r————()

Trellis Codes

In contrast with the block coding procedures of Chapter 5, trellis encoders generate
code symbols for transmission utilizing a sequential finite-state machine driven by the
information sequence, perhaps an arbitrarily long sequence. This encoding process will
install the key properties of memory and redundancy into the coded symbol stream,
as we have seen for block codes. Decoding these codes then amounts to sequentially
ohserving a corrupted version of the output of this system and attempting to infer the
input sequence, From a formal perspective, there is no need to block the message into
segments of some specific length.

A generic description of a trellis encoder is presented in Figure 6.0.1." Every shift
time, indexed by j, a vector of k input symbols (usually bits), designated u,. is presented

J J !
symbols that may have been extracted from an original serial symbol stream written in the

to the finite-state encoder. We designate this vector by u; = (u“o'. o ")

0l k-t 0 | . :
form (T L utt WD utl) Corresponding to every new input

J J P A A
vector, the encoder produces a vector of n code symbols, x; = (,\';0’. X .\‘;"—"),

usually members of the same alphabet, with n > %, thus inducing redundancy. We define
the input memeory (also called the memory order m) of the encoder to be the number of

""The structure shown is feedback free. or in feed-forward form. Eventually, this will be generalized 10
allow output feedback.

550

previous inpui vectors that, together with the current input u;, define the current output
x,;. Thus, in Figure 6.0.1, the encoder possesses m (vector) delay cells,

The n code symbols produced each shift time may be interfaced to a modulator in
various ways. Early applications typically involved binary coding, wherein the n binary
symbols were serialized and presented to a binary modulator, say 2 PSK modulator.
We could alternatively equate the output symbols with a character in a larger field and
produce a single M-ary symbol from the larger set for each clock interval. The method
preferred depends on the application, as we shall see.

We may observe a certain similarity with block coding, particularly in comparison
of Figure 6.0.1 with Figure 5.0.1. Specificaily, if we set m = 0, then the trellis encoding
device produces n code symbois strictly defined by k current input symbols, which
is the description of a generic block encoder. Thus, we might view trellis coding as
a generalization of block coding, where the encoding function is allowed to depend on
m > 1 input blocks prior to the current block. However, in typical block coding practice,
n and k would normally be rather large, whereas in trellis coding » and £ are typically
small, in the range of 1 to 8. Thus, the power of trellis codes derives not from making
n and k large, but from adopting a larger memory order m. (There is a contrasting view
that puts block coding at the head of the class—once the input sequence to a trellis coder
is terminated, as with packetized data, then the entire mapping from input sequences to
output sequences can be viewed as a long block code. There is no need, however, to
become concerned about the precedence of either category of codes.)

The earliest appearance of such codes is found in Elias [1], who formulated the
codes as an alternative to then existing block-structured codes. Elias named the class of
codes convolutional codes, since these originai codes were linear mappings from input
10 output sequences obtained by a discrete-time, finite-alphabet convolution of the input
with an encoder’s impuise response. Other early names were recurrent codes and tree
codes, since the code paths are tied to a tree-structured graph, Presently, the more general
name trellis codes is used to incorporate these classical codes, as well as newer nonlinear
modulation/coding approaches that still maintain a finite-state machine description. The
term trellis is due to Forney [2], who saw the association of codewords with paths in a
regular directed graph reminiscent of a garden trellis.

Our presentation in this chapter begins with the simplest and earliest codes in this
class, the convolutional codes. Concepts are introduced through the binary codes, after
which extension to nonbinary convolutional codes is simple. We will then present and
analyze in detail the performance of the most popular decoding algorithm for these codes,
due to Viterbi [3], which is capable of implementing maximum likelihood decoding for
general memoryless channels. We will then study the performance analysis of maximum
likelihood decoding on AWGN and Rayleigh fading channels. Suboptimal decoding
procedures (sequential decoding and threshold decoding), which actually predated the
maximum likelihood algorithm, are also described.

The discussion then shifts 1o two newer classes of trellis codés: the trellis-coded
signal-space codes introduced by Ungerboeck [4] and the family of signaling techniques
known as continuous-phase modulation, or CPM for short [5]. Both have been practically
important in coding for bandwidth-constrained channels, once thought not to be a proper
domain for channel coding.

Chap. 6. Trellis Codes 551

0

SO U

-1 el TR s n
° z : Xj

" an _

+_| Mapping

{n-1}

(k-1)
u(_k—'li uj_m
o R

m Stage Delay

Figure 6.0.1 General trellis encoder with k inputs, n outputs, memory order m.

6.1 DESCRIPTION OF CONVOLUTIONAL CODES

In terms of actual applications of coding techniques to date, convolutional codes (in fact
binary convolutional codes) have perhaps been the most noteworthy. This stems from
the existence of several decoding possibilities that provide a range of complexity versus
performance options and, most importantly, a maximum likelihcod sequence decoding
algoritam that is readily instrumentable for short memory codes. Ancillary benefits such
as simple decoder synchronization have also made convolutional codes a popular choice
in practice. Our treatment of convolutional codes begins with the binary case, and the
notational framework follows that of Lin and Costello [6].

6.1.1 Binary Convolutional Codes

Several binary convolutional encoders are depicted in Figure 6.1.1.2 Each encoder is
viewed as containing k parallel delay lines, having K;,i = 0,1, ...,k — 1, delay cells,
respectively, into which we shift message bits k at a time, in paraliel. Notice that we
allow the delay lines, or shift registers, to have different lengths, which complicates
the notation, but this situation is a practical reality. In fact, the ith input line may
encounter no delay cells, and K; = 0 in that case. Figure 6.1.1e presents an example of
such an encoder. Without loss of generality, we can order the régister lengths such that
Ko< Ky < =Ky

Upon each shift of the encoder, n > & output bits are produced by some Boolean
function operating on the entire set of inputs residing in the various shift registers. For

“Each of these encoders has some claim to optimality under various conditions, as we will progressively
develop.

552 Treliis Codes Chap. 6

ot

(a)

(b}
le_Ul
LJ 'r * L] F L] . '_r- Ld Hr L] [
h—-_‘_-
_______—-—4__..-—-‘
+
x}ﬂ
+
x@
(c}
o
U; 10)

(d} (el
Figure 6.1.1 Some binary convolutional encoders. (a) R = % nonsystematic,
m =2 encoder; (b) R = % systematic, m = 5 encoder; (¢) R = é systematic,

m = 13 encoder; (d}) R = ?;- nonsystematic, m = 1 encoder; (e) R = %
nonsystemnatic, m = 2 encoder.

Sec. 6.1 Description of Convolutional Codes 553

binary convolutional codes, these functions are simple modulo-2 sums involving desig-
nated message bits, making the code linear over the binary field. Thus, the superposition
property holds for the input/output relation, and the all-zeros sequence is a member of
every convolutional code. Obviously, some adder connection choices are superior to
others, which raises the code design issue, but we will postpone this for now.

The encoders presented in Figure 6.1.1 are feedback free, meaning that the outputs
are defined purely in terms of a finite number of consecutive input vectors, as in a
finite-impulse-response digital filter. Equivalent forms employing output feedback in the
computation are possible, as discussed later in the chapter.

Consistent with the earlier notion of encoder memory, we define the memory order
of the convolutional encoder as

m = max K|, 6.1.1)

since a given vector of outputs x; depends on the newest input vector u; and m previous
input 4-tuples. It has become conventional to refer to a convolutional encoder with n
outputs, k inputs, and memory order m as an (n, k, m) convolutional encoder, although
this is not a complete specification of the code.

Another memory-related parameter is the encoding constraint length, ng, of the
code?

ngzn[maxK;+1:| =n{m+ 1). (6.1.2)

ng may be interpreted as the maximum span of output bits in a serialized stream that may
be influenced, or constrained by, an input bit. Alternatively, ng can be interpreted as
the effective encoding delay measured in channel symbols. As such, ng plays a similar
memory role for convolutional codes that the block-length parameter, n, does for block
codes.

Next, we define the rate of the convolutional code as R = k/n (this rate is di-
mensionless, that is, message bits/code bit). Typical code rates in practice are i, 1, 2,
%, and %. The normalized code redundancy, (n — k)/n = | — R, increases as the rate
decreases, and relative to an uncoded transmission system using the same modulator set,
the bandwidth of the coded system typically increases by a facfor of 1/R.

Finally, some of the encoders of Figure 6.1.1 are systematic. This requires that, as
for block codes, the information sequence appear explicilly in the coded symbol stream.
For example, in Figures 6.1.1b and 6.1.1c we have that x}m = uj(,-m. The remaining
encoders are nonsystematic. In the case of block codes, we determined that every linear
code was equivalent to a code in systematic form, and so systematic-form block codes are
the normal operational choice. For convolutional codes, this is not true: nonsystematic
Jfeedback-free encoders are generally preferred, at least in conjunction with maximum
likelihood decoding, for reasons tied to the fact that decoding delay may be greater than
the effective delay of the encoding device, 7. This will be further developed as decoding
algorithms are presented. It is known, however, that every nonsystematic convolutional
encoder has an equivalent code realized by a systematic encoder with output feedback (2],

*Beware that there are at least two other prevailing definitions of constraint length, one equivalent to
m + 1 and the other equivalent to k(m + 1).

554 Trellis Codes Chap. 6

so the choice might really be between systematic encoders with and without feedback.
Notice that we are carefui to distinguish between encoders and codes; several encoders
may produce the same set of code sequences.

To more completely specify convolutional encoders (and their corresponding codes),
we return to their convolutional nature and note that the vector of adder outputs x; can
be represented as a summation of linear block encodings involving m + 1 consecutive
message blocks, or frames, as shown in Figure 6.1.2. We can compactly represent the
entire input/output relation as a convolution operation by using vector notation for input
k-tuples and output n-tuples, respectively:

m
X, = u;,Gi. (6.1.3)

t=() -

where G,./ = 0.1, ..., m. is a k x n matrix specifying the linear contribution of the
ith oldest input vector in the encoding register to the output vector x; at a given time
J- |In the binary case. these are matrices of 1's and 0's denoting connection or no
connection, respectively, of a message bit to an adder, but in the general case, which we
shall shortly consider, the matrix entries are in GF(q) and represent a multiplication prior

Vector Delay Element

U}O) uf + uf‘] Y u,i—m
i
U;
u’!k— 1) J -
k Inputs —<¢
GO G1 Gm;] Gm
n Qutputs]
+ + +

D X; = Z u,.‘_;Gg

i=0

{0 1
. x’ xj() Xj(n—1]

Figure 6.1.2 Representation of convolutional encoder as vector convolution
operation,

Sec. 6.1 Description of Convolutional Codes 555

to final addition]. Specification of the m matrices, G;, provides a complete description
of a linear convolutiona! encoder.

We may again establish a connection with block coding: clearly if m = 8, (6.1.3)
reduces to

X; = uJ'GU, (614)

which is the block encoding relation for linear codes, (5.2.1).

To more explicitly describe the G, matrices, we may envision a discrete-time
impulse response relating the ith input line to the pth outpwt line. We calculate this
response by determining the output of the pth adder to the injection of a single | symbol
on the ith input line, with all other bits zeroed. This impulse response can have duration
at most m + 1 time units, and we shall denote this impulse response by

8" = (ah. &%) (6.1.5a)
Equivalently, we could express this information in polynomial form by
gDy =g + gD +-- + g7 D" (6.1.5b)

For example, in the rate 2/3 encoder of Figure 6.1.1d, inspection shows that the top input
line (denoted as i = 0) has an impulse response to the top (p = 0) output line given
by (1,1); hence gf’ = (1, 1) and g{"(D) = 1 + D. The set of kn impulse responses
provides an alternative complete characterization of the convolutional encoder.

The G, matrices involved in (6.1.3) are related to these impulse responses by

L (n {(n—1)
£o.; 8o.; " Ko
(0) () (r—~1)
g1i &l 8
o i=01,...,m. (6.1.6)
©) () - (1
&-1i & 7 &

Three examples will help clarify the concepts just introduced.
Example 6.1 R =], m = 2 Code (the Almost Universal Example)

Referring to Figure 6.1.1a, we find a single register having two delay cells,* so the memory
order is m = 2 and the encoding constraint length is ng = n(m+1) = 6. The nonsystematic

encoder producé’s two output symbols according to
) (1
X =y tuj| +u;_y, X =u; +uj_; 6.1.7)

0 . N
s0 that g:) - (1.1, 1) and g(()” = (1,0, 1). This in turn implies that the vector convolution

relation (6.1.3) becomes

2
X; = Zu,_,-G,- (6.1.8a)
i=0
with
Go=1[1 1), G ={1 0] Gx=(l 1]. {6.1.8b)

Some texts would draw this as a register holding three bits.

556 Trellis Codes Chap. 6

{p)

in tables of encoders, the generator information in the form of g™ is often expressed

. , 0
in octal representation for compactness. For example, the vector g(()) = (L 1, 1) would be

represented as 7g, while g(()” = 5g. Siill another notation is in polynomial form; the first

generator would be listed as g((]o)(Dy=1+4D+ D2

If the input message is (ug, uy, ...} == (110000...) and the encoder is initialized with
all-zeros contents, then simple computation using (6.1.8) will show® that the output code
vector sequence is

xo=(L1), x(=01, x2=(0,1), x3=(11), x;,=(0,0), j=4 {6.1.9)

These bits might be serialized into the output stream (110101110000. ..) or perhaps, to
conserve transmission bandwidth, the two bits produced each unit of time could be mapped
to a single QPSK signal.

Example 6.2 R =3}, m = 1 Code

In the encoder of Figure 6.1.1d, we present k = 2 bits per shift time to two registers, each
having one delay cell. Consequently, we say the memory order is m = 1, and the encoding
constraint length is ng = 3 -2 = 6, from (6.1.2). Study of Figure 6.1.1d shows that the
kn = 6 impulse responses describing the influence of input bits on various output bits are

g =D, g’=0n g?=qn,

(2)

. 1 (6.1.10)
g =0, g"=qa0, g£=q00.

Expressed in (right-justified) octal form, these are 3, 1,3 and 1, 2, 2, respectively.
We could also represent the action of the encoder in vector convolution form:

|
% =Y u_G; (6.1.11a)
i=0

where

1o 1 R
Gg_[o :]]. G;=[1 . 0] (6.1.11b)

We remark that the /th row of G; is simply the connection vector from the ith siage of the
fth register, ! =0,1,....k — 1, to the n adders. Thus, the first row of Gy, (101), implies
that the current input bit of the first (top) register is connected to adders 0 and 2, but not to
adder 1. A helpful mnemonic for constructing the G, matrices is to envision stacking the
g:”) vectors into a & by (m + 1)n array as shown in Figure 6.1.3; then recognize the G;
matrices as being obtained by extracting from this array columns spaced by m + 1 units.

g g0 9] [11 01 11
o ¢ g7 | {91 10 10
SRS
11 01 13
G = t) i
oy 1y oy
E ! i Figure 6.1.3 Construction of G;
1’ ‘ : matrices from an array of encoder
G.= 1 1 impulse responses, R = % encoder of
1 0 0] Fgues.t.1d.

>The reader should also verify that this sequence emerges from the device in Figure 6.1.1a.

Sec. 6.1 Description of Convolutional Codes 557

Example 6,3 R = %, m = 2 Encoder

Figure 6.1.1e depicts an R = } encoder, which is almost systematic. By writing ou! the

12 impulse responses, each of length m + 1 = 3, and then pulting these in array form and
extracting columns, we can determine that the G; matrices are
1 000 0 000 0 000
Gg=i10 1 00 Gi=(0 0 0 0 G=]0 0 0 0]. (6.1.12)
00 1o O 0 0 | 001 0

The sparseness of these matrices is reflection of the limited influence of the upper two input
lines on the output.

An alternative. representation of the input/output relation for a convolutional en-
coder is provided through the polynomial representation. Specifically, we may write the
input sequence as the (vector) polynomial

M(“)(D)
u'”(D)
u(D) = : (6.1.13)

u(l.—-l-)(D)

where «'"'(D) is the polynomial representation for the sequence on the ith input line.
Similarly, we may denote the output (vector) sequence in polynomial form by x(D). By
defining the system transfer matrix G(D) as

g (D). gDy, - g V(D)
G(D) = : : : . (6.1.14)
gD gty g D)
we may then express the input/output relation as
X(D) = u(D)G(D). (6.1.15)

Thus, for the encoder of Figure 6.1.1a, the response to the input sequence 110000 . ..
may be obtained by

XDY=[1+DIN+D+D 1 +D) =(1+D 1+ D+D*+ D). (6.1.16)

which corresponds to the two adder output sequences 100100... and 111100.... When
multiplexed together, the encoder serial output would be the weight-6 sequence
HOT011100. . ., as earlier calculated.

When k& > 1, a redrawing of the encoder provides an equivalent single shift
register implementation, as shown in Figure 6.14a, wherein bits are shifted k at a
time. Alternatively, we may assume that the input bits are shifted as usual, but that
the output vector is computed only every kth shift time. The number of delay ele-
ments in this register is km — 1, or, if we prefer, the circuit can be regarded as a
shift register holding a total of km bits. Figure 6.1.4b illustrates this alternative ver-
sion of the encoder of Fi(%ure 6.1.1e. The message bits residing in this register can be

I

0 !] I i . .
denoted (4" u:- L al 1 0 u(_’l, ...). and so on. Notice that certain register

g . J=1 R
cells in this representation perhaps hold don’r-care bits- not involved in computation

558 _ Trellis Codes Chap. 6

{a)

Figure 6.1.4a Single shift register realization of convolutional encoder.

(2) (0}] [{] {2) i1) {0 (2) (hH {0)
+ + + +
x!O) xl_T} XFZ) x!3)

}) i 1

Figure 6.1.4b Single register implementation of encoder of Figure 6.1.1e.
Note that outputs are computed every three shift times.

of the current or future encoder outputs. Both representations are common in the lit-
erature, and implementation aspects differ littte between the parallel or serial register
options. ‘

To encode a message sequence, we typically agree to initialize either form of the
encoder with O’s and begin shifting the message bits into the encoder k bits at a time.
We will assume that the code bits are serialized and modulated using any of a number
of binary signaling techniques. In principle, the input message and the output sequence
can be arbitrarily long, although typically the encoder is reinitialized periodically by
flushing the registers with zero-symbol inputs, say at the initiation of a new packet of
data.

Now consider an input vector sequence of finite length L, denoted by &, =
(g, Wy, ..., uz_y). The initial output vectors are Xp = wpGop and x;, = ;G +1uyG;, and
50 on. By employing the convolution relation in (6.1.3) and writing the output sequence

Sec. 6.1 Description of Convolutional Codes 559

as a vector {(of vectors) X; = (%g.Xy,...,X,_1), we have that
X, =u.Gy, (6.1.17)

where G, is the kL x nL matrix (of submatrices) formed according to

[Go G, G, - G, 0 .0
0 G G - Guy G, - 0O
: Gn., - Gp
g,=| % ¢ G S (6.1.18)
0 0 0 - Gg : o
R G, - G
L 0 0 0 - 0 GOJkanL

Notice the special banded structure of this generator matrix, wherein rows of the matrix
are merely rightshifts of rows above, and the “bandwidth” is m + 1 submatrices. Equiv-
alently, if we realize that each submatrix is & x n, we see that the column bandwidth of
the generator matrix is ng = n(m + 1), precisely the encoding constraint length.

Equation (6.1.17) defines a linear relation between input sequences of length & L
and output sequences of length nl. [We may even extend this relation to semiinfinite
sequences by extending the finite generator matrix in (6.1.18) to a semiinfinite banded
matrix.] As mentioned, message transmission with convolutional codes is normaily
accomplished with a terminating suffix of m k-tuples of 0’s to return the encoder to the
initial condition; this terminating string affords roughly the same error protection to the
last message symbol as to earlier symbols. In this situation, a precise definition of code
rate would be R = Lk/(L + m)n, which is slightly smaller than our adopted definition
of rate of a convolutional code. However, the usual application entails £ > m, whence
the true rate approaches the adopted definition, R = & /n.

Once a convolutional encoding cycle is terminated in this manner, it is apparent
that we have formed a [(L + m)n, Lk} block code, with generator matrix specified by
a version of (6.1.18) having L rows and L + m columns (of matrix entries), each row
being a single-place right shift of the row above. However, the description of trellis
codes and decoding algorithms does not depend strongly on this relationship to block
codes. In fact, the banded structure of the encoding matrix suggests that finite memory
decoders are feasible for processing arbitrarily long message sequences.

We can now begin to appreciate the convolutional code design problem. Given pa-
rameters (R, m), we are interested in making code sequences as distinct as possible, and
for now we shall invoke the Hamming distance as a measure of separation between code-
words. Since convolutional codes are linear, minimum distance is identical to minimum
(nonzero) weight of vectors in the row space of G, as for block codes. The difference
encountered here is that we have no intrinsic block iength to examine and generally must
consider the distance structure for sequences of arbitrary length L. Distance descriptions
for convolutional codes will be taken up again in Section 6.2. First, however, we gener-
alize our discussion to nonbinary codes and then introduce the essential notions of state
diagrams and treHises.

560 Trellis Codes Chap. 6

6.1.2 Nonbinary Convolutional Codes

For certain applications, especially those where noncoherent detection is to be performed
on fading or jammed channels, it may be advantageous to employ convolutionally coded
nonbinary transmission with orthogonal waveforms. The information-theoretic justifica-
tion for this was supplied in Chapter 4, and we have already encountered the utility of
nonbinary block codes, notably Reed-Solomon codes, in Chapter 5.

It is certainly possible to produce coded g-ary (g > 2) sequences by treating
the outputs of a binary rate £ /n convolutional encoder as a single g-ary symbol, with
q = 2". For example, a convolutional encoder for 8-ary signaling could be produced
from an R = % binary encoder by mapping binary 3-tuples onto GF(8) symbols in any
one-to-one manner. However, such a procedure does not directly optimize the nonbinary
code’s Hamming distance properties; equivalently, good binary Hamming distance codes.
do not necessarily translate into good g-ary codes by direct mapping.

A rate R = k/n g-ary convolutional encoder of memory order m is formed by the
following:

1. k parallel g-ary registers having K,/ = 0, 1,.... k — 1, delay elements, where
m = max K,

2. n GF(g) adders

3. Specified multiplier coefficients in GF(g) describing the weighting each message
symbol contributes to the pth adder output. As with binary codes, our definition
of the encoding constraint length of the code is ng = n(m +).

In practical terms, low-rate codes of the form R = 1/n, that is, having &k = 1, are
of primary interest, so that typically we shall deal with a single g-ary register of total
length m + 1 {or with m delay cells). Again, the » code symbols at time j are expressed
by a convolution relation

m
X = uG (6.1.19)
i=0
except now the multiplier coefficients in G, are members of the field GF(¢). For message
vector sequences of length L (or serial ength kL), the input/output relation is identical
to that of {6.1.17} provided that the entries in vectors and matrices are generalized to

GF(¢).
Example 6.4 Convolutional Codes Over GF(2*) with R = % and Memory Order m = 1

In Figure 6.1.5 we illustrate an encoder general to the field GF(2*), & > 1, having rate } and
m = |. Codes of this form were initially introduced by Viterbi [7] and named dual-k codes,
k referring to the size of the binary input vector and dual referring 1o the fact that code
symbols are defined by two consecutive input symbols, or two consecutive binary k-tuples.

The element « is taken as primitive in GF(2X), Several equivalent encoders producing
the same set of codeword sequences could be obtained by scaling all muitipliers by some
nonzero field element.

The encoder could be specified by

Gg =[1,1]. Gy =11,e]} (6.1.20)

Sec. 6.1 Description of Convolutional Codes 561

N

Figure 6.1.5 R = 1 dual-k encoder
u; X,:!m' X}" € GF(g) over GF(q). z

or by géo) =1, l],gé,” = [1,], or in polynomial form by g((}o)(D) =14+D, gc()”(D) =
1 +aD.

A variation on this structure, due to Trumpis [8] is formed by producing a subcode
of a general g-ary convolutional code, wherein the input sequence is binary [a subfield
of GF(q} assuming that ¢ is a power of 2 and thus the multiplications indicated are
well-posed]. Trumpis codes were described originally as having a single binary input
and a single (n = 1) g-ary output, with g > 2, but the concept is easily extended to
lower-rate encoders with n > . The corresponding codes may be viewed as subcodes
of g-ary convolutional codes with the same muitiplier taps, corresponding to codewords
attached to binary messages in the larger code. Figure 6.1.6 illustrates a memory-order-2
code for GF(4) having a single input bit and a single output symbol per shift time. In
such cases the notion of code rate becomes muddled; it is best to explicitly say that the
rate is one information bit per g-ary code symbol.

X ¢ GF(4)

y; Figure 6.1.6 Binary-to-4-ary
‘ ' convolutional encoder, R = 1 bit/code
GF(2) symbol, m =2,

6.1.3 Parity Check Matrices

Convolutional codes also have parity check matrices, denoted H, whose property is that
for any encoded sequence X,

iH” =0. 6.1.21)
where 0 denotes a sequence of zeros of arbitrary length. The parity check matrix plays
a less prominent role in the description of convolutional codes, however, and will be of

562 Trelis Codes Chap. 6

interest to us only in the description of feedback decoders, which produce a syndroine
of the error pattern and, in sliding window fashion, correct the received symbols bit by
bit. We will argue that for such decoders, systematic encoders are just as powerful as
nonsystematic encoders, and thus we will describe parity check matrices for systematic
encoders.

With a systematic encoder, the generator matrix is of the form

LPy, 0P, 0P

I.P() 0.P|
G = 0P, --- | (6.1.22)

where the matrices P; are & x # in size, denoting how the panity bits of the code siream
are generaled. The corresponding parity check matrix is of the form

P71 —PT.0 -Pl.0

-P.I -P[.O -
H= 7 6.1.23
—P{,.I {)

Note that this produces the desired result GH’ = 0. Both G and H matrices are semi-
infinite, upper-triangular matrices here, but once the message is terminated to L symbols,
the matrices become finite dimensional.

Example 6.5 Parity Check Matrix for Encoder of Figure 6.1.1b

For the systematic R = % m =5 encoder shown in Figure 6.1.1b, the first row of the
generator matrix is (1, 1j0. 10, 110, 0{0, 110, 1]...}, and thus the parity check matrix will
be of the banded form (6.1.23) with the first row given by (1, 111,0]1,0[0. 0|1, 0]}, 0] ..).
The circuit producing the syndrome sequence from a binary received sequence r, =4, +e
is shown in Figure 6.1.7.

{0}
1

X

r

Al

Figure 6.1.7 Syndrome calculation for encoder of Figure 6.1.1b.

6.1.4 Inverse Circuits

For nonsystematic encoders, a pertinent question is whether we can recover the input
sequence u(D) from the code stream, in the absence of errors. This is obviously a
desirable property of an encoding system and is in fact a possible question for linear

Sec. 6.1 Daescription of Convolutional Codes 563

block codes as well. although readily answered in the aftirmative if G has rank 4. Here
the issues are more subtle; among other things we would like the inverse circuit to have
finite. especially small, memory so that the propagation of any possible errors would be
limited.

We let G~ '(D) be the system matrix representing a feed-forward (or feedback-free)
inverting circuit, which operates on the code stream x(£2). Such a system will be said
to be an inverse system if

(DG D) =aD)GING HD)Yy=u(hD'. (6.1.24)

That 1s, it will recover the original message sequence with a delay of / shift times,

Massey and S+ (9] showed that a feed-forward inverse system with delay / exists
for rate R = {/n convolutional codes if, and only if. the impuise response polynomials
g (D) contain no commos. factor other than D', This has been generalized to rate 4 /n
codes as follows: a feed-forward inverse exists if and only if all the €} determinants of
k x k submatrices of the system matrix G(D2) contain only D’ as a common factor. This
resuft holds tor nonbinary convolational codes as well.

Example 6.6 Inverse Circuit for 2 Memory-3 Encoder
Suppose that the encoder is an R = 1/2 nonsystematic code specitied by ¢'"(D) = | +
D+ DY and ¢ (D) = 1+ D+ D? + D These two impulse response polynomials have no
common factor other than D = 1, and thus a feed-forward inverse circuit with zero delay
exists. The system function for this inverse is

-1 I+ 0+ 0} 3
= s 125

G D) [D4 p? (6.1.25)
and the reatization is shown in Figure 6.1.8. Message recovery can be verified by writing
out the equaticns defining the code bit streams and substituting in (6.1.24). Actually. simpler

delay-1 and delay-2 inverse systems exist, as shown.

We will not be strongly interested in how to realize the inverse circuit—sometimes
it s easy by inspection, by writing out the constraint equations and solving. or referring
to procedures in [2]. The main importance of this notion of inverses is in determining
whether an encoder is catastrophic, as discussed in Section 6.2.

6.1.5 State Diagrams and Trellises

A trellis encoder, by design, corresponds to a k-input, n-output finite-state machine, and
we now proceed (o develop this formally. Emerging from this is the key concept of a
code trellis and, subsequently, an optimal decoding algorithm.

As with any state variable description of a system, we define a state vector. o, to
be a (minimal) description of the system at time j that provides an exact specification of
future outputs, given future inputs. In essence. we need to find a collection of interna)
variables that allows unique description of the systern evolution over time. For trellis
codes as described above, o; will lie in a finite state-space denoted by T, having size S.

We can abstractly represent the evolution of states and the outputs of the system
through a state transition equation and an output equation involving two mappings £(-)

564 Trellis Codes Chap. 6

(b)

{0}
Xj

Figure 6.1.8 Inverse circuits for
memory-3, R = % encoder with
g = (1101), gt = (1111,

and g(-), respectively:

o= f{a;_y,u;): state-transition rule,
J J j {6.1.26)
X; = g(o;_,u;) 1 output rule.

These two relations together also imply the code vector x; is uniquely specified by the
state-transition o,_; — ;.

As for dynamical systems in general, there is no unique cheice of state vector. The
obvious (and standard) choice for feed-forward convolutional encoders is to employ a
sufficient number of message symbols residing in the encoding register(s). We will be
able to easily identify for any feed-forward encoder like those of Figure 6.1.1 a set of v
symbol positions, which together with arbitrary future input vectors, allow us to exactly
specify the output vectors x; for all j. The number of symbol positions that is necessary
(and sufficient) for this specification is

k-1
v=7) Ki {6.1.27)

s
sometimes called the total memory of the encoder. Thus, the state vector can be expressed

Sec. 6.1 Description of Convolutional Codes 565

as

2 k-2 (n (U] (6.1.28)
- - -2 tk=2)
:(u(-* Vo TR TN 7o)

which is just an ordered collection of bits appearing on the input lines to the encoder..

The size of the state space is § = ¢", since each element of the state vector is
a g-ary information symbel, and all combinations of such symbols are reachable states.
Thus, in (6.1.26), the relation f(-), once the input u; is specified, maps a set of size ¢"
onto itself, while g(-) maps the state space T onto a set of size g".

In Figure 6.1.1 the elements of the state vector for the various binary codes have
been identified with a dot. The order in which we put these into a state vector, o, is
not mathematically important, but a naturally ordered choice corresponding to position
in the original serial stream is typically used. Thus, in the encoder of Figure 6.1.1a, we
define

g = (u},, "f—f)’ (61293)

while for the & = % encoder of Figure 6.1.1d, we define the state as

a; = (u”. ui) (6.1.29b)

J 1

These are both four-state encoders, and we often refer to the corresponding codes as
four-state codes. Similarly, the state for the ¢-ary codes of Example 6.4 will be taken as
o; = u;, the single g-ary symbol residing at the left-hand end of the encoding register:
the dual-k encoders thereby have § = ¢! states.

An aiternative means of labeling states represents each state as an integer in a g-ary
number system; that is, we label a state by S, if

p=0,9""+0,g"+ - +aq_. (6.1.30)

Thus, Sp will frequently be referred to as the all-zeros state of the encoder.

According to (6.1.26), since there are g* input vectors at each shift time, every
stale a; = S, must transition 10 one of g* next states, simultancously producing n code
symbols. The evolution of the finite-state system over time is conveniently summarized
by a state-transition diagram. shown in Figure 6.1.9 for the code of Example 6.] having
R=1/2 and m = v = 2. Here, each state may transition to two next states, and each
such transition is indicated by an arc, or edge, in the graph. Arcs are labeled by strings
representing the input sequence and output sequence on the given transition. The encoder
diagrams of Figure 6.1.1 and state-transition diagrams contain the same information, and
either provides a complete description of a convolutional encoder.

It is possible that a given state can transition to a certain next state under the action
of more than one input vector, and this parallel transition happens precisely when certain
comporents of the input sequence are not contained in the definition of the state vecior.
(An example of this is found in Figure 6.1.1e, where each of the four states will transition
to only two distinct next states.) In general, if there are k" input symbol lines that have
no memory cells assigned them, and thus these k' lines do not affect the state vector,
then the state-transition diagram will exhibit paralielism of order g* in its transitions
between states. Such codes are typically not of interest for applications involving g-

566 Trellis Codes Chap. 6

Figure 6.1.9 State transition diagram
a; 00 for R = 5. m =2 code.

ary symmetric channels, since the minimum Hamming distance between distinct code
sequences is usually inferior to that achievable when all input lines influence the state.
However, for trellis coding on the band-limited Gaussian channel (to be discussed later
in the chapter), such codes are frequently optimal in the Euclidean distance sense when
properly combined with modulation.

As a related comment, it should be clear that distinct single-step state transitions
are capable of producing equivalent output code symbols. For exampie, in Figure 6.1.9,
the transitions o; = (00) - o;4 = (00) and o; = (01) —» o, = (10) both
produce the same output pair, X;;, = (00). Over time, the corresponding histories will
differ.

Now suppose that we initialize the encoder in the all-zeros state (or any other known
state for that matter) and track the code sequences produced by various input sequences.
After one step, there are ¢* state sequences, each with a distinct code sequence, after
two steps, ¢** sequences, and so on. These can be conveniently represented in the form
of a regular graph known as a trellis diagram, which has § = ¢" states, or nodes, each
with g* branches entering and exiting. Time is understood to increase from left 1o right
in tretlis diagrams. The trellis diagram is full after the first m stages and thereafter
replicates itself. We label each branch with an information string and a code string in the
form (u; | x;). Figure 6.1.10 provides the trellis for the R = 1, m =2 code. Readers
new to this material should try to reproduce parts of this diagral:n, in particular verifying
certain state transitions and code sequences.

We may use the trellis diagram to trace the state routing associated with any given
message sequence and to determine the associated code sequence as well. For example,
with the R = —! m = 2 binary code, the message 110000. .. produces the trajectory
shown in bold lining on Figure 6.1.10, and by reading the code symbols attached to

Sec. 6.1 Description of Convolutional Cedes 567

10

01

1"

Figure 6.1.10 Trellis for four levels, R.= % v = 2 code. Heavy line denotes
route for message u = (11000...).

each branch, we find that the code sequence is (110101110000. . .), as earlier claimed in
Example 6.1.

The concept of trellis splits and merges will become crucial in our study of maxi-
mum likelihood decoding. Specifically, we will be interested in the event that the encoder
follows a certain path in the trellis, but that the decoder selects another incorrect path
that at some stage departs from the correct path and later becomes common with the
transmitted path, Obviously, the code symbols attached to these two message sequences
will differ only over the unmerged span, and for a memoryless channel, only this interval
of time is useful in discriminating between the two corresponding messages, If we let

mgy =minK;, (6.1.31)

then it is easily seen that two paths that split, or diverge, in their state sequeryce at time j
can remerge as early as time j + my + 1. (These events will be called shortest detours.)
As a corollary of this, whenever parallel transitions exist in the trellis, that is, k' > 0,
then mo = 0, and the shortest error events are one-step events.

Exampie 6.7 State and Trellis Diagram for 8 = }, m = 1 Encoder

Figure 6.1.1) depicts the state diagram and wellis for the R = % m = 1 encoder of
Figure 6.1.1d. Since two bits in the encoding register constitute the state vector, we have
v = 2. We again designate the statcs by binary strings, that is, o = (u(-o), u](.”), or using
S0. Si, ... 53. Notice that because & = 2 bits enter at each update time each state may
transition to all four states in one time step, and thus the trellis diagram is fully connected.

The diagrams of Figure 6.1.11 are purposefully left incomplete for the reader to complete.

For a general trellis code, we recognize that there are precisely g*L routes from any
starting state through a trellis of length L levels, each possessing a unique code sequence
of length Ln. (Again, we typically follow the message with a terminating string of
m O's so that the number of routes is still ¢g*~, but the code sequences are of length
n(L + m).) This should make it obvious that brute-force maximum likelihood decoding
that exhaustively evaluates the likelihood of every trellis route is totally impractical for
reasonably sized messages. Fortunately, such complexity can be avoided, as seen in
Section 6.3.

568 Trellis Codes Chap. 6

State

0

AN

0 ZAANVAAN AV
A%

L0

PRI

Figure 6.1.11 Partial state transition diagram and trellis diagram for R =

_%. m=1, v=2code.

Sec. 6.1 Descriptior: of Convolutional Codes

6.2 HAMMING DISTANCE MEASURES FOR CONVOLUTIONAL CODES;
VARIOUS GOOD CODES

d.{L)

6.2.1 Distance Definlions

As for block codes, the Hamming distance structure of a convolutional code is of primary
importance to system performance when the modulator/channel/demodulator produces a
g-ary symmetric channel. In other situations, Hamming distance will generally remain
a relevant measure for the code. Because convolutional codes are linear codes, study
of the Hamming distance structure reverts to study of the weight spectrum of the code.
For convolutional codes, however, there is no intrinsic block length over which to mea-
sure distance (or weight), and we can plainly see that the minimum distance between
codewords corresponding to input sequences of length kL symbols (or L shift operations
of the encoder) will depend in general on L.

More specifically, consider the encoder to be initialized at time j =0 in the zero
state; that is, oo = (0000. .. 0), also denoted So. With no loss of generality, we consider
the all-zeros sequence to be the transmitted message and seek to find the minimum weight
among all sequences for which the message vector is not 0 in position j = 0. Thus, we
define

d{L) = min wi(X.), L=12,..., 6.2.1)
i up#0

as the column distance function of the code,’ where again i, = (ug, wy,...,uz_;) is
a message sequence, and X, is the corresponding output vector sequence as defined by
(6.1.17). Inspection of (6.1.18) reveals that d.(L) is just the minimum weight produced
by the first L columns (of submatrices) of G.

A plot of the column distance function versus L, shown for a typical code in
Figure 6.2.1, is nondecreasing in the depth parameter L, since the Hamming weight of
sequences is a sum of nonnegative quantities. It is, however, certainly possible for the
column distance function at depth L to equal that at depth L — 1; that is, the distance
profile can have plateaus in the function, '

"~ Free Distance
— 5
|-
~ Lo . , Figure 6.2.1 Typical column distance
—45 - function showing minimum weight as
1 2 3 4 5 L function of trellis depth.

The term distance profiie is also used to designate this function.

570 Trellis Codes Chap. 6

The distance profile d.(L) will gradually climb until it reaches a value above
which it no longer increases. We define this distance to be the free distance, dy, of the
convolutional code:

dj = lim di(L) (6.2.2)
-+00

The limit will exist since the column distance function is nondecreasing, and the distance
is upper-bounded by the maximum weight obtainable from an input vector of the form
u, = (ug #0,0,0,...), that is, (m + 1)a. Thus, d; is the minimum Hamming weight
produced among all nonzero input sequences of arbitrary length, whether remergent with
the all-zeros path or not. Usually, excepting cases discussed shortly, this free distance
will correspond to the minimum weight produced by a path that splits and remerges with
the all-zeros path, since we would expect sequences that do not remerge to keep accruing
distance. Thus, we can normally take the latter as a definition of free distance:

df = min wt(%X;), 6.2.3)
i el

where / is the set of message sequences having a nonzero input vector in the first
position and with m trailing 0 input vectors. This class of sequences covers the error
paths diverging from the all-zeros path and remerging at some later time. There can be
multiple error events having this minimum weight; usually, some of these are shortest-
length detours in the trellis.

Free distance is the fundamental limitation on code performance, for if we imagine
a decoder with arbitrarily long memory that could evaluate likelihoods of al! sequences,
free distance is the minimum distance between any transmitted sequence and any other
hypothesized sequence. We also desire that the number of sequences having this min-
imal distance and the associated number of nonzero information symbols be small as
well,

Another parameter gleaned from the column distance function is the minimum
distance, dmin, of the code, defined as the column distance evaluated at depth m + 1,
that is, d.(m + 1). The terminology unfortunately leaves room for confusion and traces
to early decoders for convolutional codes that used a sliding window of observations of
length m + 1 blocks, for which the minimum Hamming distance between all sequences
over this window length was the primary determinant of performance. The ideas will be
taken up in Section 6.5 under feedback decoding.

Example 6.8 Distance Parameters for Code of Example 6.1

Forthe R = % code of Example 6.1, it is readily seen that the only length-1 input that-
differs from the all-zeros sequence, iy = ug = |, produces Hamming weight of 2. (This is
because both mod-2 adders include this bit as an input.) Both input sequences of the form
(1x) produce Hamming weight of 3. Furthermore, the input sequence 101 also produces
weight 3 at depth L =3, so the distance profile does not climb between L = 2 and L — 3.
Further study of the distance profile produces the result of Figure 6.2.2. Notice that the free
distance is dg = 5 for this code, which incidentally is the largest attainable among all binary
codes of R = % and v=2,

Notice also that diyi, = d.(4) = 4 for this encoder; an implication is that use of a
decoder with delay, or memory, of 4 units of time is not adequate to exploit the complete
distance between pairs of sequences.

Sec. 6.2 Hamming Distance Measures for Convolutional Codes L Y4

d L)

6
5
4
3
2
1_
O N S S B » Figure 62,2 Distance profile for
1 2 3 4 5 6 7 L R=4,v=_2codewithds =5.

We may determine the column distance function in several ways. First, we can
trace all required paths of length L in the trellis, although this is really only a one-time
leaming exercise. Second, we may consider the generator matrix truncated to width L
and determine the minimum weight among vectors in the row space of G.. Finally,
as in Example 6.8, we can simply inject various input sequences into the encoder and
measure the weight of the output. We will find a more efficient method later in the
chapter, following a discussion of optimal decoding.

There is an important issue attached to whether all sequences remaining unmerged
with the all-zeros path continue to grow in distance. It is possible that this will not be the
case, and such encoders are known as catastrophic. Catastrophic encoders have loops in
their state-transition diagrams containing nonzero information symbols and that do not
visit the state Sp, but that accumulate zero code symbol weight. The term catastrophic
is apt, for it refers to the potential for a d=coder to be diverted onto an incorrect trellis
path by a finite-length span of channel disturbance, and, even with a subsequent error-
free channel, remain on this incorrect (and nonremergent) path indefinitely. This occurs
because the incorrect path is at zero incremental distance from the correct path and
thus survives in the decoder’s evaluation indefinitely, since it appears perfectly normal!
This infinite error propagation possibility must be avoided in the design of a code. As
shown in [9)], catastrophic error propagation is precisely tied to the lack of a feed-
forward inverse system, and so the tests cited in the previous section for existence of an
inverse provide tests for catastrophicity: with G{D) denoting the transfer function matrix
of the encoder, which again is a k x n matrix of polynomial impulse responses, if the
determinants of the submatrices of size & x & formed from this larger matrix have greatest
common divisor D',/ > 0, the encoder is noncatastrophic. Fortunately, the fraction of
encoders that are catastrophic is rather small, but a possible design must be checked
nonetheless. Systematic feedback-free encoders are automatically noncatastrophic, which
can be argued from the definition or by applying the greatest-common-divisor test.

Example 6.9 A Catastrophic R = },v = 2 Encoder

Consider the encoder of Figure 6.2.3, where we also show the state-transition diagram. It
may be seen that the self-loop at the state o = (11) has weight zero, and the code is thus
catastrophic. Equivalently, both encoder polynomials 1 + 1 and D + D? POSsSEss common
facter 1 + D. The corresponding distance profile defined by (6.2.1) reaches a plateau at
L =2 and never grows further, due 1o the input path (11111...). If we merely checked
all input sequences that remerge with the all-zeros sequence, that is, they return to the zero-
state-after some number of shifts, we would conclude from (6.2.3) that dy = 4. However,

572 Trellis Codes Chap. 6

[(}]
x;

X
Figure 623 Catastrophic R == },
0|0 v = 2 encoder and state transition
0 diagram.

the performance of any decoder, even a maximum likelihood decoder with infinite delay, will
be limited by these paths with distance 2. In any case, the code should not be employed in
an application with long messages due to the potential for arbitrarily long error propagation.

For noncatastrophic encoders, sequences on trellis paths that remain nonremergent
with the all-zeros path steadily accumulate Hamming distance, and this eventually will
exceed dy defined by (6.2.3). For example, with the R = % m = 2 encoder of Fig-
ure 6.1.1a, the input sequence (111111111...) never remerges with the all-zeros path in
the trellis, and the distance increments by one ‘unit for each input. The depth at which
all still-unmerged sequences exceed dy is known as the decision depth, Np of the code.

Sec. 6.2 Hamming Distance Measures for Convolutional Codes 573

For the code of Example 6.1, it may be found that the decision depth is 8, since the
input sequence (10101010xxxxx) does not accumulate weight 6 until after eight levels.
Decision depth plays a role in determining the proper amount of delay needed by a
(virtually) maximum likelihood decoder.

Having characterized the distance behavior of convolutional codes, we can now
formulate definitions of: optimal codes. Foremost in practical importance is the free
distance, and we say a code is optimal free distance (OFD) if a certain code has the
largest free distance among all codes of identical rate, total memosy v, and alphabet
size. [It is possible that several codes will have the same free distance, in which case
we would select based on the number of sequences having weight dy, and if ties still
remain, on the behavior of distance beyond dy (see Exercise 6.2.3).]

Free distance is the principal figure-of-merit when maximum likelihood sequence
decoding is employed, as demonstrated in Section 6.4. However, this decoding technigue
is only feasible for reasonably small total memory v. Suboptimal decoding techniques are
more influenced by other aspects of the distance profile. Specifically, feedback decoders
estimate the message sequence in symbol-by-symbol fashion, with a delay of Lp > m+1
stages in the decoder, and the important distance measure is the column distance at this
depth, d.(Lp). For sequential decoding procedures, which amount to nonexhaustive
examination of the trellis, the amount of decoder computation (which is variable in these
algorithms) is minimized, on average, by codes having largest rate of growth in the
distance profile. An optimal distance profile (ODP} code is one whose distance profile
is superior to that of all other codes of equivalent rate and memory order. Rather than
compare two encoders’ complete column distance functions, it is customary to examine
only the distance function to depth m + 1. A given code with profile {d.(J)} is said to
be superior to another code with profile {d/()) if for some depth 1 < p <m + 1

d(jy=d{j), 0<j<p, (6.2.4)
d:(j) > d/(j), j=p. (6.2.5)

This definition of dominance reflects the fact that early growth in the distance profile
is important. Figure 6.2.4 illustrates profiles for three codes A, B, and C. Code A is

d. (L)
- N W s 0>
T

Tl 1 T

Figure 6.2.4 Distance profiles of three codes. Code A has superior distance
profile, but code C has greater free distance.

574 : Trelis Codes Chap. 6

preferred to code B under the ODP criterion, that in turn is preferred 1o code C. Note
that a code that is superior in the ODP sense may actually be inferior in the OFD sense.
We will retumn to ODP codes at the end of this section.

6.2.2 Bounds on free Distance

Just as for block codes, we may be interested in bounds on distance properties of codes,
in case we either do not have available time to search for the absolutely best code or
need to know -how good (or bad) a certain code is. Upper bounds on free distance for
convolutional codes are rather easily obtained. A simple upper bound is

dy < (m+). (6.2.6)

The bound follows from the fact that an input message with a single nonzero vector,
that is, ug # 0, can produce at most (m + 1)n output symbois that are nonzero due to
the encoder’s input memory of m shifts. This simple bound is never tight for binary
codes (except for the degenerate case m = 0), but is frequently tight for nonbinary
convolutional codes, as will be seen.

A better upper bound is obtained by appeal to the Plotkin bound of Section 5.3 to
upper-bound the minimum distance for length-L messages, followed by m 0’s. The free
distance is then obtained by minimizing over L. This argument was first made by Heller
[10] for binary convolutional codes. Consider input messages with L > | vectors, such
that up 5 0 and the input message produces a remerger with the all-zeros path at depth
L + m. Correspondingly, consider the set of codewords of length n(L + m) symbols
generated by a matrix of the form (6.1.17). Recall that in this linear code each alphabet
symbol will appear in each position of the codeword an equal number of times in a
listing of all codewords (Exercise 5.2.2). The total weight of all codewords of message
length L will then be exactly q”‘ [n(L -- m)(q — 1)/q)], and the average weight of the
nonzero codewords is an upper bound on the minimum weight of nonzero codewords.
Thus, we have that

Lk-1
dr < min L;T_T(L +mn(g ~ 1)J : (6.2.7)
We have indicated with the floor function the fact that we should take the integer part
of nonintegral results, since Hamming distance must be integer valued. (It is possible to
further tighten the bound in some cases, as shown by Heller [10].)

This upper bound is a function of all the code parameters ¢, k, n, and m and is
shown in Figure 6.2.5 for R = -;— binary and 8-ary codes as a function of memory order
m. Also shown for comparison is the bound of (6.2.6), which is surprisingly tight for
8-ary codes, but never tight for binary codes. This behavior is fundamentally linked with
the ability of encoders over larger fields to avoid 0’s in the output.

Further discussion of upper and lower bounds on free distance of convolutional
codes may be found in Costello [11] and Heller [10], where it is shown that systematic
codes are inferior to nonsystematic codes in the free distance sense. This supremacy of
nonsystematic codes (in the free distance sense) is due to the decoder’s ability to evaluate

codewords with delay exceeding that of the encoder constraint length, ng. This is further
developed in Exercise 6.2.13.

Sec: 6.2 Hamming Distance Measures for Convolutional Codes 575

d; Bound

181 8-ary

"“r (m+1n
12 Binary
10
8 \
4 /
2 b
] |] | | i i
1 2 3 4 5 6 7 Figure 6.2.5 Upper bounds to dy for
m R = } binary and 8-ary codes.

6.2.3 Optimal Free Distance Codes

In this section, we summarize some known results obtained from computer search for
convolutional codes that are optimal in the Hamming distance sense under the criteria of
free distance. In contrast with the development of block codes where good codes have
generally been determined from algebraic constructions, location of good convolutional
codes has been notably devoid of theory; all the codes reported here have been obtained
by computer search.

We reiterate that free distance is the principal figure of merit when maximum
likelihood decoding is performed, and we emphasize that Hamming distance is the dis-
tance measure here, which will be the appropriate choice whenever we utilize binary
modulation, such as binary PSK, or more generally when symmetry of the modula-
tion set and channel implies that maximizing Hamming distance is the obvious crite-
rion. Such a case is when g-ary orthogonal signaling is utilized, combined with g-ary
convolutional coding. Because of the orthogonal signal-space constellation, Hamming
distance on the g-ary alphabet is still the relevant distance measure. It might seem
that such is always the case, but consider the design of codes for an 8-PSK constel-
lation for the AWGN channel. Euclidean distance between codeword sequences is the
important distance here, and codes designed for maximal Hamming distance do not di-
rectly produce best Euclidean distance codes. We will return to this important issue
later.

Tables 6.1 through 6.4 provide data for binary OFD codes with R = §, R = 4, R =
%, and R = % with various values of v or, equivalently, for various state complexities.
Code generators are presented for several form encoders in octal format, right justified,
along with the free distance and the upper bound on free distance of (6.2.7). We remark
that the bound of (6.2.7) is usually achievable, but the (m + 1)n bound is never achieved.
Data for these tables are extracted from references (12] through [15]. Convolutional
codes with rates closer to 1 are of practical interest as well. These are typically realized
by puncturing a lower-rate code, as discussed in Section 6.2.4. Lower-rate codes, should
they be of interest, can be obtained by repeating code symbols produced by these en-
coders, although these generally are slightly suboptimal. For example, an R = % code is

576 Trellis Codes Chap. 6

¢
TABLE 6.1 R =] OFD CODES

Generators dr Bound

<

5717 8 8

13, 15, 17 {4 10
25,33, 17 12 12
47, 53,75 13 13
133, 145, 175 15 15

AWk wWwN

TABLES2 R= % OFD CODES

v Generators dr Bound

1 2,3 3 3
2 5.7 5 5
3 15. 17 6 6
4 23,35 7 8
5 53. 75 8 9
6 133, 171 10 10
7 247, 3N 10 3]

TABLE 6.3 R = £ OFD CODES

v Generators dr Bound

1 2,3,6 2 2
2 6,15, 17 3 4
3 15,22, 33 4 4
4 27.72. 75 5 6
5 55, 112, 177 6 6

TABLE 6.4 A =3 OFD CODES

v Generators dr Bound
3 2,13, 14,15 2 2
4 7. 14, 32, 36 3 3
5 23, 25, 47, 6t 4 4
6 45, 106, 127, 172 4 4
7 45, 124, 216, 357 5 6

produced by repeating the two symbols of a rate % code, and the comesponding free
distance doubles.

Generally, when we speak of an R = k/n code, we presume that k and n are
relatively prime, but a code accepting 2 bits per interval and producing 4 coded bits
would also have rate % Lee [16] has shown that in some cases better free distance is

Sec. 6.2 Hamming Distance Measures for Convolutional Codes 577

attainable, for a given rate and state complexity, when k and n are not relatively prime.
Furthermore, 2 maximal free distance code is always within the category of encoders
having unit memory, that is, one k-tuple of parallel delay elements. An illustration,
taken up in the exercises, is that a 16-state encoder with k = 4 and n = 8 has 4y = 8,
which is one unit better than the best 16-state code listed in Table 6.2. The comparison
of complexities is, however, questionable; the 16-state trellis for the R = § code has
full connectivity between states, and when computation per bit decoded is analyzed,
the standard design is preferred, despite the equal state complexity. It is nonetheless

" interesting that OFD convolutional codes are remarkably similar to short block codes,
having one block of memory.

Perhaps the preeminent case of practical interest has been the R = 1 case. In
Table 6.5 we list additional information for codes of memory order v = 2,4, and 6,
specifically the total information weight of ail nonzero sequences having code weight
dy, dp + 1, and so on.” For example, the v =6, R = ! code has 36 total information
1’s on all paths of weight 10 (the free distance), and so on. This information weight
spectrum will subsequently become important in performance evaluation, aithough we
will generally not need to directly tabulate the spectrum. Conan [17) provides similar
information for R = 2 and R = 3.

Ryan and Wilson [I18] have presented OFD g-ary convolutional codes (g = 4, 8,
and 16) for small memory orders (where maximum likelihood decoding is feasible) and
for R = % and R = % Again, these codes are the result of computer search, which
for larger alphabets becomes progressively more time consuming. Table 6.6 shows a
listing of the information weight spectra (incorporating free distance information) of
the R = § and R = { codes for 4-ary and 8-ary codes; many encoders are equiv-
alent, and only a representative set of encoder tap connections is presented. In all

TABLE 6.5 INFORMATION
WEIGHT DATA FOR R = % CODES

OF TABLE 6.2
w v=2 v=4d v=20
5 i 0 0
6 4 0 0
7 12 4 0
8 32 12 0
9 80 20 0
10 192 72 36
Il 448 225 0
12 1024 500 211
13 2304 1324 0
i4 5120 680 1,404
15 11264 8967 0
16 24576 22270 11,633

"Toformation extracted from Michelson and Levesque, Error Conrrol Technigues for Digital Communi-
carion, Wiley-Interscience, New York, 1985.

578 Trellis Codes Chap. 6

Sec. 6.2

TABLE 66A A =] CONVOLUTIONAL CODES
OVER GF(4)

111 11la 1
lal lalo? 1

w C(w) w Clw) w 7 C(w)

6 9 8 39 9 12
7 30 9 42 10 39

TABLE 6.68 A=} CONVOLUTIONAL CODES
OVER GF(4)

m=2 m=3 m=4
111 11la 11laca
lal lala? lalaa?
1a?l 1a? 11 lotaal

w C(w) w C(w) w Clw)

9 3 12 21 14 18
10 18 13 0 15 3

TABLE 68C R= % CONVOLUTIONAL CODES
OVER GF(8)

=4
1ot 11a°1 11ea*a’a
1aa* lac’a 1a a*oa* o

w Cw) w Clw) w Clw)

6 7 8 1 10 21
7 36 9 189 11 392

TABLE 66D A= % CONVOLUTIONAL CODES
OVER GF(8)

m=2 m=3 m=4

11at 1111 Ille*a?e
laat lad’ a | @ a* o* o
1o’ a? 1 a? a® ot la® aab a?

Hamming Distance Measures for Convolutional Codes

579

vases, « is a primitive element in GF(g). These codes extend previpusly known result:
for duaj-k codes. It is noted that g-ary codes routinely, at least for small memory order
attain the upper bound of (6.2.7), which in turm reduces typically to (m + Dn.

Finally, in Table 6.7, we show results on free distance for generalizations of
Trumpis codes found in {8, 18). These codes have one binary input per unit time and n

g-ary output symbols.

TABLE 6.7A R = 1 BINARY-TO-4-ARY
CONVOLUTIONAL CODES

m=2 m=4 m==6
lal lalla]uzllgzloz2

w C(w) w C(w) w Clw)

3 t 5 3 7 7
4 4 6 7 8 39

TABLE 6.7B A = 1 BINARY-TQ-8-ARY

CONVOLUTIONAL CODES
m=2 m=4 m==6
1 aa? lootell laclle*ala
w C(w) w Clu) w Cl{w)
3 1 5 1 7 I
4 2 & 2 8 2

6.2.4 Punciured Convolutional Codes

High-rate, or low-redundancy, convolutional codes are of interest for bandwidth-con-
straired applications. For example, we may wish R = % To construct such an encoder,
we could input 7 bils per unit time to a finite-state machine and produce 8 code bits, The
corresponding trellis would have 128 branches departing and entering each state, making
the maximum likelihood trellis decoder we will study in the next section more difficuit
to inplement. Furthermore, if a change in rate is desired, we would likely require a
fundamentally different decoding structure.

This can be overcome by .a process of puncturing, first introduced to the convo-
lutional coding realm by Cain, Clark, and Geist [19] precisely for easing the decoder
complexity. The idea is very similar to the concept of pancturing of block codes. We
simply delete certain code symbols from a lower-rate code, while keeping the parameter
k fixed, 1o obtain a convolutional code with effectively higher rate. This puncturing is
performed in periodic manner, creating a time-varying trellis code. For example, if we
adoptan R = % code and consider frames of P levels in length, the encoder produces 2 P
output symbols over this same interval. Suppose that we read these into an array of size
2by P, and delete D < P — | of these symbols from the transmission queue. Then the
effective code rate is

P

R' = .
2P - D

(6.2.8)

580 Trellis Codes Chap. 6

It should be clear then that by appropriate cheice of P, the period, and D, the number of
deleted symbols, we obtain a convolutional code of any desired rate. Specifically, for a
period P punctured code derived from a parent code with rate R = 1/n, the achievable
rates are

_ P
TP+

The important observation is that we may utilize a decoder for the parent code,
aligned with frame boundaries and operating with P trellis levels per frame, to realize
the optimal decoder for the high-rate code. All we need to do.is puncture, or erase,
certain metric calculations that would ordinarily be performed in the low-rate code, these
erased positions corresponding to the deleted transmitted symbols. Otherwise, the metric
updating and path sforage for the Viterbi algorithm is exactly as for the parent code.

!

I=12...,(n—-1P. . (6.2.9)

Example 610 R = § Punctured Convolutional Code Obtained from R = } Code

Suppose we adopt the familiar R = % m = 2 convolutional code of Figure 6.1.1a. Let the
puncturing period be P = 3. By deleting D = 2 code bits from every frame of 6 code bits,
as shown in Figure 6.2.6, we obtain an R = % code, with trellis as shown. The puncturing
pattern is defined by the matrix

110
az[l ;]], (6.2.10)

where i connotes that the corresponding code bit is transmitted, and -0 indicates a deleted
position. Thus, every third shift time, both code bits produced by the encoder are utilized,
while for the other two intervals, the upper and then lower bits are transmitted.

This code can be viewed on a time scale that runs at the frame rate as a standard
R = %— convolutional code. In this view, every state connects to 8 athers. Its memory order,
m . and state vector dimension v are unchanged from that of the parent code.

Puncturi'ng Cycle
x Denotes Punctured Code Symbol

Figure 6.2.6 Trellis for R = 7' m = 2 code punctured to R = % ds event
highlighted. Puncturing is periodic, deleting positions designated by arrows
every three Jevels.

Sec. 6.2 Hamming Distance Measures for Convolutional Codes 581

This example may raise several important questions. First, what puncturing pattcms
are good? Some are obviously better than others, and some could even pmducc cmmc
high-rate encoders, even though the parent code is noncatastrophic. Second, is it posglble to
synthesize good codes using puncturing? More precisely, can a specific optimal R = 3 code,
say, be synthesized from a lower-rate encoder? (The answer is yes [20].) More unport_amly
for practice is the observation that a range of code raies can be achieved from a smg!e
parent code by merely changing the puncturing map. It turns out that, when we impose this
single parent code restriction, slight sacrifice in free distance is sometimes unavoidable; but,
generally, the loss is not more than one unit of Hamming distance, and this is somewhat
offset by a favorable nearest-neighbor multiplier. Yasuda et al. [21] studied punctured codes
obtained from a single parent R = % OFD encoder and listed the puncturing patterns shown
in Table 6.8 for memory-6 codes (64 states), Other cases are listed in [21] as well.

TABLE 6.8 PUNCTURED
CONVOLUTIONAL CODES
DERIVED FROM R = } CODE
WITH v = 6, go = 133, AND
g1 = 171

R Puncturing Table dy

1 i 10
2 i

2 11 6
3 10

2 110 5
4 101

Z [111010 K}
8 1000101

13 1101000001111 3
14 1010111110000

Hagenauer [22] has introduced the notion of rate-compatible punctured convolu-
tional codes (RCPCs) for applications in which either (1) variable error protection is to
be assigned to certain bits in a data packet, for example, in digital speech coding by anal-
ysis/synthesis methods, or (2) incremental transmission of additional code redundancy in
subsequent transmissions is required to enable correct decoding of a packet.

A family of convolutional codes of rates R = P/(nP — D) is constructed from an
R = 1/n parent code using a puncturing frame of size n x P and is a rate-compatible
Jamily if the deletiug map of the low-rate code covers the deleting map of every higher-
rate code. In other words, if a 1 appears in a given puncturing table position for a
code of rate R, a 1 must appear in that position for all lower-rate codes, and additional
transmitted positions can be assigned only where puncturing occurred in the higher-rate
codes. If such is the case, we may achieve the effect of a low-rate code incrementally,
first transmitting the code symbols of a given high-rate code and incrementally adding,
if necessary, only the additiona! symbols of the lower-rate code, formerly punctured.

582 Trellis Codes Chap. 6

Furthermore, the rate-compatible property allows smooth transition from higher to lower
rates in the middle of a packet if variable protection is required, since we can operate
without reinitializing the encoding register.

We might expect that the rate compatibility constraint imposes additional weak-
nesses on the codes produced at any specific rate, but this does not seem to be an
exorbitant penalty. In Table 6.9 we list information produced by Hagenauer for memory
6 codes, having a parent code that has rate % Some flexibility in optimizing the per-
formance profile exists with these codes. For example, the profile is optimal at R = 3
here and falls short of the optimal free distance rate % code by one unit. All other free
distances are within one unit of (and typically as good as) the best unconstrained code
of the same rate and state size and are always as good as the Yasuda codes.

TABLE 6.9
RATE-COMPATIBLE
PUNCTURED
CONVOLUTIONAL CODES
OERIVED FROM R = 4,
MEMORY-6 ENCODER,
go = 133, g1 = 171, AND
g2 = 621

R Puncturing Table df

1 11111111 i4

3 i
11111111

1 1111111} 10
2 1111111
00000000

2 111H111 6
3 10101010
. 00000000

4 1t 4
5 10001000
00000000

8 11110111 3
v 10001000
00000000

Example 6.11 Application of RCPC’s to Packet Transmission

Suppose that we have a radio channel packet communication system with either time-varying
SNR or in which various terminals exist with different link qualities. At some times we can
operate with very low redundancy, or high throughput, while at other moments we need
the power of a lower-rate code. Rather than commlt to a single compromise code, ‘we
could design a RCPC code family with rate R = I' g, and 3 3, used as follows. On the first
transmission of a packet, we use the high-rate code and an embedded CRC code at the end of

Sec. 6.2 Hamming Distance Measuras for Convolutional Codes 583

the packet to check for proper decoding. If not, we retum a negative acknowledge (NAK)
signal, and the transmitter responds in the next available time slot with the incremental
redundant bits of the R = % code for the same packet. The decoder combines these with
the formerly received demedulator outputs to attempt a new decoding. This is tested, and
possibly the next lower-rate code is then invoked. This process could continue to arbitrarily
low rates in principle, but as a practical matter, it makes sense to abort the decoding after
perhaps three trials and request that the cycle start anew.

6.2.5 Optimal Distonce Profile Codes

Johannesson and Paaske [23~26] have provided tabulations of ODP convolutional codes
of various rates, and R = 1 codes are listed in Table 6.10. Nonsystematic codes are
listed, for they achieve larger free distances, although in the ODP sense, systematic
codes ae just as good. Notice that the memory order of many of these codes is large,
rendering maximum likelihood decoding infeasible, but the ODP property lessens the
1verage decoding computation in sequential decoding, for which the computational effort
is basically independent of memory order. Johannesson also reports robustly optimal
codes, which are simultaneously ODP and OFD.

TABLE 610 R = %
NONSYSTEMATIC OPTIMAL
DISTANCE PROFILE CODES

m g B dr
2 7 5 5
5 147 135 10

10 3645 2671 14

14 65231 43677 17

18 1352755 1771563 21
22 33455341 24247063 24

6.3 MAXIMUM UKELIHOOD DECODING OF CONVOLUTIONAL
CODES

As was the case with block codes, several decoding approaches are possible with trellis
codes. On the trivial side, we may extract the information from any coded sequence
produced by a noncatastrophic encoder with a simple algebraic inverse circuit having
short delay. Such a decoder does not exploit any performance gain available through
coding and, in fact, outputs more errors than were initially present. Of greater interest are
procedures that search the trellis for a good (if not best) candidate code sequence in the
sense of highest total path likelihood. There are several possible approaches in this class.
The earliest procedures proposed are suboptimal for two reasons: they perform sparse
search of the trellis paths, for reasons of complexity, and generally do not employ the
maximum likelihood path metric. Foremost among these are threshold decoding, which
is not a search algorithm per se, but essentially finite-delay syndrome decoding as in

584 Trellis Codes Chap. 6

Chapter 5, and sequential decoding, a family of probabilistic search algorithms. Neither
class of decoders invokes the later understanding of a trellis structure. We will examine
these procedures briefly later in the chapter. The algorithm that selects the maximum
likelihood sequence, due to Viterbi, and usually referred to as the Viterbi algorithm, or
VA, has emerged as a powerful and practical decoding method for a vanety of trellis
coded gpplications, and this section is devoted to its description and implementation
details.

6.3.1 Maximum Likelihood Sequence Decoding
(Viterbi Algorithm)

This procedure was originally proposed by Viterbi in 1967 {3} as an “asymptotically
optimal™ decoding algorithm for convolutional codes and was later shown by Omura
[27] 10 correspond to the dynamic programming solution to the problem of finding the
maximum likelihood solution. Fomey [28) showed the algorithm to be optimal in the
sense of choosing the most probable (or minimum probability of error) sequence, provided
the proper metric is used in scoring path contenders, and he coined the term trellis to
conveniently describe the algorithm. The algorithm has been widely applied to various.
decision problems that involve noisy observation of finite-state Markov systems. These
applications include automatic machine recognition of speech and decoding intersymbol
interference, presented in Chapter 7. It is worth emphasizing that the algorithm does
not rely on a linear system model, but only on a finite-state description, and thus the
decoding algorithm extends directly to decoding of more general trellis codes, as we
shall see later in the chapter.

We seek the maximum likelihood path of length L + m® through the treliis, based
on receipt of the observation sequence F = (rg. r,,...). All trellis paths emanate from
the agreed on initial state (typically o, = S) at time j = 0 to the same final state at
stage j = L +m. For a memoryless channel, the total path iikelihood for any treliis
route i, corresponding to a code sequence X’ = (x4’ x;"’....), will be a product of
likelihoods obtained for the various symbols on the given path. Equivalently, by taking
the log likelihood as our objective function for maximization, we find that the total log
likelihood is the sum of log likelihoods: '

i L+m—1)
AER = 3 A x", (6.3.1)
j=0

where j is a stage index, r; is the vector of observations made at stage j, and x;'"' is
the hypothesized code vector for the ith codeword (path) at stage j. This log—like]ihood
metric for each stage is in turn a sum of symbol metrics if, as usual, mulitiple symbols
are associated with a given trellis stage.

The optimality of Viterbi's algorithm derives from Beliman’s principle of optimal-
ity [291, pertaining to a sequential decision probiem whose global objective function is
an additive function of costs of transitions between intermediate states. The basic idea is
that the globally optimal policy (treilis path) must be an extension of an optimal path to

¥Again we envision an L-stage message sequence with a sulfix of m zero-vector inputs,

Sec 6.3 Maximum Likelihood Decoding of Convolutional Codes 585

some state at an intermediate time j, and this must hold for all time indexes j. The proof
is by contradiction: suppose that the globally optimal path passes through state g; = m at
time j, as shown in Figure 6.3.1. If the initial part of the path from starting state to this
intermediate state is not an optimal path, we could replace this segment by the dashed
segment to this state and thereby improve on our “globally best” choice, a contradiction.
(Similarly, paths from any intermediate state to a terminal state must be optima).) It is
crucial to this argument that the objective function increments be dependent only on the
specific state transition at a given time and not on future or past state trajectories.

The concept is readily conveyed by considering a hypothetical round-the-world
trip, beginning in Zurich, as illustrated in Figure 6.3.2. We agree to travel east, al-
lowing ourselves to visit Moscow or Cairo at the end of the first stage. The next stop

Optimal Final Link

Target State

-
T

Initial State Suboptimal

1
1
i
'
1
I
I
I
}
B
]
]
I

Stage j Final Stage

Figure 6.3.1 Principle of optimality: giobally-best route is extension of op-
timal route to intermediate nodes.

-150 -100 -50 0 50 100 150
Zurich Moscow Tashkent Hong Kong Anchorage Toronto London
Cairo Delhi Perth Honolulu Miami Dakar
Christchurch Lima

Figure 63.2 Trip planning based on principle of optimality.

586 Trellis Codes Chap. 6

on the itinerary can be Tashkent or Delhi, and so on as shown. To finish in Zurich, we
must pass through either London or Dakar. To each route segment, we assign a metric
that depends only on the two cities involved, such as distance in kilometers or purchasing
power in a given destination. We assume the routes shown are the only possible routes
and that backtracking is not atlowed. [This graph is less regular than code trellises,
in that the trellises we encounter will have a fixed number of states (cities) at every
stage.]

To travel the complete circuit with minimal distance, say, we must first be optimal
in reaching Moscow or Cairo. This is not difficult—take the only options available.
More profound, though, is that, although we do not know the eventual route as yet,
we had better determine the optimal route to each of Tashkent and Delhi. These are
extensions of optimal routes to the previous day’s cities. Similar facts must be true
of routes to Hong Kong and Perth, and so on. What is also crucial to recognize is
that only the best among the candidates to each city needs to be saved, and we will
never risk missing the globaliy optimum path if we dispense with inferior intermediate
paths.

In terms relevant to the decoding of trellis codes, we assert that if the ultimately
selected (highest likelihood) trellis route visits some state o, = §; at stage j it must have
been reached by an optimal route from the beginning 1o that intermediate node. This
must hold true for all states at time j and for all time indexes and constitutes the heart
of dynamic programming in optimal control theory [29).

To formally describe the algorithm, we first establish some notation. Let £ =
{S;.i = 0,1, ...,5 — 1} denote the state space for the encoder, with § = ¢ denoting
the number of states. Let T = ¢* denote the number of transitions from any state to next
states. For any state §;, we let B; = (B, ,, p = 1,2...., T} designate the set of previous
states that can transition in one step to state S,. There are T such previous states for each
Si, and these will be distinct antecedent states unless parallel state transitions exist in the
trellis. Finaily, attached to any transition of the form B; , — S, are information vectors
u, ; and code symbol vectors x,, ;. The latter are, respectively, k-tuples and n-tuples from
GF(q). We designate by A;(S;) the cumulative metric for the optimal path to state §; at
time j. The survivor path histories are strings denoted by {P;(S;)} and are comprised
either by sequences of states followed or, more commonly, sequences of input vectors
corresponding to the adopted routing. In these terms, the principle of optimality holds
that for each state S, at time

Aj(8,) = max[A; (B, ;) + Mr;. x,(Bip > S))]

[N

and (6.3.2)
{Pj(Sr)} = {Pj—l(Br.p)- l.lpj}-

That is, for each state we find the best-metric entering route, called the survivor, that is
an extension of a survivor to one of the communicating previous states and store only the
cumulative metric of the survivor and the survivor path by appending the appropriate
path suffix. The principal of optimality guarantees that these are sufficien: data for storage
as the algorithm proceeds through the treilis, and all but one of the ¢ paths entering each
state can be pruned away in each iteration.

Sec. 6.3 Maximum Likelihood Decoding of Convolutional Codes 587

Variables/Storage

S Number of states

T Number of transitions to each state

j Time index

ﬁ,io,-), 0<05,£5-1 Survivor sequence terminating at
state g; attime j

Aila), 0< o< 81 Cumulative metric of survivor to ¢;
at time j

Initialization

j=0

Xo (i) = null, all i
Ag(0) =0, Aglod ==, i 0

Recursion
forj=1tom+ L
fori=Qto &1
find max Ap(0) = Apa (Gp) + L1, x {0, = ail]
forp=1,...,T
Store maximum metric in A, (G}
Update survivor: x,, () = (X,.1(0,), u o, = /]
end
end
Qutput

Release survivor to o attime m + L as ML sequence estimate

Figure 6,3.3 Pseudocode for Viterbi algorithm.

Figure 6.3.3 provides a pseudocode for the decoding algorithm. An initialization
stage sets all cumulative metrics to a poor value, except that the initial encoder state,
typicalty taken as Sg, is assigned initial metric Ag(Sg) = 0. (This forces eventual
selection of a path from the known starting state.) All survivor path histories are set
to null sequences. At each increment of time j, the decoder accepts a new input from
the demodulator, r;. The nature and size of this vector depend on the code rate and
the modulation/demodulation strategy. In paricular, the input data may be real or finite
alphabet and may be a scalar or a vector. '

The kernel of the algorithm shown takes a “look back™ viewpoint. For each
state g; = §; at time j, we look back to the previous or antecedent states, B, ,, p =
1,2,...,T. To the cumulative metrics A;_;(B; ;) of each previous state, we add the
branch metric A(r;. x; ,), dependent on the new input and the trellis branch being scored.
For each such transition to state §5;, we determine if the new metnc sum exceeds the
current best Tesult for state S;. If so, we store the new metric sum in A;(S;). If, on the
other hand, the new test path has poorer total metric than the current best to the given
state, we simply proceed to evaluate the next transition, if any remain. If B;,, is the
winning parent node for state §;, we alsc update the survivor path histories according 10

588 Trellis Codes Chap. 6

(Pi(S)) = {P;_1(Bi), Wi »)}. thatis, we append the information sequence of the newly
found best survivor as a suffix to the former survivor path.® At point A in Figure 6.3.3, we
have completed the assessment for state S,. The inner loop shown is executed for § states.

At point B in Figure 6.3.3, we have completed a trellis stage and extended the
survivor path histories one level deeper, as well as computed new cumalative metrics for
these survivors. The complete sequence of operations repeats at level j+ 1 and continues
until the end of the message is reached, at which time the survivor sequence to state S
is declared the maximum likelihood sequence, assuming that the encoder is brought (o
this end state. As described thus far, no path decisions are made until the end of the
message sequence.

Exampie 6.12 Decoding [Nustration for R = %. v =2 Code

To illustrate an actual decoding process, assume the encoder is that of Figure §.1.1a, Suppose
that the encoder is initialized in the state 00, and the 4-bit all-zeros message (0000) is
transmitted, followed by a terminating string of (00). The code sequence is thus the all-
zeros sequence, and the modulator produces the signal sq(r) 12 times, twice per information
bit. Suppose that we use antipodal modulation, but the SNR is a rather tow E;/Ng = —3dB,
and that the received demodulator output is

f=(-1.1,0310.1, ~09] — 0.5, —1.3| - 0.5, -0.6{0.2, 0.5 — 1.2, ~0.9). (6.3.3)

When binary (hard) decisions are made on each symbol, four errors exist, somewhat more
than we would expect in 12 transmissions, even at the poor SNR assumed. In Figure 6,1.4a,
we show the evolution of decoding with hard-decision quantization, with the Hamming
metric employed as branch metric. (To maximize path likelihood, we wish to minimize
Hamming distance.) By assigning initial metrics as described previously, only descendants
from the zero state at stage j = 0 can survive, and no special algorithm is needed to handle
the initial fanout of the trellis. A similar remark applies to the termination stage: we simply
decode as usual, but at stage j = L + m = 6 simply pick the survivor at state Sp. Al the
end of the cycle, the'information sequence @ = (101000) is released by the decoder, pro-
ducing two information bit errors.

As an alternative means of decoding, Figure 6.3.4b shows the decoder progression
when the unquantized observations are used by the decoder, and the branch metric is

0 |
Mrj, Xip)= rf?;rj) +x’.(‘];rj! ‘\, (6.34)

that is, the sum of correlations for the two code symbols at each level. (In performing the
correlation we map code symbols 0 and 1 to —1 and 1, respectively, to obtain normalized
signal-space coordinates.) '

Observe that the Viterbi algorithm chooses different paths in the two cases, and in fact
the correct path is chosen in the second case, although the decoder has no way of knowing
this. This is no contradiction of optimality, but reflects the fact that the two decoders
operate with different input observations and with different path metrics. This example was
in fact intentionally constructed to show the ability of soft-decision decoding to outperform
hard-decision decoding, but it should not be concluded that soft-decision deceding always

"We must be careful to avoid overwriting memory locations corresponding to previous metrics and path
histories until all states needing access to this information at the current leve! have been processed; typicatly,
this can be implemented by double memory buffers and/or a system of temporary pointers.

Sec. 6.3 Maximum Likelihood Decoding of Convolutional Codes 589

