5.10 PERFORMANCE EVALUATION FOR LINEAR BLOCK CODES

In this section we present specific numerical results conceming the performance of various
coding techniques on several channels. Our coverage is certainly not exhaustive, but
it should serve to illustrate the important methodology for other codes and channel
scenarios. Several other cases are addressed in the Exercises. Using hard-decision
decoding, we begin with the performance in an AWGN environment.

§.10.1 AWGN Channel, Hard-decision Decoding

In the case of hard-decision decoding, the demodulator provides a symbol-by-symbol
estimate of the codeword, and, because the presumption is that these decisions are in-
dependent, the probability of block error for linear codes may be easily expressed in
terms of the channel symbol error probability P,. Our treatment in Chapter 3 provides
extensive results on P, for different modulation formats as a function of signal-to-noise
ratio.

Suppose we employ an (n, k) linear block code over GF(g). We assume a bounded-
distance decoder that decodc. correctly if and only if + = [ﬁm'g—‘—‘ _] or fewer errors
occur. (The standard BCH and RS decoding procedures are bounded-distance, and the
performance of complete decoders is usually weli approximated by assuming correct
decoding ensues only when ¢ or fewer errors occur.) With such a decoder, two types
of events are possible when the number of errors exceeds t: The decoder may decode
incorrectly when the received g-ary sequence r is within ¢ units of another codeword,
or the decoder may fail to decode, causing a detected error when r is not within r units
of any codeword. We denote the respective probabiiities of these events by Picp and
Ppe. In some applications it is of little importance which event occurs. In others, where
retransmission is perfectly acceptable when failures occur, and where undetected errors
can be nearly intolerable, it is important to know the respective probabilities of the two
events,

For the present, we shall focus on the probability of correct decoding, Pcp; this is
retated to the above quantities by

I — Pcp = Pg = Picp + Ppe. (5.10.1)

(The symbol Py denotes the probability of not decoding a block correctly but shouid not
be understood necessarily as the probability of a decoding error,)

Because the code is assumed linear, and we suppose the channel is uniform from
the input (UFI), so that the symbol error probability is invariant to which code symbol
is sent,? it is no loss of generality to assume that the codeword of 0's is selected for
transmission. We then have

1 — Pep=Pg = P(wr(e) > 1)
(5.10.2)

Z": Cl P — P)™,

i=i+l

#Even if this is not the case, as say in QAM, use of the worst-case erros probability will preserve an
upper bound in the calculation,
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Equation (5.10.2) and the relevant expression for P, provide the means to calculate perfor-
mance of any block code in conjunction with any hard-decision demodulation technique.
Often, one finds presentations of Pg versus P;, leaving the modulation and channe] as-
pects outside the study. In many cases, however, we are interested in comparing the
performance of the system with coding against one without, when the same moduia-
tion/demodulation strategy and channel setting are 'in force, and when the information
throughput is held fixed. Normally, then, we seek Pr versus available signal-to-noise
ratio, £, /Nyg.

To compute P; we must first determine E;/Ny, the code symbol energy-to-noise
density ratio. This is in tumn related to E,/Ng, our standard measure of comparison, by

E, K Ep
No ~m {log, q) Ny’ (5.10.3)_
since the energy available per codeword transmission is & (log, q)E, joules, and this is
distributed among n code symbols.

To illustrate the caiculations and introduce performance comparisons, we consider
the binary (23, 12) Golay code. This code serves as a useful vehicle because it yields
impressive coding performance, and because of the code’s perfect nature, all error patterns
with four or more errors in 23 bits produce incorrect decodings. Thus, a complete
decoder and a bounded-distance decoder are equivalent here. We assume binary antipodal
signaling, say with PSK, and binary demodulator quantization. The relevant P, relation

is given by
2E N2 24E,\'?
= = . 5104
Fr=0 (( No ) 0 (23N0) ( )

In Figure 5.10.1 we present results for P = 1 — Pqp versus Ey/No, and alongside
compare the message error probability for transmission of an uncoded 12-bit message
over the same channel employing the same E,/Ny;. We find that the coded system
achieves a certain small message error probability, say 107, with about 2.0 dB less
Ep/No than is required for the uncoded system. This gain is achieved at the expense
of increased bandwidth (by %) and with some additional complexity. Nonetheless,
the savings in energy is extremely beneficial on certain power-limited channels. In
Exercise 5.10.1, a similar analysis is invited for the (7,4) code, where the energy saving
is not as large.

To compare different block coding techniques and their ability to deliver messages
that are many blocklengths long, it is traditional to compute the delivered symbol error
probability observed at the output of the decoder. We shall denote this Quantity by P,.
This quantity may be calculated for linear block codes used on uniform-from-the-input
channels by again assuming that the all-zeros word is selected for transmission. Given
that i > 1 errors occur, the decoder will fail to decode correctly, but when this occurs,
only some (typically a small fraction) of the delivered message symbols are erroneous.
In general, the exact calculation of the output error probability is tedious and requires
information equivalent to the entire standard array for the code, as in Section 5.2. Given
this array, it is possible to count how many errors are produced for each error pattern,?’

PNote that the number of errors produced upon decoding is just wr(e — &),
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Figure 5.10.1 Probability of block error, Golay (23, 12) code.

weight these by the probability of the error pattern occurence, and sum. Such ah analysis
can also incorporate the distinction between decoding failures and incorrect decodings,
if desired.

Generally this information is not available, or the computation would be pro-
hibitively difficult, and an accurate approximation is the following. Given j errors, if the
decoder can decode, it will produce a code vector within 1 units of the received vector r.
The triangle inequrlity states that the Hamming distance between the transmitted word
and the recovered codeword is less than or equal j +r. (This is pessimistic in including
decoding “failures,” or detected error events, into the post-decoding eror probability
calculation.) For example, with the two-error-correcting (15, 7) code, if four errors oc-
cur, we can be assured that no more than 6 of the 1S code symbols are incorrect at the
decoder output. Over selection of codewords for transmission and error patterns, there
is no preference for location of symbol errors after decoding, and we can thus bound the
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output symbol error probability by

n 1 ‘ )
Po< Yy CIPjil - Py, (5.10.5)

j=1'+|

Another frequent approximation, good for small P;, is that decoding errors are always
to nearest-neighbor vectors, leaving d,,;, erroneous symbols in n positions, hence P, ~
{dmin/n) Pg. In the simplest view, we have the upper-bound

P, < Pg, (5.10.6)

since a block error produces message errors in at most all £ symbol positions.

In Figure 5.10.2 we present resulis on P, obtained using (5.10.5) for several binary
codes with rate near ;‘ and varving blocklengths. The codes are by now familiar: the
(7.4) Hamming code, a (15, 7) BCH code, the (23, 12) Golay code, and a (127, 64)
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Figure 5.10.2 Probability of output error for block codes.

Sec. 5.10 Performance Evaluation for Linear Block Codes 513



10-error-correcting BCH code. Again, binary antipodal signaling and binary demodulator
quantization are assumed. We obsesve the benefits of increased blocklength, at least in
small error probability regions of the plot.

Communication engineers refer to the savings in E;/Ng over unceded signaling
as coding gain. We shall soon discuss the quantity known as asymptotic coding gain,
which may be rather different from the “real” coding gain. Coding gain must always
be specified at some operating error probability, typically 10~°, and is expressed in
decibels. The (23, 12) code, for example, from Figure 5.10.2, attains a coding gain of
20 dB at P, = 107, Such coding gain translates into an effective improvement in
the communication link—allowing either a reduction of transmitter power or antenna
gain or an increase in receiver noise level or an increase in the bit rate for a given
power.

The crossover of coded and uncoded performance curves in Figure 5.10.2 is per-
haps surprising, but rather common with coding.*® indicating we should not always expect
cading to provide a panacea for improving error performance. The reason is simply that
as £, /Ny decreases, so does the code symbol £;/N, value, and P; rapidly increases.
This latter degradation is more than encugh to offset the error-comrecting capability of
the code at some point, and the coded system can perform worse than an uncoded
one. Generally, the more powerful the code, the lower the SNR at which crossover
occurs. Incidentally, this effect is not some artifact of the symbol error probability ap-
proximations just made and is not related to bounded-distance decoding assumptions.
The same effect is observed in comparing message error probabilities for coded and
uncoded systems, as, for example, in the case of the Golay code and 12-bit messages
(Figure 5.10.1). We will also encounter this effect when soft-decision decoding is ana-
Tyzed.

Another observation about coded system performance is that as the block length n
increases the performance curves become steeper, essentially leading to an all-or-nothing
behavior. This can be attributed to the law-of-large numbers: A block code is capable
of correcting a certain number of errors, ¢, out of n symbols. As n becomes large, with
high probability that the number of errors is either less than ¢ (when channel quality is
such that P; < 1/n), or the actual number of errors exceeds + when the opposite is true.
The sharpness of this transition from good to bad thus becomes more precipitous for the
longer codes. Information-theoretic arguments are similarly very sharp; decoding either
succeeds with very high probability if the rate is below a critical value or fails in the
opposite case.

The effect of varying code rate is demonstrated for binary cod’ng and antipodal
signaling in Figure 5.10.3. Here we show the performance of different BCH codes w:th
block length n = 127, and we show performance for codes with rates of nearly §, 3,
and 3. Although Ry analysis of Chapter 4 pointed to a slight preference for low rate
codes in this case, the performance with n = 127 BCH codes is relatively insensitive
to R.

Low-rate coding is not always to be preferred (also forecast in Chapter 4). we
apply the same analysis to the case of binary FSK (orthogonal) modulation with non-
coherent detection and binary quantization, we obtain the results of Figure 5.104.

¥This assumes the information rate is held fixed in the comparison.
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Figure 5.10.3 Probability of output error for block codes, anfipodal modula-
tion, coherent detection.

Notice that all curves are shifted 1o the right relative to those for antipodal signaling; this
is to be expected based on the relative energy efficiencies in obtaining a given P; of the
coherent and orthogonal signal sets, in addition to the degradation due to noncoherent
detection. Moreover, low-rate coding is inferior here; the qualitative explanation is that
as code rate drops, the available £, /Ny is spread more thinly among code symbols, so
that E/Nj is relatively small. In the small SNR regime, noncoherent detection degrades
relatively quickly, and even though low-rate codes achiéve larger Hamming distance, the
increased channel error probability P; more than offsets this gain.

Example 536 Analysis of RS (15,9) Code over GF(16) with Orthogonal Signaling

The (15,9) RS code has dmin = 7, s0 that with hard decisions, the decoder is capable
of repairing three or fewer errors. For a modulation/demodulation technique, we adopt
16-ary orthogonal modulation and noncoherent detection. The symbol error probability for
this situation is presented in Section 3.4, and in particular Ps for uncoded transmission as
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Figure 5.10.4 Probability of block error, BCH codes, orthogonal modulation,
noncoherent detection.

a function of E,/Np is given in Figure 3.4.5. To properly incorporate the influence of
coding, assuming we keep the information throughput fixed with and without coding, we
must realize that the effective E;/Ng per code symbol is

E 9 Ep
=== = 10,
No ]5(0g2l6)(N0) (5.10.7
The probability of not correctly decoding is given by
15 ' ’
1~ Pep = ZC,—”P;(I - Py)3- (5.10.8)
: i=4

For small values of Py, (5.10.8) can be well approximated by the first term in the sum,
yielding

1 = PCDeoding  1365P}. (5.10.9a)
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With no coding, but the same modulation/detection strategy, the probability of not delivering
a correct 9-symbol message is

1 — PCDno coding ™ 9Ps. (5.10.9b)

where P; is related to Ep/Ng as in Chapter 3. Note the values of P, differ in these two
expressions due to the power sharing as in (5.10.3).

Probability of incorrect decoding

Unless the code is perfect, and the attempted error correction radius is the maximum,
t, 1 ~ Pcp # Picp- It is often important to ascertain the actual probability of incorrect
decoding, from which Ppg can be determined if necessary. Let us assume that the
decoder performs bounded-distance decoding out to a radius 1), < ¢, i.e., a decoding is
only produced if the received vector r is within f; Hamming units of some codeword. If
the decoder attempts no error correction, but only seeks to detect errors, we set 1; = 0.
The incorrect decoding event is just that event where the error pattern moves the received
vector inside another decoding sphere of radius #; about some incorrect codeword.

In the case of £, = 0, knowledge of the weight spectrum {A,, w = dmin, ..., 1)},
of the code provides an exact assessment of Picp, using

Pie=Pco= ) API(1—P)y (5.10.10)
i =dmin

For large codes, it is usually convenient to employ the MacWilliams relation (Section 5.2)
and the weight spectrum of the smaller dual code to compute the required weight spec-
trum,

In the general case of emror correction and detection, with reference to Figure 5.10.5,
it is easy to develop a bound on Picp by realizing that incorrect decoding cannot occur
uniess dmin — £ or more channel errors are present. Consequently,

n
Pecp< ). CrPi(1- P (5.10.11)
i=dmin—N

This is typicaily rather pessimistic. If necessary, exact results on Picp are available
using methodology developed in the text of Michelson and Levesque [6]. By lengthy

"o

Decoding Regions

Figure 5.10.5 Decoding regions for
correction of up to 1| errors. Interstitial
space constitutes detected errors.
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combinatoric arguments it is shown there, for g > 2, that

n n i+s r . ) .
P[CD = Z A;P(l) Z Z Z: Cl!—s+mcz::"+_;_2mc::;-l . .(q — 2)k—l+_\'—2m(q _ 1)m
i=dmin s=0 k=i—5 m=r,
(5.10.12)
In this expression, the summation limits r; and r; are
ry =max{(0,k —1i) (5.10.13a)
and
k-
ry = [_’—“J (5.10.13b)
2
Also,
P i P n—i
o= (1) (-2
qg-—1 q—1
ts the probability of a specific error pattern of weight i.
In the binary code case, the expression simplifies to
n H t+5 ,
Picp = Z A;P(i)z E ChieeonClitieny (5.10.13¢)
i=dmin 5220 k=i—sx

Example 5.36 Continved

Picp as a function of E,/Ny is calculated for 1, = 3 using (5.10.12) and the known weight
spectrum of the (15,9) RS code and is presented in Figure 5.10.6. 16-ary orthogonal
modulation with noncoherent detection is assumed. Comparison of this result with that of
Figure 5.104 reveals that the large majority of cases where decoding is not correct are
attributable to decoding failures, and not to incorrect decodings. This is attributable in large
part to the relatively small volume occupied by the 16° 15-dimensional decoeding regions of
radius 3; specifically, these regions occupy less than 10% of the total volume.

We can also see the benefit of being less ambitious in error correction. If instead
we set the correction radius to ry = 2, Picp drops sharply, but at the expense of a smaller
probabilily of correct decoding.

5.10.2 Soft-decision (ML) Decoding, AWGN Channel

True ML decoding of block codes for the AWGN channel remains relatively uncommon
and currently is only feasible for “small” todes. Wolf [47] has provided a general trellis
decoding procedure for organizing ML decoding for general (n, k) linear codes, for
which the trellis leagth is n levels and the maximum breadth is ¢* or g" %, whichever
is smatler. Recently, van Tilborg et al. [66} have shown branch-and-bound precedures
for decoding Hamming codes in ML fashion. The case of binary (n, n — 1) single-parity
check codes is a case wherein ML decoding is relatively straightforward and is known
as Wagner decoding [67]. The decoder first checks the parity of the hard-decision vector
produced by the demodulator, and if the parity check equation is satisfied, we have the
ML codeword. If the parity check fails, then the decoder locates the single position of the
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Figure 5.10.6 Probability of incorrect decoding for RS (15, 11) code versus
symbol error probability.

codeword with smallest symbol likelihood and “flips” the binary decision to the second-
best choice. This restores correct parity and gives the ML choice over all codewords.

The ML decoding problem is a member of a class of computationaily tough prob-
lems, known as NP-complete problems, for which no algorithm for solving the problem
having solution time a polynomial function of the problem size has yet been found. Com-
plexity theorists hold such a polyrnomial-time algorithm is unlikely, given the concerted
effort directed at some of these problems, for example, the traveling salesman problem,
the knapsack problem, etc. Thus, efficient, true ML algorithms for large block cedes
seem prohibitively difficult. (This is not only a matter for soft-decision decoding; even
the problem of ML decoding on a hard-decision channel is “difficult” in the same sense.)

The algorithms of Chase [49] and the trellis decoding algorithm of Wolf (47] pro-
vide, in principle, ways to approximate ML decoding. Certainly near-ML decoders will
become more common as device advances continue and as algorithm research progresses.
In any case, the potential coding performance of ML decoding is of interest as a measure
of goodness for suboptimal approaches.

Let us once again assume the all-0’s codeword is transmitted via g-ary modulation
and demodulation, but that the decoder is presented with full information sufficient to
compute codeword likelihoods A(r, x;). Of course, the nature of this codeword metric
depends on the channel, the modulation set used, and the form of demodulation.

_In this decoding regime, we are attempting complete decoding, by definition, and
we let Pg denote the probability of decoding error. This is the probability that some
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nonzero codeword has greater metric than the all-0’s codeword, but, in general, this is
too difficult to evaluate exactly. However, a simple union bound generally provides
sufficient accuracy. Specifically, we upper-bound the probability of decoding error by
the sum of two-codeword error probabilities:

Pe < Y P(A(X) > AR X)) = 3 Plxo = X)), (5.10.14)
X #% X #Xo

This bound only requires the ability to compute the probability of confusing two code-
words with the given modulator/channel/demodulator setup and the spectrum of code-
word distances; yet it is known to be asymptotically correct for increasing SNR. We shall
illustrate this bounding procedure with the Golay (23, 12) code.

Example 5.37 Performance for ML Decoding of the (23, 12) Code with Antipodal Signaling
The probability of decoding a weight-i codeword ipstead of the all-0’s word, assuming
antipodal transmission on the AWGN channel, is given by

P(weight i error) = Q((i2Es/Ng)'/2).

since for every unit of Hamnung distance, the squared Euclidean distance between coded
signals increases by 4£;. The union bound on Fg then becomes

n
P < Z Ai Q(G2E/N)' ™). (5.10.15)

i=dmn

The weight spectrum of the code (Figure 5.4.3) tells that 253 vectors are at distance 7, 506
are at distance 8, and sc on. Figure 5.10.1 presents the union upper-bound for ML decoding
on the Gaussian channel versus E,/Np; again recall that the symbol energy-to-noise density

ratio is given by
E 12\ E)
—={=1]—. A0
No (23) N (5.10.16)
Also shown on this plot are the performance of hard-decision decuoding given earlier, and
it may be seen that soft-decision decoding buys about 2 dB in energy efficiency over the
range of the plot. Chase [49] shows ihat Algorithm I performs within (.2 dB of the ML
detector in this case.

As the signal-to-noise ratio increases, it may be seen that (5.10.15) is increasingly
dominated by the first term of the sum, or by the minimum Hamming distance decoding
possibilities. (This will frequently carry over to other modulation/demodulation options
and to other codes.) Thus we often say that the asymptotic performance of a code is
given by

i 2 \ v
Pe~ Ay, Q (( N ) ) = A, Q ((%—”(dminm) ) . (5.10.17a)
0

Comparing this performance with that of uncoded antipodal signaling of a k-bit message,

for which
2E,\ '
PEry iy = K0 ((—-’5) ) (5.10.17b)
No

at high SNR, we see that the relative energy efficiency governed by the Q-function
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argument is dminR. This quantity, often converted to decibels, is frequently dubbed the
asympiotic coding gain (ACG), for it represents the relative energy efficiency at large
SNR, where multiplier coefficients are relatively insignificant and where the first term of
the union bound becomes an accurate estimator of Pr. More specnﬁcally, if we replace
the Q-functions in (5.10.17a) by the exponential bound (1/2)e~* ’12, we find that

lim log, Pr = —ACG(Ep/No), (5.10.18a)

Ep/No— 00
whereas the corresponding expression for uncoded antipodal transmission is

lim log, Pg ~(Ep/Np). (5.10.18b)

Ep/No—>00 o codng "
Thus, the ACG parameter does asymptotically predict performance correctly. Graphi-
cally, the interpretation is that on a logarithmic presentation, at sufficiently small Pg,
the performance curve s shifted from that of antipedal signaling by 10log,, ACG. The
convenient aspect of ACG is that only the minimum Hamming distance of the code and
_the code rate are required for its calculation.

Example 538 Asymptotic Coding Gain for Several R = 1/2 Binary Codes

Consider the following binary codes: the (8, 4) extended Hamming code, with din = 4;
3 (16, 8) self-dual code with dp,;, = 6: the extended Golay (24, 12) code with dyp, = 8:
and the (48, 24) extended quadratic residue code, with diyin = 12, [5]. Assuming maximum
likelihood decoding and antipodal transmission, the ACG’s of these codes are, respectively,
3, 4.8, 6, and 7.6 decibels,

This progression may suggest that arbitrarily large coding gains are possible by further
increase in block length, but, of course, information-theoretic limits disallow these to be
“real” gains. For example, when coding using two signal-space dimensions per bit on
the AWGN channel, channel capacity calculations of Chapter 2 show that the theoretical
minimum SNR for “arbitrarily-reliable communication is E»/Ng = 1, or 0 dB. We must
interpret ACG as the increase in energy efficiency, relative to that of uncoded transmission,
for vanishingly small error probability, Of course, the performance of uncoded transmission
is increasingly inefficient relative to the channel capacity limit as we move to smaller error
prebabilities. This allows large ACGs 1o be consistent with the information theory dictums
of Chapter 2. We should also observe that for typical error probability levels, say 105,
the ACG usually is slightly optimistic in its assessment of true coding gain: this is due to
the fact that the ACG formulation overlooks the multlpher attached 10 the many-nearest-
neighbor situation, and this may not become truly insignificant until extremely small error
probabilities are studied.

Bhargava [68] has plotted the performance of an ML decoder for these codes, using
the union bound above. Each of the codes is a so-called extremal self-dual code, for which
the weight spectrum is known. As a point of interest, the coding gain for the (48, 24) code,
at a decoded bit error probability of P, = 107>, is only 4.8 dB, quite short of the 7.6 dB
above. At P, = 107¥ the calculated gain is 5.8 dB. Reference [69] includes related material
on soft-decoding these codes.

On the AWGN eneigy efficiency of soft versus hard decoding

We have observed in the case of the Golay code approximately a 2-dB gain in energy
efficiency simply by employing soft (unquantized) decoding rather than algebraic decod-
g on binary decisions. This result corroborates the earlier Ry and channel capacity
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theory attached to this channel setting. Another perspective is provided l?y comparing
the asymptotic ceding gain parameters for the case of soft and hard decoding.
For hard-decision decoding, we can approximate (5.10.2) for small P, by

Pg,,, =C" Pt (5.10.19)

+1% 5

Recalling that for antipodal signaling P, = QI(2E,/Np)'”?] = QI(R2E,/Np)'"?], and
using Q(x) < (1/2)e~" /2, we arrive at

Clbi ~(Ew/NRG+)
Pe,, ~ “—2:1 e~ (Es/NOIRU+D] (5.10.20)
The approximate performance for soft-decision-decoding is obtained by use of the same
Q-function approximation in (5.10.17a), yielding

PEM[. 2 (A;mm ) e_(EbeO)(dmlnR)‘ (51021)
Comparison of this expression with that of (5.10.20) reveals an efficiency ratio of
(dminR)
ACG = —— > 2 5.10.22
C+DR ( )

as dp;, becomes large, independent of code rate R, Thus, one can argue that for high
SNR, and for reasonably large-distance binary codes, on the antipodal AWGN channel,
hard-decision decoding cosis roughly 3 dB in energy efficiency. Caution is again in
order: Typical experience tends to give a slightly smaller penalty, due to the importance
of the nonexponential terms, namely, the error multiplier coefficient and the fact that
Amin < 20t + D).

5.10.3 Hard-decision Decoding, Rayleigh Channel

[n Chapter 3 we saw that error probability for uncoded transmission on the Rayleigh
channel exhibits a weak inverse dependence on E,/Ny, regardless of modulation format.
However, we demonstrated in Chapter 4 that the channel capacity of the interleaved
Rayleigh channel is only marginally less than that of the nonfading channel. Block codes
are indeed able in many cases to improve the situation; however, careless application of
coding techniques may produce poor results. We first consider what not to do!
Consider a slowly fading channel and use of an (n. k) code with block length such
that the fading process may be viewed as fixed over a codeword. In this case, just
as in Chapter 3, we may determine the probability of not correcily decoding, Pr, by
first evaluating the error probability conditioned upon a specitic fading strength and then
averaging this with respect to the fading random variable. In effect, we may think of
moving the operating point up and down one of the Pr curves of the previous section,
weighting the results by the probability of a given level of SNR. In the case of a code
whose performance curve is steep, we essentially have that the error probability is 1 if the
SNR is below a certain threshold and that Py = 0 if SNR is above this threshoid. Thus,
Pg is the probability that the SNR for the given block is below a critical number. For the
Rayleigh p.d.f., this probability depends inversely on mean £,/Ny, and consequently we
have not significantly improved the situation at all—a 10-dB increase in SNR is required
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to effect a drop in average P¢ by a factor of 10, although we may have lowered the
absolute error probability some.

Interleaving, as discussed in Section 5.9, is a principal remedy for this behavior.
Rather than allow one bad fading event to cause decoding error, interleaving scrambles
the transmission of codewords and then reshuffies following demodulation so that channel
actions (fading variables in particular) are roughly independent and multiple independent
fading events are required to cause decoding error. This is a less probable event. Of
course, interleaver delay and/or memory limitations may preclude attainment of inde-
pendent samples; the pessibilities depend on symbol rate, fading rate, block length, and
delay constraints.

With perfect interleaving assumed, performance analysis is relatively simple. In the
hard-decision case, we first determine P, the symbol error probability on the Rayleigh
channel, as performed in Chapter 3. Remember that the effective energy per code
symbol is reduced by an amount proportional to code rate R. The resulting symbol error
probability then becomes an input to the Pg calculation performed in Section 5.10.1,
since the channel is now memoryless.

Example 5.39 (23, 12) Code on Interieaved Rayleigh Channel

Suppose for illustration we elect binary coding with the Golay code and transmit symbols
with binary DPSK so that differentially coherent demodulation can be used. (Again, there is
reluctance toward coherent demodulation on fading channeis due to problems of maintaining
absolute carrier phase synchronization.) We assume no other side information is given the
decoder. With Ej,/Ng denoting the average SNR available per uncoded information bit, we
realize that E;/Ng = (12/23)E,/Ng. Furthermore, the symbol error probability is

1
T 24 2E./Ny

as derived in Section 3.6. The Golay decoder will not decode corredtly if four or more
errors occur in 23 positions. Thus,

(5.1023)

5

23
Pe =Y CPPIt - pyP. (5.10.24a)
i=4
For E,/No reasonably large, where we are interested in the performance, (5.10.24a) is
dominated by the first term, and we have

4
23 1

~en (B B »

Fer G [('2) ZEh/Nﬂ] = T469(E/No) ™ (5.10.24b)

This asymptotic expression is shown in Figure 5.10.7, along with the result for uncoded
DPSK transmission. Notice very different results here from those obtained for the AWGN
environment. Namely, the effective energy savings is very large (2040 dB) at typical
performance levels of interest, and, furthermore, the gain grows as we seek more reliable
operation. Thus, the concept of asymptotic coding gain is meaningless in this case. In
graphical terms, the slope of the Pg curve on a log—log plot has been increased to —4,
instead of —1, by virtue of coding and interleaving. In general, the value of the slope for
hard-decision decoding is —(t + 1), where ¢ is the guaranteed error-correcling power.

A related topic is that of diversity transmission, a classic method of improving
performance on fading channels. In ath-order diversity transmission, we send n repli-
cas of a message symbol through separate channels (time, frequency, or space diversity
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Figure 5.10.7 Emor probability for (23, 12) code on Rayleigh channel.

are common), trusting that the varicus channels exhibit independent behavior. In time
or frequency diversity, an energy sharing among transmissions is implied, again meaning
E¢/Nag = (1/n)En/Ng. We should see thar diversity wransmission is little more than rep-
etition coding, with rate R = I/r message symbols per code symbol. To put this in the
present hard-decision decoding context, let # be odd and use majority voting in the decoder
as an error-correction policy. The decoder witl err if (n + 1)/2 or more errors occur, Thus,
=Ch P (5.10.25)

Eﬂ IMCTity

Substituting for P; a relation such as (5.10.23) shows that a performance curve having
slope —(n + 1}/2, roughly half the diversity order, is attainable {this again is equivalent
10 | {dmin — 1}/2} for this repetition code). However, the penalty for this improvement is
a drop in system throughput to }/a times the uncoded value, Error-control coding is now
understood as the way to more efficiently achieve implicit diversity protection against fading
and thus avoid this drastic drop in throughput.®'

5.10.4 Soft-decision Decoding, Rayieigh Channel

Though soft-decision decoding of block codes is more difficult, it offers even greater
potential for coded systems on fading channels. In soft-decision decoding the analog
demodulator outputs for each symbol are supplied to the decoder for further processing;

' On the 1opic of diversity, we should note that there are “soft” analogs of the voling scheme just analyzed,

going under the name of diversity combiners.
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in addition, “side information” in the form of channel gain may be supplied, although
this is somewhat more problematic.

It is crucial that interleaving be used, at least with the standard “random™ error
correcting codes, to effectively make the channel memoryless. Otherwise, on siow fading
channels, we suffer the effect mentioned in Section 5.9—correlated fading across an entire
code biock overwhelms the ability of the decoder to locate the comect codeword with
high probability. With interleaving, the deinterleaver must store the analog information
attached to symbols, and possibly side information if available. »

To illustrate the analysis of this application, let us again consider the use of an
(n, k) code, with binary PSK modulation and coherent detection. (Coherent detection is
admittedly somewhat questionable on fading channels.) After interleaving to adequate
depth, related to the correlation time of the channel gain process, binary symbols are
sent and received with energy a?E;, where a, is the channel gain attached to the nth
symbol in the channel time index sequence. By assumption, these are Rayleigh random
variables.

Assuming that the demodulator is provided perfect knowledge about a,, the max-
imum likelihood decoding rule is

n—I|
max’l"mlze}l;[) Hritxij, a;) (5.10.26)

Interleaving has the effect of giving a memoryless structure to the likelihood function,
and conditioned upon a given code symbol and fading amplitude, the required p.d.f. is
Just a Gaussian form with mean a;x;; E ,'ﬂ and variance No/2. Maximizing the logarithm

instead shows that the rule becomes
n—1
minimize Y (r; - a;x;; E)P)? (5.10.27)
X, j=0

This can be interpreted geometrically as “find the closest codeword to 1 dfter correction
by the proper signal strength in every coordinate.”

If side information is not available, but interleaving is still utilized, the proper
symbol metric is

log f(r,|xi;) = log [] f("jlxu)f(d)da] , (5.10.28)

which can be evaluated “by parts,” leading to a slightly different metric from above.

Efficient soft-decision decoding could be accomplished by a Chase algorithm, for
example, avoiding the need for exhaustive evaluation of the likelihood of all 4096 code-
words. This, however, would have to be interpreted as “near ML decoding.”

Performance analysis for ML decoding on this channel follows a union bounding
procedure, for which we need the two-codeword probability of error, averaged over the
fading distribution. Consider two codewords Xo and x; that differ in w positions within
the block. With perfect side information and antipodal signaling, the two codeword error
probability, conditioned upon a certain fading sequence a, is

P {xo — x;1a} = Q[(dz /2Ne)'7?] (5.10.29)
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where df = (aj + --- + a2)(4E,) is the Euclidean distance between code sequences,
modified by the channel gain in a given position, Note that only w positions contribute
to the total Euclidean distance. Substituting this distance expression into (5.10.29) and
using an exponential bound on the Q-function gives

| 2
P %o — xila] < 5 Ee-u. 2£:/No (5.10.30)
To remove conditioning on the fading amplitude, we assume the fading variables are
independent Rayleigh variates. Averaging of (5.10.30) then leaves the upper bound

p<i b
_2(”%)“-

showing that the probability of confusing two sequences having distance w is inversely
proportional to the wth power of SNR, also meaning that effectively we have achieved
wth-order diversity when sequences differ in this many positions.

The final upper bound on codeword error probability then uses the weight spectrum
of the code in a union bound:

(5.10.31)

| & Au I Aag,, ,
Py < 5; A ~ 3 (RT"I‘!)J (5.10.32)

assuming dominance at high SNR by the minimum distance events.

In summary. the analysis points to a high SNR behavior for soft-decision decoding
that diminishes as (E,/Ng)*, and we thereby say the effective diversity order of the
block coding strategy is equivalent to the minimum distance of the code. Recall for hard-
decision decoding the effective diversity order was roughly half as large, ¢+ 1. Although
we developed the result for the binary codes, this idea carries over to nonbinary codes
on the Rayleigh channel, provided full interleaving is attained. Soft-decision decoding
for other cases is in general much more difficult however.

5.11 POWER SPECTRUM OF CONVENTIONAL BLOCK CODED
MODULATION

Our focus thus far in this chapter has been on the error-control aspects of block codes.
One penalty attached to potential improvement to communication efficiency is hardware
c(;mplexity. Another is spectrum occupancy, although as we see in the next section, coded
‘transmission does not necessarily increase bandwidth relative to an uncoded transmission.
In the traditional case of linear (n, k) block codes, the bandwidth is normally expanded,
however, by virtue of the greater number of channel symbols sent per unit time, assuming
fixed information rate.

Block coding techniques have actually been used to shape the power spectrum in
some applications by introducing statistical dependencies into the code stream. This goes
under the name of line coding where spectral shaping to accommodate nonideal channel
response is important. A primary example is magnetic and optical recording, where
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both shert and long runs of consecutive symbols are forbidden, the former to enhance
readability of the signal and the latter to preserve symbol synchronization. Most of
these coding approaches are nonlinear block codes, and in fact certain rules are put inio
play across codeword boundaries to ensure that the concatenation of codewords meets
the desired constraints. Compact disc recordings use such a procedure, cailed eight-to-
fourteen (EFM) modulation [32]). This application, while an important one in certain
applications, is not the one we have in mind here.

We consider then the case of a linear code over GF(g), combined with g-ary
modulation. As a baseline for comparison, we consider as an altlemative an uncoded
scheme that maps k g-ary symbols directly into modulator signals over a time interval
of kT, seconds. We assume that the message symbols are equiprobable and statistically
independent, and the resulting power spectrum can then be computed using the techniques
of Chapter 3. For memoryless modulation with independent symbols, we found that the
power spectrum was essentially a weighted sum of magnitude-squared Fourier transforms
of the various possible signals, and in the special case of linear modulation, wherein the
various symbols are complex scalar multiples of a common pulse shape, for example,
M -PSK or QAM, we found that the power spectrum possessed the shape of the magnitude
squared of the pulse shape’s Fourier transform,

An appealing way to model the power spectrum for coded modulation is the fol-
lowing: treat the block encoder output sequence as another equiprobable, independent,
q-ary sequence, with transmission rate increased by a factor n/k relative to the message
symbol rate. Under this approximation, the coded signal power spectrum has exactly
the same shape as the uncoded signal would, except the frequency axis is scaled by the
coding rate R. In other words, this view would hold that a R = § coded binary PSK
signal (with rectangular pulse shape) would have a sin’(7 fT,/2}/(r f Ts/2)? spectral
shape, with first nulls 2R, removed from the center frequency, rather than R, hertz. As
another case, use of a (31, 27) RS code, in conjunction with 32-ary FSK, would produce
a spectrum identical to that of uncoded FSK, except 31/27 wider.

Clearly, there is some merit in the thinking. A listing of all codewords in a g-ary
linear code will find all code symbols used equally often; thus, the equiprobable approxi-
mation is valid assuming equiprobable selection of codewords and a time randomization.
The independence assumption is more problematic, since the encoder obviously places
certain dependencies on the symbols of a codeword—not all sequences are possible at
the encoder output. It turns out, however, that the power spectrum is dependent only
on the discrete-time autocorrelation function of the coded symbol stream, and for typical
codes, this autocorrelation is “white,” that is, successive symbols are uncorrelated when
mapped to a symmetric signal constellation. Thus, although not strictly independent, it
is usually the case that the symbol statistics yield a power spectrum consistent with the
preceding approximation. We shall refer to this as spectral equivalence.

More specifically, Wilson and Lakshman [70] have shown that if a linear code has a
generator matrix G whose n columins are pairwise linearly independent (or if all columns
are distinct to within a scalar factor), then when mapped to a symmetric signal set, the
coded signal’s power spectrum is exactly that of uncoded modulation, except frequency-
siretched by the code expansion factor i/R. This property of generator matrices seems
routinely satisfied, a corollary of good error control properties, and in fact the cases
where it fails to occur are low-rate codes and repetition codes.
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Example 5.39 Power Spectrum of Twoe (15, 5) Codes

Suppese we employ a (15, 5) triple-error correcting BCH in conjunction with PSK modu-
lation, The generator matrix (in nonsystematic form) is, following (5.4.26),

P 1+t 0 1 1 0 0 1 0 1 0 0 0 O
o+ 1 1 0 %t t 0 01 0 1 0 D O
G=j0 0 I 1 1 0 1 1 ¢ 0 1 0 1 0 O (5.11.1)
o ¢ 0 1 11 ¢ 11 0 0 0O 1 0
¢ 0o 0 01 1 1 0 1V 1 0 0 1 0 1

Notice that no two columns of the generator matrix sum to the zero vector; hence the
sufficient condition for spectral equivalence is satisfied. The power spectrum would be
exactly the same as that of uncoded PSK, except three times wider.

Consider, on the other hand, the use of a (15, 5) repetition code produced by

I 00 0 0 1 0 0 0 0 I 0 ¢ 0 O
61 600 ¢ 1 0006 01 0 0 0
G=({0 0 | 0 0 0 0 1 0 0 0 O t 0 O (5.11.2)
0O 0 01 0 0O 0 O0 11 0 00O 0 I O
0O 0 ¢ 0 1 0 0C 0 0 1t 0 0 0 0 1

Here there exist obvious repetitions of columns, and spectral equivalence does not follow.
It happens that, in rough terms, the bandwidth expansion by three does occur; however, the
fine details of the power spectrum are different with this code.

As a corollary remark, it has also been shown [70] that, when spectral equivalence
does not hold, rearrangement of the columns of G does alter the spectrum. (The error control
properties remain unaffected, however.)

5.12 BLOCK CODING FOR BAND-LIMITED CHANNELS

Thus far we have in essence been treating block coding from a somewhat classical per-
spective; that is, the block encoder appends n — k additional symbols from the code
alphabet to the information vector. The modulator/demodulator forms a discrete-time
channel, perhaps with soft-quantized outputs, and the decoder attempts to infer the infor-
mation symbols from the » demodulator outputs. In such applications, the bandwidth of
the signal produced by the modulator is expanded by the ratio 1/R, relative to a system
using the same modulator without coding.

In the modern era, bandwidth has become a steadily more precious resource to
the communication engineer. For this reason, multilevel modulation schemes such as
M-PSK and M-QAM were developed. As seen in Chapter 3, these invariably trade
spectral bandwidth (dimensionality per bit) for energy efficiency. We might ask whether
coding could be combined with such modulation methods to preserve good spectral
efficiency, avoiding the traditional bandwidth expansion associated with coding and at
the same time increasing the energy efficiency. We know from principles of information
theory that such bandwidth-efficient coding schemes do exist, and indeed the potential
gains 1o be had over uncoded transmission are just as great in the regime of several bps

per hertz spectral efficiency as they are in the more traditional regime where the spectral
efficiency is lower.
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The first major step in achieving this promise was made in the realm of trellis coding
and will be discussed in Chapter 6. Subsequently, similar ideas permeated block coding
techniques, and we shall present them here. The essential change of perspective is that
we try to find sequences of signal space coefficients that are distant in Euclidean distance
terms, rather than try to find codes with good Hamming distance properties, and then
map these onto a bandwidth-efficient modulation technique. Typical of the nonpreferred
design is that shown in Figure 5.12.1, where we begin with, say, 8-PSK modulation, a
relatively bandwidth-efficient transmission scheme. To improve the energy efficiency,
we might precode the message with a (7, 5) RS code over GF(8), which is capable of
single-error correction of hard-decision demodulator outputs. The dimensionality per
information bit of this scheme is 14 dimensions/(5 --3) = % dimensions/bit (really 7
complex dimensions/15 bits). Uncoded 8-PSK would have a dimensionality of 1 complex
dimension per 3 bits, so we have sacrificed bandwidth by a ratio of .

The energy per code symbol is E; = 15E,/7, and use of the theory developed in
Chapter 3 would allow us to find the symbol error probability on the AWGN channel
for the coded technique. The decoder will correct all 0 or 1-error pattemns, and we have

1 — Pop ~ CIPX(1 - Py)°, (5.12.1)

which will show some asymptotic coding gain over uncoded 8-PSK.

We could do better if soft-decision ML decoding of the RS code was performed,
but this is rather difficult except for simple codes. A better approach is to design coded
modulation schemes to maximize the smallest signal space distance. Furthermore, by
increasing the modulator alphabet size relative to what is needed for uncoded transmis-
sion, we can avoid the bandwidth penalty of coding. We will take up this topic in
Chapter 6 under treilis codes, although the concept extends easily to block codes as well.
It is more straightforward, however, to implement ML decoding within the trellis coding
framework. Interested readers are invited to consult [71] on analysis of this particular
coding scheme.

u RS(7,5) | 3 % l 8-PSK st Figure 5.12.1 Simple means of
— e ™ combining nonbinary coding with
GF(8) [Encoder |* GF(g) odulato bandwidth-efficient modulation.

5.12.1 Muttilevel Coding

A hybrid approach that recognizes the importance of signal space distance in coding
for the AWGN channel, yet that retains simple decoding, is known as multilevel coding
[72, 73]. Essentially, the idea is that we wish to select codewords as sequences of points
from a bandwidth-efficient constellation, say 8-PSK. To maximize the vector Euclidean
distance over codewords, we can have a few positions where codewords differ by symbols
having large intersignal distance, or we can have a relatively larger number of positions
where the symbol distance is smail, say the minimum distance between points in the
constellation.

To build multilevel codes, we envision the encoder as putting constraints on the
various bit lines of an M-ary modulator. For example in 8-PSK, three modulator input
bits label a constellation point and four in the case of 16-QAM. If we adopt a labeling
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of points for 8-PSK corresponding to natural binary iabeling around the circle, then the
least significant bit labels which of two QPSK sets the signal lies within. Within these
sets of four, the second bit labels one of two sets of antipodal pairs. Finally, the most
significant bit labels which of the members of the selected set is actually transmitted.
Viewed this way, it is clear that the LSB needs relatively large error protection, due to
its small Euclidean distance to a neighbor. Resciving just the second bit is more reliable,
and the least likely bit to be in error is the MSB.

This has led to the concept of block coding each bit line with binary block codes
having common length », but varying k parameter. A simple example, due to Sayegh
{74], is shown in Figure 5.12.2, wherein we use an (n, k) = (7. 1) code on the LSB
fine, an (n, k|) = (7, 6) code on the second bit, and an (n. %2} = (7, 7} (no coding) code
on the MSB line,
If dg, represents the minimum Euclidean distance between cosets at level i in a
partitioning of the original constellation, and dy, represents the Hamming distance for
the binary code at level i, it can be shown that the minimum squared Euclidean distance
between valid sequences at the output of the modulator is

d?.

ming

= min(dy,d}, . du,d%.

where m is the number of bits at the modulator input. In the case of the example just
presented, the three codes have minimum Hamming distances of 7. 2, and 1, respectively.
The comresponding squared Euclidean distances between points are 0.585E;. 2E,, and
4E;. (These are, respectively, the squared distances in the original constellation, in
QPSK sets, and in PSK sets.) Thus, the minimum squared Euclidean distance is

d}_ = min[7(0.585E,). 2(2E,). 1(4E,)| = 4E, = 8E,,

(5.12.2)

since 14 information bits produce 7 modulator symbols.

In a maximum likelihood decoder of these codes, the asymptotic coding gain is
given by the minimum squared Euclidean distance, properly normalized in energy. Here
we use

-
Pg = NQ

(
(

NG

dming

2No

)]
)}

(5.12.3)
4K,

No

after substitution of the distance stated. This points to a 3-dB gain over antipodal
signaling (or uncoded QPSK as well), yet the technigue has the same spectral efficiency
as uncoded QPSK!

Binary (n, k) Encoders

| 1:3
Mux

8-PSK

l {7,6) i

Modulator

.

530

MSB

s(t)
Figure 5.12.2 Multilevel coded
B-PSK (after Sayegh [74]).
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Multilevel codes are actually decoded hierarchically. and the decoding is not strictly
ML, although generally the performance is asymptotically as good. (This equivalence
may not.set in until extremely small error probabilities in some cases.) First, the de-
modulator releases a sequence of » observations, appropriate for the scheme in effect.
If the modulation is two-dimensional, then a two-dimensional basis function receiver
produces a pair of Gaussian random variables at each code: position. A decoder for
the LSB bit then peHorms an ML or near-ML decision on the seguence of LSB bits
presented to the modulator, using the soft-decision outputs of the demodulator. This
decision has chosen 4y information bits. At the same time, the decision has selected
n cosets wherein the remaining message bits are constrained to lie. Given the choice
of cosets, a second decoder, matched to the second-level code, performs another ML
decision using the original demodulator output sequence, but with side information on
the coset membership of the transmitted sequence. Once this decision is made, we have
decided another & information bits. Finally, the corresponding choice has zeroed in on
a coset sequence for the remaining bits, and ML decoding if finally performed on this
MSB code.

In the case of Sayegh's code, the first decoder is for a (7, 1) code, and ML decisions
are easy because there are just two codewords for which metrics must be computed. The
next-level decoder is for a (7. 6) single parity bit code, and Wagner decoding can easily
decode this code in ML fashion by first making hard symbol decisions on whether r,
lies in coset 1 or coset O at the first partition level. The parity of these coset bit decisions
is checked, and, if odd, we change the decision of the worst (largest) distance decision
among these hard decisions. Finally, the (7. 7) code requires no decoding obviously; we
simply perform hard decisions within the selected coset sequence. Each of these is a
simple antipodal decision process.

5.12.2 Simple LSB Coding and Hard-decision Decoding

A very simple technique capable of modest gains on the AWGN channel is one that
employs coding only on the LSB line of a modulator set and hard-decision decoding of
this line at the decoder [75]. The coding power of the LSB code is made large enough
to give negligible probability of deceding error for the coded portion of the system
negligible, relative to the probability of decision error for remaining uncoded bits, which
iabel constellation points that are more distant. Algebraic decoding is less efficient, as
we have emphasized, but capable of very high speeds, and this is the strength of this
technique. In [75] it is shown that for 8- or 16-PSK designs, triple-error correction is
sufficient for the LSB code and that the asymptotic coding gain can approach

ACG — 10log o(d} /d?). (5.12.4)

where d; and 4, are the original consteliation distance and the minimum distance of the
first subset partition, respectively. This ACG is approached as the code rate tends toward
I, while still maintaining three-error correction. Suggested codes are (23. 12), (63, 45),
and (127, 106).

Similar coding can be applied to the one-stage partitions of any coset-decomposable
constellation. For example, sets built from the lattice Z? decompose easily into two sets
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with squared-distance twice that of the original set. Here it tums out thal, asymptoti-
cally, single-error correction is sufficient to balance the coded segment with the uncoded
segment. This simplifies decoding. However, the potential coding gain is smaller, only
3 dB.

5.12.3 Multilevel Codes for Fading Channels

On an interleaved Rayleigh fading channel, the code designs that maximize minimum
Euclidean distance are no longer necessarily optimal. What is more crucial is that the
code be such that multiple bad fading events are required to cause a decoding error. This
diversity effect is far more important than is the maximization of minimum distance. In
the example cited, we have codewords that differ in only one position of the codeword
(there the distance between these points is large, 4E;), and it takes but one bad fading
event to cause a decision error. The net result is that performance versus E,/Ng still
behaves as ¢/(E,/Ny); that is, the slope is —1 on a log-log plot, as in Section 3.5.
Coding has bought a slight shift of the curve, 3 dB in this case, but the overall impact
of coding is very discouraging.

If instead we increase the minimum Hamming distance in symbols between code-
words, say to 2, then we can show that second-order diversity is obtained, presuming
optimal metric decoding is employed. This might be accomplished here by using less
redundancy on the first-level code and more on a (7, 6) code on the MSB line. Such a
design gives minimum Hamming distance 2 in symbols.

More extensive discussion on this topic is postponed to Chapter 6, where similar
ideas surface in the design of treilis codes for fading channels. Interested readers are
referred to a recent survey article by Seshadri et al. [76] for further study.

APPENDIX 5A1: DATA SCRAMBLERS

A practical consideration in data communications is ensuring that the transmitted signal
exhibit reasonable statistical behavior and in particular avoid long strings on a certain
symbol or certain short period sequences. Such may -occur during temporary pauses
in a communication session, especially in digital coding of speech, or merely due to
predominance of some symbols in a message sequence and may lead to two harmful
effects:

1. The power spectrum may exhibit undesirable concentration of power at certain
discrete frequencies. For example, in binary NRZ transmission, long strings of
either 0 or 1 would lead to a spectral line at zero frequency (or the carrier frequency
in a carrier modulated system); periodic patterns in the data will also produce
spectral lines.

2. Synchronization circuits in the receiver, which depend on symbol transitions to
work effectively, may show poor tracking performance or break lock altogether.
Again, NRZ provides an example: all clock synchronization circuits require rela-
tively frequent level transitions to locate the timing epoch.
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A common remedy for this problem is to add data scrambling prior to coding and
modulation, along with corresponding descrambling following demodulation/decoding.
(Scrambling as discussed here is not for purposes of message security.) Most commonly,
this is performed on a binary bit stream version of the message and can be done in a self-
synchronizing manner; that is, the descrambler automatically produces (after a delay of
only a few bilts) the proper output sequence without need to search for a proper sequence
phase. Furthermore, channel errors will be seen not to cause catastrophic loss. This type
of message scrambling is not intended as a message security technique, for unscrambling
the message is far too easy and common to all users!

Self-synchronizing scramblers employ a primitive polynomial p(D) to divide the
desired message polynomial u(D), producing the output sequence #(D) over the same
field. Although the division process is performed in a manner seen for encoding of
cyclic block codes, the scrambling process can proceed for an indefinitely long time.
Figure 5A1.1a shows a generic scrambler built from an m-stage shift register with feed-
back, where m is the degree of p(D). By writing a difference equation for i, and then
representing sequences in polynomial notation, it is readily seen that

- u(D)
ulD)y= . 5A1.1
p(D) ( :
G Gy (U
~ N
) 4+
z-! P
—é)——@
z7 P2
+
pm—1
A/
| -
21 z!
(a) Scrambler (b) Descrambler

Figure S5AL1 Scrambling circuits using p(D) = po+ p\D + - -+ + pm D™.
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To see why this device has the desired effect, suppose that the register holds at least
a single ! and that the input is frozen at u; = O thereafter. The register will sequence
through a series of states and repeat after 27 — | clock cycles. This is the maximum
length possible and follows from adoption of a primitive polynomial. Similar results
occur if the input is held at 1. Not only is the period of repetition very long, but the
relative frequency of 0's and 1’s is nearly balanced, as are the occurrences of runs of
various types, Of course, if we wish to be pathological, we can find an input for any
given starting state of the register that will hold the output at a constant level indefinitely;
however, this is obviously a rare event.

Whereas scrambling divides the input sequence by p(D), the descrambler multi-
plies by p(D), recovering the original u(D) sequence. The generic descrambler is shown
in Figure SA1.1b. A difference equation will again reveal that

(D) = p(D)u(D) = p(>) X2 — () (5A1.2)
v p(Dju P D) u(D}). .
as desired.

Notice that the system is self-synchronizing from end to end and will produce
correct putput from a random starting state after m cycles. Alternatively, the scrambler
and descrambler can be set to a prescribed initial condition to synchronize immediately.
In any case, once synchronized, there is zero delay between the input and output of a
given bit.

Since descramblers are feed-forward, finite-length filters, unlimited error propaga-
tion is avoided in the face of channel errors. Assuming that the channel error rate is
small, it is readily seen that the output error rate is magnified by a factor equivalent to the
number of taps in the feed-forward descrambler or, equivalently, the number of nonzero
terms in s(D). It is important to note the order of division followed by multiplication.
On an error-free channel the order is arbitrary, but reversing the order on a channel with
error introduces potential for unlimited error propagation.

Typical applications use scramblers with degree 10 or more. For example, in the
X.25 CCITT telecommunications standard for packel communication, the polynomiai
p(D) = D"+ D?+1 is specified. For the data modem standard V.22bis, the polynomial
p(D}Y = D'+ D'* + 1 is employed. Thus, the magnification is 3, considered to be a
tolerable price for the benefits obtained. In packetized communication, three errors are
no worse than one error anyway.
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EXERCISES

5.0.1. The Hamming code of Section 5.0.1 was shown to be single error correcting on a binary

symmetric channel. Argue the following by means of the Venn diagram for the code:

(a) If instead of trying to correct errors we merely repert “bad data” when one or more
of the circle checks fails, then single- and double-error patterns are detected perfectly,
while some three-error patterns escape detection,

(b) Suppose that the channel simply removes tokens occasionally. which we could think
of as an erasure, but that remaining tokens are known 0 be correct. Argue that two or
fewer such erasures can be filled perfectly, but thar some three-erasure patterns produce
erroneous decoding in an ML decoder.

5.0.2. Suppose lhat we add another parity constraint to the Venn diagram.describing the (7, 4)

5.11.

512

5.13.

5.14.

5.1.5

538

code. Draw a circle completely enclosing the previous diagram and require that the fourth

parity symbol residing in this new region be chosen such that the number of red tokens in

the eight positions be an even number. We now have an (8, 4) code.

(&) Write the four parity check equations.

(b) Argue that this code is capable of correcting any single ervor among the eight code bis
while still detecting any double-error pattern. What is the indication of a double-error
pattern?

Venify that the set of rational numbers of the form p/q, together with ordinary addition and
multiplication of fractions, constittes a field.

Construct GF(7) and form addition and multiplication tables. Determine the order of all
nonzero field elements. What is the characteristic of this field?

Solve the following linear system' of equations:

(@) OverGF(3): x +y =0 2x = 2y = |

(b) Over GF(4): ax + &’y = 1;x —ay = 0

Note: All standard algebraic procedures, including Cramer's rule and Gaussian elimination,
are valid for finite fields.

(a) Show that (D) = D* + D* + D2 + D' + | over GF(2) is imeducible by testing

factors of degree 2 or less. Show, however, that f(D) is not a primitive pelynomial by

_ examining consecutive powers of «, defined as a solution of the polynomial f(D) =0.

(b) The polynomial f(D) = D? + D + 2 over GF(3) is primitive. Use it to provide a
construction of GF(9). What are the orders of the nonzero field elements?

Verify that the axioms listed in (5.1.1) are satisfied for the polynomial construction of
GF(p™) as described in Section 5.1. That is, show that addition and muRiplication of
polynomials of degree m over GF(p), modulo an irreducible polynomial of degree m.
yields consistent arithmetic.
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5.1.6.

5.1.7.

5.18.

5.1.9.

5.1.10.

5.L11

5.2.1.

5.2.2.

523

Find a subfield of size 4 in GF(16) introduced in Example 5.2. What subfields could we
find in GF(256)?

A combinational logic circuit is to be implemented for performing multiplication in GF(8),
as in Example 5.1. Such a circuit would have three input lines for each operand and
three binary output lines, yielding the coefficients of the polynomial representation of the
product. Use standard minimization techniques on the required truth table to design such
a circuit. [As a technological note, programmable array logic technology now makes such
implementations inexpensive, even if needed to be replicated for several GF(g) multipliers,
Addition could be done even more simply.]

Design a circuit that multiplies an arbitrary input element in GF(16) by the fixed element
o’ and then adds this to a previous sum, also an element in GF(16). This multiply-and-
accumulate operation is important in computing the syndrome symbols for decoding of
cyclic codes.

Verify (5.1.12), on which hinges the invertibility of the DFT. (Minr: Use the fact that the
result. for the sum of a geometric series Z;’;(; o/ = (@" - Dia - 1) ~~,

Compute the DFT of the length-7 binary sequence 1000100 using as a primitive seventh
root of unity o € GF(8) satisfying @ = 2 in Figure 5.1.1. Verify that the inverse transform
produces the original sequence.

Prove the convolution theorem for sequences over finite fields, (5.1.22); that is, the DFT
of the cyclic convolution of two sequences is obtained as the product of their respective
DFTs.

Suppose that we alter the (7, 4) code with generator matrix given in (5.2.1) to obtain a (7. 3)
code. Specifically, remove from the original code all codewords that have an odd weight.
Argue that the new parity check matrix is obtained from the former by augmenting it with
an additional row of seven 1's,

(a) Find the parity check matrix and a new generator matrix.

(b) Find the weight spectrum of the (7, 3) code and give an expression for the probability
of decoding error on a BSC, assuming decoding with the use of a syndrome table and
complete decoding.

(¢) If we operate the decoder in error-detection only mode, that is, we do not output a
decision whenever the syndrome is nonzero, determine the probability of undetected
error.

Prove that in a linear code C either all codewords are of even weight or exactly half are
odd weight and half are even weight.

In the now-antiquated iwo-out-of-five code employed in early teleprinters for transmitting

decimal data, the digits O through 9 were represented by five-bit binary patterns with exactly

two I’s,

(a) Show that there are 10 codewords.

(b) What is the rate of this code?

{c} Show that the code is nonlinear.

(d) Determine dmin, and the distance spectrum. Despite the fact the code is nonlinear, the
distance spectrum is invariant to choice of reference code vector.

(e) We decode only if the received pattemn has two 1's; find the probability of incorrect
decoding and the probability of correct decoding.
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5.24. An (11.4) binary code*? has a generator matrix given by

i 00 0 1 0 ¢t 0 1 0 1
G—01000101011
oo 1 01 0 0 1 ¥ 1 1

o 001 0 1 1 0 ¥ 1 1

{a) G informs us how to connect the four input bits 10 binary adders to produce the seven
parity bits. Draw such a diagram.

(b) Find dn, by calculating the weights of all nonzero codewords or, equivalently, the
weights of all (nonzero) linear combinations of rows of G.

(c) Describe a syndrome table or standard array. How many single-, double-, and triple-
error pattens are correctable in a complete decoder (mode 2)?

(d) If we operate a decoder in bounded-distance decoding mode, decoding any vector within
two Hamming units of a codeword and flagging the remainder, find the probability of
correct decoding and the probability of incorrect decoding, or undetected error.

5.2.5. Using the MacWilliams identity, compute the weight spectrum for the (15, 11) Hamming
code, which is the dual of the (15, 4) maximal length code. For maximal length codes,
there is one word of weight 0 and 2¥ ~ 1 words of weight 2*~1. Check your result against
the known weight spectrum for Hamming codes.

5.2.6. The dual code of the (11, 4) code in Exercise 5.2.4 is an (11, 7) binary code.
{a) What is its generator matrix?
(b) Find the weight spectrum of the (11, 4) code; then use the MacWiliiams identity to find
the weight spectrum of the 128 codewords in the (11, 7) code.

5.2.7. Michelson and Levesque [6) discuss a simple approximation to the weight spectrum for
binary codes having the all 1's vector as a codeword. There are 2¥ —2 words whose weights
lie between dgiy and # — dmin, and the approximation is 1o apply a binomial distribution
over this range, suitably normalized. Thus,

—d min

n
Ap~ICH2 —21/ Y (’;’) ~2-n=ben
J =l

(a) Tes! the accuracy of this approximation on a (17, 9) code having din = 5 and weight
spectrum for weights 5 through 12 of 34/68/68/85/85/68/68/34.

(b) Test the approximation on a (21, 16) code with dpgi, = 3 and weight spectrum for
weights 3 through 18 of 42/210/651/1638/3570/6468/9310/10878/10878/9310/6468/
3570/1638/651/210/42. Generally, the approximation is best for large, high-rate codes.

5.2.8. Show that syndrome decoding of linear codes is equivalent to ML decoding directly from r,
in the sense that the solution set for the error pattern based on the syndrome s = rH’ = eH’

is the same set as obtained by considering the test error patterns of the forme; = r ~ x;.

5.2.9. Show that g-ary Hamming codes can be structured so that the syndrome s = yH” yields
the base ¢ representation of the error location and the value of the error, assuming that
zero or one error occurs. Hint: The parity check matrix should have its columns ordered
lexicographically.

5.2.10, (R. Gallager) Consider two systematic (7, 3) binary codes. Both are systematic. For code

I the parity equations are x3 = ug + u), X4 = ug + w2, Xs = 8] + U3, Xe = g + U + uz.

32D. Slepian, “A Class of Binary Signaling Alphabets,” Bell System Tech. J.. vol. 35, pp. 203-234, 1956.
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For code 11, everything is the same, except that x5 = u;.

() Determine the generator matrices and parity check matrices for both codes,

(&) Argue that code I has minimum distance 4, while code II has minimum distance 3.

(c) Despite the result part of (b), show that code II has (slightly) smaller error probability
for complete decoding on a BSC. You will need to gencrate the syndrome decoding
table.

This exercise illustrates that greater minimum distance is not a strict indicator of superior
error performance. The second code i3 a quasi-perfect code.

5.2.11. A (15,5) binary code has generator matrix whose five rows are the 11-place vector
(11101100101) and four right shifts of this vector, zero padding assumed. The resuiting
code is not in systematic form.

(a) Put G into systematic form by elementary row operations on G.

(b) Determine H. .

(c) What is the size of the standard array for syndrome decoding?

(d} Argue that all sets of six columns in H are linearly independent; hence dpy = 7.

(e) Show that in fact dyjn = 7.

() How many syndromes are consumed by error patterns with weight < 3, and what actions
could be taken for the remaining syndromes?

5.2.12. Form the generator matrix for the first-order Reed-Muller code with block length 32. What
is £ and dpin?

5.2.13. Prove that on a g-input, (g + 1)-output symmetric channel with erasure declaration a code
having minimum distance dmin is capable of comectly processing any combination of #
errors and 4, erasures, provided that 24; + f2 < dpip — 1. In particular, show that such a
code can fill dyin — 1 erasures if no other errors occur,

5.2.14. The ISBN numbering scheme for cataloging books uses a linear block code over GF(11) to
supply error-detection capability for decimal numbers. Specifically, each book is assigned a
nine-digit (k = 9) decimal string, (xp, x1, ..., xg) indicating language, publisher, and book
number. A tenth digit from the field, xg, is appended so that

9
Y G +1x =0 modulo 11.
j=0

(The use of a field with 11 elements is apparently superfluous for a decimal code, but there

are no fields of size 10.) If the parity symbol indeed is the eleventh field element (not 0

through 9), then the symbol X is assigned. For example, Hill’s book A First Course in

Coding Theory, from which this example is borrowed, has ISBN 0-19-853803-0, satisfying

the preceding parity check equation.

(a) Verify that the encoding is correct for the ISBN code assigned to this book.

(b) Specify the parity check matrix for this code.

(c) Show that the code is capable of detecting any single-digit error (made by a typist or a
computer) and detecting any transposition of two symbols (a frequent type of error, by
humans at least). This requires showing that all such error types produce nonzero sum
in the parity check process (or, equivalently, produce nonzero syndrome).

5.2.15. The weight enumerator polynomial for the binary (23, {2) Golay code is
A(2) = 1425327 4 50628 + 12882 4 12882'2 + 5062'5 4 253,16 4 23,
(a) Evaluate the probability of decoding error for a complete decoder on a BSC with
¢« = 0.005.

(b) If the code were used only for ervor detection, calculate Pyug on this same channel.
(¢} Suppose that we use the code for error correction and detection and agree to “correct”
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5.2.16.

52.17.

5.2.18.

5.3.1.

5.3.2.

5.33.

5.34.

5.3.5.
5.3.6.

5.3.79.

up to two errors, instead of the guaranteed three. Calculate | — Fep and Pyg. Note the
tradeoff between undetected error probability and correct decoding prebability.
Repeat Exercise 5.2.15 if the same code is used on a pure erasure channet with § = 0.05.
The code allows up to six-erasure correction.
A (6, 3) code over GF(4) is generated by

1 0 0 1 1
G=10 1 0 a a?
O 0 1 o «

(a) Show that the code is self-dual.

{b) Show that the code is MDS; that is, dpyyp =n—k + 1 = 4. )

Suppose that we use two codewords (1, 1, 1) and (0, 0, 0) with antipodal signaling on an
AWGN channel. Let the demodulator quantize the correlator output for each symbol to
one of four levels, with thresholds set at 0 and +0.5,/Ng/Z. We thus have a binary-
input/quatemary-output DMC. Assume that E;/Ng = 3 dB. Specify the log-likelihood
metric table for each quantized symbol and then a decoding algorithm based on this that is
maximum likelihood for the quantized channel.

Consider the (6, 3) binary code over GF(2) whose generator matrix is given in (5.2.20).
The code is single error correcting (+ = 1), but it is not a perfect code. Show by appeal to
the standard array for this code shown in the text that the code is quasi-perfect.

We know that a (15, 11) Hamming code has dmin = 3 and that the expurgated code (15, 10)
has dmin = 4. We may wonder whether a (15, 9) code exists with distance 5 (if so it would
be double error correcting). Apply the Hamming and Gilbert bounds to the question of the
existence of such a code. What do these bounds say about the possibility of a (15, 8) code
with distance 57 Remark: We know that a (15, 7) (linear) BCH code has dmi, = S and that
there is a nonlinear (15, 8) code due 10 Nordstrom and Robinson [12] that has distance 5.
Verify the claim used in the proof of the Plotkin bound that in each column of a complete
histing of codewords in a linear code each of the ¢ symbols is employed exactly ¢*~! times,
provided that no column of the G matrix is the zero vector.

Suppose that we are interésted in binary codes for 24-bit messages and wish the code rate to
be %; that is, we wish the block length to be 48. Use the Hamming and Varshamov/Gilbert
bounds to place limits on the minimum distance for such a code. Remark: A (48,24)
extended quadratic residue (QR) code has minimum distance of 12 [5].

Using the argument of the Gilbert bound, construct a binary (7, 3) dmin = 4 code.

Use the Varshamov bound argument to construct a parity check matrix for a binary (8. 4)
code with dpyj, = 4.

Still another upper bound on minimum distance for (n7. k} codes over GF(q) is the Griesmer
bound.** which states that

k-1
m 2 din + { '“'"] + [d‘“,'"] +t [%df‘_"; ] =) [d"‘.‘".l
1 q° q =0 q’

(a) Show that this implies the Singleton bound n — k + | > dmin-

(b) If a code is MDS, that is, the code achieves the Singleton bound, what does the Griesmer
bound say about the alphabet size ¢?

{c) Show that the upper bound on diy, for binary (15, 7) codes is 6 by this result.

#]. H. Griesmer. A Bound for Error Correcting Codes,” IBM J. Research Development, pp. 532-542,
November 196(.
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5.3.8.

5.3.9.

54.1.

54.2.

54.3.

5.4.4,.

5.4.5.

55.1.

Plot the asymptotic (iarge block length} forms of the Hamming and Varshamov--Gilben
bounds on dpin /7 as a function of R for codes aver GF(8). Also, show the Singleton and
Plotkin upper bounds on this plot.

A (32,16) Reed-Muller code has dmin = 8. Assess this in light of the Hamming and
Varshamov bounds.

Verify that D — 1 is a divisor of D" — | for any » in any field and thus that there exists
a simple {(n,n — 1) cyclic code of any length over GF(g). This is just the code formed by
appending an overall parity symbol to an (1 — [)-symbol message. Diagram an encoder and
syndrome former, each of which employs a one-cell feedback shift register.

Show that the only cyclic (2, k) rate % codes are those for which g(D) = Dk ] (which
obviously factors D% —1). These cyclic codes all have diy = 2 for any block length and
are thus very poor codes. If we need exactly R = 1/2, it is far better to modify another
code and accept the loss of the cyclic property.

Produce a length-63 narrow-sense BCH code with design distance § = 5. Use the infor-
mation about GF(64) in Figure 5.1.4 to determine minimal polynomials for & and for a>.
Find the generator polynomial and determine that the number of information symbols in the
code is £ = 51. (The actual minimum distance is in fact 5.)

With the advent of inexpensive, fast semiconductor memory, encoder/decoder design some-
times is effectively done with use of read-only-memory (ROM) tables, For the extended
Golay (24, 12) code, describe a ROM implementation of an encoder for the systematic code
and a ROM-assisted syndrome decoder (we still use a feedback shift register to compute
the syndrome). Repeat for the (48, 24) extended quadratic residue code, and comment on
feasibility of this approach..

There are many “tricks” associated with actual implementation of encoders and decoders,
particularly over larger fields. Consider implementation of the encoder for a (255,252)
RS code over GF(256), which is single error correcting/double error detecting. The field
elements are represented as 8-bit bytes. The generator polynomial is of the form

g(D) = (D — BXD —af)(D — &°B),

where g is an arbitrary field element and o is a primitive element. Thus, three consecutive
powers of a field element are roots of the generator polynomial, as required. Remember for
RS codes that the starting element in the root string is arbitrary.

(a) Show that choice of 8 = ™! leaves g(D) in the form

gD =D+ (+a+aYD?+ (1 +a+a HD +1,

so in implementing the encoder as a feedback shift register, only a single GF(256)
multiplier is required. (Such “reversible™ generators are discussed in JEEE Trans. In-
farmation Theory, vol. IT-28, pp. 869-874, 1982.)

(b) Diagram the encoder, and show a gate-level diagram of the binary hardware needed
to perform the addition and multiplication by the given field element. Assume that a
primitive polynomial f(X) = X® + X* + X3 4+ X2 4 1 is used for defining the field
GF(256).

{a) Prove the distributive property for the modulus operator with respect to polynomials;
that is,

[a(D) + H(D)] mod g(D) = [a(D) mod g(D) + b(D) mod g(D)] mod g(D)
= a(DYmod g(D) + b(D) mod g(D).
[Hint: define s(D) by Euclid’s theorem: a(D)+b(D) = q(D)g(D)+s(D), and likewise
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for 5,(D) and 53(D); for example, a(D) = q,(D)g(D) + 55(D). Then use uniqueness
of the quotient and remainder polynomials to prove that s(D) = 5,(D} + 55(D).}

(b) Prove that a similar property also holds for the mubiplication of polynomials:
la(D)b(D)} mod g(D) = [la(D) mod g(D)][b(D) mod g (D)]] mod g (D).

5.5.2. (a) Calculate the fractional volume contained in the seven-dimensional space of seven-
tuples over GF(8) that is contained in the spheres of radius 2 around each codeword in
the (7, 3) RS code. This should illustrate why the probability of decoding failure can
be rather large compared to the probability of incorrect decoding.

(b) Repeat this calculation for a binary (127, 106) triple-error-correcting BCH code.

5.5.3. A (15,7) BCH code is generated by
gD)=D*+D" 4+ Db+ D* 41,

(a) What is the parity check polynomial A(D), and what are the parameters of the dual
cyclic code it generates?

(b) Diagram a systematic encoder and the syndrome former for the (15, 7) code.

(¢) Determine if r = (000110111001000) is a valid codeword, with the rightmost bit rep-
resenting the leading information symbel, by computing the syndrome [dividing r(D)
by g(D)].

(d) Decode the previous received vector by computing the syndromes S;,i = 0,....3,
and then the connection polynomial B(D), and use this to extrapolate 1o the remaining
error transform digits. How many errors does the decoder perceive to have occurred?
Does the final syndrome check produce the zero vector? [Partial answer: B(D) =
1 -a!°D —abp?)

5.5.4. Argue that the following errors-and-erasures procedure decodes correctly for binary codes
when r errors and s erasures occur, if 2r +s5 < § — 1. Replace all erasures with 0’s and
decode, if possible. Determine the weight of the resulting error pattern. Replace all erasures
with 1's and decode if possible. Determine the weight of the resulting error pattern. Decide
in favor of the lower-weight error pattern. (Hinr: Assume that of the 5 erasures b were
-originally O symbols and 5 — b were originally 1's.)

5.5.5. Repeat the decoding exercise in Example 5.25 with e(D) = 1 + D + o2D?; that is, add
an additional error in position 1. The decoding attempt should probably fail since the true
number of errors exceeds 2.

5.5.6. The (i5,9) RS code over GF(16) is capable of correcting ¢ = 3 symbol errors. Let the
code have roots ', a2, ..., a®, where & is a primitive element in GF(16), so the generator
polynomial is

¢gD)=(D-a)D—-a® .. (D—ab.

Suppose that the all-zeros message is sent, and there are two errors @ and o’ in positions 0

and | of the codeword.

(a) Compute the syndromes Sg, Si. ..., Ss. Use either direct computation by (5.5.9} or
recall that §; = R; 4, where R denotes the DFT of r.

(b} Use the Berlekamp—Massey algorithm to solve for the minimal-order feedback shift
register capable of producing the observed sequence. (This should be a second-degree
“filter™.)

(¢) Use the LFSR produced in part (b) to produce the remaining digits of the error transform
sequence.

(d) Perform the inverse transform to determine the error pattern.

(e) Correct the received codeword.

(D Recheck the syndromes to see if the decoded output is a valid codeword.
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5.5.7.

558

§.5.9.

5.5.10.

5.6.1,

5.6.2.

5.6.}
5.6.4.
5.6.5.

5.6.6.

Repeat Exercise 5.5.5 if the received vector has an erasure in position ¢ and an error of
type @’ in position 1. This is a correctable error situation as well.

Repeat Exercise 5.5.5 with the first six positions erased, all other symbols being received
correctly. Show that correct decoding ensues here with the errors-and-erasures algorithm.
Perform Wagner decoding for an (8, 7) single parity bit code used to send ASCII characters.
Let logical 0 correspond with —A signal level at the demodulator output and logical 1
correspond with signal level A at the same point. Suppose the received signal strength
corresponds to A = 1 volt and that the received analog sequence in the presence of noise is

r=(-11,-050102 -12, -1.1, -0.6, 1.2).

What is the decoded message? Would hard-decision decoding have produced the same
estimate?

Perform Chase decoding (Algorithm II of the text) for the (7, 4) Hamming code in conjunc-
tion with FSK signaling and noncoherent detection. Assume that the all-zeros sequerce is
selected for transmission. Let the sequence of noncoherent matched filter detector outputs
be

F_|i2.5 1.5 03 2.0 04 20 0.8:]
02 09 02 05 06 12 04)°

where the zero channel output appear on top. Perform hard-decision decoding on ?, and
locate the J = L%J lowest-confidence decision to form a single test vector z. Perform
algebraic decoding of the hard-decision vector and of the perturbed hard-decision vector.
Which codeword produced has greater likelihood for this problem, using the log-likelihood
metric

6
- HFx
Alr.x) = log ] ( j).
(r.x) jE=0 ogfo\ 3

Assume that the symbol energy-1o-noise density ratio is 4 dB.

Extend the (7, 4) code to (8, 4) by adding an overall parity bit to each codeword. Write the
parity check matrix for this code by augmenting the former check matrix to reflect the new
constraints.

{a) Verify that every codeword has even weighi.

(b) Show that dyi, = 4.

(c)} Show that this code is self-dual.

{d) Argue through use of the syndrome table that the decoder is capable of simultaneously
correcting a single error and detecting two errors.

(e) If symbols 0 and 1 are mapped to antipodal signals, show that the resulting set of 16
signals is biorthogonal.

Draw a diagram similar to that of Figure 5.6.1 for modifications of the (15, 7) binary BCH

code, '

Prove that, when shortened, a code’s minimum distance cannot decrease.
Show that an (r — 1)st-order Reed—Muller code is an expurgation of the rth-order RM code.

Show how to implement a simple modification of the systematic encoding technique of
Section 5.4 10 extend a code by 1 bit, enforcing even parity on the codeword. A single 1-bit
accumulator is sufficient.

RS codes can be lengthened by two symbols without cost in dpn. Show that where dmin = 3

twice-lengthened RS codes are perfect codes over GF(g), equivalent to Hamming codes.
(Hinr: Show that all syndromes are exactly consumed by 0- and l-error patterns.)
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5.7.L

5.7.3.

548.1.

5.8.2.

5.8.3.

Design an error-detection scheme that operates with 256-bit messages and must correctly
detect byte (8-bit) burst errors, as well as detect any four randomly placed errors in a block.
{The CRC code of the text example meets the requirements, but is overdesigned.) You
should be able to show that even if the code is not cyclic, but merely produced as if the
code were cyclic, for example, x (2} = u(£2)g(£), that the decoder is capable of detecting
all error patterns confined to n — &k — | bits.

.2. In the Ethernet protocol for local area networks, a CRC code is employed with generator

polynomial given by
gDy =D +D® DB 40> 4D 4D 24D 4D 04 P24 DT+ DO+ D+ D2 4+D 41

This polynomial is primitive of degree 32 and hence would generate a binary Hamming
code of length 232 — 1, with dpin = 3. Although this block length is much longer than used
in the standard implementation, specify the random and burst-error detecting performance
of the system.

(a) Fujiwara et al. [53] discuss the performance of this code under varying amounts of code
shortening. In particular, it is shown that if the block length is limited to 512 bits or
less by shortening. then the minimum distance increases to 5. In this case. what can be_
said about the random and burst-error detecting guarantees?

(b) Normally, only error detection is attemnpted with such CRC codes, but they could
be employed as combination error-correction and error-detection codes. Discuss how
the given code could be employed with n = 512 to correct single errors, while still
guaranteeing the detection of any two- or three-error pattern.

An 8-bit CRC code is employed in the adaptation layer of the ATM protocol, coding a
4-byte header containing addressing and routing information. In effect, we obtain a (40, 32)
code, with diin = 4. The CRC polynomial is g(D) = D + D? + D 4 1. What claims can
be made about the detection of errors in the header field?

{a) Demonstrate that in a product coding scheme the minimum distance between two-
dimensional code arrays is dyda. where these are the row and column minimum dis-
tances, respectively.

(b) Extend the two-dimensional product coding concept 1o three dimensions, and generalize
the distance and error-correcting capabilities.

Apply row/cotumn coding as follows for a binary symmetric channel. Let the row code be
a binary (15, 11) perfect Hamming code. Let the column code be a (235, 239) binary BCH
code. Estimate the probability of a block (array) error under the following regimes:

{a} Perform complete decoding of the row code; assume that when an error occurs it is
most likely due 10 a two-error pattern and that decoding is to a message with three
errors in the 13 positions distributed equally likely.

(k) Perform error detection on the row code: a single- or double-error event produces an
error detection, in which case we erase the entire row prior 10 column decoding. In this
mode. the column decoder will be presenied with erasures and residual (undetected)
errors,

Consider a concatenation of a (15, 9) Reed-Solomon outer code over GF(16) with a (7.4)

binary inner code.

(a) If the binary code symbols are transmitted using PSK, find the resultant signal bandwidth
normalized to the input bit rate.

(b} Assuming reception on the coherent AWGN channel with En/Ny = 7 dB, determine

the probability of an inner codeword error for both hard-decision decoding and ML
decoding of the inner code.
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5.8.4.

58.5.

59.1.

5.9.2,

5.9.3.

5.9.4.

5.9.5.

5.9.6.

5.9.7.

(c) Compute | — Pcp for the outer code, assuming that it is given hard decisions on the
inner codewords, which it sees as GF(16) decisions.

(d) If we view this scheme as a binary code, what are n and k? What is the overall code
rate? Find a shortened BCH code with roughly these same parameters and estimate its
minimum distance.

We have seen that the two-stage decoder for product codes falls short of the capability of
an ML decoder in guaranteed error-correcting power, yel many error patterns beyend the
guaranteed weight are correctable. Suppose that the (15, 11) binary code is used in each
dimension. Some four-error patterns cause decoding failure for a two-stage decoder. Whai
fraction of four-error patterns are in fact correctly decoded, however?

Analyze a concatenated scheme with overall code rate % comprised of a (256, 240) length-
ened RS code over GF(256) as an outer code and a (15, 8) Nordstrom—Robinson nonlinear
code with dyin = 5 as an inner code. The channel is a BSC with € = 0.02.

(a) Compute the probability of correct decoding for this scheme. Assume that both decoders
operate as bounded-distance decoders. (Although the NR code is nonlinear, there is
enough symmetry to allow every inner codeword to have equal decoding performance.)

(b) Now switch from a high-rate outer codeflow-rate inner code to the opposite. Use a
(12, 8) shortened Hamming code as an inner code and a (256, 192) RS outer code.
Which scheme is better?

(a) For the Gilbert channel of Figure 5.9.1, the average error probability is 0.0167. Calculate
the channel capacity for the perfectly interleaved version of this channel, which would
be a BSC with € = (.0167.

(b) The actual channel is a finite-state channel with memory, whose capacity may be shown
to be [7]. Calculate the channel capacity of the actual channel, and observe that it is
larger than that of the interleaved “equivalent” channel.

Design an interleaving scheme for a binary channel where block coding is used with (n, k) =
(24.12) and error bursts up te kength 8 bits are anticipated. Show by diagram how a block
interleaver can handle up to three such bursts. What is the total memory requirement and the
end-to-end delay in units of information bit times? Describe the synchronization difficulty
inherent with the interleaver.

Show how to interlace a RS (7.5) code over GF(8) to depth D = 4 by replacing each
encoder call with four cells. Convince yourself that the corresponding decoder is capable
of correcting any single burst of four symbols.

Diagram an encoder for a RS (7. 5) code over GF(8), interleaved to depth D =4, using the
interlacing technigue shown in the text, replacing each usual encoder delay cell with four
cells. Convince yourself that the decoder is capable of correcting any single burst confined
1o that contiguous symbols.

Convolutionally interleave a (7, 4) Hamming code to depth 3. Show that, by sending the
all-zeros sequence, insertion of any 3-bit burst error pattern is scrambled into three separate
codewords at the receiver and thus that the burst is correctable.

A binary code with block length # = 63 is 10 be used over a Rayleigh fading channel whose

decorrelation time is 0.01 second.

(a) If the channe! symbol rate is 16 kbps, design a block interleaver to effectively produce
a memoryless channel as seen by the decoder. What is the total end-to-end delay of the
system due to interleaving?

(b} Repeat for a convolutional interleaver,

A channel model commonly used to model bursty error conditions on a binary channel is
the Gilbert model. We define the channel to have two states, good and had. In the good
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5.10.1.

5.10.2.

5.10.3.

5.104.

5.10.5.

5.10.6.

5.10.2.

state, the channel is perfect, while in the bad state, the channel error probability is 0.3.

On each use of the channel, the state transitions are governed by P[G —~ B] = 0.01 and

P[B — G] = 0.2. Using the theory of Markov chains, find the steady-state probability of

being in the bad state and from this determine the error probability. {Note that this error

probability would be the [ong-term average measured on a sample function of the process.)

The mean dwell time in the bad state is 1/0.2 = 5 symbols. Design an efficient interleaving

scheme for this channel in conjunction with a binary (31, 26) error-correcting code.

Compute the probability of not decoding correctly when a (7, 4) Hamming code is employed

on an AWGN channel with antipodal signals. The demodulator makes hard decisions on

code bits. Plot this result as a function of Ej,/Ng, and compare with the probability of
message error for 4-bit uncoded messages on the same channel. Measure the coding gain

at P = 1073

A (7, 3) code over GF(8) is used in conjunction with 8-PSK signaling on an AWGN chanrel.

The code has dm;y = 5 and is therefore capable of overcoming two hard-decision errors.

(a) Let the bit rate be R, = 10° bps. What is the encoded symbol rate?

(b) If the received power level is P, = 107! waits and the noise speciral density is
No/2 = 10~'? watts/hertz, determine the symbol error probability P; and bound the
decoder error probability by assuming any error pattern with more than two erors
causes a decoding error. ‘

(¢) If maximum likelihood decoding were used for this channel and code, what melric
should be used in evaluating codewords? How many elementary metric additions are
necessary to compute all codeword likelihoods?

In Example 5.34, expressions were obtained for coded and uncoded performance in terms
of P, the channel symbol error probability. Employ the union bound of Chapter 3, P, <
(M ~ 1)e=E:/No 1o obtain Pg as a function of £5/Ng. Be careful to normalize the symbol
energy properly in the two cases. By comparing resulting exponents, determine the relative
energy efficiency.

A Reed-Solomon code over GF(16) is used in conjunction with 16-ary FSK modulation of
code symbols. The code length is 15 and & = 11, so the code is double error correcting.
The channel environment is white Gaussian noise, with E,/Ny = 10 dB. Assuming that
noncoherent detection is performed and hard decisions are passed to the decoder, find the
symbol error probability, remembering to normalize energy properly. Then calculate the
probability of a block ermror, assuming that the deceder fails whenever three or more erors
occur. Compare this performance with the probability of message error for 11-symbol
messages sent uncoded on the same channel.

For the code of Exercise 5.10.4, repeat for a Rayleigh fading channel with an average
Ep/Np = 30 dB. Assume hard decisions on code symbols and that codeword interleaving
is used to make the 16-ary channel memoryless.

With the code of Exercise 5.10.4, assume that a jamming signal is randomly present with
probability 0.01 and, when present, the effective £,/Ny is —20 dB, When the jammer is
absent, there is zero noise in the channel. Analyze the performance of the coded system.,
first assuming that the decoder has no side information about jammer presence and does
erors-only decoding. Then consider a decoder that is informed of which symbols have
been jammed and that simply erases these positions. This decoder can err if more than four
symbols are jammed.

Show that the asymptotic coding gain of a binary (n. n — 1) single parity bit code, having
dmin = 2. is 3 dB when soft-decision decoding is employed on the antipodal AWGN channel.
(Assume that n is large.) In conjunction with Wagner decoding of the code, it js relatively
easy to achieve this 3-dB gain in efficiency.
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5.16.8. CRC codes normally used for error detection are usuatly extended Hamming codes, with
diin = 4 and rate R near 1. Thus, the asymptotic coding gain is a surprising 6 dB.
{Chou, D.-P., and Wilson, 8. G., International Symposium on [nformation Theory, 1991.)

" The ML decoder could be implemented with 2 trellis having 2"* states, but this is too
complex typically. Propose a Chase-style suboptimal scheme that uses an algebraic decoder
and bit flipping to approximate ML decoding.

5.10.9. Compute the asymptotic coding gains for the following codes when soft-decision decoding
is empioyed on the antipodal AWGN channel. All codes have rate nearly %

(@) (15, 10) expurgated Hamming code, dpnin = 4.
(b) (63, 45) BCH code, din = 7.
(c) (127,85) BCH code, dmin = 13.
5.10.10. (a) Calculate the effective diversity order for the codes of Exercise 5.10.9 for the fully
interleaved Rayleigh channel when hard-decision decoding is used.
(b) Repeat if soft-decision decoding is accomplished, again with interleaving.

5.11.1. If the Golay (23, 12) binary code modulates a carrier using antipodal PSK, show that the

pawer spectrum is the same as that of uncoded PSK, but scaled to be 23/12 wider.

5.11.2. Show that the first-order Reed-Muller codes have the spectral equivalence property.

5.11.3. What is the smallest binary code of length n = 63 that can have the spectral equivalence
property? (Hint: All columns of G must remain distinct.)
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