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Chapterl

Maxwell's Equations

1.1 Exercise

Prove the vector algebra identities:
a) Ax(BxC)=B(A-C)-C(A-B)
It is possible to write the vectors in the form:
A=AX+A)y+A,Z
B=ByX+Byy+B,z (1.1.1)
C=C,X+Cyy+C,2

and to use the follow relationship:

X y z
UxV=\U, U, U=
VERVARY) (1.1.2)
= X(UyV, —U,Vy ) =3(UyV; = Uy Vi ) +2( Uy Vy Uy V)
Now we can prove the algebra identities with simply mathematical substitutions:
Ax(BxC) :AX(i(ByCZ ~B,Cy )-§(ByC, —B,Cx)+2(B,Cy —ByCX)) =
= %(Ay(B(Cy—B,Cy)+A; (B(C,~B,Cy)) 113
—y(AX (BxCy —ByCx )~ A, (ByC, - B,Cy ) B
+2(~Ay (ByC, ~B,Cy )~ Ay (ByC, - B,Cy )
Expanding the terms in (1.1.3), we have:
Ax(BxC)=
+§(AyBch -A,B,C, +A,B,C, —AZBZCX)
+9(AxByCx —AcB,Cy +A,B,C, -A,B,C, | (1.1.4)

+2(AyB,Cy —A(B,C, ~AB,C, +A/B,Cy)

Let us write eqg. (1.1.4) in matrix form, separating the terms with the minus sign and the terms
with the plus sign:
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0 ByAxCx B,A,Cy 0 CyABy C,AB,
Ax(BxC)=|ByA,C, 0 B,A,Cy || CxA,B, 0 C,A,B, |(L15)
BxA,C, B,A,C, 0 CxA,B, CyA,B, 0

Note that the elements of the diagonal of each matrix are zero. Each term can be filled with the

product of the three component with the same subscript (a;; = A;B;C;):

BACK BAC, BAGCK| [CAB, CAB, CAB
Ax(BxC)=| B,A,C, B/AC, B,AC, |-|CAB, CAB, CAB,|=
BAC, BAC, BAC,| |CAB, CAB, CA,B,
=+ACy (ByX+B,§+B,z)+ A,Cy (B +By§+B,2)+A,C, (Byx+By§+B,z) -
—ABy (Cx+Cy§+Cy2)-A B, (C,&+Cy§ +C,2)-A,B, (CR+Cy§+Cyz) = (1.16)
=B(AC,+A,Cy +A,C, ) -C(AB,+AB, +A,B, )=
=B(A-C)-C(A-B)

b) A (BxC)=B-(CxA)=C-(AxB)
Using relationships (1.1.1) and (1.1.2), we can write:
A-(BxC)=A-(%(ByC, ~B,Cy)-F(BcC; ~B,Cy)+7(ByCy ~ByCy ) =
(AxByC, —A.B,Cy)—(AyB,C, ~AB,Cy )+(A,B,Cy —A,B,Cy )= (L17)
(AxByC, +AyB,Cy +A,B,Cy )—(A(B,Cy + A B,C, +A,B,Cy |

B-(CxA)=B-(%(CyA; ~C,Ay )~ §(CxA; ~CA, ) +2(ACy ~ A Cy )| =

(BxCyA; —BxC, Ay )—(ByCyA, ~B,C,A)+(B,ACy —B,A,C, | =
(BXC)’AZ +ByC A+ BszAy)_ (BszAy +ByCyA, + BZCyAX) z (1.1.8)

order them

(AxByC, +A,B,Cy +A,B,Cy ) —(A(B,Cy +A,B,C, +A,B,Cy)

C:-(AxB)=C-(%(AyB; ~A,By )~ §(AB, —A,By ) +7(ABy —AyBy )| =
(CxAyB, —C4A,By )—(CyA,B, —CyA,B, )+(C,AB, —C,A;B, )=
(CxAyB, +CyA,B, +C,AB, )—(CyA,By +CyAB, +C,A B, ) s (1.1.9)
order them

(AxByC, +AyB,C, +A,B,C, )—(AB,Cy +AyB,C, +A,B,C, )

If we compare the last row of each expression, we note that they are identical so the algebra

identity is verified.
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©) [AxB[" +|A-B = |A["[B]

Using relationships (1.1.1) and (1.1.2), we can write:

AxB[? +|A-Bf? =[&(A/B, ~A,B, )~ §(AB, ~A,B, ) +i(AB, —AyBX)‘Z +

2
+(AByx+ABy +A,B, ) =

2
(\/(AyBZ —AZBy)2 +(AB, -A,B, ) +(AsBy —AyBX)zj +(ABy +AyBy +AZBZ)2 =

(A,B, —AZBy)2 +(AB; —A,B) +(ABy —AyBX)2 +(AxBy+ABy +AZBZ)2 =

ASBZ + AZB) —2AB,A,B, + AZBZ + AZBL —2A,B,A,B, +
AZBS + ATBS —2A,ByA B, +(A,B, +A By +A,B )2—

xPy yPx xBPyMybx xBPx yPy 2Pz ) —
AZBZ + AZBS —2A B,A,B, + AZBZ + AZBL —2A,B,A,B, +
AZBS + ASBS —2AB A, B, +AZB + ASBS + AZBZ +
2A,B A

xByAyB, +2A,B,A,B, +2A,B A B, =

cancel the opposites
AIBZ + AZBS + AZBS + AZB + ALBS + AJBS + AZBL + AJBS + AZBS =

(A% +A7+AZ)(B%+BY+BZ)=[A]* B

d) A=nxAxn+(m-A)n
Does it make a difference whether n x A xn is taken to mean (AxA)xn OF nx(A xﬁ)?

The unit vector ncan be expressed as follow:

A~ A~

n=ny,X+Nyy+n,z

|a| = n2 +n§,+n§ =1

(1.1.10)

Let us begin considering the first case:
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(AxA)xn :[i(nyAz —nZAy)— y(nyA, —nZAX)+2(nXAy -nyAy )}xﬁ -

+i[(nzAX -nyA,)n, —(nXAy - nyAX)ny}r
—&[(nyAz —nsz)nZ —(nXAy —nyAX)nX}r

+3[ (nyAz =nzAy )y = (A~ Az )0y |= (1.1.11)

A

y

<[ 02
+x[nZAX—anZAZ—an y

2
+ nyAXJ+
- &[nynzAz - nEAy - n)Z(Ay +NyNny Ay } +

+i[n§,Az =N NyAy —n Ny Ay + n)Z(AZ}

And now consider the second case:

nx(Axn) :ﬁx[i(AynZ —Azny)—ﬁ(Aan —Aznx)+i(AXny —Aynx)} =

+X ny(AXny —Aynx)—nZ (A ny _Axnz):|+

-y|ny (Axny -Ay x)—”z (Aynz _Azny)}+

+3[ ny (Agny —Agng)=ny (Ayn; —Agny ) | = (1.1.12)

[ A n2 2
+x_Axny —Aynyn, —A;n;ny +Axnzj+

=¥| Axnyny —Ayn)z( —Ayn§ +AznznyJ+

+z :Azn)z( —Agnyn, —Aynyn, +Aznﬂ
It is very easy to show that (i x A)xn =nx(Axn).

The second term of the identity can be written as:
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(n-A)n = (nXAX +nyAy +n A, )(nX§+ nyy+ nzi) =

+X| Ny (nXAX +nyAy +Nn,A, )J +

+y ny (nXAX +nyAy +n,A; )} +

+z|n, (nXAX +nyAy + nZAZ)

(1.1.13)

+X|n2A, + NyNyAy + anZAZ}+

+y _nynxAX + n)Z,Ay + nynZAZ}L

+Z| NNy Ay +N Ny A + ngAz}

Adding the two results, we obtain:

nxAxn+(n-A)n=
+X Axn)z, —Aynyn, —A;n,ny +Axng]+

=¥| Axnyny —Ayn)z( —Ayng +Aznzny}+

+z _Azn)z( —Aygnyn, —Aynyn, +Aznﬂ+

+X| n2A, +nynyAy +anZAZ}+
+Y| NyNy Ay + n)2,Ay + nynzAz}+

+z| NNy Ay +n,0

2
Ay +nA, | :

change signs in parentheses at first § and add

y

+X Axnf, —Aynyny —A;n,ny +A N2 +n2A, + NynyAy +anZAZ}+

+y Ayn)z( +Ayn§ —Axnyny —=A N Ny +nyny Ay + nf,Ay + nynzAz}+

+2| A,n2 —A,n,n, —Ayn nZ+AZn§+nZnXAX+n nyA

2 _
y"y 2Ny y+”zAZJ—

(1.1.14)

+§Ax[n§,+n§+nﬂ++§7Ay[n§ +n§+nﬂ++iAZ [n)z( +n§+nﬂ:A

D. Ramaccia and A. Toscano Pag. 5



S.J. Orfanidis — Electromagnetic Waves and Antennas Exercises Chapter 1

1.2 Exercise

Prove the vector analysis identities:

1. vx (Vo)=0
2. V-(¢Vy)=oViy+Ve-Vy (Green's first identity)
3. V-(§Vy —yVo) = ¢V2iy —yV2h (Green's second identity)

4. V- (0A)=(Vd)-A+¢V-A
5. Vx(0A)=(Vd)x A+dVxA
6. V. (VxA)=0
7. V- AxB=B-(VxA)-A-(VxB)
8. Vx(VxA)=V(V-A)-V?A
First of all we have to express the operator Vv in general orthogonal coordinates in four common

applications. All vector components are presented with respect to the normalized base (&;,¢,,¢;):

Vo = € 0f e2 o9 +é_35¢
hy og; hz a4, hs dgs

S I [hzhg a¢j+ 8 [hlhg aq)} o (hlhz aq)j
hihohg| oy hy 6y ) dap\ hy ddp ) ddz\ hs daz

1 0 0
V-F= Flh h3 F2h1h3 +— F3h1h2 :|
hihohs {5%( )* oy 25 ) o3 ( )
hie; hye, hges
VxF - 1 0 0 0 _

hihohgllogy  dd,  oas
hif  hoF,  hsRy

& [0 : &, 8
+h2h3 aqz(hst)—Tg(thz)} h1h3|: (hiR) aql(hs':s)}
€ | 0 h,F h }
hlh2 5Q1( 2)- 0 2( 1h) (1.2.1)

where (hy,h,,hg)are the metric coefficients. For common geometries they are defined as follow:
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hy =1 h,=1 h3=1 (rectangular coordinates)
hy=1 hy,=r, hy=1 (cylindrical coordinates) (1.2.2)
hy =1 hy,=r, hg=rsin$ (spherical coordinates)

For simplicity, the proves are done using rectangular coordinates (h; =1, h, =1, hy =1):

e Identityn°1

€ e, €3
0 0 0
vx(Ve)= aq  0dp s |

=) &) (=)
aqy) \ 04y ) (das
(a o6 0 0 _é[aaq) aa¢]+'

_| gz odg 3 0q, 00y 04z O3 0ty ) | _ 0
's ( o ap 0 a¢J
i oy 0d,  Ody Oty
For the property of linearity of the derivate operator 0 9 d= 0 9 ¢, SO each term in the

oq; 0q;  0q; oq;

parentheses vanishes and also the result.

e Identity n° 2

1

o (. 0 o (. o o (.0
oY) V) e
ogqp\ aqp ) ddp\ a4y ) oqz (a3

2 2 2
:6¢8\|/+¢8\|/+ ob 8\u+¢6\|}+ 6¢8\|1+¢6w=
0qp oqp  ogg ol PRls PRl dq3 093 003
0 0%y azw 0%y +(a¢ oy , & oy o oy

aqy aq2 oq> ) \ 04y 0qy Aqy od, O3 Od3

A~ 0y ., 0y ., Oy
V-(oVy)=V- + + =
(6Vy) [614) p= ez 20, €30 anJ

j=¢V2\v+V¢-V\u

e Identity n° 3

First of all we expand the sum inside parentheses:

oy
OVy = e —+¢ —+¢
! ooy 25012 35‘13
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SO

_ oy _ % oy 00 0w 0%
(479 —vve) = el(d) o] Wa(hJ ‘ (¢an wa%j%s(d)a% wa%]

Now we can apply the dot product:

oo [ofow ae). o (., ov o oy a9 )|
V- (Vv -yVe) {aql(d’aql W5Q1j+5C12(¢5Q2 5Q2j 5%[4) v H

0d3 0d3
2 2 2
_fooow 2w v %) (e o, Py _ov a0 _ %),
0qy 0qg oq;  0qp 0qg o0y 04y 04y 00y 04y 0Q> od,
L0 oy o’y oy op %
04z dqz  0qz Oqz Oq3 0d3

T

cancel opposite terms in parentheses

2 2 2 2 2 2
=¢5\|1+5\|/+5W_ 5¢+3¢+5¢:¢V2W_WV2¢
oq1 04y 0Q3 oqy 0dy 043

e Identity n°4

V- (9A) =V - (A1) +dAe, + dAge3) = [aql (0A7)+ o, (¢A2)+%(¢A3)} =

_ [¢5A1+A1 6¢]+[¢8A2 A, a¢] (¢8A3+A o6 ﬂ
o9y o0y gy 2 ddy a3 aq3

NN NN a¢J ¢[8A1+8A2 +6A3j:(v¢)_A+¢v,A
oy a0y aq3 gy 0qy O3

e Identity n°5

e, & &3
vx(oa)=|- O 2|

oq; 04y 043

dA1 Ay 0A3
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(¢A2 )} e L% (0A1)- 50 (<I>A3 )} + &5 {5_21(%2 )- %

2

0b , . OAg j b oA, . (84) oA ] [aq) oA, j
=e A | —Ay+—=¢ ||+e A+ - Az + +
1[(5% 3" 5Q2¢ {5(13 ? 6q3¢ 2 g3 8q3¢ olsf] 3 a(hd)
(oo . oA, ] 0 5 0A
+eq|| — A +—=0 |-
3_£8q1 2 oo {6(12 o

_ a¢A_a¢A}A{a¢A_a¢ [6¢A_a¢ }
“ | 00, : 093 2|72 0q3 ! oq; 3_+ alsf} ? a9, .
. %fb—%%} . {6A1¢_8A3¢} TaAzq) 6A1¢

+e —
! 003 01 | 90; od,

+e {aqz (0Az) - o

(¢A1)} =

3

|90 003

} (Vo)x A+ 9V x A

e Identity n° 6

V—(VXA):V{e (%_&A_zj . (aAe, aA1]+e (aA2 aAlﬂz

dq; 003 0q; 043 oqp 04,

[ @ [8A3_6A2J_ o (8A3_6A1]+ 0 [aAz_aAlﬂz
|00y 6dp  0q3 ) Odp\ ddp 043 ) 043\ 94y 00p

| ooA; aom 0 0A; 0 Ay, 0 Ay 0 aAl}
|00 0dp 0y Bz 04p ooy ag? Oz Od3 Odp  Od3 g

For the linearity of the derivate operator 0 90 o= 0 90 ¢, so the term in brackets is null.

aq; 0qj  0q;j aq;

e Identity n°7
To evaluate the expression v - A x B, we have to calculate first the cross product and then the
divergence of vector A x B . This choise is obligated by the fact that if first we calculated the
divergence of the vector A, the results would be a scalar. Cross product with the vector B would be

impossible. So we have:
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\Y (AX B) =V I:él (AzB3 —AsBz)—éz (A183 AgBl)-F €3 (Ale _AZBl)]
0 0 0

=—(A,B3—A3B,)———(AB3 — A3B; )+ —(A;B, —A,B
aql( 2037 M3 2) an( 123 =7 /M3 1) aqS( 122 2 l)
0 0 0 0 0 0
=—(A,B3)——(A3B, ) ———(A;B3) +—(A3B; )+ —(A;B, ) ———(A,B; ) =
a%( ) 5Q1( ) 5%( )* 5%( ) 5%( ) 5%( )
=(B3aA2+A2 ang £826A3 A3882] (B3ﬂ+A1%J+
aqy oqy oqy oy a9 a9,
[BlaA3 aslj ( oA, aszj (AZ@JrBlaAZj:
o9,  °ad, 5Q3 ! oas aq3 aq3
(8A3 aAzj oA aAgj (aA2 aAlj
=B | —>-—2 —L1_Z314B +
dqp 0043 *(oq; ooy aqy 04
Al[aBZ 883)+A2[883 asl} [@_@J
g3 a0y dqy a3 dqp 0oy
=B- (VXA) xB)

e Identity n°8

Vx(VxA)=V>< € &‘l_@A_Z —€5 8A3 aAl +é5 %_2_%
aq;  od3 aqp  a

] dqz\ o4z o0y

P aAz_aAlj_ o 8A3_8A2] .
0gp\ 9qp  ddp ) 943\ ddp 03

J_ 0 6A3_6A2J B
0dz\ 04z A3

_ 0 (o _8A3D+

[ 0 oA, %A; A, 0 0Ag
=e; - - + +
dqp 6q; 94z 943 043z 94y

) LaZAZ_ o oA 0 8A3+62A2]+
‘L om g o, og3du;  aus
{a oAy PAy A3 0 6A2]_

0y 043 0qp 09z 04z Od3
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=e
! 0qp 09;  0qz Aqp

2 2 2 2
+A{ 0%A, aAll_A [a Ay A,

[
el ]} 0d3

Exercises Chapter 1

0 oA, 0 oA

(0 0A 0 0A) (2 0A 0 oA
aay 603
L PA; A,

.| @ LGAZ aAgj .| 0 (aAl
=e; + +e +
dqp\ 9q, 03 a9, \ 0qp

L [%A] PAL) . [3%A, %A, ) .
—€ + —€s + —e3 +
a9, 043 gy 0q3

D. Ramaccia and A. Toscano
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2]
0q5
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1.3 Exercise

Consider the infinitesimal volume element AXAyAzshown below, such that its upper half lies in

medium g and its lower half in medium &,. The axes are oriented such that 4 = z .

f €
- Z
A Ax Az ‘/T—’ ¥
n x
T a Ay 4 -
/ €, = Ay /
| € |
1)
v
KAz = Joy

Fig. 1.3.1: Infinitesimal volume element between two medium.
1. Applying the integrated form of Ampere's law to the infinitesimal face abcd, show that

H,

oD
y —Hiy =JxAZ + 6tx AZ (1.3.1)

2. Inthe limit Az - o, the second term in the right-hand side may be assumed to go to zero,
whereas the first term will be non—zero and may be set equal to the surface current density,

that is, Jg =lim,, o (JxAz). Show that this leads to the boundary condition

Hyy — Hpy = —Jg - Similarly, shows that H,, - H,, =J,,, and that these two boundary

y y = sy’
conditions can be combined vectorially into:

nx(H; -H,)=1J (1.3.2)

3. Apply the integrated form of Gauss's law to the same volume element and show the

boundary condition Dy, - D,, = ps = lim,_,o (pAZ)-

Solution

e Questionn®1
In its historically original form, Ampére's circuital law relates the magnetic field to its electric
current source. The law can be written in two forms, the integral form and the differential form. The
forms are equivalent, and related by the Kelvin—Stokes theorem. The identity demonstrated by

Stokes is the follow:

[[(vxF)ds= § F-de (1.3.3)
S c(S)

So applying (1.3.3) to the second Maxwell's equation, we obtain the Ampere's law in integral

form with few simply steps:
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VxH=J +8—D
ot
Integrate terms of the identity over an opened surface S:
A ~ oD .
”(VxH)ondS —”J'ndSJr”E'ndS
S S S
and apply the Stokes theorem:
A oD .
H-d/=||J-ndS+ ||—-ndS 1.34
§ w-or=[[a-sse [0 s
c(S) S S

where £ is the infinitesimal vector, tangent to the curved line ¢ that bounds the surface S.
Now we can consider the infinitesimal face abcd, that has area S=AzAy and perimeter
p=2Az+2Ay. The left-hand side of (1.3.4) can be decomposed into a sum of four integral

expression, one for each infinitesimal side of the rectangular abcd, and we have to define the sense
of integration. Choose an counterclockwise path so that, using the right—hand rule, the normal is x.
Note that the z—parallel sides have the first half in the medium 1 and the second in medium 2. So

the integral on that part of the path needs to be decomposed into two integral with different
arguments. For simplicity, denote the points of contact between mediums along the segments ab
and cd with O, and O, respectively.

On the contrary, to solve the right-side of (1.3.4) we have to identify the correct component of J

and D that flows through the face abcd, i.e. the component J, and D, .

So we obtain:

0 b c o)) d a
—[Hy-d2— [H,-dz+[H,-dy+ [ Hp-dz+ [ Hy-dz—[H;-dy =
a 01 b c 02 d

= J, AZAy + agtx AzZAyY

H, and H, are constant inside each medium, so the line integrals can be written as:

oD
—Hy,~— — Hyy~— +Ho Ay + Ho,— + Hy,/Y— —H; Ay = J,AZAy + — X AZA
/1%2{/2{2{ 2yy/zz/A2{/1f2{ yAY = AzAy + — y

Hay A~ Hiy 57 = 3,02 59 + 25 0z o

H,

oD
y —Hiy =3xAz+ 6tx Az

e Questionn® 2
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In the limit Az —>0, the eq. (1.3.1) is reduced in Hiy —Hpy = -3 and similarly

SX

Hix — Hax = Jgy- In order to obtain eq. (1.3.2), we can subtract vectorially these two boundary
conditions:
}A’(Hlx - HZX)_’A‘(Hly - HZy) = Jsx§‘+‘]sy§’
ﬁX(Hl_HZ):JS

where n=1z.

e Questionn® 3
Gauss's law relates the electric field to its electric charge sources. Like Ampére's circuital law, it
can be written in two forms, the integral form and the differential form. The forms are equivalent,
and related by the divergence theorem:

[[[(v-F)dv = {p F-hds (1.3.5)

S(V)
So applying (1.3.5) to the third Maxwell's equation, we obtain the Gauss's law in integral form
with few simply steps:
V-D=p
Integrate terms of the identity over a volume V:

j\j/j(v-n)dV=j\j/jpdv

and apply the divergence theorem:

fp p-Ads = [[[pdv = Qi (1.3.6)
S(V) V

where n is the outgoing unit vector normal to the closed surface S that bounds the volume V.
Now consider the volume V =AXAyAz . The left-hand side of (1.3.6) can be decomposed into two

integrals with arguments D; and D, respectively in the medium 1 and medium 2. The right-hand

side of (1.3.6) is a simple volume integral. So we have:

[[(Dy-R)ds; + [[(Dy -7)dS; = [[[pdV = pAxayAZ (1.3.7)
S Sy Vv

where S; and S, are portions of S in the medium 1 and medium 2, respectively and  is considered

constant inside the volume V.
The terms on the right—hand side of eq. (1.3.7) can be decomposed into several surface integrals,

one for each side of parallelepiped AXAyAZz:
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A A A A
D, AXAy + D AX + D Ay - D AX — D Ay —
-D,,AXAy + D AZAX+ D AZAy—D AZAX_ D A2Ay:prAyAz

Dy, =Dy, =pAz

In the limitAz — 0, the amount pAz collapses in pg which is the surface electric charge density.
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1.4 Exercise

Show that time average of the product of two harmonic quantities A(t):Re[Aeja’t} and

B(t) = Re[Bej“’t] with phasors A, B is given by:

.
A0B(D) = %j A(Y)B(t)dt = %Re[AB*]
0

(1.4.1)

where T=27/w is one period. Then show that the time-averaged values of the cross and dot

products of two time—harmonic vector quantities A(t) = Re[Aej“’tJ and B(t) = Re[Bej“’t] can be

expressed in terms of the corresponding phasors as follows:

m:%Re[Axs*}

wzéRe[AB*}

Solution

First of all, we express the harmonic quantities A(t) and B(t) in their extended form:

A(t) = Acos(wt+¢)
B(t) = Bcos(wt+ ¢, )

and substitute eq. (1.4.4) into eq. (1.4.1):
1! 1]
A(t)B(t) = ?IA(I)B(t)dt = ?jAB cos(wt + ¢y )cos(wt + g, ) dt
0 0

Now we have to use Euler's formula:

e e
jix . COSX =
el =cosx + jsin x 2
ix < X _gmix
I a— — iSi . e e
e COS X — jsin x sinx — :
2)

Substitute eq. (1.4.6) into eq. (1.4.5) and we obtain:

(1.4.2)

(1.4.3)

(1.4.4)

(1.4.5)

(1.4.6)
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- 1 T
AMB0) = j AB(
0

elotel | gmivte—ar J(ej“’te‘”? e lotg=m ]dt
2 2

T(el®te? 1 g-lotg=a1|(gl@ter2 | gmlotg=02
AB
:—'[ dt =

2T 0 2
EI AT | ) o) | et
2T 2 -
0
T
AB ABcos (¢, — ¢ 1 1 i
—gOCOS(ﬂ_ ¢2)d 2(/_( Z)X:EABCOS(@_—¢2):ERQ|:AB :|

Operating in similar way, we can demonstrate the time—averaged values of the cross and dot
products of two time—harmonic vector quantities.

e Cross Product

axb

A(t)x B(t) = —j (A(t)x B(t))dt = —j Re[Ae)?']a x Re[Be!®! ]bdt = jRe[Aert]Re[Bert]dt

The result of mtegral is note by prewous exercise, so:

axb

A(t) x B(t) = Re[AB*]= % Re[aA xbB*] :%Re[AxB*]

e Dot Product
A()-B(1) B(t)_— j (A(t)-B(t))dt == j Re[Ael!]a - Re[BeJ“’t]bdt_— j Re[Ael?']Re[Be!? 1dt =

—%Re[AB*]——Re[aA bB* ]_—Re[A B*]
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1.5 Exercise

Assuming that B=xH:

1. Show that Maxwell's equations

VxE=-joB
VxH=J+joD
V-D=p
V-B=0

imply the following complex—value version of Poynting's theorem:

V(ExH")=-joull - H' - E-Jj (1.5.1)

where Jyo; =J + joD.

2. Extracting the real-parts of both sides of eq. (1.5.1) and integrating over a volume V
bounded by closed surface, show the time—-averaged form of energy conservation:
-4 L Re[Ex H*]-fds = ml Re[E-Jfot}dV (1.5.2)
2 2
S(V) \Y
which states that the net time—averaged power floating into a volume is dissipated into
heat.
3. For a lossless dielectric, show that the integrals in (1.5.2) are zero and provide an

interpretation.
Solution
e Questionn®1
Using the identity v . (ExH)=H-(V xE)-E-(Vx H) and Maxwell's equations, we have:
V-(ExH")=H"-(VXE)-E:(VxH )= H"-(~joB)-E-(J" - joD") =

=—jouH H* -E-Jiy

e Questionn® 2
Integrate over a volume V the right—hand side of eq. (1.5.1) and apply the divergence's theorem:

j\j/[(v -(ExH*))dv = S%)(ExH*)ﬁds

and now calculate the time—averaged value:
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Invert the order of integrals:

cj;ﬁ {%}(ExH*)dt}ﬁdS= <ﬁ> L Re[ExH*}ﬁdS (1.5.3)

S(V)L 0 S(V) 2

In similar way on left-hand side, we obtain:

T

1 j[m(-wn.n* _E.J:m)dv}dt:
oLV
[T

f[f % [ (—ja),uH-H* —E-J’t"ot)dt}dv— (1.5.4)
V[ o
(If %Re[—ja)yH-H*}—%Re[EJfotﬂdV
v L

The real part of jouH -H* is zero because the product H-H* = |H|2 is real and so the quantity

jouH -H™ is imaginary. Only the term associated with the heat survives and we can write:
1 « A 1 *
—q;f)ERe[ExH JndSzmzRe[E-Jtm}dV (15.5)
S(V) v
The minus sign is been associated with the left-hand side because it identifies the quantity of

energy that goes in the volume V —while the Poynting's vector is defined outgoing from V- and the

right—hand side represents the energy dissipated as heat.

e Questionn® 3
Inside a lossless dielectric, the current density J is zero while the displacement current D is

simply equal to ¢E . So:

I %Re[E : (—ngE*)]dv =0 (1.5.6)
\Y

being the real part of jocE-E* zero. Moreover zero for the right-hand side of (1.5.5), that
represents the quantity of energy ingoing the volume bounded by the surface S, implies that not all
the energy remains inside the volume. Exactly in steady state the quantity of energy ingoing is equal

to the outgoing one. It is correct because electromagnetic wave pass through the dielectric.
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1.6 Exercise

Assuming that D = ¢E and B=xH,

1. Show that Maxwell's equations imply the following relationships:

PE, +(Dx%—]?j :V-(gEXE—)A(%gEzj (1.6.2)
X

(JXB)X +(%)><Bj = V-(,uHXH —f(%,quj (1.6.2)
X

where the subscript x means the x—component.
2. From eq. (1.6.1) and (1.6.2), derive the following relationship that represent momentum
conservation:

0G
ot

=V.T, (1.6.3)

x T
where f,, G, are the x-components of the vectors f = pE+JxB and G =D xB, and T,
is defined to be the vector(equal to Maxwell's stress tensor acting on the unit vector x):
T, = ¢E 2L (E2 4+ uH?
=& XE+,uHXH—x§ eE” +uH
3. Write similar equations of y, z components. The quantity G, is interpreted as the field
momentum (in the x—direction) per unit of volume, that is, the momentum density.

Solution

e Questionn®1

Let us begin with eq. (1.6.2) because it is easy to note from the left-hand side that it is the cross
. a. .
product of the second Maxwell's equation (i.e. VxH=J+E) with the vector B and then we

extract the x-component. So we have to demonstrate the right—hand side of eq. (1.6.2). We can

I oH oH
(VxH)xB = IA{GHZ——yJ—&(aHZ aHXj+i( y—aHXHxB:

write:

oy 0z ox oz oX oy
X y z (1.6.4)
_[[eH, dHy | (aH, oH, ) [OHy oH,
oy 0z OX 0z oX oy
By By B,
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Now we consider only the x-component, writing B; = uH; :

(VxH)xBH Y7,

Xx—component

=

From the forth Maxwell's equation (i.e. V-B

add to eq. (1.6.5) the term H, (v -H) and the couple of terms +H,

(VxH)xB|

oHy

o

_HZ

oH,
OX

OHy
0z

OHy
oy

o

OH, H
0z

J-

OoH,
Yooy

=0) and the constitutive relation B=#H, we can

(1.6.5)
oH, +H,
OX

—Y4H

OX

y

OH
OoX

, because they're both zero:

X—component

“H, OH,
OX
aHy

+H,

oH

62_

(1.6.6)
oH,

+H
x oz

Let us consider the only emphasized terms of eq

—ﬂ{Hz

l,ula z . y+8 X

2 oX OX OX
and now consider the remaining terms:

oH, oH

OX

OH,
OX

+H y

+Hy

|

y

1

- %=
2

Hy OHy OHy

+H

Z
+Hy

+H -
X ox

. (1.6.6):

-4

VH?

oH
2H, —% +2H
Z ox y

OH,
OX

6Hy
—+2H,
OX

|

oH, oH, oH,

+

+H
X ox

y

2
0

H
!{ z oy

oH

+Hy—=+H =
oz 1

order them

H
X oy 8x}

OH oH,

= U +[HX

oy

) a(HeH,)
* 0z

=u

So we have that eq. (1.6.6) can be written as:

(VXH)XBH

that is the right-hand side of eq. (1.6.2).

x—component

+Hy

[{uon)

};Nﬁ(HX(HX§+Hy§+FQi»;NW(HXH)

0z 0z

MV(HXH)—ﬁéyVHZ:
(1.6.7)

=V~(,uHXH—§(%,uH2]
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Eqg. (1.6.1) is obtained in similar way. In the left-hand side, there is the term (Dx%;) that
X

. L B, .
suggests us the cross product of the first Maxwell's equation (i.e. VXE = _E) with the vector p

and then we extract the x—component. So we have to demonstrate the right—hand side of eq. (1.6.1).

We can apply the cross product to the first Maxwell's equation:

Dx(VxE)

B

:—DX—
ot

From the properties of the cross product, it's possible to invert the order of the terms in the left-
hand side and change the sign in the right-hand-side:

Now consider the term (VXE)xD:

(VXE)xD=Dx—
ot

B

i OE OE
(VXE)xD=|X %k, %y —y OB, OBy +7 Py _%Ex <D=
oy 0z oX 0z oX oy
X y z (1.6.8)
_|[oE, By _(GEZ - 8Exj OBy OE,
oy 0z oX 0z OX oy
D, Dy D,
Now we consider only the x-component, writing D; = ¢E; :
[ E, OE oEy, OE
(VXE)XDH =¢|-E, 0 z_a_x _Ey _y_a_x —
X—component oX oz oX oy
- E (1.6.9)
E E E
ek, T g, Ex g TV g P
i OX 0z OX oy

As for eq. (1.6.5), we can add to eq. (1.6.9) the third Maxwell's equation (i.e. V-D—p=0), but in

this case there is the term , and it's correct for the results that we want to obtain. In fact,

multiplying it with E, , the term —pE, completes the left-hand side of eq. (1.6.1), changing its

sign.

With these considerations, we can add to eq. (1.6.9) the term E,V-D and the couple of terms

TE, o .
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(VXE)XDHx—component -
. CE O oE O OE, |
~E,—Z+E,—X*-E,—Y+E,—X+E, —X+
ox o oz Yoax Yoy X oox (1.6.10)
=<l _—
oE E E E
+E, y+EX8 Z+EX8 X—Exa X
oy 0z OX OX

Let us consider the only emphasized terms of eq.(1.6.10):

oE oE
—Ez@—Ey—y—Ex Bl L, 2EZ@+2Ey—y+2EX %y |2
OX OX OX 2 OX OX OX

2

2 B2 o2
__L % +— 4 Ex PV
oX OX  OX 2

and now consider the remaining terms:

oE
ele, B g Ex g Ex g Ty g % g Ex]
z y X X X X
0z oy oX oy 0z

order them

I OE
=¢| 2E, aEX+[E %Ex —V}KEZ@%X aEZH:

X Yooy X oy oz oz

_8E>2< a(EXEy) a(EXEZ)

| T }gv‘(Ex(EX§(+Ey§7+EZi))V~(5EXE)

So we have that eq. (1.6.10) can be written as:

(VxE)xDH V-(gEXE)—)A;%gVEZ =

X—component

(1.6.11)

that is the right-hand side of eq.(1.6.1).

e Question n® 2
The identity (1.6.3) is obtained adding eq.(1.6.1) and (1.6.2) as follow:

oB oD 1 o 1 9
E, +(JxB) +| Dx—| +|—xB| =V |¢E,E+ yH H—x—¢E“ —x—uH
PEx +(IxB), [ atjx (6t )X ( KB+ uH, H-%2 SH j

0
PEL +(J><B)X +5(D><B)

- v-(gEXE+yHXH—ilgE2 —f;lszj
. 2 2

G,

It is easy to note the presence of f, , and T, as defined in the text of the exercise.
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e Questionn® 3
Operating in the similar way to question n°1, it is possible to demonstrate that the relationships
(1.6.1) and (1.6.2) can be written for the y and z—component as follow:

0B ~1 5
Dx— | —pE, =V |y=¢cE° -¢E/E
( atjy ey (yz yj

- . (1.6.12)
JxB) +|—xB| =V y=uH? - yH H
(@58), [ T v (550 - aryn
(Dxi—?j + pE, :V-[EEZE—i%e‘EZj
z (1.6.13)

From eq. (1.6.12) and (1.6.13) as in question n°2, we can derive the relationship that represents
momentum conservation for y and z—component:
oG

y
fy + at_:v.Ty (1.6.14)
f,+%82_y .1, (1.6.15)
ot
where
fy =(IxB), - pEy f, =(IxB) +pE,
ot y ot z
T _Al( E2 HZ)_ EE—uH.H |T, =¢E,E+ uH H—il(gEz—sz)
y—y2 £ Y7, sEyE—uHy z z z 5
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1.7 Exercise

Consider the permittivity of a dispersive material

2
En O,
£(w)= g9+ —5— 51— (1.7.1)
wy —0° + Joy
where @y is the so—called plasma frequency of the material defined by:
Ne?
Wy =—— (1.7.2)
EoMm

and » measures the rate of collisions per unit of time.

Show that the casual and stable time—domain dielectric response of eq. (1.7.1) is given as follows:

e(t)=g90(t)+ o2 (t)

2

2(b) %e‘”/zsin(aot)u(t)

where u(t) is the unit-step function and @, = /&g — 72 /4, and we must assume that » < 2ax, as

typically the case in practice. Discuss the solution for the case y/2 > «y.

Solution

For the linearity of Fourier transform, we have

80a)§

S_l{g(a))}=3_1 fot——7 —
wy —w + oy

(1.7.3)
~1 21 1
=3 {eo} + 500y { R }
wy —0° + oy
where 37 denotes the inverse Fourier transform operator.
The first term of eq. (1.7.3) is constant, so it's easy to calculate:
37He ) = g06(t) (1.7.4)

because the Fourier transform of Dirac delta function is:

+00

~ _ —jot 44 _ —jot _
3{5(1) = ja(t)e oty = g7 Lo =1

—00
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The second term of eq. (1.7.3) is more complicate and it is necessary to simplify the argument.

First of all, we can reduce the denominator in the product of two polynomials of first degree. So we

have to find the solutions of the equation »?2 - »? + joy = 0 in w and we obtain:

—jy+\-" +4a% (175)

D2 = 5

Assuming that \/—y% + 43 = 2@, and that 2ay, >, we can rewrite eq. (1.7.5) as follow.

o, =57y (L76)

where it's important to note that + has been substituted by £ because of the minus sign of the

denominator. Now we can write:

S_l{wg_wlz”m}:S_l{(w—ml(w—wz)}=S_l{<wf\wﬂ+<w-sz>}

where A and B are two constant that we calculate applying the method of Weighted residuals:

SN ey B ey UZ % ]
B= lim 1 |

Sy (o—ar) (-1 [}/Zwo %%] o
—1{ 1 } %a’o %E’o (1.7.7)

SO:

3

a)o a)2+ja)}/ ( ) (a)—a)z)
Now the problem is only to transform the trivial expression 1/(w - ;) and then to apply the

result to eq. (1.7.7). To solve this problem, consider:
S{je‘j“’itu(t)} ,

where u(t) is the unit step function, and we obtain:
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+00 +00

S{je‘j“*tu(t)}zjf e‘j“ﬁtu(t)ej‘”tdtzjj. ello-a)tg -

(1.7.8)
_ [eJ(w—wi)t‘ e—J(w—@)t‘ }_
(60—60|) t—+o0 t—0
1 1
- 0-1l=-
(w—w‘.)[ ] (0-a)
So it's possible to assume that:
S‘l{L}z—jej““u(t) (1.7.9)
0=
Using eq. (1.7.9) in eq. (1.7.7), we have:
wl) "o- wz) @ 2y (1.7.10)
__ L iet it
_Z%J[e —e } (t)
Substituting the solutions (1.7.6) in eq. (1.7.10), we have:
o I (-al {ia)
i_j[ej“’lt—e“”?t}u(t):ij e 2/ —e\? u(t)=
2ay 20y
i _, ! _, X
2wo
!
_ 1 T emiant _griant Ty (1)
“a e T2[ eIt it |y (1) = (1.7.11)
1 —71
=——je 2| >2]Sin(apt) |u(t)=
Zo e 2 [Asin (@) Ju(y
t
1 7
=—-¢e 2Sin(apt
—e sin(@t)u(t)
Using the result in (1.7.4) and (1.7.11), we have:
_— — — 1
3 1{5(@)}:J 1{go}+goa)§\s 1{@(%_@2“0)7/}:
(1.7.12)
2 _t
:goa(t)+goz_pe "25in (@pt)u(t) = £ () + 0z (1)
0
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1.8 Exercise

Show that the plasma frequency for electrons can be expressed in the simple numerical form:

fo =9VN (1.8.1)
where fy is in Hz and N is the electron density in electrons/m®. What is f, for the ionosphere if
N =10'2?

Solution

Plasma frequency id defined as

2
fo_ 1 |Ne” (1.8.2)
P27\ ggm

where e is the electron charge, &, is the permittivity of vacuum and m is the mass of electron. So

we have to demonstrate the follow identity:

2
1 et g (1.8.3)

27\ egMm -
The charge of an electron is 1,602-107*°c and its mass is about 9,10-1073'Kg. The electric

permittivity is about 8,85-107*2 F/m . So:

2
-19
1 (1.602-207)
2-314\910.10°31.8,85.10712

~ 8,988925....

- 2 . .
With N =10 the plasma frequency of the ionosphere is:

fg°”° — 9410 =9.10% = 9MHz
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1.9 Exercise

Show that the relaxation equation
plr,t) + ypo(r,t) + a)ép(r, t)=0 (1.9.1)
where , is the charge density in the conductor, 5 is the measurement of collisions per unit of time
and o, is the plasma frequency, can be written in the following form in term of dc—conductivity
o= 50603/7 = Nez/m;/ :
1. . o
=p(r,t)+ p(r,t)+— p(r,t) =0 (1.9.2)
4 €0

Then show that it reduces to the naive relaxation equation
—+—p=0 (1.9.3)

in the limit z =1/ — 0. Show also that in this limit, Ohm's law

t
I, =of [ 67 DgE(r, tydt (1.9.4)

—00
takes the instantaneous form J = o E, from which the naive relaxation constant 7., = £9/c was

derived.

Solution
Eq. (1.9.2) is obtained dividing eqg. (1.9.1) by ,:

1. . )
=pr, )+ p(r, t)+— p(r,t) =0
4 4

where a)g y =0/gy . It's easy to note that if z=1/y — 0, then the term p(r,t)/» — 0 and the eq.

(2.9.2) is reduced to eq. (1.9.3).
The Ohm's law (1.9.4) can be written, highlighting we have to solve only the integral of an

exponential:

t
J(r!t) = a)égoE(l‘,t) .[ e_y(t_t')dtl

—00

So

D. Ramaccia and A. Toscano Pag. 30



S.J. Orfanidis — Electromagnetic Waves and Antennas Exercises Chapter 1

t ‘ t . .t
[ et e = 1 [ &7y (t- 1)) =£[e—7(t—t )} ~Ipoo=t
% Y o I -0y /4
and we can write:

60380
J(r,t) = ——E(r,t) = cE(r, 1) (1.9.5)
4
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1.10 Exercise

Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the
presence of an external magnetic field. The equation of motion of conduction electrons in a constant
external magnetic field is

mv =e(E+vxB)—myv (1.10.1)
with the collisional term included. Assume the magnetic field is in the z—direction, B = zB, and
that £ = XE, + §E, and v = v, +yv, .

1. Show that in component form, the above equations of motion read:

Vy = iEX +awgVy —7Vy
m (1.10.2)

Vy = %Ey —wpVy —7Vy
where wg =eB/m is the cyclotron frequency.
What is the cyclotron frequency in Hz for electrons in the Earth' magnetic field
B =0.4 gauss = 0.4x10™% Tesla ?

2. To solve this system, work with the combinations v, =+ jv, . Assuming harmonic time-

dependence, show that the solution is:

e )
—(E, £ JE
Vy £ vy = M (1.10.3)
7+j(o*op)
3. Define the induced currents as J = Nev . Show that:
I £y = 04 (@) (Ex £ JEy ) (1.10.4)

A)

with = Ne? , that is the dc value of the
y+i(otog) 70 e*/my

where o, (@) =

conductivity.

4. Show that the time—domain version of eq. (1.10.3) is:
t
I %3y (1) = [ o (t=t) (Ex (t) + JEy (t))dt" (1.10.5)
0

where o, (t) = yo e 7teFi®Bly(t) is the inverse Fourier transform of o, (w) and u(t) is

the unit-step function.

5. Rewrite eg. (1.10.5) in component form:
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t
Ix (1) = [[ o (T = 1)Ex (1) + Oy (1= 1)E, () ] dit
0 (1.10.6)

t
3, (1) =j[ayx (t—t')EX(t')+ayy(t—t')Ey(t')]dt'
0

and identify the quantities o, (t) oy (1) gy (1) 1oy (1) -
6. Evaluate eq. (1.10.6) in the special case E, (t) = E,u(t) and E (t) = E,u(t), Where E,

and E, are constants, and show that after a long time the steady-state version of eq.

(1.10.6) will be:
Ey +bE
‘]X - O-O 2 !
1+Db (1.10.7)
Ey —bEy
Jy=0pg————
1+b
ZAB
- +T
L//,,., .y

Fig. 1.10.1: Conductor with finite extent in y—direction.
where b=ag/y. If the conductor has finite extent in the y—direction, as show in Fig.
1.10.1, then no steady current can flow in this direction, Jy =0. This implies that if an

electric field is applied in the x—direction, an electric field will develop across the y—ends

of the conductor, E, = bE, . The conduction charges will tend to accumulate either on the

right or the left side of the conductor, depending on the sign of b, which depends on the
sign of the electric charge e. This is the Hall effect and is used to determinate the sign of
the conduction charges in semiconductors, e.g. positive holes for p-type, or negative
electrons for n—type.

What is the numerical value of b for electrons in copper if B is 1 gauss?

7. For a collisionless plasma (7 =0), show that its dielectric behavior is determined from

Dy £ Dy :gi(a))(EX J_rjEy), where

%)
& (w) = g {1WJ (1.10.8)
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where o, is the plasma frequency. Thus, the plasma exhibits birefringence.

Solution

e Question n°1
First of all, divide eq. (1.10.1) by m:

\"ZE(E+VXB)—}/V
m
and expand the terms
VRV =%(Exi+Ey§r+vyB§;—va§)— 7 (k)

Now it is possible to separate x and y—component as follow:

e e eB
vy, =—|Ey, +Vv,B|]—y»Vv vy =—E, +—Vv, —yVv
xm(x y)7x xmxmy7x
e = e eB
v, =—I|E,, —Vv,B|—»Vv v, =—E, ——Vv, — 7V
ym(y X)7y ymymxyy

where is easy to note the cyclotron frequency wg .
The cyclotron frequency for electrons (e =1,602x107*°C, m =9,10x1073'Kg) in the Earth's
magnetic field is:

| 1,602x1071°x0,4x10™*  1,602x0,4
2x3,14x9,10x10731  2x314x9,10

fg x108 =1,12MHz

e Question n°2
Assuming harmonic time dependence means that
vi()y=viel?t = V(1) = jov,el
so we have:
. e
Jovy =—Ey +ogVy —yVy
m (1.10.9)
. e
Jovy =—E, —awgVy —yvy
m
Now combine the equations:
. . e (e
ja)(vx + jvy) = EEX +awgVy —yVy |E] EEV —wpVy —Vy

that is

ja)(vx + jvy) :%(EX + jEy)+a)B (vy F jvx)—y(vx + jvy) (1.10.10)
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In Eq. (1.10.10) there is the term wB(Vy ijvx) that we have to express in the form C(vx ijvy),
where the constant C is to be found. If we take out of the parentheses %j, we obtain

Fjmg (vy £ jvy ) and the constant C =% jwg - So eq. (1.10.10) becomes:

%(EX ijEy)J—rjcoB(vx ijvy)—7(Vx ijvy)

and we obtain:

e .
—(E4 £ JE
(Vi £ ivy)= M (1.10.11)
7+ (et wog)
e Question n°3

Substituting eq. (1.10.11) in the expression for the induced currents (J = Nev ), we have:

Ne?
J i, =Ne(v, £jv, |]=—M _(E, +jE 1.10.12
« £33y = Ne(vy £ jvy ) y+j(wiw8)(x Ey) (1.10.12)
where we can identify o, (@) as
Ne?
)
oy (0) = m = (1.10.13)
+j(a)ia)B) 7+](0)in)
Ne? . ..
where &, = —— is the dc value of the conductivity.
ym
e Question n°4
We have to calculate the Fourier transform:
~1 ~1 Y00
3 =3 —— 1.10.14
tox ()] {y+j(a)ia)8)} ( )

Eq. (1.10.14) can be written as:

-1 1 . -1 1 . -1 1
3 = jyoo3 = 7003 1.10.15
770 {ja)+(7ija)3)} 1790 {a)+j(}/ija)5)} 1700 {a)+a)i}( )
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where o, = j(y + jog)- It's easy to note that the inverse Fourier transform in (1.10.15) is already

calculated in exercise 1.7 (eqg. (1.7.9)). So we have:

. _ 1
o) ot

}= iro0 (- u(t)) =

N (1.10.16)
= yoge ¥ tu(t) = yope 7 'eTI¥Blu (1)
where u (t) is the unit step function.
Now we can write eq. (1.10.12) in the time—domain version:
t
3@+ 3y (1) = [or (t=t)(Ey (1) £ Ey (t))dt’ (1.10.17)
0
e Question n°5
It's possible to decompose eq. (1.10.17) in its two component as follow:
t
I+ 13y (1) = [o, (t=t) (Ex (t) + JEy (1) )dt’
0 (1.10.18)

t
()= i3y (1) = [o_(t-t) (Ex(t) - JEy (t) )t
0
Combining them, we obtain:

t
23, (1) = [| o (=) (Ex (1) + By (1)) + o_(t= ) (E (1) - JE (1)) |t (1.10.19)
0

t
2j3y (1) = I[U+(t—t')(Ex(t')+ JEy(t))-o_(t-t)(Ex(t) - jEy(t'))]dt'(1.10.20)
0
Manipulating the expression in the brackets, we have:

tr . . | :
Jx(t)=f (m(t—t);a(t—t)jEX(t.)H(m(t—t);a(t—t)jEy(t.)Wdt.(l_lo_m)
(s |

i ' ‘ ' . -
Jy(t):J- {O‘+(t—t)Z_jO'_(t—t)jEx(t.)_'_j[0'+(t—t);‘jO'_(t—t)JEy(t.) dt'(11022)
0

and it's easy to identify the follow quantities:
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Oxx (t) — o, (t) —; o_ (t)

O'xy(t) _ j(O-Jr (1) ; U—(t)j
1) — t
enty- (220200

O'yy(t) _ (U+(t)42‘0'_(t)j

(1.10.23)

e Question n°6

Consider the expression of J, (t) in eq. (1.10.21) and divide it in two integrals:

t ; : t ' '
Jx(t)=J.(O-+(t_t)—;O-_(t_t)jEx(t')dt'+jj(0+(t_t);O-_(t_t)jEy(t')dt'Z
0 0

= Il + |2
I and I, can be solved separately. Let's start with 1, substituting E, (t) = E, u(t) and the definition
of oy (t). So we obtain:

t ' '
Ilzj(a’L(t_t);a‘(t_t)jExu(t')dt':
0

t t
1 , N ter , R |
=§!Io-+(tt)Exu(t )dt +I0_(t—t)EX(t )dt]=§(|11+|12)
0 0
Now we solve separately 113 and I12, substituting the definitions of o (t) and o_(t) respectively:

t t _ '
Iy = [, (t-)Eu(t)dt' = [ yoge 1 Du(t-t)Eu(t)dt =
0 0

t . ' t . '
= yJOExje_Jw+ (=Ogt = —7GOEXJ.e_Jw+(t_t dd(t—t') =

0 0
e_ja)+ (t_t') t 1- e—ja)+t
=—y00Ex| ———— | =—100Ex| ———
—lo. | —Jo,
After long time, i.e. t — « , the integral I1; results:
1
Iy =—y0pE, | —— |=—220 _E, (1.10.24)
—jo, ) (y+]og)
In the same way we can solve I3, and obtain:
1 O
Iy = —yO‘OEX(_ja) j: " - j(()‘)B) E, (1.10.25)
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Now combining eq. (1.10.24) and (1.10.25), we have the solution of integral I;:

=—I Loy o L[ _700Ex . 700Ex j_
(it he) = ((7+JWB)+(7—JWB)

:onx(( 1, 1 jJUoEx{ %” J”/}:(1.10.26)

2 \(r+jog) (y—jows) 2 ¥2+ah

_rooEx|_Zr | _rPoo
N Z 2 2| .2 2 X
yeog) yieoh

As for integral 15, we can solve integral I,:

t ' !
1, :jj(m(t_t);G‘(t_t)JEyu(t')dt':
0

{J.o:r(t t)E u(t)dt—ja (t—t)E u(t)dt} ;(21422)

The integrals I,; and I, have the same structure of integrals 113 and 112. So the results are known:

Iy =—L20
(7 +jog) (1.10.27)
y9g
lpp =———F
(r-jog) 7

It is easy to calculate I, as:

J J 700 700
| lor — 1 E
2=5(la=122) = [(7+J@B) Yy - jog) VJ

=J'7/00Ey[ 11 J:VGOEy(/_JwB / J:(1'10'28)

2 \(y+jog) (r—jop) 2 y* + g
:jVGOEy[—ZJWBJ @O0y

/2( 2 2 Y

}/2 + g 7/ + g
Now it is possible to write J,(t) in steady state when a constant electric field is applied:

¥ 2E. + awnE
}/ +a)B Y +a)B V4 +a)B

V4 EX +C()BEy
2 _ Ex+bE,

—“0
72+a)é 1+b?

where b=awg/y.
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Consider now the expression of 3y (1) in eg. (1.10.22) and divide it in two integrals:

t ; . t ' .
Jy(t)=j[6+(t_t)Z_ja_(t_t)jEx(t')dt'+I[0+(t_t)ZG_(t_t)jEy(t')dt':
0 0

= |3 + |4
I3 and I, can be solved separately. Let's start with I3 substituting E, (t) = E, u(t) and the definition
of &, (t) . So we obtain:

t ' !
I =£[‘7+(t_t )Z_j"—(t_t )JEXu(t')dt'=

{[af(t t)E, u(t)dt—ja (t—t)E, (t)dt] 211(31—|32)

0

Now we solve separately 13; and 13, substituting the definitions of o (t) and o_(t) respectively:
t t _ .
l31 = [0 (t = t)Exu(t)dt' = [ yoge (T Du(t—t) Equ(t)dt' =
0 0

t . t .
= ;/0'()Exje_1a)+(t_t Dt = —7/0'0EXJ.E_JQ)+(t_t )d(t -t =
0 0

o (t-1) 1ot
:_7UOEX - - =_7’60Ex - .
—lo, |, —Joy

After long time, i.e. t » « , the integral I5; results:

1 700
l31 =—rooE [ . ]= ~—E (1.10.29)
oy ) (r+jog) ™
In the same way we can solve I3, and obtain:
1
I3, = _70-0Ex[ . ]= %0 g, (1.10.30)
—jo_) (y—]jwg)

Now combining eq. (1.10.29)and (1.10.30), we have the solution of integral I3:

1( yooEx  rooEx ]:

| =—.(| =1 )=—. . n
372 o v+ o) (7 - jog)

:WoEx( t 1 jJC’OEX(/ ""B / ]:(1.10.31)

2] \(r+jwg) (y-jwp) 2j }/ +a)B

_ yooEx _/2/1“’8 _ 60300 E,
= A 7 |~ 2

]/2 + o ]/ + op
As for integral 13, we can solve integral 14
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t ' !
Iy =j["+(t_t);”—(t_t)jEy(t')dt-z
0

{[af(t t)E u(t)dt+ja (t—t)E u(t)dt} ;( sn+12)

The integrals 141 and I4, have the same structure of integrals I3; and Is,. So the results are known:

1y =—L20
(7 +jog) (1.10.32)
¥00
lyp=———F
(r-jog) 7

It is easy to calculate 1,4 as:

'423('41442):1[ 20__E 720 j

2 20 +jog) Y (- jom) Sy

ZWOEV[ t 1 ]:ony W/W % = (1.10.33)
2 \(r+jog) (r—jog) 2 2+ b

ZJ’GoEy —Zy _ y2oyq £

7 2

7/2 + g
Now it is possible to write 3y () in steady state when a constant electric field is applied:

2 2E. —wnE
V4 +C&)B V4 +CDB Y +0)B
2
7"Ey —wgEy
2 E, +bE
y X
=00 27 2 90 2
y°+op 1+Db
2
V4

where b=cwg/y .

e Question n°7

To solve this point it is necessary to obtain the expression of o, (w) for a collisionless plasma

because it is note the relationship:

£, (@) =gy + :(“’) (1.10.34)
w

The definition of the conductibility o, (w) has just obtained in this exercise, i.e. eq. (1.10.13). We

have only to set »=0 for indicating that there is no collision between the electrons and the medium

structure:
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Ne2

_ m
oy (@) = Totan) (1.10.35)

Now we substitute eq. (1.10.35) in (1.10.34) and we have:

Ne?
g m g %
& (o) =¢ a)(a)ia)B) & [1 a)(a)ia)B)] (1.10.36)

2

Ne
where goa)g =—
m

The numerical value of b for electrons in copper can be find out using:

_ B
b:Cl)Bj/lze—
my

where e =1,6x1071°C, m =9,1x1073'Kg, y =4,1x10'3s71. If B =1 gauss =107 Tesla, then

- 1,6x10719 %107 16

= - x10° = 4288
9,1x1031x41x10" 9,1x4,1

The result is different from the one in the text which is 43.
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1.11 Exercise

This problem deals with various properties of the Kramers—Kronig dispersion relations for the
electric susceptibility, given by:
1 Trile),
1r(0)==p j Mda}
T a—o

(1.11.1)

wlo)=-Lp [ 2L2)q,

where ¢ denotes the "principal value" and y (@)= y,(®)+ jz;(w) is the Fourier transform of

x(t). Because the time-response y(t) is real-valued, its Fourier transform 4 (w) will satisfy the

Hermitian symmetry property y(-)=x" (@), which is equivalent to the even symmetry of its
real part, z, (-o)= z, (@), and the odd symmetry of its imaginary part, y; (-w)= -y (®)-

1. Using the symmetry properties, show that eq. (1.11.1) can be written in the folded form:

2

zr(W)=%@I—wZ'( Jdor
0 W —w

(1.11.2)
2 oy (@) |,
rilo)=——p| S5—Fdo
i(@) ju J(;w.z_a)z
2. Using the definition of the principal-value integrals, show the following integral:
T do
p|l———==0 (1.11.3)
fw.z_wz
Hint: You may use the following indefinite integral: I dx :iln arXx
a2_x2 2a |a—x

3. Using eq. (1.11.3), show that the relations (1.11.2) may be rewritten as ordinary integrals

(without the g instruction) as follows:

Zr ((()) — %T w Zl (a)z) a)ZZI (a)) da)
o @ 7@ (1.11.4)

;(i(a)): iTWIr(ZZ) . ( )da)

Hint: You will need to argue that the integrands have no singularity at o'=w.

4. For asimple oscillator model of dielectric polarization, the susceptibility is given by:
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a)z
2(@)=z ()= ixi(0)=——5 —=
wy —o° + jyo
(1.115)
a)g (a)g - a)z) _ 70)0)5

2 2
(a)g—a)z) +7/2a)2 (a)g —a)z) +72a)2

Show that for this model the quantities », (w) and y; (w) satisfy the modified Kramers—

Kronig relationships (1.11.4).
Hint: You may use the following definite integrals, for which you may assume that

O<y<2ay:

- -
(a)g —x2) +y2x% 7

2% dx 1 2% x2dx
;.[ N2 2 9 2" ;I
0( vy — X ) +yxc 790 0

Indeed, show that these integrals may be reduced to the following ones, which can be

found in standard tables of integrals:

27 2% 1
Ty 1-2y? cOs9+y ﬁgl 2y? C050+y \/2(1—Cos¢9)
where sin(6/2) =y /(2awy)-
5. Consider the limit of Eq. (1.11.5) as y—0. Show that in this case the functions y,, z; are

given as follows, and that they still satisfy the Kramers—Kronig relations:

2 2 2
o, o, y.70)
)(r(a))=gowoiw+gowoiw, ;(i(a))=ﬁ 5(o—ap)- 5(a)+a)0)].

Solution
The Cauchy's principal value is defined for the integration of a function f(x) with limited value in

the interval [a,b] except for the x = x.This is a special case of Reimann's principal value:

b X041 b
[T (x)dx = |11(1)+ [ f(x)dx+ I|rr(1)+ [ f(x)dx
a sl a 2 Xp+¢62

where ¢ and ¢, are independent of each other, whereas in the Cauchy's principal value ¢; =¢,, so:

b X0-¢
gojf( )Jdx = lim _[ x)dx + .[
a c—0" 3 Xp+¢

In the case of the exercise the singularity isat o'= .

e Question n°1
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Let us decompose 4, (o) as follow

10(0)= 201 (@) o (0)= 2o [ 20 Lo [ 2@,
r r+ r- T 0 w'—w T o D'— @
and we change the variable in the second term (o' — -'):
1 +OOZi(a)') 1 0 Zi(_a)')
= — —d '+_ —d PN _
(@) ﬁpg oo ﬂp[o_w,_ (o) -

Simmetry property of y;

LT al) gy, 1 @y ).
0

+o0 0 _ (.
Zipj‘zl'(w)da)""l(@'[ I'(la))da)' _
Ty 0= AN R T
Invert integral’s limits
+o0/ '
ZESOJ‘ II.(Q))"_II.(&))Jd '
T oy\o-0 o+ o

1 ]
=;p£ 2__2

2 To'y(e
:_SOJ ;2“( z)d“)'
Ty 0-o

In the same way, it's possible to decompose 4; (o)

Zr(w')da)'—lp j). A\@) (a))da)

10)= 710 (0)+ ()= 2 ] 2L al
0

and we change the variable in the second term (o' — -'):

Exercises Chapter 1
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1 (@), 1 % pn(-e) '
ril@)=—p [ et =20 [ TR0 5
0 +00 Simmetry property of z,

_ 1 SOJFJ?Oi;,(a)l)dCU'—lSOT. i(r(a)l) d(—a)')

T )] T
0 +o0

2 Taoyi(o)
__SOJ. .2I_w2d‘"

T 0 In)
e Question n°2
Using the definition of the principal-value integrals and the hint, we write:

0

T do' ¢ de do'
SOJ .2a)2|'mlj 2a)2+j .2w 2}

Q@ —o s—0 ) W-et oo
i I(U_g 1|90
. o+ o+ o
=—1lim|In . +In‘ - =
2060 o=y =0l gy (1.11.6)

1 . 20—¢ 20+¢
=—1im|In - + —In|- =
s i 025 e o 2

s
_ L jim|m[22=< —|n‘—2“’+g}=o
20 g—>o| S S

e Question n°3
The integrands of equations (1.11.2) have a singularity in »'=® and we have to use the
principal-value for solving the integral. But if we also introduce a singularity at the numerator in
o'=w, we will have the integrand that will not diverge. Besides subtracting eq. (1.11.3), that is

zero, to eq. (1.11.2), we obtain:
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0

2 To'xi(e), | do'
®)=—p|—S——do'-
(@) ”50.([ PR Sogw.z_wz
2 Top(o), . 7 do
() =_Z do' —
Zl(a)) 71'@'([(()'2—0)2 @ 8{)‘(’)‘@'2_@2

Being equal to zero, the second term can be multiplied by a constant and we choose 2wy (o)/7 -

So we have:

m<w>=§{s@°§(w'§<w§ _on(o) )dw]

o —o W —o

o222 2o

2
ﬁoa)a)a)—a)

(1.11.7)

Because now the integrands don't present a singularity in o' = @, we can cancel g instruction and

obtain:

(1.11.8)

e Question n°4

Substitute the quantity 4;(w) expressed in eq. (1.11.5) inside the modified Kramers—Kronig
relationships (1.11.4) for 4, (w):

0

2
Zr(w)ZEIXM(Xg_wf(a))dx’ where () = yowy

2
V4 -
0 X - (a)g—a)z) +;/2a)2

where we have substituted »'— x to distinguish better the arguments of the integral. Let us

denote the denominator of 4;(w) as Den[w] . So we have that:

2 2
1 yXep  yoap

5 5| X 0] dx =
X —w Den[x] Den[w]

27/603 1 [ 2 w? ]

2_ 2 - dx =
x“ — o | Den[x] Den[o] |

1 _xzDen[a)] - a)ZDen[x]
NG Den[x]Den[w]
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Now we can expand the numerator x?Den[w] - w?Den[x] inside the integral using the extended

form for Den[x] and Den[«]:
2 2
X2Den[a)] — a)ZDen[x] = x? {(a)g - a)2) + 7/2@2} — [(wg - X2) + yzxz}

=X2[a)g+a)4—2a)ga)2+7/2a)2}—a)2[a)61+x4—2w§x2+72X2}=
—xa;o+xa)M/W—a)a)0 a)xﬁw/ﬁg/f/ayfz/f
:Xza)g'+xza)4—a) g 4 w?x4 za)g'(xz—a)z)—a)zxz(xz—a)z)z

:(XZ —a)z)(a)g' _wzxz)

and substitute it inside the integral:
oot
I dx
}/5 Den[x]Den[w]

_rm 2Tab-oBP e |27 o
Den[w] 7 0 Den[x] Den[w]| =

2 o o0 2
_ "% ngJde_QZEj X" ix
Den[w] Ty Den[x] Ty Den[x]

Now it is possible to use the note results suggested by the text of the exercise:

T
' Den[o] Xa’o X Den[o]
a)g (a)g - a)z)

N 2
(a)g - a)z) + ]/2602

2 7(0

Den[x] __I Den[x] ]_

that is exactly the expression of 4, () for a simple oscillator model of dielectric polarization in
eq. (1.11.5).
Now we have to demonstrate the dual expression for 4, (o) :

(e

(@)= _%T oy, (:2) : Zﬂztr (@)

x where (@)=

2
(wg_wz) + 7202

Let us use the same notation as above. So we have:
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2( 2 2 2( 2 2
2% 1 ap(0f -x2)  af(af -o?) _
)(i(a’)—_;!; 2 _ o2 @ Den[x] —@ Den[w] -

(a)g - xz)Den[a)] - (a)g - a)z)Den[x]
— w? Den[x]Den[w]

dx

2a)a)
"I ——

2 2
where Den[x] = (a)g —xz) +)/2x2 and Den[w] = (a)g —a)z) + yza)z .

Now we can expand the numerator (a)g - X )Den[a)] (a)o - 2)Den[x] inside the integral using
the extended form for Den[x] and Den[a)] :

(a)g— )Den[a)] (coo— 2)Den[x]:

o ) (o -2+ |- (-7 (o 156 -

(a)g - Xz)[ 6" + ot - 2(02(02 + }/2(02} (a)g —a)z)[a)g' +x4 - 2a)gX2 + }/ZXZ] =

)766{%—(04@0—2@00) +7%w wg—xzw{)‘—xzw“W— 2x%0° +
766(—X4w§+2w 72X2w2+a)2wg+x4a)ZW+ 220" =
—a)g(x4—a)4)+2a)g(xz—a)2) ( 0)2) co( —w2)+xza)2(xz—a)2)=
—a)g(xz—a)z)(x2+a)2)+2a) (Xz—a)z) 2 g(x —a)z) wg(xz—w2)+xza)2(xz—a)2):
(Xz—a)z)[—a)g(xz+a)2) 2 a) +a) + X% }

and substitute it inside the integral:
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x>~ [—wg(xz +a)2)—7/2a)§ +a)g' +X2a)2}
d

_ . 2a)a)p
%)= J. }/5 Den[x]Den[«]

X =

00?9 Oo—a)g(xz + a)z)—yza)g + af + X20?
Den[w] = Den[x]
2 [ 4o 2 2
aw,
S N L e g O S e S S g 9
Den[w]| = " Den[x] Den[x] Den[x] Den[x] Den[x]

) Den[w]_ y Mg’ 7% w7

j 7(0(0 7(0(05
Den[co] " Den[w] wg _ wz)z 720

that is exactly the expression of 4; (w) for a simple oscillator model of dielectric polarization in eq.

(1.11.5).
e Questionn®5

Let us compare the first integrals in x and y respectively:

2% dx _2%
ﬂi(wg_xszx K

They differ only in the denominator, so we can compare them to find the condition of equality,

2y 0050+y

substituting y — x :

2
(a)g —x2) +;/2x2 =1-2x%Cos0 + x*
a)a" + x4 - 2a)§x2 +7/2x2 —1-2x%Cosf +x*

that is:

2
of - 2x2£w§ —%j+ x* =1-2x2Cos6 + x* (1.11.9)

Using the suggested relation sin(6/2)=y/(2w,) and the relation Cosé =1- 2sin(¢/2), we

have:

2
003.9=1—2Sin2(9j 1-2 7’ =1-1 (1.11.10)
2 4600 20)0

Now it is possible substitute eq. (1.11.10) in eq. (1.11.9):

wg - 20¢x?Cos6 + x* =1-2x%Cos6 + x* (1.11.11)
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In order to match the right— and left-side of eq. (1.11.11), it is necessary that «y -1 and it is

correct because the integrals in y are a reduced form of the integrals in X. Indeed the result of

integrals in y can be written as follow:

1 1 1 1

J2(1-Cos0) \/Zil( _yzn \/ﬁ_mﬁl
40)5 20’5

that is exactly the result of integrals in x when oy —»1.

e Questionn® 6

Starting from the expression of y () as in eq. (1.11.5) and applying the limitas , — o0 we get:

2
),
22 (@)= lim y(0)=lim ——2— =
y—=0 r=>0wy - + Jyo
2 (1.11.12)
2 2
: (a)o ¢ ) o yo 2
= lim 5 | lim 5 Wy
7—)0(@5_0)2) +7/2a)2 Wy — @ 7—)0(@5_(02) +7/2a)2

;(P (o) and ;(,0 () represent the real and imaginary part of ;(O(a)) for y — 0, respectively.

It is easy to note that the real part converges as:

2
2 2 2
0 : (wo —@ ) “p
Xr (a)): Iino 2 2\2 | 2 2 @f 2”
’ (“’0_“’ ) +rte” 00 (1.11.13)

% 1| o @
= 2 2:2 ® -
Wy — @ [y g — g+

For what concerns 7 (w) = a)s lim 2 we have to note that it is very similar to
y—0 ( 2 2)2 2 2
oy —0" | +ty e

the following definition of the Dirac delta function:

. 1 P
o5(x)= lim =
(x) es0t 7T X2 + &2

(1.11.14)

So, we first manipulate ;(,O(a)) in order to apply eq. (1.11.14). Dividing and multiplying

numerator and denominator by w? and , respectively, we have:
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w
w? pa (1.11.15)

The limit y -0 of eq. (1.11.15) has the same form of eq. (1.11.14), assuming s — » and

2 2

NP soitis possible to write:
w

X—

2 2 2
2w (o)= i 5{600 —@ ] (1.11.16)
w w

In order to write (1.11.16) in a simpler form, we apply the following two properties of the Dirac
delta function:

1. consider a function f(x) with n zeros:

{f(x)zo _
iNX; = Xq, X9, ooy Xp
f'(x)=
then
n
5(F(x)) =3 2 =x) (1.11.17)
i=1 ‘f )‘
As an example, if we consider f(x)=x 2 _a%, we have:
5(x2—a2) 5(x—a) S(x+a) _
( a2) (x —a?
X=—2a

1

1
—mé‘(x—a)+—2|

1
_a|5(x+a):m[§(x—a)+5(x+a)]

2. Consider a function g(x):

g(x)s(x—xg)=9(xq)5(x—xq) (1.11.18)
In order to apply (1.11.17) to (1.11.16), first of all we have to evaluate the zeros of the function
2 2
Wy —@W
f(0)=2
f(w)=0 < w={+og,-wy} (1.11.19)
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and its first derivate respect to ,, :

do do W do 1) do
(1.11.20)
2 2
wy — @ 1 Wy — @
=— | =24 =-2-
e
Now it is possible to write:
2 2 2
TT, —
2 (@)= p5[w0 “ J:
[0 a
:”a’éi(f(w—w.):
@ ia ‘f(“’l)‘
, (1.11.21)
I I )| S(o+ay) |_
@ 2 _ 2 _
) @
w?
=2—[5(a)—a)0)+5(a)+a)0)]
a
Let us, then, apply the second property of the Dirac delta function (1.11.18):
2
7wy |1 1
;(io(a))=Tp[;5(a)—w0)+;5(w+a)o)}=
2
oy | 1 1
=Tp{w—0§(a)—a)o)—w—0§(a)+a)0)}= (1.11.22)
2
T,
:ﬁ[é‘(w—a)o)—é'(a)+a)o)]

This expression still satisfies the Kramers—Kronig relations. Substitute the quantity ;(,O(a))

expressed in eq. (1.11.22) inside the modified Kramers—Kronig relationship (1.11.4) for 4, (»):

0 0
22Xy (X)-wy (@)
Zr("’)Z;_([ I Xz_a)zI dx

where we have substituted o' — x to distinguish better the arguments of the integral. So:
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XZ’,OI 5 [x(6(x-an) -6 (x+an) - (50— av) -5 0+ ap) ]
2 2 (X —ap)dx— f 2 7O(x+ap)dx—|

=20 o - —w—p[I1+I2+I3+I4]
0 +J‘X2i)w2§(a)—a)0)dx+.[xzioa)25(a)+a)o)dx “0

The integrals I3 and 14 vanishe as demonstrated in (1.11.6). Also the integral I, vanishes because it
is over the real—positive values of x while the Dirac delta function is always zero on this interval (it

is not zero only for x =-ay, which is real negative). So we can write:

2 2
@ 6 @
Zr(w):pyz/wof)_/wZ :gowoz_pa,Z =7, (@) (1.11.23)

The Kramers—Kronig relationship (1.11.4) for 4; () with 2 (o) :;(P(a)) can be written using

the definition of 4° () asin eq. (1.11.12):

wz(a)g_wz
I (oz)):llm0 5
7> (wg_a)Z) +]/20)2
So:
2% o a)g a)g—xz) a)g(a)o—a)z)
Z'(a})_—; xz—zlino 2 2\, . 2.2 2 2)? de
0 w7 (a) X)+}/X (a)o—a))+}/a)
and, exchanging the limit with the integral, we can write:
| a)z(a)g—xz) a)g(a)g—a)z) ]
al _7E>n0_;'[x2—a) ? 2. 22 (2 2. 22|
(a)o—x)+;/x (a)o—a))+7/a)

Now it is easy to note that the argument of the limit has already been solved in the solution of

question n°4 of this exercise resulting in y; (). Then, the limit y >0 to 4; () should be applied,

which is given by eq. (1.11.14).
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1.12 Exercise

Derive the Kramers—Kronig relationship:

w

2(o) =ﬂijgo+fo%dw' (1.12.1)

by starting with the causality condition (t)u(-t)=0 and translating it to the frequency domain,

that is, expressing it as the convolution of the Fourier transforms of 4(t) and u(-t).

Solution

The convolution is a mathematical operation on two functions f and g, producing a third function
that is typically viewed as a modified version of one of the original functions. In signal theory, it
represents the transformation obtained when a signal passes through a black—-box system with a
known impulse response. In similar way, in frequency domain the output of the system is the
product of the Fourier transformations of the input signal and the impulse response. So the
convolution in time domain is also the corresponding operation of the product in frequency domain

and vice versa. It is defined as:

(f >l<g)(t)é +J?of(z')g(t—7)dr = +J?og(r)f(t—r)dr

Using the causality condition y(t)= (t)u(t), we have that

()= 3{2(0)} = S (0u(V) = 3{2(0)} * S{u(t)} = == 7() *U(w)

27

where y (») and U(e) are the Fourier transforms of 4(t) and u(t), respectively.

The Fourier transformation of Heaviside step function is:
1
U(w)=p—+10(w
(@)= 470 (0)

So we have:

7() zigoJrJ?O;((a)')U(a)— w')de'

:i(g{:fo;((a)') J(a)ia))der Zi{/{T};{(a)')é‘(a)—a)')da)':

LoT 2w

)da) +=y()

B 1
27] (0- o'
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Rearranging terms and canceling a factor of 1/2, we obtain the Kramers—Kronig relation in its
complex—value form:

1 P x(e)
x(@)= ptl | ( d

CE R
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1.13 Exercise

An isotropic homogeneous lossless dielectric medium is moving with uniform velocity , with
respect to a fixed coordinate frame S. In the frame S' moving with dielectric, the constitutive
relations are assumed to be the usual ones, that is, D'=¢E' and B'=xH'. Using the Lorentz

transformations:

- 1 ' 1

B, =7v/|B, ——BxE D, =yID, +—-BxH

L 7( 1 C|3 J_j 1 7/( 1 CB J_j (1.13.1)
E,=E;, H, =H/,

B, =By D, =Dy

where ¢B=v, p/c=v/c® and 7=1/~/1—|B|2’ show that the constitutive relations take the

following form in the fixed frame S:

D=¢E+avx(H-¢vxE) (1.13.2)
B=puH-avx(E+ uvxH) (1.13.3)
where a:m.
1-suv
Solution

It is possible to express the constitutive relations D' = ¢E' and B'= 4H' as follow:

D'=D, +Dj, = g(E'l +E',,)
o o (1.13.4)
B'=B, +B), =,u(Hl+H//)

where the subscripts L and // indicate the component perpendicular and parallel at the velocity

vector .
Considering the first equation of set (1.13.4), we can substitute to all of component with the

superscript with the correspondent definition given by the Lorentz transformation:
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D, +Dj = 2(EL +E)
1
y(Dl+EBxH¢j+ly,=5D4EL+cﬁxBL)+EH]
(1.13.5)
yD, +LBxH, + D) =ey(E, +cBxB, )+<Ey,
C

yDL+%Ble+DH=Q(EL+walﬁ¢EH

Now it is possible to substitute cB=v and g/c = v/c? and separate the component parallel and

perpendicular at the velocity vector . :

1
D +—vxH, =¢E| +¢vxB 1 —component
L1+ 1 1 1 ( p ) (113.6)
D, =<k (/I — component)

The relation between the parallel components of vector D and vector E is the same in the two
frame S and S'. On the contrary, the perpendicular component depends on both electric and

magnetic field. In the fixed frame S the constitutive relation B=xH is not valid, so we have to
evaluate it using the set (1.13.1) and the constitutive relation B'=#H' in the frame S' where it is
valid. Considering only the perpendicular component, we have:

B, =uH,|

/(BJ_ _%ﬁXELj:ﬂ/(HL ~cpxD )

B, _%BXEJ_ =uH | —pcpxD

B, =uH, +%BXE¢ —puCpxD
and express it as function of velocity v:

Blz,qu+Ci2V><EL—,uV><Dl (1.13.7)

Now we can substitute eq. (1.13.7) in eq. (1.13.6) and obtain:

2

Dl+ivaL:8El+8V><(,qu+i2vxEl—,uvxDJ_j
C C

1 £
DJ_:8EJ_—C—2VXHJ_+€,UVXHJ_+C—2VXVXEJ_—€,UVXVXDJ_
1 &
D, +euvxvxD  =¢E) +| gu—— |[VxH | +—VvxVvxE
C C
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The double cross product v x vx D can be evaluated using the BAC-CAB rule:
VXVXDJ_ :V(VDJ_)—DJ_(VV):O—VZDJ_ :—VZDJ_

SO

1
Dl—g,uVZDlngl +(£ﬂ——2vaHl+i2vxvxEJ_
C C

2 £
(1—.9,uv )Dl:SEL+(g,u—goyo)v><HL+C—2vxv><El (1.13.8)
U — &
DLZ%EL‘F(IJ—OIL;O)VXHJ_‘FﬁVXVXEL
(1—£,uv ) (1—g,uv ) c (l—g,uv )
It is easy to note that the term vxH  is multiplied by the coefficient a, so:
& &
D =———FE +avxH, + ——————vxvxE; (1.13.9)

(1— e,uvz) c? (1— 8,uV2)
Comparing eq. (1.13.9) and eq. (1.13.2), we can note that the coefficient of E; and vxvxE are

different. It is possible to think that probably we have to add and subtract a unknown quantity. To
find it, we will compare the our expression and the expression suggested in eq. (1.13.2), that is:

& &

5 EJ_+ 5 > VXVXEJ_
(1—gyv ) c (1—5,uv )
8EL—SMVXVXEL

(l—g,uv )

where we already substituted 24~ %040 _ 5 |
(1 - gyv2 )

Now we can identify with X the unknown quantity and we can impose that:

i 5 EJ_"FXEJ_ZSEJ_
(1—8,uv)
%VXVXEL-FXEJ_:—EMVXVXEL
c (l—g,uv ) (1—5/1V )

which can be simplified as:
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;24')(:8
(1—8,uv )
ev? ELL— EQH
c (1—£,uv ) (1 EUNV )

where in the second equation is present the term —v? because of v« v xE | = ~v2E | -

From the first of (1.13.10), we obtain that:

€ M —euv? A euv’?

) a)a?)

and from the second:

2 2
FAY) EU — & eV
X = ev2 %ot _

c? (1—gyvz) (l—g,uv ) (1 EUV

)[%*WMJ (

1
2)|: 2 +éep— SOIUO:|

(18V 18,LIV)

(1.13.10)

(1.13.11)

(1.13.12)

It is easy to note that X has the same module, but opposite sign. This confirms our argument of

finding a quantity to add and subtract at eq. (1.13.9). So finally we can write:

DJ_: d 5 EJ_+aVXHJ_+ 5 > VXVXEL'FXEJ_—XEL:
(1—g,uv ) c (1—g,uv )
£ £ g,uvz g,uv2
:—ZEJ_+aVXHJ_+ > > VXVXEJ_‘F(E‘ > EJ_—E—ZEJ_
(1—g,uv ) c (1—g,uv ) (l—eyv ) (1—g,uv )

Now we can simplify eq. (1.13.13) as follow:

&

YA E, -¢ MEJ‘_(QEJ‘
(1—8,uv) (1 E,UV M
V
c (1—g,uv ) (1—8,UV )
S gy VKB e v vxE,
c (1—£,uv ) (1—5NV )
1
L( 5 glu)vxvxEl
(1 gyv)
=8MVXVXEJ‘ =—cavxVvxE,
(1—8,uv )

(1.13.13)

(1.13.14)

(1.13.15)
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Substituting (1.13.14) and (1.13.15) in eq. (1.13.13), we obtain:
D, =¢E| +avxH | —cavxvxE (1.13.16)

Now using the second equation of (1.13.6) and eq. (1.13.16), it is possible write the expression of
vector D in the fixed frame S:
D=D, +Dy
=¢E| +tavxH | —cavxvxE | +¢E; =
=¢(E, +E;)+avxH| —cavxvxE| +avxH;—cavxvxE;, = (1.13.17)
nIII nEII
=¢E+avxH-cavxvxE=¢E+avx(H-evxE)
It is easy to note that eq. (1.13.17) and eq. (1.13.2) are identical. In the same way, we can
demonstrate eq. (1.13.3), but we kwon that the relations are dual and we can obtain eq. (1.13.3) just
operating a changing of variables as follow:

D—-B
E—H
vxH—>-vXxE
E>U

So:

D=¢E+avx(H-¢vxE) —> B=pgH-avx(E+uvxH) (1.13.18)
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Chapter 2

Uniform Plane WavesEquation Chapter 2 Section 1

2.1 Exercise

Exercises Chapter 2

A function E(z,t) may be thought of as a function E(g” ,§) of the independent variables

¢ =z—ct and £ =z+ct. Show that the wave equation:

and the forward-backward equations:

OE, _l OE,
0z c Ot
OE_ l@E_
0z c Ot
become in these variables:
2
0°E _o, 8E+=0’ 8E_=0
040¢& o& o¢

Thus, E, may depend only on { and E only on &.

Solution

First of all, we have to evaluate the derivates:

2.1.1)

(2.1.2)

(2.1.3)
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@

~ :E(z—ct)zl = 0 =0z (a)

% _ )= = dC=—ct  (b)

(;a; aat (2.1.4)
=5, =l = o= (c)

% _0 _ -

= _at(Z+Ct) +c = 0&=+cot (d)

so, multiplying eq. (a) and (c¢) of (2.1.4), we have 0%z = 0¢0¢ and, multiplying eq. (b) and (d) of

(2.1.4), we have —c%ot= 040¢ . Now we can substitute them inside eq. (2.1.1) to obtain:

[ G JE(§,§)=O

0¢0¢  0¢0g
that is:
82
E({,6)=0
7 2 0(6%)
Using the relationships (a) and (b) of (2.1.4), we can rewrite the forward equation in (2.1.2) as
follow:
OE, _ OE,
¢ ¢
that is verified only when
OE
= 2.1.5
PE (2.1.5)
In the same way, using the relationships (c) and (d) of (2.1.4), the backward equation in (2.1.2)
becomes:
OE_ _ OE_
o o
and, consequently
OE
-2 2.1.6
% (2.1.6)
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2.2 ExerciseEquation Section (Next)

A source located at z=0 generates an electromagnetic pulse of duration of T seconds, given by
E(0,t)=%Eo[u(t)—u(t-T)], where u(t) is the unit step function and E; is a constant. The
pulse is launched towards the positive z—direction. Determine expressions for E(z,t) and H(z,t)
and sketch them versus z at any given t.

Solution

For a forward—moving wave, we have E(z,t) = F(z - ct) = F(O — c(t - z/c)) , which implies that
E(Z,t) is completely determined by E(Z,O) or, alternatively, by E(O,t) :

E(zt)=E(z-ct,0)=E(0,t—z/c)

Using this property , we find for the electric and magnetic fields:

E(zt)=E(0,t—z/c)=3E, [u(t —z/c)-u(t—z/c— T)]

2.2.1
H(z,t):ZLOQXE(z,t)=§f];—2[u(t—z/c)—u(t—z/c—T)] (2.2.1)

4 E@D g ran
R
> :’

0 ct C(I-II-AI) > <

Fig. 2.2.1: Expanding wave—font at time t and t+ At.

Because of the unit step, the non—zero values of the fields are restricted to t —z/c >0, or, z<ct,

that is, at the time t the wave—front has propagated only up to the position z=ct. Fig. 2.2.1 shows

the expanding wave—fronts at time t and t + At .
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2.3 ExerciseEquation Section (Next)

Show that for a single—frequency wave propagating along z—direction the corresponding

transverse fields E(z), H(z)satisfy the system of equations:

E 0 —j E
Sy iy
oz| Hxz —jwe 0 Hxz

where the matrix is meant to apply individually to the x, y components of the vector entries. Show
that the following similarity transformation diagonalizes the transition matrix, and discuss its role in

decoupling and solving the above system in terms of forward and backward waves:

: -1 .
1 Z 0 - 1 Z -k 0
o[ jou o | _[Hk 232)
wherek = w/c, ¢ =1/\Jue , and Zo = Ju/e .

Solution

For a single—frequency wave, we can assume a time—dependence as el So the electric and
magnetic field can be expressed as E(x,y,z,t):E(x,y,z)eja’t, H(x,y,z,t):H(x,y,z)ej“’t,

respectively. The Maxwell's equations can be written in the form:

. 7)el
V><]Z‘(x,y,z)e]aI z—;@
 dRxyad)

VxH(x,y,z)ejwt = ,UT

(2.3.3)

Evaluating the derivate in the right-hand side of both equations, the term e/ can be simplified:

VxE(x,y,z)M=—ja),uH(X,y,z)f)m{
VxH(x,y,z)szng(x,y,z)M

The curl of the electric (or magnetic) field can be written as determinant of the following matrix:

A A A

X y V/
VXE= Oy dy 0,
EX(X, y’ Z) Ey(X, y’ Z) EZ(X’ y’ Z)
where 0; with i=x,y,z are the partial derivates. But we are in presence of an uniform plane

waves propagating along z—direction, so the electric filed vector lies on the x—y plane, i.e. the z—
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component of the electric field is null(E, =0), and also in each plane the vector has constant

amplitude, i.e. the derivates along x and y are null. The curl becomes:

A

X y V7
VxE = 0 0 o, (2.3.4)
E.(x,y,2) Ey(x,y,2) O

The only applicable derivate is 0, , so (2.3.4) is similar to:

VxE=| 0 0 1 (2.3.5)
8Ex(x,y,z) aEy(Xa Y5Z)
0z 0z
that is simply the cross—product of Z and %’y’z) :
z
OE(x,y,z .
ixgz—m),uH(x,y,z) (2.3.6)
0z
JH(x,y, )
ix%=+Ja)gE(x,y,z) (2.3.7)
74

Consider eq. (2.3.6) and apply the cross—product with Z to both of side:
(ix%)xi:—ngHxi (2.3.8)
Z

and, using BAC-CAB rule, the left-hand side simplifies into:

(A an . OE,, . ( an OE ,0E, OE
ix— |xz=—(2-2)-2|2-— |=—-1 =—
0z 0z 0z 0z

where we used the condition 0,E, =0 for a plane wave.

So eq.(2.3.8) can be written as follow:
8—E=—ja),uH><i (2.3.9)
0z
On the contrary, eq. (2.3.7) needs only to invert the cross product at the left-hand side and to
change the sign at the right-hand side:

M = jwek (2.3.10)
oz

Now it is easy to write in matrix form eq. (2.3.9) and (2.3.10) to obtain (2.3.1).
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The transition matrix has to be diagonalized and we need of eigenvectors to create the matrix for
the base change. The eigenvectors are found from the eigenvalues that are the roots of the
characteristic polynomial:

Det(A-al)=0
0

where A :{ ]
—jwe

— 1 a)
! ,u} , I is the identity matrix and o are the eigenvalues.

So we have:
0 -jo 1 0 - -jo
Det . Yo - =Det| . o :a2+a)2yg:0
—jwe 0 0 1 -jws -«

o =—JoJ e =—jk
oy = +jorfpe = +jk
It has two separate eigenvalues, so it is diagonalizable. The diagonal matrix is simply:
o ale
0 o 0 +jk

that is the right-hand side of (2.3.2). The left-hand side is composed by the product of the matrix

which gives:

(2.3.11)

A and two matrixes for the base change. These matrixes are made putting in row the eigenvectors
v, and v, calculated as follow:
. P — . . . . V'
A-Vi =0V with i=1,2 and v; = i
Vi

Expanding it two different systems of equations, one for each eigenvalue, we have:

0 —jwﬂ_(‘/uj B (Vn}
. =0
|—Joe 0 [\vp V2

0 —jwﬂ_(‘/m] _ [Vzlj
. =0y
|—joe 0 |\va V22

or equivalently,

{—jw/l‘ﬁz =V (23.12)
—jwevy = vy
{—ja)ﬂvzz = V)1 (2.3.13)
—JWEVy = Vo)

Solving (2.3.12) and (2.3.13), we find that the eigenvectors are given by:
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il

Now we can write the matrix for the base change as:

_{Vll
V21

v
V)

where the superscript T indicate the vector transpose.

Vo2

V12

ot

o

Exercises Chapter 2

(2.3.14)

(2.3.15)

In order to verify that eq. (2.3.2) is correct, we have to calculate the inverse of the matrix (2.3.15):

Pl = :
]

z, T
_ZO

1
Det[P]

(cu@))

where C;;(P) is the matrix of cofactors of P. The cofactor in position (1 _]) is defined as follow:

C;;(P) = (—1)i+j Det(Minor(P,i, j))

where Minor(P,i, _]) represents the matrix obtained by P cancelling the i-th row and j—th column.

It is easy to evaluate it:

and now we can write:
1
pl=
1

PAP!

So:

Z,

-1
1

-7y 27

__1 —ZJ{—ja)g

[—jweZ,

| JweL

G;j(P) = {_ZO

1 7, [ ©

—jou
—jou

welyy

e

Z
+j(0)8 0
2

27,

27,

where Zy =//¢ . It can be simplified to obtain:

Z,

!

—jowe

0

~Z
-1

wp

t

Lo

_ZO

|
A

1/2

_jg) ﬂ{l/(zzo)

N

*H
v

1/2
1/(22,)

wely
2

welyy
2

1/2

-1/ (220)}

1/2
1/(22,)

) o)

_@H

1/2

1/(2Z)

(2.3.16)

1/2
_1/(220)}

—1/1/2220)} B

27,

wu

27,

_| -k
1o

)
)

(2.3.17)

0
+jk
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where k = w./ue and (2.3.17) is equivalent to (2.3.2).

The diagonal matrix given in (2.3.17) can be substituted in (2.3.1) as follow:

o[ E ] [-k o1 E
—| .= . ) 2.3.18)
oz| Hxz 0 +jk||Hxz
that is
L —
oz (2.3.19)

ng2=+ijx2
0z

The electric and magnetic field are related by the characteristic impedance of the medium, in this
case vacuum, as follow:
E=ZHxk =ZyHx2 (2.3.20)
where k =z , being the electromagnetic wave propagating along z—direction.
So using (2.3.20) in the set (2.3.19), we obtain:

9 g——jkE
Z

0 (2.3.21)
ZIZQE:+ZIijE
0 0z 0

It is possible to note that the diagonalization (2.3.2) allow us to decouple the electric and the
magnetic field as in (2.3.19) and, using the relationship (2.3.20), we are able to express the electric

field in term of forward and backward wave.
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2.4 ExerciseEquation Section (Next)

The visible spectrum has the wavelength range 380—780 nm. What is this in THz? In particular,
determine the frequencies of red, orange, yellow, green, blue, and violet having the nominal

wavelengths of 700, 610, 590, 530, 470, and 420 nm.

Solution

The wavelength A is the distance by which the phase of the sinusoidal wave changes by 27

radians. Since the propagation factor e accumulates a phase of k radians per meter, we have by

definition that kA =27. The wavelength A can be expressed via the frequency of the wave in

Hertz, f = w/27, as follows:

2r  27nc %c c
/1:—:—:—:—
k o 24f f

Using the relation (2.4.1), we can calculate the frequency range for the electromagnetic visible

(2.4.1)

spectrum:
380x107° <A< 780x107° = ————>f>—
380x10 780x10
that is:
789.5 THz > f >384.6 THz (2.4.2)
The frequencies of the colours are:
Colour Wavelength Frequency
(nm) (THz)
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Red 700
Orange 610
Yellow 590
Green 530
Blue 470
Violet 420

428.5
491.8
508.5
566.0
638.3
714.3

Exercises Chapter 2

Table 2.4.1: Wavelength and frequency of colours in the visibility region.
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2.5 ExerciseEquation Section (Next)

What is the frequency in THz of a typical CO, laser (used in laser surgery) having the far infrared

wavelength of 20 um?

Solution
Using eq. (2.4.1), it is easy to obtain the result:

¢ 3x108

== 6=15><1012=15 THz
20x10~

f

2.6 ExerciseEquation Section (Next)

What is the wavelength in meters or cm of a wave with the frequencies of 10 KHz, 10 MHz, and

10 GHz?
What is the frequency in GHz of the 21—cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

Solution

Using eq. (2.4.1), we have:

C 3><108

_C_ =30000 m = 30 Km
10KH:
AlokHn) =5 =100

¢ 3x10%

_- —30m
A1oMHz) " o108

¢ 3x108

= 2 0,030 m=30mm
10GH
A10GH) = =700

The frequency in GHz of the 21—cm hydrogen line observed in the cosmos is:

8
p=C o307 43 GH

A 21x107
The wavelength in cm of the typical microwave oven frequency of 2.45 GHz is:

8
_ 310 2o m= 122em

1=< 5
£ 2.45x10
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2.7 ExerciseEquation Section (Next)

Suppose you start with E(z,t)= REe! % but you don't yet know the relationship between k

and o (you may assume they are both positive.) By inserting E(z,t) into Maxwell's equations,

determine the k—w relationship as a consequence of these equations. Determine also the magnetic

field H(z,t) and verify that all Maxwell's equations are satisfied.

E(zt)= kB! E(z,t) = yEgel I

Repeat the problem if and
Solution

Consider the source—free Maxwell's equations:

VxE:—a—B

ot
VxH:a—D
ot

and now substitute the expression of E(z,t) in the first Maxwell's equation. Assuming valid the

constitutive relation B = 4H :

V x kB el @Ik = —ﬂa—H (2.7.1)
ot
The cross—product in the left-hand side of eq. (2.7.1) can be expanded as follow:

.. iot—i JoH
$ikEqe) I =R

It is easy to note that H(z,t) has to depend by z and t in the same way as E(Z,t) because the

variables t and z are presented only in the exponential. So H(z,t) = &Hoejwt_jkz :
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FiKEqe! " = — i, S elorik
%kEOM = —ﬂi/Ho/fa’M
which gives:
kEq =-wuH, (2.7.2)
Assuming valid the constitutive relation D = ¢E, substitute the expression of E(Z,t) and H(z,t)

in the second Maxwell's equation:

. . jot—jkz
V x yHoeJa)t_JkZ = 8§(E0 867 (273)

The cross—product in the left-hand side of eq. (2.7.3) and the derivate in the right-hand side can

be expanded as follow:

. 0 I ) L o .
Xa_(HOeJa)t sz)+ 59 ]kz) :Ja)exEoert jkz
Z

which gives:

kH, =-weE, (2.7.4)

Thanks to the relationships (2.7.2) and (2.7.4) we can find the k—w relation:

kEO = —G)/IHO
kHy =-weE,
k* EgHy = 0 ue BgHy
and, consequently:

k =tw\ ue (2.7.5)
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2.8 ExerciseEquation Section (Next)

Determine the polarization types of the following waves, and indicate the direction, if linear, and

sense of rotation, if circular or elliptic:

a. E=Eg(x+§)e ™ e. E=Eo(x—§)e ™
b. E=Ey(x=3%)e ™ |f. E=E,(Bx-y)e ¥
o ) o ) (2.8.1)
c. E=Eg(j&+§)e E = Eq (j&-§)e!*”
d E=E)(x-2jy)e i E=Ey(x+2jy)e*

Solution

The polarization of a plane wave is defined to be the direction of the time—varying real-valued
field E(z,t) = iRe[E(z)ejwt} where E(z)=Eye™*. At any fixed point z, the vector E(z,t) may

be along a fixed linear direction or it may be rotating as a function of't, tracing a circle or an ellipse.

Consider the following expression for the electric field:
E(zt)= (ﬁAer‘éx + )A'Ayewﬁy )eJ ottjkz _ ﬁAXeJ(wtiJkZ+¢X) -+ )A'Ayej(wt ety ) (2.8.2)

where A, and A, are real—positive quantities.
Extracting the real part for each component, we find the corresponding real-valued x,y
components:
E,(zt)=A, cos(ottkz+g,)

2.8.3
Ey(Z’t):AyCOS(a)tikz+¢y) ( )

The sign of kz is defined by the direction of propagation of the wave: forward—moving fields
have the minus sign, e.g. —kz, backward-moving fields the plus sign, e.g. +kz.
In order to determine the polarization type of the waves, we consider the time—dependence of
these fields at some fixed point along z—axis. For convenience we choose z=0:
E, (z,t)= A cos(wt+¢,)

2.8.4
E (zt)=A, cos(a)t+¢y) ( )

The parameters Ay, Ay, @, , ¢y allow us to determine the type of polarization:

» Linear polarization (¢, =¢, =0 or ¢, =0, @, =-7x): the two components E,, Ey are in

phase and the electric field vector oscillates along a straight line. It is of interest the direction,
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respect the x—axis, along which the electric field oscillates with angular frequency o . It is

directly related to the amplitudes of the components E,, E, :

A
4 = arctan (A—YJ (2.8.5)

X

slope A,/Ay

E, &4

@3]
=

A 4

esh 4
el

Ey vy slope -A,/A,

Fig. 2.8.1:Directions along the electric field oscillates in linear polarization.

» Elliptical polarization (¢X—¢y :iﬁ/ 2). E, and E, have different amplitudes and are in

quadrature phase because one is always 90° out of phase respect to other.

»  Circular polarization (A, =Ayand o —¢y :iﬂ'/ 2): this is a particular case of elliptical

polarization when the amplitudes of the components are equal.

The sign of the relative phase ¢:¢X—¢y suggests the sense of rotation: counter—clockwise

(¢ =—r/2) and clockwise (¢ = + /2 ) and consequently, according to the direction of propagation,

left or right elliptical polarization (or circular in particular cases).
E, (t)=Acoswt
E (t)= Acos(wt+7/2)= Asin ot

A

\ 4

Fig. 2.8.2: Counter—clockwise rotation of the electric field vector.

E, (t)=Acos ot
Ey (t)= Acos(wt—7/2) =—Asinwt

D. Ramaccia and A. Toscano Pag. 15



S.J. Orfanidis — Electromagnetic Waves and Antennas Exercises Chapter 2

~

B\

ot

Ey(1)

\ 4

Fig. 2.8.3: Clockwise rotation of the electric field vector.

To decide whether this represents a right or left polarization, we use the IEEE convention. Curl
the fingers of your left and right hands into a fist and point both thumbs towards the direction of
propagation. If the fingers of your right (left) hand are curling in the direction of rotation of the

electric field, then the polarization is right (left) polarized.

right—polarized y left—polarized

:
v
™
v

A\

left—polarized right—polarized

N

N

\

Fig. 2.8.4: Left and right circular polarizations.
Let us solve the exercise for the case (a): E(z)=Eq(X+ )Af)e_jkZ . First of all we have to express
the field in its real-valued form in z =0, in order to obtain an expression similar to eq. (2.8.4):
E(t,z)=ERe [(f{ +¥) ej(a)t_kz)} =EgXcos(wt—kz)+Ey cos(wt—kz)
SO

E, (t,z) =Ecos(wt—kz)
Ey (t,2) = E( cos (ot —kz)
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It is easy to note that it is a forward—moving wave, because of the term —kz, and linear polarized,

being @, = ¢y =0. Using eq. (2.8.5), the direction % of electric field vector is 45°.

On the contrary, let us solve the exercise for the case (c): E=E, ( JX+ §7)e_ij . Its real—valued
formin z=0 is:

E(t,z)= Eofﬂe[( i +9) ei(”t—kﬂ _ Eoﬁie[(ﬁej”/ 2, y)ei(wt—kﬂ _
=E X cos(wt —kz+7/2)+E¥ cos(wt —kz)
SO
E, (t,z)=Ecos(owt—kz+7/2)

Ey (t,2) = E( cos (ot —kz)

The wave is still forward-moving, but the relative phase ¢=¢ —¢ =7/2, so it is in general

elliptical polarized. In this case |E,|= ‘Ey

,1e. Ay = Ay, then it is circular polarized. According to

Fig. 2.8.2 and Fig. 2.8.3, the sense of rotation is counterclockwise. Now we apply the IEEE
convention and the find that the field is right—circular polarized.

Table 2.8.1 contains the results of the exercise for each given electric field:

# Expression Polarization Direction/
Type Sense of Rotation

a E=E, (f( + )A')e_jkz Linear 45°

b| E=Eo(x-3j)e ™ Linear -60°

c E=E, ( JX + )A')e_jkz Circular Counter—clockwise
d E=E, (f( -2jy) e Iz Elliptical Counter—clockwise
e E=E)(X- )A')e_jkZ Linear -45°

f E=E, (\/? - f’)e_jkz Linear -30°

g E=E, ( jX—-y )ejkz Circular Clockwise

h | E=Eq(x+2jy)el Elliptical Clockwise

Table 2.8.1: Results of exercise n° 2.8.
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2.9 ExerciseEquation Section (Next)

A uniform plane wave, propagating in the z—direction in vacuum, has the following electric field:
E(z,t) = 2%Cos(wt — kz) + 4§Sin(wt - kz) (2.9.1)

1. Determine the vector phasor representing E(z,t) in the complex form E = E !k

2. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,
right-handed).

3. Determine the magnetic field H(z,t) in its real-valued form.

Solution

e Question n°1
First of all, we need to manipulate (2.9.1) in order to obtain an expression with components

similar to:
E, (z,t)=A, cos(wt+kz+g,)
E

y(z,t):Ay cos(a)tikz+¢y) (29.2)

So we can write:
E, (z,t)=2cos(wt—kz
x(2:1) ( ) 293
Ey(2t)=4cos(wt—kz—7/2)

from which, we can obtain the complex—valued electric field:
E(z,t)= g2l @t-ikz) §f4ej(wt_jkz_”/2) = (25; + 45’6_j”/2 )ejm_jkz =
= (2% - jag) @ H2)

e Question n°2

In (2.9.3) it is easy to note that the relative phase ¢=¢ —¢, = 7/2, so according to Fig. 2.8.2 and
Fig. 2.8.3, the sense of rotation is counter—clockwise. The field is forward—moving and, using the
IEEE convention, the field is right—elliptical polarized, being|EX| # ‘Ey‘ .

e Question n°3
Using the relation:

E:ZO(HXi)

where Z is the characteristic impedance of vacuum, we find:
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:%(2cos(a)t—kz)§f—4cos(a)t—kz—7z/2)f()
0

D. Ramaccia and A. Toscano Pag. 19



S.J. Orfanidis — Electromagnetic Waves and Antennas Exercises Chapter 2

2.10ExerciseEquation Section (Next)

A uniform plane wave propagating in vacuum along the z—direction has real—valued electric field

components:

E, =cos(wt-kz), E, =2sin(wt-kz) (2.10.1)

1. Its phasor form has the form E = (AX + By)eijkz. Determine the numerical values of the

complex—valued coefficients A, B and the correct sign of the exponent.

2. Determine the polarization of this wave (left, right, linear, etc.). Explain your reasoning.
Solution

e  Question n°1
First of all, we need to manipulate (2.10.1) in order to obtain an expression with components

similar to (2.9.2):
E, (z,t)=cos(wt—kz)
E(zt)=2cos(wt—kz—7/2)
from which, we can obtain the complex—valued electric field:
E(zt)= gell@t=ikz) +§,2ej(60t—jkz—7f/2) _ (§(+2§,e—j7r/2)ejwt—jkz _
= (%—j23 )€l @)
o Question n°2

The polarization of the wave is elliptical because the module of x, y components are different. It is

also right polarized because the relative phase ¢ =@, —¢y =7/2.
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2.11ExerciseEquation Section (Next)

Consider the two electric fields, one given in its real-valued form, and the other, in its phasor

form:
a. E(zt)=xsin(wt+kz)+2ycos(wt+kz)
b. E(z)= [(1+j)f(—(1—j)§f]e_jkz

For both cases, determine the polarization of the wave (linear, circular, left, right, etc.) and the

2.11.1)

direction of propagation.
For the case (a), determine the field in its phasors form. For the case (b), determine the field in its

real-valued form as a function of t, z.
Solution

e C(ase(a)
First of all, we rewrite the first field of (2.11.1) as follow:

E, (z,t)=cos(wt+kz—7/2)
2.11.2
Ey (z,t)=2cos (ot +kz) ( )

from which, we can obtain the complex—valued electric field:
E(z1)= sell@t+ike-7/2) +yzej(a)t+jkz) _ (ﬁe—jﬁ/z N 2y)eja)t+jkz
_ (25’ _ jf()ej(wHkZ)
In (2.11.2) it is easy to note that the relative phase ¢=¢, —¢@, = —7/2, so according to Fig. 2.8.2

and Fig. 2.8.3, the sense of rotation is clockwise. The field is backward—moving and, using the

IEEE convention, the field is right—elliptical polarized (|E | = ‘Ey‘ ).

e C(ase(b)

In this case, we have to write E (z) in its real-valued form as a function of t, z. So:

- [((m pg)elns] -

)%~
el ((1+])%-(1-))§)e ™) |-
e[ ((1+3)%=(1-j)¥)(cos (ot —kz)+ jsin (wt —kz)) | = 2.11.3)
(
(

y
—¥)cos(wt— k) (X+y)sin(wt—kz)=
—¥)cos(wt—kz)—(X+¥)cos(wt—kz—7/2) =
s(wt—kz)—cos (ot —kz—7/2))—§(cos(wt —kz) +cos(wt —kz—7/2))

I
><> &3 &8

Il
> A/-\

(
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It is necessary to apply to (2.11.3) the sum—to—product identity or Prosthaphaeresis formula:

AN dd (2.11.4)

cosa +cos S =2cos 5

and, because cos(x) = —cos(x + 7[) , We obtain:
(cos (et —kz)—cos(wt—kz—7/2))-§(cos (@t —kz)+cos(wt —kz—7/2)) =
= f((cos(a)t —kz)+ cos(wt —kz+ﬁ/Z))—ﬁ(cos(a)t—kz)+cos(a)t —kz—7/2)) 2115
X
= 2% cos (@t —kz + 7/4)~~[2§ cos(wt —kz — z/4)
The electric field components are:
Ey (2,t) =2 cos(wt —kz + z/4)
Ey(zt)= 2 cos(wt—kz—/4) =2 cos (ot —kz+37/4)
and it is easy to note that the relative phase @ = ¢, —¢y =—7/2, so according to Fig. 2.8.2 and Fig.
2.8.3, the sense of rotation is clockwise. The field is forward—moving and, using the IEEE
convention, the field is left—circular polarized (|E, | = ‘Ey‘).

In similar way, the exercise can be solved writing the complex amplitude of each component in

the form:

. _ 2 2
a+ jb=Mel? where {M=Va"+b (2.11.6)
@ = arctan b/a

Using (2.11.6), we obtain:
1+ =274
—(1-j)= Joei/4
and, consequently
E(z,t)= i)%e[(\/iejﬂ/4ﬁ+ \/Eej37r/4§7)ej(wt—kz)} _
~ 2R [(ejn/g} . ej37r/4§,) ej(a)t—kz)} _

= 2kcos (ot — kz+ 7/4)+~2§ cos (ot —kz + 37/4)
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2.12 ExerciseEquation Section (Next)

A uniform plane wave propagating in the z—direction ha the following real-valued electric field:
E(t,z)=Xcos(wt—kz—7/4)+¥sin(wt—kz+7/4) (2.12.1)
1. Determine the complex—phasor form of this electric field.

2. Determine the corresponding magnetic field H(t, z) given in its real-valued form.
3. Determine the polarization type (left, right, linear, etc.) of this wave.
Solution

e Question n°1
First of all, we rewrite (2.12.1) as follow:
E, (z,t) = cos(wt—kz—7/4)

Ey (2t)=cos(ot—kz—7/4)

(2.12.2)

from which, we can obtain the complex form as eq. (2.8.2)

B (1) = 56K 4] o) _ (3o gl glon e

wt—kz)

1 (o el
=—(1-j)(8+9)e’
75 1D (E+Y)
e Question n°2
Using the relation
E= ZO (H X 2)
where 7, is the characteristic impedance of vacuum, we find:
H(t,z) :ZLixE(t,z) :Ziix[f(cos(wt—kz—ﬂ/4)+§fsin(a>t—kz+7z/4)] =
0 0

:ZL[yCos(a)t—kz—ﬂ/4)—§‘5in(a’t_kz+ﬂ/4)]
0

e Question n°3

In (2.12.2) it is easy to note that the relative phase @ =d, —¢y =0, so the wave is linear polarized,

tilted by 45° with respect to the x—axis.
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2.13 ExerciseEquation Section (Next)

Determine the polarization type (left, right, linear, etc.) and the direction of propagation of the

following electric fields given in their phasor form:
Q) E(2)=| (1+1V3)%+2§ |

B E()=[(1+)%(1-§)5]e

¢) E(Z):[&_i+j\/§§,]e—jk(x+z)/\/§
Solution

e Case (a)

We have to writing the complex amplitude of each component E,, E, in the form Aej(”’ using
2.11.6);
(14 13) = (1 + (V3 ) =05 g
s0:
E(z)= 2[fiejﬂ/3 + )7} elk?
The relative phase ¢ =g, —¢y =7/3, so it is inside the interval [0, z/ 2] and, according to Fig.

2.8.2 and Fig. 2.8.3, the sense of rotation is counter—clockwise. The field is backward—moving and,

using the IEEE convention, the field is left—circular polarized, being |EX| = ‘Ey‘ .

e C(ase(b)
See case (b) of exercise n° 2.11.
e C(ase(c)

In this case the electric field doesn't propagate along the z direction, but it is tilted with respect to
the z axis and lies on the z-x plane. So we have to identify a new coordinate system in order to
apply the well-known steps to solve the problem.

Express the electric field in the realvalued form:
E(t,z)= me[(f;—m 2§ )elore Ik ﬁ} -
=3te] (% -7+ 1429 ) (cos( @t~k (x +2)/ V2 )+ jsin( @t -k (x+2)/¥2)) | -
= (&—2)cos( @t —k(x+2)/2) =2 sin(wt -k (x+2)/42
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This wave does not propagate along the z—direction, and consequently the plane with constant

phase are not identified for any constant value of z. So we have to apply a change of coordinate
system (X,y,z) = (x',y,z") where the y axis is the same because E(t,z) has constant phase for

anyy.

45°

A

Fig. 2.13.1: Rotation of the coordinate system.

The expression of X' and z' are given by:

X+z z'-x'
=7 7Z =
V2 V2
=
X—z x'+z'

N T
and we can rewrite the electric field in the new coordinate system:
E(t,z)= \/Ef('cos(a)t —kz')—x/i)? sin(wt—kz') =
= 2% cos (@t —kz') —2§ cos (wt —kz'- 7/2) =
= V2% 'cos (@t —kz")+~/2§ cos (ot —kz'+ 7/2) =
The relative phase ¢=¢y —¢, = —7/2, so according to Fig. 2.8.2 and Fig. 2.8.3, the sense of

rotation is clockwise. The field is forward—moving and , using the IEEE convention, the field is

left—circular polarized , being |EX| = ‘Ey‘ .
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2.14ExerciseEquation Section (Next)

Consider a forward—moving wave in its real-valued form:

E(t,z) = AXcos(wt—kz+¢, )+ By cos(wt —kz+4¢, ) (2.14.1)

Show that:
E(t+At,z+Az)xE(t,z) = ABZsin (¢, — ¢, )sin (At —kAz) (2.14.2)

Solution

The cross product of two vectors A=(AX,Ay,AZ) and B:(BX,By,BZ) is defined as the

determinant of the following matrix:

X y z
AxB=|A, A, A, (2.14.3)
B, B, B,
Using (2.14.3), we can write:
X y z
E(t+At,z+Az)xE(t,z) = Acos 9 Beosd® 0 =Det(M)
Acosd®  Beos® 0
where 9% = w(t+At)—k(z+Az)+¢ and 9 = wt—kz+¢ with i =a,b, and we have:
Det(M) = i[AB cos 3*° cos 9* — ABcos 9™ cos SbJ =
(2.14.4)

=7AB [cos 92 cos 92 —cos 92 cos Sb]

The expression inside the brackets can be simplified using the product—to—sum identity for cosine:

cos(6—g)+cos(0+¢) (2.14.5)
' 14,

cosécosp =

and, consequently, (2.14.4) can be written as:
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Det(M) = ZAB [ cos 98P cos 9 —cos 947 cos Sb} =

_+%(cos(a)At—kAz+¢b ~¢,)+ 003 (20t = 2kz+ OA=KATF G, + 4, ) | +

ZAB =

_%(cos(a)At—kAz+¢a ~ )+ cos(20t=2kz s eAt—KATT Gy 1 4, ) )

AB[cos(a)At—kAer(,iﬁb — ¢, )—cos(wAt—kAz+ ¢, —¢b)]

!
=7
2

The expression inside the brackets can be still simplified using now the product—to— sum identity

for sine:
sin Gsin g = COS(Q_(”);COS(Q”D) (2.14.6)
and, consequently, we have:
Det(M)ziéAB[cos(a}At—kAz+¢b — ¢, )—cos(wAt—kAz + ¢, — ¢, ) | =
= Q%AB[cos(a)At—kAz—(% —fy )) - cos (At —kAz+ (g, —¢b))] =(2.14.7)

= iABsin(a)At—kAZ)Sin(¢a _%)
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2.15ExerciseEquation Section (Next)

Show that in order for the polarization ellipse

2 2
g2 E2 E.E ,
—’£+—Z—2 x yc0s¢=s1n2¢
A“ B AB

to be equivalent to the rotated one with components
E{ =E, cos@+Esind
- B .
Ey =E,cos@—E,sind

E:;, A f}' f};
| 0/ L
—A O A
L_= - _B N I

Fig. 2.15.1: General polarization ellipse.

Exercises Chapter 2

one must determine the tilt angle € such that the following matrix condition is satisfied:

1 cos ¢
cos@ sind F "~ AB |[cos® —sin6 .2
{—sin@ cose] cos ¢ 1 .[sinﬁ cos@}_sm ¢
AB B

Show that the required angle @ is given by

tanZQ:%cow
A°-B

Then show that the following condition is satisfied, where 7 =tané:

(Az _Bzfz)(Bz _Azfz)

=

= A’B? sin? @

Using this property, show that the semi—axes A', B' are given by the equations:

2 2.2
A’2:A B2T ’ B, -
1-7 1-7

Then, transform these equations into the form:

» BY-A%?

2.15.1)
2.15.2)
I
0
A” (2.15.3)
e
(2.15.4)
(2.15.5)
(2.15.6)

D. Ramaccia and A. Toscano

Pag. 28



S.J. Orfanidis — Electromagnetic Waves and Antennas Exercises Chapter 2

2
A'=\/%(A2 +B2)+%\/(A2 +B2) +4AB? cos? ¢

(2.15.7)
2
e (L m) -3 [ s annteos
where s =sign(A — B) .Finally, show that A', B' satisfy the relationships:
A?+B?=A%+B?  AB'=AB[ing| (2.15.8)
Solution
The polarization ellipse in eq. (2.15.1) can be written in matrix form as follow:
1 cos¢
A2 AB Ex .2
E, E, | . =sin 2.15.9
|: X Y} ~ COS¢ L |:Eyi| ¢ ( )
AB B2

and, from the matrix form of (2.15.2), it is possible to obtain its inverse:

E' cos@ sinf] | Ey E, cos@ —sind] | E}
Cl=l : = = 17X @.15.10
E, —sin@ cosé| | Ey E, sind cosf || Ey

Noting that the first vector in (2.15.9) is the transposed of the one in (2.15.10), we can substitute
(2.15.10) into (2.15.9):

1 cosg
€ sind 2 0 -—sin@] | E;
(B By ]| 00 RO A AB | [costmsngl | Bl Gn2 g (21510
—-sin@ cosf|| cosg 1 sind cosf | |Ey
AB B2

Eq. (2.15.11) represents the tilted ellipse shown in Fig. 2.15.1. The ellipse is not rotated with

respect to the axes E}, Eg, and it is possible to define new values of the minor and major axis in

this rotated coordinate system. As suggested from Fig. 2.15.1 the minor axis is B’ and the major

axis is A’ and the equation of the tilted ellipse can be rewritten as:

1
L -

(B By A R (2.15.12)
o L |LE

B!2

Multiplying left and right side of (2.15.12) by sin’ @
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1
L o
sin” g B} B, || 2 | -{Ef‘}:sm% (2.15.13)
0 y

B!2

and comparing eq. (2.15.11) and eq. (2.15.13), we note they are equal if and only if:

1 _cos 1,
co'se sin¢ | A2 AB | C(‘)Stg —siné —sin? A'? (2.15.14)
—sinf cosf || cos¢ 1 sinf coséd 0

The relationship (2.15.14) is fundamental to solve the whole exercise. Firstly, it can be

manipulated in order to demonstrate eq. (2.15.4). Left multiplying both side by:

cosd sin@"
—sinf@ coséd

we obtain:
_ cos ¢
cosd cosd cosf —sind|
0 cosb 0 cosd cos¢ 1sin@ cos@ |
B2
(2.15.15)
1
5 | cos@ sind A2
=sin .
—sin@ cosf 1
0
ByZ
Since:
cosd sing]" _|cos® —sind
—sin@ cos@| |[sind cos@
eq. (2.15.15) can be written as:
1 _cosg 1,
A2 AB | c?se —sind _sin 4 c?sﬁ —sin @ . A2 2.15.16)
_cosg 1 sind cos@ sinf coséd o L
Let us now divide both side of (2.15.16) by cos @ and, defining 7 =tan &, we get:
1 cos ¢ 1
A2 AB |[1 -1 , [1 =c]| A2 0
. =sin” ¢ . (2.15.17)
_cosg 1 r 1 r 1 0 1

Eq. (2.15.17) represents the following linear system:
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1 cos¢ sin
—_— T — =
A? AB
L+ , cos @ _sin

cos¢ T _ _sin

- +—=7
AB g2

cosgp T
— —_— =T
AB A2

24
A12
24

Ar2
sin? ¢
B12

Exercises Chapter 2

(a)

(b)
, (2.15.18)
¢ ©

(d)

Substituting (2.15.18)(a) and (2.15.18)(b) in (2.15.18)(c) and (2.15.18)(d) leads to:

L_Tcos¢ B sin? @
1 _cosp_sin’g
cosg T 1
—_— —_— =7 ——
( 1
T

_cosg_ T _ [ L
It is easy to show that (2.15.19) (¢) and (2.15.19) (d) ar

AB A2 - BZ

COS
;9059

(a)

(b)
(2.15.19)

(©)

.

Tﬂ}

AB
e equivalent. In fact:

(d)

© -t 7 (L, cosé
AB B2 A% AB
_cosp T T pcosd
AB B2 A2 AB
cosgp 1 T 2 COS¢
-_— e —
AB A2 B2 AB
_COS¢_L:_T 1 z_cos¢5 (d)
AB AZ B2 AB
Starting from (2.15.19) (c), or (d):
_COS¢+L=T L_z_cos¢
AB B? A? AB
_COS¢+LZL_ 2 Cos¢ N
AB B2 A? AB
T _ T __200s¢ cosé
B2 A’ AB  AB
A?-B? cos¢ 2
T 5 |T (l—r )
A“B AB
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2p2
o= Az B - cosp _ ZAB Scosg (2.15.20)
1-72 | A?-B? | AB. A’-B
It is known that:
an20-2—20% 5 T
I-tan” @ -7
s0 (2.15.20) can be written as
tan 260 = 272 = gABzcos¢ (2.15.21)
-7 A -B
which is the same of eq. (2.15.4).
Eq. (2.15.19)(c), or (d), can be viewed as a quadratic equation in 7 :
2 n2
20050 |ATZBT ) cosp (2.15.22)
AB A2RB2 AB
with its solution given by:
2
A?-B? A?-B? cos’ ¢
—| =5 |t 5| +4
A%B? A%B? A%B?
f2= ) cos ¢ B
AB
2 np2 )
_(A 5 ]3 ]J_r 21 5 \/(Az—Bz) +4A%B? cosz¢
A°B A°B
= = 2.15.23
) cos ¢ ( )
AB

2
B2—A2i\/(A2—B2) +4ATB%cos’ ¢ B2 a2
- 2ABcos g " 2ABcosg

« D= \/(Az B2 )2 +4A%B% cos? ¢ = \/(Az + B2 )2 —4A?Bsin% ¢ ;
e 7, identifies the two solution for s ==1.
The choice between s=1 and —s =1 does not matter because both are solution of eq. (2.15.22).
So, for simplicity, we can set the value of s as:
s=sign(A—B) (2.15.24)
which is the same value set in the text of the exercise. This choice is according to the fact that in

general one defines the major axis with A and the minor axis with B and we have that s =1.
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The values 7, 7_¢ satisfy the identities (2.15.19) (c) and (2.15.19) (d) and so, if we substitute
them inside (2.15.19) (a) or (b), we are able to eliminate ¢ in the definition of A", B’ and A, B. We
want to remark that the direct substitution is not a good choice because it leads to an expression
difficult to be managed. So it is better to follow a longer way to solve the problem, but easier to be

understood.

Let us now stop to consider the linear system (2.15.19) and let us diagonalize the matrix:

1 cos¢ 1

= diagonalize =
cos ¢ 1 1
_ = 0 —
The eigenvalues are the roots of the characteristic polynomial:
1 cosy
2 1 0
Det A AB -1 =0
_cosg 1 0 1
AB B2
that is
2
LI N -
A? B2 A%B?
2
1 A 4 .2 cos ¢=0 N
A’B? A2 B? A’B?
2 2
ﬂz—/i[A 2”3 J+ 21 2(1—cos2¢)=o - (2.15.25)
A°B A°B
lz(Asz)—/l(Az+B2)+(1—cosz¢):0 =
/12(A2B2)—/1(A2+B2)+sin2¢:0
Finally we get:
2
2 2 2 2 212 2
(A +B )+s\/(A +B ) —4A“B“sin” ¢ A2+B2+sD '
A= = , with s=%1 (2.15.26)

2A%B? 2A%B?
Ay are the eigenvalues, useful to simplify the expressions when substituting 7, in eq. (2.15.18)

(a) and (b). In fact:
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1l __cosg_1 B -A’+sDeos§ 1 B -A’+D _A’+B’-sD

_—’Z' = — -_ —
A2 ° AB A% 2ABesg AB A2 2A%B? 2A2B? 5(21527)
R cos¢_L_B2—A2+sDM_L_Bz—A2+sD_A2+B2+sD_ﬂS o
B2 ° AB B2 2ABces§ AB B> 2A%B? 2A’B?
or in a more compact form:
1 cos ¢
AT CTap
(2.15.28)
1 cos¢g
B S aB

Comparing (2.15.28) with (2.15.19) (a) and (2.15.19) (b), we can write:

)
sing_,

ArZ

o (2.15.29)
sin” ¢ _ A

B2

and consequently

2 sin® ¢ sin® @

Ay AA &
5 5 (2.15.30)
g2 _Sin @ _sin 1/ A
/IS lS/’L—S
The product A,A_ is given by:
+B“ +s +B°—s
i _A’+B’+sD A’+B*-sD _
T 2A’B? 2A’B?
2
(A2+B?) -D?
= = 2.15.31
4A*B? ( :
2 2 202 2
_M—Mﬂm Bsing o2
- AA‘B ~A2B?
and consequently the equations (2.15.30) became:
.2 .2
A2 _Sin ¢ﬂs _ sin ¢/1$ _ A2B2), :l[A2+B2+sD}
A sin? @ 2
A’B?
(2.15.32)
o _sin’ ¢ sin” 2532 Ir 2 n2
B2 = d = A =A2B2A, =—[A +B —SD}
ﬂ’sﬁ’—s Sin2 ¢ 2
A’B?
Pag. 34
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giving the expressions for A’ and B’ as required by the exercise [see eq. (2.15.7)].

In the same way, starting from (2.15.32):
B2 =A’B%4

we can substitute the other value of A, as in eq.(2.15.28), that is:

1 cos ¢
Ag=——T;
A AB
A = L+ .. cos ¢
B2 AB

and we have:

A'? = A’B? (%Jr T C0S¢j =A%+ 7 ABcos ¢
B; (2.15.33)
B = A’B? (—2—75 C;)jfj - B% - 7,ABcos ¢
A
From eq. (2.15.21) we have also:
2 2
L _2AB cos¢ =  ABcos¢g= (2.15.34)
2 2 2 2
-z A"-B — T3
which can be substituted in (2.15.33):
(A2 —Bz)r 2 22
A“-B
A'2=A2+rSABcos¢=A2+rS > S ZTS
I-7§ 1-7
. (2.15.35)
A -B7 1, 2 A22
B’2=B2—TSABcos¢=B2—fsAB( 2) B A2TS
1-7§ I-7

Eq. (2.15.35) gives the expression of A" and B’ as required by the exercise [see eq.(2.15.6)].
Adding A’ and B', we obtain:

2 2.2 2 2.2
A’2+B'2=A -B Ty +B -A Ty _
1—2'52 l—rsz

. (2.15.36)
2 n22.p2 a22 (A°+B M
_A"-Bry +B ArS:( ) A2 4 R2

1—2'82 %

and, multiplying A’ and B’, we obtain:

2 gin? 1/

4 =A’B’sin’¢ = A'B'=AB[sing| (2.15.37)

A?B? = (A%B? )2 s =(A78?)

d
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It is easy to note that eq. (2.15.36) and (2.15.37) are equal to eq. (2.15.8) in the text of the

exercise.
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2.16 ExerciseEquation Section (Next)

Considering the electric field E(t)=XA cos(wt+¢, )+yBcos(wt+d, ), show the cross—product
equation:
E(O)xE(t):iABsin¢sina)t (2.16.1)
where ¢ =@, — ¢, . Then prove the more general relationship:
E(t;)xE(ty)=2ABsingsin(o(t, —t;)) (2.16.2)
Discuss how linear polarization can be explained with the help of this result.
Solution

Using (2.14.3), we can write:

X y z
E(0)xE(t)=| Acosg, Bcos ¢, 0 (2.16.3)
Acos(wt+¢,) Beos(wt+g,) 0

and we have:
E(0)xE(t)= i[ABcos¢a cos(wt + ¢, ) — ABcos ¢, cos(a)t+¢a)] =

(2.16.4)
= 2AB| cos ¢, cos(wt + ¢, ) — cos g, cos(wt + g, )]

The expression inside the brackets can be simplified using the product—to—sum identity for cosine:

cos(0—@)+cos(0+9)
2

cosé@cosp = (2.16.5)

and, consequently, (2.16.4) can be written as:

E(0)xE(t)=2AB cos ¢, cos (ot + ¢, ) —cos g, cos(wt+d, ) |

+%(cos(¢a —a)t—¢b)+M)+

= 2AB B
—%(COS(% _wt_¢a)+M)
:i%[cos(% —a)t—¢b)—005(¢b _a’t_¢a)]:

- i%[cos(—a)t +¢)—cos (-t — ¢)]

The cosine is an even function, i.e. cos(a) = cos(—a) , SO:

E(0)xE(t)= i%[cos(a)t—¢)—cos(a)t+¢)]
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The expression inside the brackets can be still simplified using now the product—to— sum identity
for sine:
cos(0—p)—cos(0+9)

sin@sing = 5

(2.16.6)

and, consequently, we have:

E(0)xE(t)= ig[cos(a)t—(gﬁ)—cos(a)t-;-;ﬁ):l =

= 7zABsin ¢sin wt

(2.16.7)

The more general relationship (2.16.2) can be proven in the same way of eq. (2.16.1):

Y Iy

X y V7
E(t;)xE(ty)=Det|Acos(wt; +¢,) Bcos(wt;+d,) 0=
Acos(wty +¢,) Bceos(wty+¢,) 0

= iAB[cos(a)tl +¢, )cos(ty + ¢y, ) —cos(wty + ¢y, )cos(wt, + ¢, )] =

AB| cos(ot) +¢, — oty —%)+M+

_,AB = (2.168)
2 | —cos(ot; +¢, —at, —¢a)—M
- i%[cos(a)(tl —t2)+¢)—cos(a)(t1 —tz)—¢)] =
AB

= QT[COS(a)(tz —tl)—¢)—cos(a)(t2 —t)+ (/5)] =
=7AB sin¢sin(a)(t2 _tl))
When the electric field is linear polarized, the electric field vector, sampled in any t, is always

along a fixed direction, so the angle between the two vectors E(tl) and E(tz) , represented by the

relative phase ¢ =@, — ¢, , is always zero and the cross—product is null at any At =t —t;.
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2.17 ExerciseEquation Section (Next)

_ 2 2
Using the properties kerpe = o and ke =" e, for the complex—valued quantities kC, Te of

equation:

k. =o\ue,, n.= gﬁ (2.17.1)
C

where ¢, =¢&'—j&" is the complex value of permittivity of a lossy media and k, = f—ja, show

the following relationships:

17 ws" _B
SRe[nc }_ o (2.172)

Solution

From the first property, let us express the characteristic impedance as:

ne =24 (2.17.3)

and invert it:

pol=—=2e (2.17.4)
. wH

Now it is possible to substitute k, — f—ja in eq. (2.17.4) and extract the real part:

e
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2.18 ExerciseEquation Section (Next)

Show that for a lossy medium the complex—valued quantities k. and 77, may be expressed as

follows, in terms of the loss angle € defined in:

"

" o+ws]

T=tanf =— - (2.18.1)
£ oA
ke, =B -ja=wue; (cosg—jsin%)(cosé’)_l/2
(2.18.2)
rooen Hd o .. 0 1/2
=n'"—jn"=,|—-| cos—+ jsin— |(cos &
ne=1u'-in ‘/5'( St 2)( )
Solution
Using the definition of k in (2.17.1) and the relationship (2.18.1), we can write:
ke = ofus, = o\ u(s'-je") = (2.18.3)
=\ pe'(1-jtan ) = @ ,ug’(l—jtane)l/z
The complex—valued permittivity &, is also defined as
’ b ! : n G
E. =€ —]¢€ =6‘d—J(8d+—j (2.18.4)
10}

where &4 =&j—j&j is the permittivity of dielectric and o its conductivity. So in (2.18.3) we can

substitute &' — & and tan @ — sind/cos to obtain:

s1r19J/2
s@

k.=w ,ugd(l ]

12
_w\/—[cose Jsm@j _

cos@

RNTE
= w\/pey (cos@— jsin 9)1/2 ( HJ = (2.18.5)
cos

- on1/2
= W\ ey (e_J'g)/ (cos 9)_1/2 =

-1/2 -1/2

= .\ uey e 2 (cos@) " =w\ ue) (cosg—jsingj(cose)

In the same way it is possible to express 77, as in (2.18.2), starting from its definition in (2.17.1):
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& g —je" &'—je'tan@
1/2 12
_ AL ) (s _cosO (2.18.6)
&g \1—-jtané &y \ cos@—jsind
Nl

. \—1/2
= (e_JQ) / (cos9)1/2: /ﬁ[cosg+jsingJ(cosﬁ)l/2
&4 &4 2 2

e =
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2.19 ExerciseEquation Section (Next)

It is desired to reheat frozen mesh potatoes and frozen cooked carrots in a microwave oven
operating at 2.45 GHz. Determine the penetration depth and assess effectiveness of this heating
method. Moreover, determine the attenuation of the electric field (in dB and absolute units) at a

depth of 1 cm from the surface of the food. The complex dielectric constants of the mashed potatoes
and carrots are &, =(65—j25)&q and &, =(75—j25) ¢, respectively.
Solution
First of all we have to express the complex—values of the permittivity as follow:
. .2 2
a+jb=Mel? where M=va®+b (2.19.1)
@ = arctan b/a

so, using the superscripts 1 and 2 to indicate the permittivity of potatoes and carrots, respectively,

we have:
el = (65-325)¢y = 652 + 252 pJArctan(=25/65) _ g 64030367
02 _ (75_j25)80 _ 752 4 052 piATCtan(=25/75) _ ~g (0—10-322

The free—space wave number of a microwave at 2.45 GHz is:

9
ko = onfHgg = 2rt _ 27z'><2.45;<10 :51.31@
¢ 3x10 m
Using k¢ = oy pipe. = o tioeo (./€0) = o\ oo \JEc /€0 =Ko /€0, we  calculate the
wavenumbers:
{0367
ke =f—jo=5131J65- 25 =51.31J69.64e = 2 = (2.192)
= 428.18¢ 7101835 = 42818 cos (0.1835) — jsin (0.1835)) = 421~ 78.13 m ™"
{0322
ki =p-ja=5131{75-j25 =51.3179.06e = 2 = (2.19.3)

= 456.23¢ 10101 = 456.23(cos (0.161) - jsin (0.161)) =450~ 73.14 m ™"
The corresponding attenuation constants and penetration depths are:

a' =78.13 nepers/m, 5121/051 =12.8 cm
a” =73.14 nepers/m, 52=1/a*=13.7 cm
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This heating method is effective because the penetration depths are bigger than the dimension of
mesh potatoes and carrots. The energy in the electromagnetic waves reheat successfully the foods.

The attenuation of the electric field (in dB and absolute units) at a depth of 1 cm from the surface

of the food is:
AhB (z =1 cm) = 8.6862/5l =8.686/12.8=0.68 dB

(2.19.4)
A5 (z=1cm)=8.6867/57 =8.686/13.7=0.63 dB

1
A

1_ 20 —

Al=10 ) 0.925 (2.195)
_AdB

Al=10 20 =0.930

Thus, the fields at a depth of 1 cm are 92.5% and 93% of their values at the surface.
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2.20 ExerciseEquation Section (Next)

We wish to shield a piece of equipment from RF interference over the frequency range from 10
kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the enclosure is
required to be at least 50 dB down compared to its value outside. What is the minimum thickness of
the copper shield in mm?

Solution

The parameters £, ¢ and ¢ in a good conductor are:
f=a= /% = Jrfuc (2.20.1)
2

1
5 = —_—= =
a ouc  \nfuc

(2.20.2)

The conductibility of the copper is 5.8x 10’ Siemens/m, so the skin depth at frequency f is:
1 1

- _ £7Y2 = 0.0661x Y2 (2.20.3)
\/”fﬂo' \/7z><47z><10_7x5.8><107

o

where the frequency f'is expressed in Hertz.

The attenuation in dB is:

Agp(z)=8.6862/5 (2.20.4)

and its minimum value over the frequency range of interest is at least 50 dB. So inverting the eq.

(2.20.4) with the assumption that Agg (z)>50dB, we have:

> 50 S— 50
8.686 8.686

Agp(2)=8.6862/5>50dB = z 0.0661x 712 =0.3805x £V2(2.20.5)

The inequality (2.20.5) can be plotted as function of frequency in the range 10 kHz—1 GHz:

N\

z [mm]

‘\__‘—_-

0

10000 100000 1000000 1E7 1E8 1E9
F [Hz]
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Fig. 2.20.1: Thickness of copper shield in mm for 50dB of attenuation.

The high frequency interference is attenuated of 50dB using a copper shield with thickness very
low, exactly, at 1 GHz, 0.012 mm of copper are sufficient. On the contrary at low frequencies the
thickness is more, exactly, at 10 kHz, z =3.8 mm, that represents the minimum thickness of the

shield in order to satisfy the attenuation limit.
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2.21 ExerciseEquation Section (Next)

In order to protect a piece of equipment from RF interference, we construct an enclosure made of
aluminium foil (you may assume a reasonable value for its thickness). The conductivity of
aluminium is 3.5x10’ S/m. Over what frequency range can this shield protect our equipment
assuming the same 50dB attenuation requirement of the previous problem?

Solution

First of all we have to evaluate the skin depth as function of the frequency f:
1 1
\/”fﬂo' \/7z><47z><10_7><3.5><107

5 £72 = 0.0851x 42 2.21.1)

The attenuation in dB is:

Agp(z)=8.6862/5 (2.21.2)
and its minimum value over the frequency range of interest is at least 50 dB. So inverting the eq.
(2.21.2) with the assumption that Agg (z)>50dB, we have:

S 50 5o 50
8.686 8.686
The inequality (2.21.3) can be plotted as function of frequency in the range 10 kHz—1 GHz:

Agp(2)=8.6862/5>50dB = z 0.0661x 7Y% =0.3805x fV2(2.21.3)

| —A,=50a8B]
20
15
E 10
£
N
05 X
\ﬁ-—._________—_
10k 100k 1h 10M 100M 1G

F [Hz]

Fig. 2.21.1: Thickness of aluminium shield in mm for 50dB of attenuation.
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A typical thickness of aluminium is about 1 mm, and this shield reduces by 50 dB only electric

fields with frequency greater than 150 kHz.
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2.22 ExerciseEquation Section (Next)

A uniform plane wave propagating towards the positive z—direction in empty space has an electric

field at z=0 that is a linear superposition of two components of frequencies @, and @, :
E(0,t) = B/ + )2 (2.22.1)
Determine the fields E(Z,t) and H(z,t) at any point z.
Solution
For a forward—moving wave, we have E(z,t) = F(z - ct) = F(O - c(t - z/ c)) , which implies that
E(Z,t) is completely determined by E(Z,O) or, alternatively, by E(O,t) :
E(Z,t) = E(Z - Ct,O) = E(O,t - Z/C)

Using this property , we find for the electric and magnetic fields:

E(Z,t) = E(O,t— z/c) = &(Eleja)l(HZ/C) + Ezejwz(tﬂ/c)) =
o o (2.22.2)
_ x(E etz L g zemteszz)
where K; =@, /c with i=1,2, and the magnetic field is:
H(zt)=— ixE(z1)= 9(H1ejw1tejklz +Hzejw1tejk22) (2.22.3)

Zy
where H; =E;/Z, with i=1,2.
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2.23 ExerciseEquation Section (Next)

An electromagnetic wave propagating in a lossless dielectric is described by the electric and

magnetic fields, E(z) =xE (z) and H(z) = §'H(z) , consisting of the forward and backward
components:
E(z)=E e % +E_e/*

H(z)= l(EJre_ij — E_ejkz)
n

(2.23.1)

1) Verify that these expressions satisfy all of Maxwell's equations.

2) Show that the time—averaged energy flux in the z—direction is independent of z and is given

by:
P, :%S{e{E(Z)H*(Z)} =$(|E+|2 +[E_f) (2.232)

3) Assuming =t and &= nzgo, so that n is the refractive index of the dielectric, show that

the fields at two different z—locations, say at z=z; and z=z, are related by the matrix

{ E(z) }:{ coskl  jn! sinkq{ E(2,) } (2.23.3)

noH(z) jnsink/ cosk/ mH(z;)

equation:

where /=2, -z, and we multiplied the magnetic field by 79 =./# /& in order to give it

the same dimensions as the electric field.

4) Let Z(z)=77(I)EHL?)Z) and Y(z)= Z(lz)

location z. Show the relationships at the location z; and z, :

be the normalized wave impedance and admittance at

~ Z(Zz)-i-j?]_l tan k/
- 1+jnZ(z,)tankl

Y(z, )+ jntank/
Y(z)= ( 31)
1+j77 Y (z,)tankl

Z(z)

(2.23.4)

What would be these relationships if had we normalized to the medium impedance, that is,
Z(z)=E(z)/nH(z)?

Solution

e Questionn® 1

Assuming an harmonic time dependence ¢’ @ the Maxwell's equations can be written as follow:
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VxE =-joB
VxH=joD+J
V-D=p
V-B=0

(2.23.5)

In a source less, linear, isotropic and uniform medium, the quantities p and J are zero and the
constitutive relations B= gH and D = ¢E are valid. So the set (2.23.5) becomes:
VxE=—-jouH
VxH = jowcE
V-E=0
V-H=0

(2.23.6)

Now it is possible to verify the first Maxwell's equation in set (2.23.6):

X vy 1z
VxXE(z)=| 0y 0, 9, =§'82E(z)—i/aYEf(fj=
E z) 0 O

=0, (E+e_jkz 4 E_ejkz) — (— JKE, ek 4 jkE_eij) - (2237

From exercise 2.7 we know the k —@ relationship and as consequence also the expression of the

characteristic impedance 7 :

k = o e, n= 2 (2.23.8)
&

where 1=y, , €= &ye, . So inserting (2.23.8) in (2.23.7), we obtain:
VxXE(z)=—§jkE(z)=—jyw ueE(z) =
2
— —jo, | VB (2) :—ja),uy\/EE(z): (2.23.9)
u H
E(2)
n

= —jouy =—jouH(z)

It is very simple to verify the second Maxwell's equation in the same way. The third and fourth

equation are the divergence of the electric and magnetic field respectively:

V-E=V-RE(z)=0,E(z)=0 (2.23.10)
V-H=V -§H(z)=0,H(z)=0 (2.23.11)

e Question n® 2
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The energy flux can be evaluated as dot product of the Poynting vector and the unit vector along

the z—direction:

z

P :P-Q:%E}{e[ExH*]i (2.23.12)

Substituting (2.23.1) in eq. (2.23.12), we have:

Pz=liRe (E+e_JkZ+E_eJkZ)§(>< - y|'z=
2 n
- %S}{e [(E+e_jkz +E_elk ) (Ejeﬂkz _Ereik ) z} 7= (2.23.13)
n

_L 2 2 :L 2 2
—2,7me[(|E+| E[)) (L JE-F )

e Questionn® 3
Consider the expression for E(zl) and multiply it by the neutral term el?2¢7ik22
E(z)= E+e—ij1eij2 e k22 | g olkz1gikzy o~ jkzy
consequently,
E(z)=E e *2ek 4 B _el#2¢mIN (2.23.14)
where ¢ =2z, —z;. Using the Euler's formula /X = cosx + jsinx, eq. (2.23.14) can be written as:
E(zy)=E,e %2 (cosk/+ jsinkl) + E_ei*2 (coskl — jsink¢) =

. . . . (2.23.15)
= (EjLe_JkZ2 +E_e/k22 )cos kel + j(EJre_JkZ2 —E_elk )sin kl
The term that multiplies cosk/ is simply E(zz) and the term that multiplies sink? is simply

nH(zz) . Since the characteristic impedance of the medium 7 can be written as:

Eoér \/g n

where n is the refractive index, the eq. (2.23.15) becomes:
H
E(Zl):E(zz)cosk€+j770—(ZZ)sink£ (2.23.16)
n

In the same way it is possible to write H(z;) as a function of E(z,) and H(z,):
noH (21 ) = jnE(z, )sinkl +noH(z; ) cos k! (2.23.17)

Now eq. (2.23.16) and eq. (2.23.17) can be written in the matrix form as (2.23.3).

e Questionn® 4
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The normalized wave impedance at location z; is

2(zy) -7

moH(z;)

and we can substitute the electric and magnetic field with their respective relationships (2.23.16)
and (2.23.17). So:

E(zz)cosk£+stink€
n

Z(z))=

2.23.18
jnE(z;)sinkl+noH(z, ) cosk/ ( )

Dividing the numerator and denominator by 7,H (22 )cos k¢, we have

22 cos}(( _1 sink/
Z(2) noH (2, ) £6ske i cosk!  Z(z,)+jn"' tanks
71 =

2.23.19
e in E(zy) sink/ 1+ jnZ(z, ) tank/ ( )
! noH(z, ) cosk/

The admittance Y(z;) is the inverse of Z(z):

Y(z) 1 1+JnZ(22)tank€
7.) = —
! Z(Zl) Z(22)+_]n tank(

1
——+ jntank/
Z(z,)

2.23.20
B 3 Y(z,)+ jntank/ ( )
= — =

1+ n

Z(z,)

If we had normalized Z(z) and Y(z) to the medium impedance, simply we have to cancel the
term n of refractive index inside eq. (2.23.19) and (2.23.20):

- 1
anky  1TI0 Y (z,)tank/

Z(2) Z(zy)+ jtank!
1+jZ(z, ) tank?
Y(2)- Y(z,)+ jtank/
1+jY(z, ) tank/
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2.24 ExerciseEquation Section (Next)

Show that the time—averaged energy density and Poynting vector of the obliquely moving wave:
E(r,t)=[X'A +§'B]e) I
H(r,t) =l[§"A—§(’B]eja’t_ij’ (2241
n
where (x',y',Z') is a rotated coordinate system with respect to a fix coordinate system (X,y,z) as

shown in

A\

/ |
vy’

Fig. 2.24.1: Rotation of coordinate system.
are given by:

Wzl‘ﬁe{lgE-E* +l,uH~H*} =lg(|A|2 +|B|2)
272 2 2

: . . (2.24.2)
P—%ie[ ExH" |=2'—(|A] +[B] ) = (2c0s0-+ ksin ) (|a[ +[B’)
2 2n 2n
where 2’ = (2 cos @ +Xsin 6?) is the unit vector in the direction of propagation. Show that the energy

Al

o P
transport velocity is v=—=cz'.
w

Solution
The dot products E-E* and H-H" can be evaluated as follow:
E(r,t)-E(r,t)" =[¥A+§'B]:| ¥A"+¥'B" |- AA" + BB =|A[ +[B’

H(r,t)-H(rt)" :%[&'A—&’B].[y’A* ~%B" | :%(AA* +BB*)=%(|A|2 +|B|2)
7 7 7

and now we can substitute them inside the definition of the time—averaged energy density:
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w= liﬂe{lgE-E* +l,uH-H*} :li}{e{lg(|A|2 +|B|2)+L2y(|A|2 +|B|2)} -
2 12 2 2 |2 2 (2.24.3)
_ lsne[lg(w o[BE )+ Le(|aP +|B|2)} = Le(aP e
2 2 2 2
On the contrary the cross product ExH" can be written as

2 2
i{—'A' L ] L {1af+|of)
n n n

Z
ExH" = 0|=
0

\w%:

'
A

P:%%e[ExH*}:

and, consequently,

(|A| +|B| ) zcos9+xsm9 (|A| +|B| ) (2.24.4)
Substituting eq. (2.24.3) and (2.24.4) in the definition of th energy transport velocity, we obtain

1

where ¢ = \/_ is the speed of light in the free space.
ue
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2.25 ExerciseEquation Section (Next)

A uniform plane wave propagating in empty space has electric field:

E(x,y,z)= §Eqeiote KO2)/V2. k=20 (2.25.1)

1. Inserting E(x,y,z) into Maxwell's equations, work out an expression for the
corresponding magnetic field H(x,y,z) .

2. What is the direction of propagation and its unit vector k?

3. working with Maxwell's equations, determine the electric field E(X,y,z,t) and the

propagation direction k , if we started with a magnetic field given by:

oty ik(v3z-x) 2

H(X,z,t) =yHge (2.25.2)
Solution
e Questionn® 1
From the first Maxwell's equation, we can find the magnetic field as follow:
H(X,z,t)—;VxE(x z,t) (2.25.3)
—JOH
The cross product has to be evaluated:
X y Z
VxE(x,z,t)z Oy 8y 0, (2.25.4)
0 E(X,Z, t) 0

k(x+z)/«/§

where E(x,z,t)=E, el®te” . The determinant of matrix (2.25.4) is:

i(EOGJM x+z /\/_)
O (2.25.5)

VXE(x,z,t):_gai(Eoejwte—jk(x+Z)/ﬁj+i
V4
A —jk( Ja)t k(x+z /\/—) ( Ja)t (x+z j
=X | Eoe Egpe
V2 5

and consequently
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H(X,Z,t)=_j;awV><E(x,z,t)=

:;{ﬁj—kE(x,z,t)—ikE(x,z,t)} =

—joul 2 2

I PN T e _
—_Mﬂ{x \/5 E( \/5 E(x,z,t)}—
:iE(x,z,t)_f‘E(x,z,t):E(X,z,t)2

77\/5 77\/5 n

where k =\ ue , n=\p/¢ and 7' =(Z-X) / V2 . We can assume a new coordinate system aligned

(2.25.6)

x,z,t)—i

!

with the components of the electromagnetic wave as depicted in Fig. 2.25.1.

AY

= ¥

P
k

z )
X

Fig. 2.25.1: Rotation of the coordinate system.

e Question n° 2
The direction of propagation can be found as cross product between the direction of oscillation of

the electric and magnetic field. So:

kogxz=| 0 1 o|=C3*A)_ g (2.25.7)
y 7 25.
Ly L
V2 2
e Questionn® 3
Using the inverse form of the second Maxwell's equation, we have:
1 1 X y .
E(x,z,t)z_—V><H(x,z,t)=.—6X ay o, (2.25.8)
jwe jwe

ik(32x) /2

where H(x,z,t) :Hoejwte_ ( . So:
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E(X,Z,t):; _gi[Hoejwte—jk(ﬁz—x)/zj+i ai (Hoejwte—jk(ﬁz-x)/zﬂ:

joe| 9, .

= .1 —f(_jka(x,z,t)+2%H(x,z,t)}:
Josl (2.25.9)
4 .
= ! l:—f( M{@H(X,Z,t)+iﬂT\/ﬁH(x,z,t)lz

B

1 A 1 "
:577H(x,z,t)<x/§x+z) =577H(x,z,t)x

where k =\ ue , n=Ju/e and %' = (\/§ﬁ+ i) We can assume a new coordinate system aligned

with the components of the electromagnetic wave as depicted in

Y

¥

z

Fig. 2.25.2: Rotation of the coordinate system.

The direction of propagation can be found as cross product between the direction of oscillation of

the electric and magnetic field. So:

() —_—
p—t o N>
Il
>
|
PR
N>
Il
|
N>
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2.26 ExerciseEquation Section (Next)

A linearly polarized light wave with electric field E, at angle 6 with respect to the x—axis is

incident on a polarizing filter, follow by an identical polarizer (the analyzer) whose primary axes

are rotated by an angle ¢ relative to the axes of the first polarizer, as shown in

analyzer

Fig. 2.26.1: Polarizer—analyzer filter combination.

Assume that the amplitude attenuation through the first polarizer are a;, a, with respect to the x—
and y-directions. The polarizer transmits primarily the x—polarization, so that a, <a;. The
analyzer is rotated by an angle ¢ so that the same gains @, @, now refer to the x'- and y'-

directions.
1. Ignoring the phase retardance introduced by each polarizer, show that the polarization
vectors at the input, and after the first and second polarizer, are:
Ej=Xcos@+ysinfd
E, =xa,cos@+ya, sind (2.26.1)
E, = f(’(alz cos @ cos @+ a;a, sin @sin H)+§"(a% cos @sin @ —a;a, sin ¢ cos 49)

r o

where (X,y') are related to (X,y) as follow:

X' cos sing || X
{}{ >0 (p}H (2.26.2)
y —sing cos¢ ||y
2. Explain the meaning an usefulness of the matrix operations:
a 0 co.sq) sing |[a; O c?s 0 (2.26.3)
0 a,||-singp cosep| 0 a,| sind
and
c?s ¢ -—singlla O co's @ singlla 0 095 0 (2.26.4)
singp cose || 0 a,|[—singp cose|| 0 a, || sind

3. Show that the input light intensity is proportional to the quantity:
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I:( 14c0s2 0+ ag sin’ 9)cos2 Q-+ afa% sin’ Q-+

(2.26.5)
+2a,a, (a12 - a% )cos @sin@cos@sin @

4. If the input light were unpolarized, that is incoherent, show that the average of the
intensity of part (3) over all angles 0 <6 <27, will be given by the generalized Malus's
law:

T :%(af‘ +a3 )cos” p+afaj sin’ p (2.26.6)

The case a, =0 represents the usual Malus's law.

Solution

e Questionn® 1

The electric field E; after the polarizer is an attenuated form of the field E, that is each
component is attenuated by a factor @ or @,, according to x— or y—directions respectively. So we

can characterize the polarizer with a own attenuation matrix:

fa, 0
A=
10 &

and, consequently,

a o0 0] [a cosd
E =A-E,=| | COST | _ g8 cosO+§aysing (2267
sin€ | |a,sin®

The electric field E; passes thought the second polarizer that is rotated of an angle by an angle ¢
so that the same gains @;, @, now refer to the x'- and y'-directions. The rotation can be expressed
by the matrix (2.26.2) and then the x'- and y'-components of the field E, have to be attenuated by

a factor @ or a,, according to x— or y—directions respectively. So:

a 0 1
E,=| ! cose Sl (2.26.8)
0 @& ||-sing cosg

from which:

g _|& 0| cosg sing|iacosd)
270 o & || -sing cos@ || a,sind B (226.9)
= fgr(alz cos pcos @+ a;a, sin gsin 9)+y’(a§ cos ¢sin € —a;a, sin ¢ cos 6’)

e Question n° 2
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The matrix operation (2.26.3) is simply the cascade of the matrix that we used to solve the point
(1). In fact the first two matrixes are necessary to rotate and attenuate the field E; that passes
through the analyzer, the third matrix represents the attenuation through the polarizer and the fourth
represents the tilt of the electric field vector with respect to the x— and y—directions. Using these
matrixes operation, it is a very simple model system.

In the matrix operation (2.26.4), shown here for simplicity, it is possible to note that there is a new

matrix M at the beginning of the expression:
cosp —sing||a 0| cosp sing|la 0 || cosd
sing cose || 0 @& ||—sing cose| 0 a, || siné

This has the same structure of a rotation matrix, but the angle is opposite, i.e. —¢ . This suggest

[

that (2.26.4) represents a system with another analyzer at the end tilted of an angle —¢ , but without
any attenuations.
e Questionn® 3
The light intensity is the time—averaged energy density multiplied by the speed of light in the host
medium, that is vacuum in this case.
From exercise 2.24, we have already demonstrated the expression of the time—averaged energy

density W and so:
1 2 1 2 2
1= celE) :505(|EX:| +[Ey| j (2.26.10)

that is the light intensity is proportional to the sum of the square module of the components of
electric field.

2 . AT : . 2
I=|Exr|2+‘Eyr‘ =(a12 cospcosd+aa, sm(psmH) +(a§ cos psin 0 —a;a, smgocosé?) =

= (af‘ cos? pcos? 6+ alza% sin? psin? 6+ 2a13a2 sin ¢sin @ cos ¢ cos 9) +
(2.26.11)
+ (ag cos® psin® O+ afa% sin® pcos” 6 — 2a1a§ sin ¢ sin @ cos ¢ cos 49)
= ( 14 cos? 6+ a§ sin’ 9)0052 Qo+ afa% sin? g+ 2aya, (al2 - a% )sin @sin@cosgpcosd
e Question n° 4
The average of the intensity over all angles 0<& <27 can be evaluated integrating the eq.

(2.26.11) and dividing it by 27 as follow:
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B 27 4 2 2r 4 2 2r 22 .2 21
= (g5 ¢ [ cos20 40+ 2552 [sin20 40+ A2 P [ gy
27 0 27 0 T 0 27 0
(2.26.12)
1 27
+—2qa, (6112 -a%)sinqocosq)j cos@sind d@
27
0
We can solve each integral separately as follow:
2 2 2 27
[ cos?6 do= IM d@:ljdmljcoszede:n
2 2
0 0 0 0
27 27 27 27
[ sin?0 do= jﬂ do=1 [ do-L [ cos20d0=7  (226.13)
2 2 2
0 0 0 0
2 1 2
j cos@sin@ dO =— j sin26 d@ =0
2
0 0
and, substituting (2.26.13) in (2.26.12), we obtain:
B 1 27 1
[=— | IdO :—[af‘ +aﬂcos2 o+ afa% sin?
27 2
0
Pag. 61
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2.27 ExerciseEquation Section (Next)

Consider an uniform plane wave propagating in vacuum as viewed from the vintage point of two
coordinate frames: a fixed frame S and a frame S' moving towards the z—direction with velocity v.
We assume that the wave—vector k in S lies in the xz—plane and forma an angle @ with the z—axis

as shown in Fig. 2.27.1.

stationary frame moving frame

X A XA
v
—
Kk kK »
|
G _ o | .
S k, z Sk z

Fig. 2.27.1: Plane wave viewed from stationary and moving frames.

First, prove the equivalence of the three relationships given by:

- i tan(6'/2
cosf = SB80=L g sin0 o en(072) 148, g,
1- Bcosé 7 (1= cos0) tan(6/2) \1-2

where f=v/c and y = l/ 1- 8%\
Then, prove the following identity between the angle 9, 6':
(1-Bcos@)(1+ Bcosd')=(1+ Bcos)(1— fcost') = 1- 2 (2.27.2)

Using this identity, prove the alternative Doppler formulas:

£'=fy(1- Bcosd) = f _ g [1=fcost (2.27.3)
7(1+ Bcos') 1+ Bcosd’

The three relationships in (2.27.1) relate the apparent propagation angles 8, @' in the two frames

Solution

that are different because of the aberration of light due to the motion. They are a consequence of the

Lorentz transformation of the frequency—wavenumber four—vector (a)/ c, k) :

w'=y(w-pck,)

k! = }/(kz —ﬁw) (2.27.4)
c

k;( =ky
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where f=v/c and y = I/W Setting k, =kcosé, k, =ksinf, with k = w/c, and similarly
in the frame S', k/, =k'cosé’, ki =k'siné', with k' = &'/c, the Egs. (2.27.4) may be rewritten in
the form:
@' =wy(1- Bcosb)
w'cos§' = wy (cos - f) (2.27.5)
®'sin@' = wsin @
The three equations are equivalent to evaluate the angular frequency @' in the moving frame S'
and they relate the different angular @, €' regardless of the frequency. From the first and second

equation we can obtain the expression for cosé' :

!

@

Oy =——"— 0—
(1-Bcosd) = o cosO = W (2.27.6)
w'cos O’ = wy (cos 6 f3) ( cos0)
From the first and third equation, we have:
a)!
QD=—- .
y(1-Bcosd) = /sin&'=m (2.27.7)
tei ot : 7(1-Bcosb)
@'sin @' = wsin 6
The half—angle formula for the tangent is in general:
an X = SIMX__ 1-cosx (2.27.8)
2 1l+4cosx sin X
and using it, we can obtain the third relationship of (2.27.1):
tan /)2 = sin @ _ sin & _
1+cos@ y(1-Bcos@)(1+cosd')
3 sin @ B
7(1—BcosB)| 1+ cosO=f
1-fcosb
) (2.27.9)
3 sin @ B
7/(1_ 0 1-fcos@+cosd—pf
1= 0
sin & _ 1 tan 6,2

~ (1= B)(1+c0s8)  y(1-p)
So:

tan6'/2 1 J1-82 1= 1+p \/1+,B
tan6/2 y(1-p) 1-8 1-p 1-p
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In the identity of eq. (2.27.2) between the angle 8, 8’ we note that the last term is equal to 1/ 7/2 ,

that can be expressed using the second identity in eq. (2.27.1):

: 2
Ging - smé %:l_ﬂzzsmz@
7(1—,3005‘9) /4 sin” @

(1-Bcosh)’  (2.27.11)

Consequently since

- 2

s1‘n29 (1—,6’c:osl9)2 =1-p* = (1-Bcos)(1+ fcosd')

sin” @ T

(2272)
we have to prove that:
-2

s1.n26? (1-Bcosf) =1+ fcost’ (2.27.12)
sin” @

So:

sin” ¢/ 1
Sin29(1—ﬁcos€)= )ZW=

y*(1-Bcosd

_ 1—,52 _1—ﬂ2+,8c056’—ﬂc059_

= penit]” (1 feosd) = (2.27.13)

(1-BcosB)+ B(cosd—f3) (cos@-p)

= :1+ﬂ—:
(1-Bcosb) (1-Bcosb)

=1+ fcosb'

Using (2.27.11) and (2.27.13) we can write that:

, sin?¢ 2
1-p7 == 29(1_'BCOS9) =(1+ Bcosd')(1- fcosb) (2.27.14)
sin

The second identity in eq. (2.27.2), i.e. (1+ Bcos@)(1—fcosd')=1- B, is formally identical to

the first identity, but the angles @, @' are inverted. This is reasonable if the velocity vector v is

directed in the negative z—direction, that is v— —v. Since the term f is defined as v/c and it is

the square, the sign of v is negligible and the identity is valid.

The alternative Doppler formulas in eqs. (2.27.3) are obtained applying (2.27.14) to the relativistic
Doppler formula, relating the frequency of the wave as measured by an observer in the moving
frame S' to the frequency of a source in the fixed frame S:

fl—ﬁcosé?

J1- B2

f'=fy(1-fcosd)= (2.27.15)

From eq. (2.27.14), we can write two identity:
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2
(1-Bcos)= 1=p = !
(1+Bcos@') 52 (1+Bcosd')

(o e—

- \/(1+,Hcosl9’)(1—ﬂcos(9)

and then substitute them inside (2.27.15):

£/ f
£ =y (1- Beos) = -
7/( /BCOS ) }/Z (1+lgc059’) 7(1+ﬂc089')

,_pl=pcosd 1-Bcosf [1-Bcosd
f'=f =f —f
J1- B2 \/(l+,Bcos¢9’)(l—,Bcos¢9) 1+ fBcosd'

(2.27.16)
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2.28 ExerciseEquation Section (Next)

We consider two reference frame S,, S, moving along the z—direction with velocities v,, vy,
with respect to our fixed frame S, and we assume that & =0° in the frame S. Let f, and f be the

frequencies of the wave as measured in the frames S, , S, .

In proving the relativistic Doppler formula:

f,=f /l_ﬂa, f,=f A f, =f, /ﬂﬂ (2.28.1)
1+, 1+ 5y 1+ By, 1= f,

it was assumed that the plane wave was propagating in the z—direction in all three reference frames

S, Sa, Se.

x s Stationary frame

ky

k
4 >
S k z

Z

Fig. 2.28.1: Propagating plane wave along the #—direction.

If in the frame S the wave is propagating along the #—direction shown in Fig. 2.28.1, show that

the Doppler formula may be written in the following equivalent forms:
1- 0 f 1—
f, =1, 7 (1= f cos ):fay(l—ﬂcosea)z a g, [L2BC0sOy (5 989
7a(1—ﬂacosﬁ) y(l—ﬂcos@b) 1- B cosb,

Va Vb

Ba=—", Bp="7,
c c

where

\4 1 1 1
B=—, Vo=—F—, Vp=—F7——, Vy=—F7—=(2.283)
2 2 2
© T I-4 V-5 1=
and v is the relative velocity of the observer and source given by

Yo" Va (2.28.4)

Vzl—vbva/c2

and 6,, 6, are the propagation directions in the frame S,, S,. Moreover, show the following
relations among these angles:

cosaa :M, Cosgb :M’ cos@b :M (2.28.5)
1-p, cos® 1— /3, cos@ 1-Bcosb,
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Solution

The relativistic Doppler formula relates the frequency of the wave as measured by an observer in
the moving frame S' to the frequency of a source in the fixed frame S:
¢ 1-pcosd

J1- B2

If we consider separately the frame S, and the frame S, we can write for each frame a relativistic

f'=fy(1-fcosd)= (2.28.6)

Doppler formula:

f, =1, (1- 5, cosﬁ):fl_’g‘%‘%;(9
1-—
| a ) (2.28.7)
f, =y, (1- By cos @) =1 — iy cos
-5

From the first equation in (2.28.7), we can write f as a function of f,, and substitute it inside the

second equation, in order to obtain:

7 (1= By cos )
Va (1 — 3, cos (9)

If the observer moves with the same velocity of the frame S,, he will have the sensation that the

fy =1, (2.28.8)

frame S, is fixed and the frame Sy is moving. So it is possible to use the relationships (2.27.16):
£ =fy (1- Bcos ) = £ _¢ [1ZfcosO (2.28.9)
7(1+ Bcosd') 1+ S cos 8’

f->f,, {'->f,
0—>6,, 0—-6,

where

and y, S are expressed in (2.28.3). So:

f 1- fcosb,
fi, =f.v(1-Fcosd, )= 4 =T a 2.28.10
b=far(1-/4 ) 7 (1+ B cosby) a\[1+,8c0s6’b ( )

The relationships between the angles 6,, 6, expressed in (2.28.5) can be obtained from the

analogue expression for the angles 6, &':

cos@—-pf
1-fcosé

cosd' = (2.28.11)

where &' is the apparent angle along which the wave propagates in the moving frame, € is the

angle along which the wave propagates in the stationary frame and £ is the ratio between the

velocity v of the moving frame with respect to the fixed frame and the speed of light in vacuum. So
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if we consider first the frame S, and then the frame S, with respect to the fixed frame S, we can

write the two following relationships:

cos 0, :M, cos &, _cosO- Sy (2.28.12)
1- 3, cos@ 1- 3, cos @

from which we can obtain the expression of cos@, as a function of cos @, . From the first identity of

(2.28.12) we can write:

cos 6 B, +cosf,
1+ S, cos 6,
and we can substitute it in the second identity:
B, +cosb,
o P
cos@-p, 1+, cos0,
1— 3, cos@ -4 fa +cos b,
1 B, cos b,

B ,Ba+cosea—ﬂb(1+ﬂa cos@a) 3

- 1+ B, cos8, — By By + By, cosb, -

Py tcosO, — B, — BpPB,cosl,

- 1+ B, cosb, — By B, — By cosb, -

:(l_ﬂbﬂa)cosea_(ﬂb_ﬂa)z
(l_ﬂbﬂa)_(ﬂb_ﬁa)cosea
cosga_(ﬂb—ﬂaj

_ l_ﬁbﬂa — COS@a—ﬂ
1_(%‘%}05@ I~ feost,

1=Bob

a
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2.29 ExerciseEquation Section (Next)

Ground—penetrating radar operating at 900 MHz is used to detect underground objects, as shown
in Fig. 2.29.1 for a buried—pipe. Assume that the earth has conductivity o = 1073 S/m, permittivity

& =9¢,, and permeability 1= 14 . You may use the "weakly lossy dielectric" approximation.

Anlenna

Buried pipe

Fig. 2.29.1: Section of the ground with an underground object.

1. Determine the numerical value of the wavenumber k=/4—ja in meters’, and the
penetration depth & =1/« in meters.
2. Determine the value of the complex refractive index n. =n, —jn; of the ground at 900

MHz.
3. With reference to the above figure, explain why the electric field returning back to the

radar antenna after getting reflected by the buried—pipe is given by:

2 2 2
— exp -“‘T“i (2.29.1)

ret

Ej

where E, is the transmitted signal, d is the depth of the pipe, and h is the horizontal

displacement of the antenna from the pipe. You may ignore the angular response of the

radar antenna and assume it emits isotropically in all directions into the ground.

4. The depth d may be determined by measuring the roundtrip time t(h) of the transmitted

signal at successive horizontal distances h. Show that t(h) is given by:

t(h) =220 Ja? 4 12 (2.29.2)

o
where n, is the real part of the complex refractive index n..

5. Suppose t(h) is measured over the range —2<h<2 meters over the pipe and its

minimum recorded value is t;, =0.2 us. What is the depth d in meters?
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Solution

e Questionn® 1

In the weakly lossy case, the propagation parameter k becomes:

k=p-ja=aus (l—jz}w ey | 1- 224 (2.29.3)
2 2we]

where &3 and &] are the real and imaginary part of the dielectric constant ¢, i.e. €=¢]+j&g, and
T=tanf =g} / &y is the loss tangent that is a convenient way to quantify the losses. In this case

gy =9¢y and &] =o/w. So we can evaluate (2.29.3):

) . O .0 /,uo
k=pg—ja=w%u&)| 1- =w\Yupsy — j— [——
] 00[ J2a)980j 070 JZ 980

U

=30\ 1ggg = 67 x900x10° x\/47x1077 x8.85x10712 =56.57 rad /m

-3 -7
azz Ho :10 \/ 4710 B =0.063 rad/ m
2\ 9 2 Ix8.85x10™

The corresponding penetration depth & =1/a =15.87 meters.

e Questionn®2

The definition of the refractive index is:
n= |— (2.29.4)

and in this case the relative permittivity is complex because the material is lossy, i.e. the
permittivity is complex.

The complex value of the permittivity of the ground at 900 MHz is:

-3
£=9)— ]~ =9x8.85x10712 —jL6
® 90010

itanl.11 itanl.11
~107124/79.652 +1.112¢"™" /79,65 ~107124/79.65% +1.112¢"™" Y965 _

=79.66x107 121000457

=(79.65—jl.11)x107"% =

and consequently, using (2.29.4), the complex refractive index of the ground is:

e 79.66><J,974{ej0'0045”  4.j0.00227
n= [—= =3¢ =
5852 1077 (2.29.5)

20
=3 (cos 0.00227 + jsin 0.00227:) =2.99+j0.02

e Questionn® 3
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Ignoring the angular response of the radar antenna and assuming it emits isotropically in all

directions into the ground, the electric field into the ground is:

e A = Ege “e I (2.29.6)
k=p-ja

E

ground

The distance r between the antenna and the buried—pipe can be evaluated using the Pythagoras'

theorem:

r=+vh? +d? (2.29.7)

The transmitted signal reaches the object and returns back to the radar antenna after getting
reflected by the buried—pipe. So the round trip is two times long and the backward signal, using

(2.29.6) and (2.29.7), can be expressed as:
. [2 .2 ,.afi2 2
E et :EOe_zJkr :EOe_za hordT 21N (2.29.8)

The module of eq. (2.29.8) is:

|Eo|e—2oz\/h2+d2

|Eret|:
from which
2 4\/h2+d2
Erat| _ gtelb®a® 5 (2.29.9)
Eq 0
a=1/8

e Questionn® 4
The time is the ratio of distance divided by speed that explains the amount of distance covered in
a given time:
s=v-t (2.29.10)
where s is the distance in meter, v is the constant speed in meter per second and t is the time in

second.

The wave propagates into the ground with velocity ¢, =¢ /n,, where n, is the real part of the

refraction index of the ground, and the round trip of the wave from the antenna to the buried—pipe is

2r long. This values can be substituted inside (2.29.10) and, using (2.29.7), we obtain:

2r=04(h) = t(h)=rr= g g2 (2.29.11)

n, Co Co

e Questionn® 5
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It is possible to note from (2.29.11) that the minimum roundtrip time t(h) is when the antenna is
aligned with the pipe, that is the value of h is zero. Using (2.29.11), we can evaluate the depth d in
meters:

8
d= CO t(h):3><10

=0 02x10°=10m (2.29.12)
2n, 2x3
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