kb(1+ ΓG2)
[
V(t)−V(t − 2T)

]+KbΓL1ΓL2
[
V(t − 2T)−V(t − 4T)

]
V2(l, t)= Kf

[
(1+ ΓL2)V̇(t −T)+ΓL1ΓG2V̇(t − 3T)

]
+Kb(ΓL1 + ΓG2 + ΓL1ΓL2)

[
V(t −T)−V(t − 3T)

]
(11.3.10)

where V(t)= (1− ΓG1)VG1(t)/2, and we used the property ΓG2ΓL2 = 0 to simplify the
expressions. Eqs. (11.3.10) reduce to (11.2.7) when the lines are matched at both ends.

11.4 Coupled-Mode Theory

In its simplest form, coupled-mode or coupled-wave theory provides a paradigm for the
interaction between two waves and the exchange of energy from one to the other as
they propagate. Reviews and earlier literature may be found in Refs. [922–943], see also
[771–790] for the relationship to fiber Bragg gratings and distributed feedback lasers.

There are several mechanical and electrical analogs of coupled-mode theory, such as
a pair of coupled pendula, or two masses at the ends of two springs with a third spring
connecting the two, or two LC circuits with a coupling capacitor between them. In these
examples, the exchange of energy is taking place over time instead of over space.

Coupled-wave theory is inherently directional. If two forward-moving waves are
strongly coupled, then their interactions with the corresponding backward waves may
be ignored. Similarly, if a forward- and a backward-moving wave are strongly coupled,
then their interactions with the corresponding oppositely moving waves may be ignored.
Fig. 11.4.1 depicts these two cases of co-directional and contra-directional coupling.

Fig. 11.4.1 Directional Couplers.

Eqs. (11.1.7) form the basis of coupled-mode theory. In the co-directional case, if
we assume that there are only forward waves at z = 0, that is, a(0)�= 0 and b(0)= 0,
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then it may shown that the effect of the backward waves on the forward ones becomes
a second-order effect in the coupling constants, and therefore, it may be ignored. To
see this, we solve the second of Eqs. (11.1.7) for b in terms of a, assuming zero initial
conditions, and substitute it in the first:

b(z)= −j
∫ z

0
ejF(z−z

′)G a(z′)dz′ ⇒ da

dz
= −jF a+

∫ z
0
GejF(z−z

′)G a(z′)dz′

The second term is second-order in G, or in the coupling constant χ. Ignoring this
term, we obtain the standard equations describing a co-directional coupler:

da

dz
= −jF a ⇒ d

dz

[
a1

a2

]
= −j

[
β1 κ
κ β2

][
a1

a2

]
(11.4.1)

For the contra-directional case, a similar argument that assumes the initial conditions
a2(0)= b1(0)= 0 gives the following approximation that couples the a1 and b2 waves:

d
dz

[
a1

b2

]
= −j

[
β1 −χ
χ −β2

][
a1

b2

]
(11.4.2)

The conserved powers are in the two cases:

P = |a1|2 + |a2|2 , P = |a1|2 − |b2|2 (11.4.3)

The solution of Eq. (11.4.1) is obtained with the help of the transition matrix e−jFz :

e−jFz = e−jβz
⎡
⎢⎢⎣ cosσz− j δ

σ
sinσz −j κ

σ
sinσz

−j κ
σ

sinσz cosσz+ j δ
σ

sinσz

⎤
⎥⎥⎦ (11.4.4)

where

β = β1 + β2

2
, δ = β1 − β2

2
, σ =

√
δ2 + κ2 (11.4.5)

Thus, the solution of (11.4.1) is:

[
a1(z)
a2(z)

]
= e−jβz

⎡
⎢⎢⎣ cosσz− j δ

σ
sinσz −j κ

σ
sinσz

−j κ
σ

sinσz cosσz− j δ
σ

sinσz

⎤
⎥⎥⎦
[
a1(0)
a2(0)

]
(11.4.6)

Starting with initial conditions a1(0)= 1 and a2(0)= 0, the total initial power will
be P = |a1(0)|2+|a2(0)|2 = 1. As the waves propagate along the z-direction, power is
exchanged between lines 1 and 2 according to:

P1(z)= |a1(z)|2 = cos2σz+ δ2

σ2
sin2σz

P2(z)= |a2(z)|2 = κ2

σ2
sin2σz = 1− P1(z)

(11.4.7)

Fig. 11.4.2 shows the two cases for which δ/κ = 0 and δ/κ = 0.5. In both cases,
maximum exchange of power occurs periodically at distances that are odd multiples of
z = π/2σ. Complete power exchange occurs only in the case δ = 0, or equivalently,
when β1 = β2. In this case, we have σ = κ and P1(z)= cos2 κz, P2(z)= sin2 κz.
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Fig. 11.4.2 Power exchange in co-directional couplers.

11.5 Fiber Bragg Gratings

As an example of contra-directional coupling, we consider the case of a fiber Bragg
grating (FBG), that is, a fiber with a segment that has a periodically varying refractive
index, as shown in Fig. 11.5.1.

Fig. 11.5.1 Fiber Bragg grating.

The backward wave is generated by the reflection of a forward-moving wave incident
on the interface from the left. The grating behaves very similarly to a periodic multilayer
structure, such as a dielectric mirror at normal incidence, exhibiting high-reflectance
bands. A simple model for an FBG is as follows [771–790]:

d
dz

[
a(z)
b(z)

]
= −j

[
β κe−jKz

−κ∗ejKz −β
][

a(z)
b(z)

]
(11.5.1)

whereK = 2π/Λ is the Bloch wavenumber,Λ is the period, anda(z), b(z) represent the
forward and backward waves. The following transformation removes the phase factor
e−jKz from the coupling constant:

[
A(z)
B(z)

]
=
[
ejKz/2 0

0 e−jKz/2

][
a(z)
b(z)

]
=
[
ejKz/2a(z)
e−jKz/2b(z)

]
(11.5.2)

d
dz

[
A(z)
B(z)

]
= −j

[
δ κ

−κ∗ −δ
][

A(z)
B(z)

]
(11.5.3)



470 11. Coupled Lines

where δ = β−K/2 is referred to as a detuning parameter. The conserved power is given
by P(z)= |a(z)|2 − |b(z)|2. The fields at z = 0 are related to those at z = l by:

[
A(0)
B(0)

]
= ejFl

[
A(l)
B(l)

]
, with F =

[
δ κ
−κ∗ −δ

]
(11.5.4)

The transfer matrix ejFl is given by:

ejFl =

⎡
⎢⎢⎣ cosσl+ j δ

σ
sinσl j

κ
σ

sinσl

−j κ
∗

σ
sinσl cosσl− j δ

σ
sinσl

⎤
⎥⎥⎦ ≡

[
U11 U12

U∗12 U∗11

]
(11.5.5)

where σ = √δ2 − |κ|2. If |δ| < |κ|, then σ becomes imaginary. In this case, it is more
convenient to express the transfer matrix in terms of the quantity γ = √|κ|2 − δ2:

ejFl =

⎡
⎢⎢⎣

coshγl+ j δ
γ

sinhγl j
κ
γ

sinhγl

−j κ
∗

γ
sinhγl coshγl− j δ

γ
sinhγl

⎤
⎥⎥⎦ (11.5.6)

The transfer matrix has unit determinant, which implies that |U11|2 − |U12|2 = 1.
Using this property, we may rearrange (11.5.4) into its scattering matrix form that relates
the outgoing fields to the incoming ones:

[
B(0)
A(l)

]
=
[
Γ T
T Γ′

][
A(0)
B(l)

]
, Γ = U∗12

U11
, Γ′ = −U12

U11
, T = 1

U11
(11.5.7)

where Γ, Γ′ are the reflection coefficients from the left and right, respectively, and T is
the transmission coefficient. We have explicitly,

Γ =
−j κ

∗

σ
sinσl

cosσl+ j δ
σ

sinσl
, T = 1

cosσl+ j δ
σ

sinσl
(11.5.8)

If there is only an incident wave from the left, that is, A(0)�= 0 and B(l)= 0, then
(11.5.7) implies that B(0)= ΓA(0) and A(l)= TA(0).

A consequence of power conservation, |A(0)|2 − |B(0)|2 = |A(l)|2 − |B(l)|2, is
the unitarity of the scattering matrix, which implies the property |Γ|2 + |T|2 = 1. The
reflectance |Γ|2 may be expressed in the following two forms, the first being appropriate
when |δ| ≥ |κ|, and the second when |δ| ≤ |κ|:

|Γ|2 = 1− |T|2 = |κ|2 sin2σl
σ2 cos2σl+ δ2 sin2σl

= |κ|2 sinh2 γl
γ2 cosh2 γl+ δ2 sinh2 γl

(11.5.9)

Fig. 11.5.2 shows |Γ|2 as a function of δ. The high-reflectance band corresponds to
the range |δ| ≤ |κ|. The left graph has κl = 3 and the right one κl = 6.

As κl increases, the reflection band becomes sharper. The asymptotic width of the
band is −|κ| ≤ δ ≤ |κ|. For any finite value of κl, the maximum reflectance achieved
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Fig. 11.5.2 Reflectance of fiber Bragg gratings.

at the center of the band, δ = 0, is given by |Γ|2max = tanh2 |κl|. The reflectance at the
asymptotic band edges is given by:

|Γ|2 = |κl|2
1+ |κl|2 , at δ = ±|κ|

The zeros of the reflectance correspond to sinσl = 0, or, σ = mπ/l, which gives
δ = ±√|κ|2 + (mπ/l)2, where m is a non-zero integer.

The Bragg wavelength λB is the wavelength at the center of the reflecting band, that
is, corresponding to δ = 0, or, β = K/2, or λB = 2π/β = 4π/K = 2Λ.

By concatenating two identical FBGs separated by a “spacer” of length d = λB/4 =
Λ/2, we obtain a quarter-wave phase-shifted FBG, which has a narrow transmission
window centered at δ = 0. Fig. 11.5.3 depicts such a compound grating. Within the
spacer, the A,B waves propagate with wavenumber β as though they are uncoupled.

Fig. 11.5.3 Quarter-wave phase-shifted fiber Bragg grating.

The compound transfer matrix is obtained by multiplying the transfer matrices of
the two FBGs and the spacer: V = UFBGUspacerUFBG, or, explicitly:[

V11 V12

V∗12 V∗11

]
=
[
U11 U12

U∗12 U∗11

][
ejβd 0

0 e−jβd

][
U11 U12

U∗12 U∗11

]
(11.5.10)

where the Uij are given in Eq. (11.5.5). It follows that the matrix elements of V are:

V11 = U2
11ejβd + |U12|2e−jβd , V12 = U12

(
U11ejβd +U∗11e−jβd

)
(11.5.11)

The reflection coefficient of the compound grating will be:

Γcomp = V∗12

V11
= U12

(
U11ejβd +U∗11e−jβd

)
U2

11ejβd + |U12|2e−jβd = Γ
(
T∗ejβd +Te−jβd)

T∗ejβd + |Γ|2Te−jβd (11.5.12)
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where we replaced U∗12 = Γ/T and U11 = 1/T. Assuming a quarter-wavelength spacing
d = λB/4 = Λ/2, we have βd = (δ+π/Λ)d = δd+π/2. Replacing ejβd = ejδd+jπ/2 =
j ejδd, we obtain:

Γcomp = Γ
(
T∗ejδd −Te−jδd)

T∗ejδd − |Γ|2Te−jδd (11.5.13)

At δ = 0, we have T = T∗ = 1/ cosh |κ|l, and therefore, Γcomp = 0. Fig. 11.5.4 depicts
the reflectance, |Γcomp|2, and transmittance, 1− |Γcomp|2, for the case κl = 2.
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Fig. 11.5.4 Quarter-wave phase-shifted fiber Bragg grating.

Quarter-wave phase-shifted FBGs are similar to the Fabry-Perot resonators discussed
in Sec. 6.5. Improved designs having narrow and flat transmission bands can be obtained
by cascading several quarter-wave FBGs with different lengths [771–791]. Some appli-
cations of FBGs in DWDM systems were pointed out in Sec. 6.7.

11.6 Diffuse Reflection and Transmission

Another example of contra-directional coupling is the two-flux model of Schuster and
Kubelka-Munk describing the absorption and multiple scattering of light propagating in
a turbid medium [944–960].

The model has a large number of applications, such as radiative transfer in stellar
atmospheres, reflectance spectroscopy, reflection and transmission properties of pow-
ders, papers, paints, skin tissue, dental materials, and the sea.

The model assumes a simplified parallel-plane geometry, as shown in Fig. 11.6.1.
Let I±(z) be the forward and backward radiation intensities per unit frequency interval
at location z within the material. The model is described by the two coefficients k, s
of absorption and scattering per unit length. For simplicity, we assume that k, s are
independent of z.

Within a layer dz, the forward intensity I+ will be diminished by an amount of I+kdz
due to absorption and an amount of I+sdz due to scattering, and it will be increased by
an amount of I−sdz arising from the backward-moving intensity that is getting scattered
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Fig. 11.6.1 Forward and backward intensities in stratified medium.

forward. Similarly, the backward intensity, going from z+dz to z, will be decreased by
I−(k+ s)(−dz) and increased by I+s(−dz). Thus, the incremental changes are:

dI+ = −(k+ s)I+dz+ sI−dz
−dI− = −(k+ s)I−dz+ sI+dz

or, written in matrix form:

d
dz

[
I+(z)
I−(z)

]
= −

[
k+ s −s
s −k− s

][
I+(z)
I−(z)

]
(11.6.1)

This is similar in structure to Eq. (11.5.3), except the matrix coefficients are real. The
solution at distance z = l is obtained in terms of the initial values I±(0) by:

[
I+(l)
I−(l)

]
= e−Fl

[
I+(0)
I−(0)

]
, with F =

[
k+ s −s
s −k− s

]
(11.6.2)

The transfer matrix e−Fl is:

U = e−Fl =

⎡
⎢⎢⎣

coshβl− α
β

sinhβl
s
β

sinhβl

− s
β

sinhβl coshβl+ α
β

sinhβl

⎤
⎥⎥⎦ =

[
U11 U12

U21 U22

]
(11.6.3)

where α = k+ s and β = √α2 − s2 = √k(k+ 2s).† The transfer matrix is unimodular,
that is, detU = U11U22 −U12U21 = 1.

Of interest are the input reflectance (the albedo) R = I−(0)/I+(0) of the length-l
structure and its transmittanceT = I+(l)/I+(0) , both expressed in terms of the output,
or background, reflectance Rg = I−(l)/I+(l). Using Eq. (11.6.2), we find:

R = −U21 +U11Rg
U22 −U12Rg

= s sinhβl+ (β coshβl−α sinhβl)Rg
β coshβl+ (α− sRg)sinhβl

T = 1

U22 −U12Rg
= β
β coshβl+ (α− sRg)sinhβl

(11.6.4)

†These are related to the normalized Kubelka [950] variables a = α/s, b = β/s.
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The reflectance and transmittance corresponding to a black, non-reflecting, back-
ground are obtained by setting Rg = 0 in Eq. (11.6.4):

R0 = −U21

U22
= s sinhβl
β coshβl+α sinhβl

T0 = 1

U22
= β
β coshβl+α sinhβl

(11.6.5)

The reflectance of an infinitely-thick medium is obtained in the limit l→∞:

R∞ = s
α+ β =

s
k+ s+ √k(k+ 2s)

⇒ k
s
= (R∞ − 1)2

2R∞
(11.6.6)

For the special case of an absorbing but non-scattering medium (k �= 0, s = 0), we
have α = β = k and the transfer matrix (11.6.3) and Eq. (11.6.4) simplify into:

U = e−Fl =
[
e−kl 0
0 ekl

]
, R = e−2klRg , T = e−kl (11.6.7)

These are in accordance with our expectations for exponential attenuation with dis-
tance. The intensities are related by I+(l)= e−klI+(0) and I−(l)= eklI−(0). Thus, the
reflectance corresponds to traversing a forward and a reverse path of length l, and the
transmittance only a forward path.

Perhaps, the most surprising prediction of this model (first pointed out by Schuster)
is that, in the case of a non-absorbing but scattering medium (k = 0, s �= 0), the trans-
mittance is not attenuating exponentially, but rather, inversely with distance. Indeed,
setting α = s and taking the limit β−1 sinhβl→ l as β→ 0, we find:

U = e−Fl =
[

1− sl sl
−sl 1+ sl

]
, R = sl+ (1− sl)Rg

1+ sl− slRg , T = 1

1+ sl− slRg (11.6.8)

In particular, for the case of a non-reflecting background, we have:

R0 = sl
1+ sl , T0 = 1

1+ sl (11.6.9)

11.7 Problems

11.1 Show that the coupled telegrapher’s equations (11.1.4) can be written in the form (11.1.7).

11.2 Consider the practical case in which two lines are coupled only over a middle portion of
length l, with their beginning and ending segments being uncoupled, as shown below:

Assuming weakly coupled lines, how should Eqs. (11.3.6) and (11.3.9) be modified in this
case? [Hint: Replace the segments to the left of the reference plane A and to the right of
plane B by their Thévenin equivalents.]
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11.3 Derive the transition matrix e−jM̂z of weakly coupled lines described by Eq. (11.3.2).

11.4 Verify explicitly that Eq. (11.4.6) is the solution of the coupled-mode equations (11.4.1).

11.5 Computer Experiment—Fiber Bragg Gratings. Reproduce the results and graphs of Figures
11.5.2 and 11.5.3.


