the special algebraic structure resident in BCH and RS codes allows an aigebraic solution
for the error pattern directly from the computed syndrome.

The first formulation of an algebraic decoding procedure for binary BCH codes was
given by Peterson [40)] and extended to nonbinary codes by Gorenstein and Zierler [41].
Subsequent important contributions were made by Chien [(42], Berlekamp {43], Fomey
[44], and Massey [45]. Recently, a transform-domain perspective has become popular,
as described by Blahut (4, 46]. Our discussion cannot be comprehensive in treating
a large body of literature, but will focus on a single transform-oriented approach that
highlights the digital signal-processing aspects of the problem. This approach may not
always provide the most computationally efficient procedure, but it is relatively simple
1o grasp. '

The procedure presented in this section is generally referred to as errors-only de-
coding, to distinguish the algorithm from generalizations that process errors and erasures
simultaneousty. The latter is discussed in the following section and will be seen to be
a modification of the errors-only procedure. The algorithm presented here is a bounded
distance (incomplete) decoder, as are virtually all algebraic decoding procedures. This
means that decoding will comrectly occur if, and only if, the number of errors present is
less than or equal to |(§ — 1)/2), where § is the design distance of the code. When the
number of errors exceeds this value, the decoder may either be unable to decode or may
decode incorrectly.

We begin by assuming that the error pattern e has at most ¢ = [(8 ~ 1)/2] errors.
Let the error positions be designated m = (m,. ma. ..., m,) and the corresponding error
values, or error types, be represented by e = (e,,. €mas -+ ., €m,). We then have that
m € [0.1,..., n — 1} and e,, € GF(q). In these terms, we write the error polyno-
mial as

e(D) = e, D™ + €,,D™ + .- + e, D™. (5.5.13)

(If fewer than ¢ errors occur, we merely define some of the error values to be the zero
symbol.)

We now define the syndrome sequence S;.i = 0. 1, d — 2. to be the value of
the received polynomial evaluated at the § — | consecutive roots used to define the BCH

(or RS) code; that is, we evaluate the received polynomial r(D) at the field elements
ol aft L. o/t

S = l'(D)]o=a;-J = I’(D)l,:):am
!) (5.5.14
=Z"m,.(aj+')m". r=0.1..... §—2.)
p=1

The second step follows because (D) = x(D) + e(D), and (D) evaluated at the
prescribed roots yields zero, by definition.

An efficient way to compute the syndrome symbol S; is by polynomial evaluation
using what is known as Homer’s rule, a nested multiply-and-add algorithm:

Si=1((... (";.—lOlH" +rn—-2)aj+j +ro-at 4 +f'l)a'+'i + ry. (5.5.15)

Thus, all syndrome digits could be computed in parallel using 8 — | recursive digital
filters, as indicated in Figure 5.5.3.

Sec. 55 Decoding of Cyclic Codes 471

fo, ST rn—'l . r_:\ _ so
TN

e

af

Figure 5.5.3 Recursive computation
52 of syndrome digits for BCH/RS codes.
af*n All arithmetic over GF(g).

The nomenclature suggests that the syndrome symbols defined here, which are
members of GF(g™)}, are related to the syndrome polynomial s(D) over GF(q) defined
earlier. From the definition of (D), we have

r(D) = a(D)g(D) + s(D). (5.5.16)
Then
S = r(D)|D=a‘+‘ = S(D)IDMJ‘-J s (8.517)

since «/* is a root of g(D). In other words, the syndrome values defined by (5.5.17)
are merely equivalent to evaluation of the syndrome polynomial, defined by s(D) =
r(D)mod g(D), at the prescribed code roots,

It is also important to notice that the syndrome sequence corresponds exactly 1o a
porticn of the DFT of the sequence r; that is,

S = r(Dlpeg =Rjsin i=0,1,....6~2. (5.5.18)

To see the implication of this, we consider performing the DFT of r to obtain, by linearity
of the Fourier transform,

Ri=X,+E;, i=01..,n-1, (5.5.19)
where {X;) and (E;} are, respectively, the n-point transform values of the transmitted
code vector and the error pattern, neither of which is known to the decoder. However,

472 Block Codes Chap. 5

we do know that in positions i = j, j+ 1,....j + 3 —2, R; = E; since the codeword
transform values in these positions are zero (the alternative definition of the BCH/RS
codes). In these positions, the DFT of r therefore. reveals evactly the transform of e.
Furthermore, from (5.5.18) we have that these error transform entries are related to the
syndromes by §; = E;p;.i = 0. L ..., 4 — 2. If we could somehow extrapolate these
transform coefficients to ascertain the entire transform E, and then an inverse transform
could recover e. All that would remain is subtraction of the estimated e from r to
perform error comection. Alternatively, we could first subtract in the transform domain
to repair R and then inverse transform to obtain r. Since, however, there are many such
e sequences having the observed transform coefficients in § — | consecutive positions,
we again seek the mihimum-weight error pattern whose transform satisfies the given
syndrome (or DFT) constraints. The primary difficulty in BCH/RS decoding is making
this step.

Before proceeding, we note that the syndrome equations formed by (5.5.14) are a
set of 5 — | nonlinear equations over GF(q) in the {(up to) 2t unknowns {m;} and {e,, }.
In the binary case, there are really only r unknowns, since the only value of an error is
1, and it may appear that the system of equations is inconsistent. However, it should be
remembered that not all the § — 1 parity check equations are independent in the binary
case. In the more general case of RS decoding, we need all the syndrome equations to
solve for the ¢ error locations and the ¢ error values.

The desired solution is a vector (e, m) for which e has minimum weight, that is,
the smallest number of nonzero entries in e. Any procedure for solving these nonlinear
equations, including trial and error, is a decoding algorithm. Early researchers [40, 41}
discovered a clever trick: rather than seek a direct solution of this system, we manipulate
the problem to one of solving two linear systems of equations.

To do so, we define

L, =a", r=12....1¢ (5.5.20)

as the error locator for the pth error. Note that L, is an element of GF(¢™), the extension
field invoked to define the BCH or RS code, but the decoder does not know the error
locations at the outset.'® With this definition, the syndrome equations (5.5.14) may be
written in the form

!
Si=) em(Lp)™. i=0,1...,5-2, (5.5.21)
p=1

which we observe is a system of linear equations for the error values, once the error
locators become known.

We next introduce the connection polynomial,®® so named for reasons soon to be
clear:

!
BD)=[]a-L,D)=1+B,D+ 8D +-..+B,D. (5.5.22)
p=|

"In the Reed—Solomon case with m = 1, the code symbol field and the locator ficld are the same,
*This polynomial is also frequently known as the error locator polynomial.

Sec. 55 Decoding of Cyclic Codes 473

Of course, the decoder does not know a priori the polynomial 8(D), but note that we have
defined the zeros of the connection polynomial to be the reciprocals of the error locators,
Lpithatis, B(a™™*) = 0. p=1,2,..., 1. Even more importanily, the inverse DFT of the
sequence B has special behavior. Suppose that we pad the B sequence defined in (5.5.22)
with zeros. The inverse transform coefficiénts are b,,, = B(@™r) =0,p = 1,2,....1,
and we have thus defined a frequency-domain sequence, B, whose time-domain sequence,
b, is identically zero in precisely those positions where the error sequence, e, is nonzero.

Because e, is assumed to be zero in the remaining positions, we have the time-
domain relation

I = bype, =0, m=01,....n-1 (5.5.23)

Now recall from Section 5.1 that muhtiplication of two sequences corresponds 1o cyclic
convolution of their respective DFT sequences, by the convolution theorem for the DFT.
Thus, in the frequency domain we find that the transform sequence E obeys

n—1
Y BEi,=0. i=0.1....n-1, (5.5.24)
p=0

with By = | and indexes interpreted modulo n. However, since we have defined the
polynomial B(D) to have degree at most 7, (5.5.24) may be reduced to

1
D BEi_, =0 i=01,...n-1 By=1. (5.5.25a)
p=0

An alternative way of writing (5.5.25a) is in recursive form:
1
E;=-) B,Ei, i=0....n-1, (5.5.25b)
p=I

since By = 1,

This recursion establishes a constraint between the complete transform, E, of the
error pattern and the coefficients of the connection polynomial, once it is known. As
mentioned, a fragment of the error pattern transform is known exactly, equivalent to
the syndrome sequence, but the remaining entries in the transform are unknowns, It
should be clear that there exist different connection polynomials that satisfy (5.5.25),
corresponding to different choices for the error locations.

The recursion in (5.5.25b) holds in particular for i = i+ i+ -1
If we recall that the syndromes are related 10 the error transform coefficients through
§; = E;;, then (5.5.25) could be recast as a linear system of ¢ equations relating the
6 — 1 syndromes and the unknown connection polynomial (or error locator polynomial)
coefficients. The earliest formulation of a decoding procedure simply solved this linear
system for the B, coefficients, using standard methods of matrix algebra. It was shown
that if t or fewer errors occurred the solution was unique. However, since the true number
of errors is unknown, we need to begin by assuming 1 errors, test the determinant of the
system matrix in (5.5.25), and, if nonzero, determine the B; solutions. If the determinant
is 2ero, one less error is assumed and the solution reattempted. Once the coefficients of
the polynomial B(D) are found, we can then determine its roots, the reciprocals of error
locators, using what is known as Chien search [42]. Once the locators are known, they

474 Block Codes Chap. 5

may be back-substituted into (5.5.14), leaving a linear system of equations for the error
values. (In the binary case, this last step is unnecessary.)

In summary, introduction of the error locators and the connection polynomial B(D)
has changed the solution of the nonlinear system (5.5.14) into two stages of solving linear
systems. The primary difficulty with this general method is one of solving the linear
systems of equations for codes with large minimum distance, since their solution requires
computation proportional to the cube of ¢.

Another interpretation is due to Massey [45], who realized that (5.5.25) could be
synthesized by the linear feedback shift register (LFSR) shown in Figure 5.5.4, where
the B; are the connection tap weights defining the feedback. Our task is still to find
the minimum-degree connection polynomial that is consistent with the observed error
pattern transform. In a general context, the problem is one of determining the minimal
order and coefficients of an autoregressive filter capable of synthesizing a given finite-
length sequence. We say that a filter can synthesize a finite-length sequence if its output
produces the desired sequence when loaded with appropriate initial conditions.

Figure 5.5.4 Feedback shifi register recursively producing E; sequence.

Massey's minimal-order linear feedback shift register synthesis technigue is iter-
ative. We begin with a zeroth-order system, B(D) = |, and test whether it is capable
of producing the sequence E,.i = j +1..... J + & — |, when initialized with the first
element, E;. of the sequence. As soon as a discrepancy is uncovered, that is, the re-
cursion (5.5.25b) fails to be satistied, the coefficients and/or the order of the feedback
shift register are corrected appropriately. Figure 5.5.5 provides a flow chart description
of Massey’s linear feedback shift register (LFSR) algorithm, which we shall not further
Justify, (A superb description is found in Blahut's text |4].)

The linkage of the LFSR procedure 1o decoding of BCH/RS codes is rigorously
established by Massey [45]: provided 1 or fewer errors occur in a given codeword.
the proper connection polynomial is obtained by applying the LFSR algorithm Just pre-
sented to the syndrome sequence, ;. 5,..... Ss—2. which again is just the portion of
the transform vector known to exactly reflect the error pattern £, E,, Eii.
The connection polynomial solution is unique if 1 or fewer errors occur. If 100 many
€ITOrS are present, an incorrect connection polynomial may be determined, or it may be
that a connection polynomial with degree ¢ or less is not achievable, whence the error
pattern is declared not correctable. Once the connection polynomial is determined, we
merely need 1o find the reciprocals of the roots of the polynomial to establish the error

Sec. 55 Decoding of Cyclic Codes 475

Given:

5{S,i=0, 1,..58-2) BD)Y= B*D) = 1

L=0;i=1
m=0;A"=1

-

Input
Sm

i
A=Sn, +2 B‘,Sm.,

ist

>

>
g T =BIO
g BIDY = BID) - AA*Y" D'B*(D)
3
8
[=]
=z
i=i+1 L=m+1-1L [i=isnr |
i=1
B*(D) = T(D)
A*=A

Figure 55.5 Algorithm for synthesizing LFSR trom syndromes (after J. L. Massey, Jr).

476 Block Codes Chap. 5

locators. Back substitution into (5.5.14) then leaves a linear 8ystem of equations relat-
ing the unknown error types. In any case the algorithm is a bounded-distance decoder,
guaranteeing correction of up to ¢ errors, but no more.

There is a slightly different procedure that relies even more heavily on transform
methodology and that avoids solution for polynomial roots and the subsequent linear
system solution. The received sequence r is first transformed to produce R, whose po-
sitions f, j+1,..., j + & — 2 are known to exactly constitute the transform of the error
pattern in these positions. [These are also the syndrome values defined in (5.5.14).]
These transform coefficients are subjected to the LFSR synthesis procedure. Once the
LFSR structure has been obtained, it is simple to recursively generate the remaining
E; terms, using the circuit of Figure 5.5.4 and periodic extension of the DFT coef-
ficients. Then we compute an inverse DFT to produce &, our estimate of the error
vector, which is finally subtracted from r to produce the estimated code vector. We
claim this will always be correctly done if the actual number of errors is ¢ or fewer,
since the proper connection polynomial is found and the error locators thus properly -
determined [45].

Although we have descnbed the procedure along the lines of Massey's shift-
register synthesis formulation, a largely similar idea was earlier proposed by Berlekamp
[43] for iteratively finding the error locator polynomial (called connection polynomial
here), and the basic procedure is known commonly as the Berlekamp-Massey algo-
rithm. When combined with the transform-based decoding perspective, we obtain the
complete decoding flow chart indicated in Figure 5.5.6. The steps are summarized
next.

TRANSFORM-BASED BCH/RS DECODER

1. Compute the § — 1 syndromes, either using Homer's rule or by extracting the
appropriate fragment of the DFT of r.

2. Use the syndromes to determine the LFSR solution of order ¢ or less, if any such
solution exists.

3. Extend the transform fragment recursively to produce the complete error trans-
form, E.

4. Perform the inverse transform on E to determine &, and subtract this solution from r.
5. Finally, check if the result is a valid codeword by recomputing syndromes.

There are several checkpoints along the way. First, it is possible that the final
value of L in the LFSR algorithm exceeds the degree of the corresponding connec-
tion polynomial B(D), or that this length exceeds r, in which case we declare that
the codeword has uncorrectable errors (this ¥s a decoding féa_ilure). Also, upon in-
verse transformation to obtain the error pattern estimate, we may find that the num-
ber of errors (the Hamming weight of the inverse transform) does not equal L, the
apparent number of errors found by the filter synthesis procedure. If so, we declare
a decoding failure. Another check is whether all components of & are in the field of
the code symbols, GF(g). Recall from our discussion of finite field transforms that
such inverse transforms may not be in the ground field unless the transform domain
symbol< have special relationships. (For RS codes, this last test is unnecessary, since

Sec. 5.5 Decoding of Cyclic Codes aT7

) input
r,i=0,1..,n=1

Y

S = s(oén";g::eaj .1| Step 1: Compute syndromes

4

Perform LFSR Step 2: find minimal order
Synthesis for LFSR capable of producing

B{D) syndromes
Rgz:::':zv Step 3: Complete DFT
E}, i=0,...0-1 qf estimated error pattern
- Inverse Step 4. Return to
. OFT time domain
Ye
X=r- ® Step 5: Remove errors

Figure 5.5.6 Flow chart for BCH/RS decoding, “errors only.”

the two fields involved are identical.) Finally, it may be that the r — & solution does
not constitute a valid codeword (the algorithm may “decode” to an invalid codeword
when the number of errors exceeds ¢). This can be determined by a final syndrome
check.

We shail new study the application of the algorithm to two cases. Our first example
is a (7. 3) RS code over GF(8). This code has dy, = 5 and is thus capable of correcting
up to two errors in a code block. Normal applications involve longer codes than this,
but the example code provides a simple, yet nontrivial, vehicle for studying the decoding
algorithm,

478 Block Codes Chap. 5

Example 5.25 Decoding of a (7, 3) Reed—-Solomon Code

Recall that all elements, other than O or 1, in GF(8) are primitive. Suppose in the enumeration
of GF(8) provided in Figure 5.1.1 that we define the element 2 as o so that o = 3, for
example. ‘Now define ar.a”. ... o as the four consecutive roots of the RS code; that is,
we take j = 1. Suppose that the all-zeros sequence in the code is selected for trunsmission.
{This entails no loss of generality and eases the computations.) Let symbol emors occur
in positions 0 and 2, with error types @” = 1 and o, respectively. Thus, the received
polynomial is ‘

D) = x(D)+e(D) =t +a'D>. (5.5.26)

| The decoder will not have our inside knowledge that r(D) is in fact the error polynomial.]
With [= 1, the four syndromes that are to be computed are given by §; = r@'t!).i =
0.1.2. 3, and are determined to be
So=r(@')y=a+a’a’ =0’
5 = J‘(cr:) = 0'2.
5.5.27)
S$1=r@’)=a’.

Si= r(a") =a'
We reemphasize that this sequence reveals exactly the partial Fourier transform of the error:
sequence £,.... Ey.

Given our prior knowledge, it might be instructive to write down the error locators
and the corresponding connection polynomial before proceeding with decoding. The 1wo
error locators are

Li=a"=1. L =al, (5.5.28)
and substitution into (5.5.20) gives the connection polynomial as
BDY=(1-D)l —a’D)= | —a®D + a*D°. (5.5.29)

(It is perhaps worth reiterating that. because our field has characteristic 2, addition and
subtraction are equivalent, and signs are unimportant). We could also observe prior fo
decoding here thal the syndrome sequence (5.5.27) cbeys the recursion (5.5.25b). For
example, S» = —B1§; - B1So = a®a” + oo’ = o, consistent with (5.5.27).

Figure 5.5.7 lists the complete calculations of the decoding process, including specifics
of the LFSR synthesis. We have listed in Figure 5.5.7 the LFSR variables at the point in the
aigorithm labeled point B near the bottom of the flow chart (Figure 5.5.5). The sequence of
operations basically amounts to beginning with the zero-order recutsion. B(D) = |. finding
a discrepancy. modifying the connection polynomial 1o an appropriate firsi-order recursion,
trying this. and ultimately settling ‘on a second-order connection polynomial.

Using the obtained connection polynomial, the remainder of the transform values can
be extrapolated using (5.5.25b), and we find that

E=(®c¢’ . a’a’ o a0 (5.5.30a)
Upon performing the inverse transform, we indeed discover that
e=(1.0.a%.0.0.0,0). (5.5.30b)

which when subiracted from r repairs the errors. All the necessary consistency checks are
passed.

Sec. 55 Decoding of Cyclic Codes 479

Step 1: Si= r(DVp.gi+i = Sp =05 51=0% 8 =0 =«

Step 2: LFSR Synthesis

m s, A T(D) BiD) L B*D A* i

{initial) 0 - - - 1 0 1 T
0 [Ve 1 1-o5D 1 1 o 1
1 o of 1-a®D 1-otD 1 1 o 2
2 o at 1-o*D 1-o*D-a®D? 2 1-a'D o* 1
3 o t 1-a'D-0D? 1-0fD-a2D* 2 1- o'D o* 2
4 (stop)

Conclude 2 errors present and B(D) = 1~ a®D - o2D?

Step 3: Recursive Extensions for Complete E; Sequence
E,= 08E,_, + 02E,,, initialized with £, = S, £;= S,
A

= (08 o, a?, o, o, at, 0)

A
Step 4: 8 = IDFT(E)
= (1r 0! azl 01 Or or 0)

Check: Number errors < L (V)
Errors in field of code symbols {v)

Step6:x=r-8=1{0,0,0,0,0,0,0)
Check: Syndrome of X =0 {v)

Figure 5.5.7 Decoding calculations for (7, 3) RS code, Example 5.25.

Example 5.26 Decoding of (15, 5) Binary BCH Code

Let’s conslder lhe binary r = 3 error-correcting code described earlier in Example 5.20. We
adopt ol .. a® as the roots of g(D) s0 we have a narrow-sense code (j = 1}. Assume
that three errors occur in pesitions 2, 7, and 9. Thus, assuming the all-zeros vector is
selected for transmission, we have

rD)=D*+D7 + D (5531

Notice that the code is over the binary field here, but syndrome values, error locators, and
transform values will lie in GF(16).
Computation of the § — | = 6 syndromes (or six clements of R) yields

12

S=(af o' o't a0 o). (5.5.32)

Performing the iterative LFSR procedure gives a connection polynomial
BD)=1-a*D-a*D? —a’D (5.5.33)

Recursive extrapolation for the remaining nine values of E produces

i 12 1 _4 3

E=(.a%a' o a2 00”0 & % 0,a® o o, a?). (5.5.34)

480 Block Codes Chap. 5

Upon inverse transformation, we will indeed find that the hinary error vector
¢e=1(0,0,1,0,0,0,0,1,0.1,0,0,0,0,0) (5.5.35)

ts produced. Try the same exercise with one additional ervor in the message and notice
whether the decoder completes its decoding or. if failing, where in the algorithm.

As earlier noted, the method presented here is a bounded distance (incomplete)
decoder, capable of correct decoding if and only if the received vector is within ¢ units of
the transmitted codeword, with 1 determined by 4, the design distance. For BCH codes
the true minimum distance may exceed the design distance, and thus a truly intelligent
decoder could occasionally decode “*beyond the BCH bound.” Such procedures are rather
special case and not of general interest. This is not an issue for RS codes since the true
minimum distance equals the design distance.

When the bounded-distance decoder does not correctly decode, it frequently simply
fails to decode, rather than produce an incomrect decoding. To see why, consider the space
of n-tuples over GF{(g). Incorrect decoding will occur only when r = x + e falis inside
a radius-¢ ball about an incorrect codeword, and decoding failure (detected error) occurs
when r lies in interstitial space between decoding balls. A simple volume calculation
reveals that the fraction of n-space consumed by radius-r spheres is rather small for
many BCH/RS codes. This is especiaily true for nonbinary codes. (See Exercise 5.5.2.)
Thus, we expect that, with high probability, decoding failures are much more likely
than incorrect decodings. We shall say more about such performance calculations in
Section 5.10.

It is simple to modify the preceding decoding algorithm to perform bounded-
distance decoding of patterns with f; < ¢ errors, providing less error correction in
exchange for lower probability of undetected error. This corresponds to the mode 3
decoding strategy posed earlier in Section 5.2. In the LFSR aigorithm, we simply an-
nounce decoding failure if the apparent number of errors, L., exceeds the correction
radius 1.

We complete this discussion with a brief analysis of computational complexity for
decoding. Using Hotner’s rule, calculation of the syndrome vaiues (step 1 in Figure 5.5.6)
requires n(8 — 1) multiplications and additions, ignoring the skipping of possible zeros in
r, so the complexity is about 2n5 operations®' in GF(g™). The LFSR algorithm requires
on the order of 4L (8 — 1) operations, but since we can exit the procedure if L > §/2, the
LFSR complexity is upper-bounded by 24- operations. Once the feedback structure is
identified, the remaining transform symbols can be computed with 2L(n—-8—~1) < §(n—1)
operations. Step 4, the inverse transformation, requires 2n> additions/multiplications for
brute-force DFT evaluation. However, assuming that n is highly composite, for example,
n =63 = 3-3.7, then fast algorithms may reduce the transform complexity significantly,
as with DFTs over the real or complex numbers.** Correction of the output vector requires
k < n operations in GF(g). In summary, if we hold code rate R fixed and set § = n(1 —R)
as with RS codes, then the computations grow roughly as the square of block length for
fixed-rate codes. Normalized per message symbol, the effort grows roughly linearly in

*' An operation here is an addition or multiplication.
**Zero padding can be used if necessary to obtain a desired DFT block length.

Sec. 55 Decoding of Cyclic Codes 481

block length. In particular, complexity is much less than exponential in block length.
Actual computation needs to be evaluated in the context of specific codes, however. and
there are undoubtedly clever approaches to speeding the decoding process.

5.5.3 Errors-ond-Erasures Decoding

The previous discussion pertains to what is known as errors-only decoding, meaning that
the received symbol alphabet is the same as the transmitted aiphabet, GF(g), and symbols
in a received codeword are simply either correct or in error. An important variation in
decoding is possible when the demodulator can provide additional information in the
form of erasures when the reliability of a certain symbol is poor. In a simple binary
situation. the code symbols could be modulated with an antipodal signal set, but the
demoduiator could provide a three-level quantization of the received random variable,
with the middle zone of the quantizer (values near zero) representing the low-confidence
erasure zone. In other cases, the presence of strong interference during a given symboi
may be detectable, causing the demodulator to pass along erasure information to the
decoder. We have earlier seen that the number of fillable erasures is twice the number
of correctable errors, so accommodating erasures seems very worthwhile. Of course, we
must be prudent in setting erasure thresholds so that erasing of correctly decided symbols
is not too frequent.

In the binary case, errors-and-erasures decoding is relatively simple. We suppose
that there are s erasures and r errors, such that 2r +5 < §~ 1. We first attempt decoding
with all erasure positions set to 0. (If the code is a binary BCH code, we can use the
preceding decoding algorithm, but this errors-and-erasures procedure is more general,
noi even restricted to cyclic codes, and only requires a decoder capable of correctly
processing r errors.) If decoding is successful, that is, the decoder locates an error
pattern with r or fewer errors, we save the error patiern and note its Hamming weight.
Next, we place 1's in all erasure locations and decode again; if successful, we note the
weight of the error pattem. Among the two possible candidate error patterns, we decide
in favor of that having smallest Hamming weight. We can demonstrate that this two-pass
procedure guarantees comrect decoding provided » and s meet the condition stated; this
is left as an exercise. Of course, it is still possible for decoding to be in error or, more
often, to simply fail when 2 + 5 > 8.

Errors-and-erasures decoding of nonbinary BCH and RS codes is possible using a
modification of the algorithm just presented, due to Forney [44]. Suppose that there are r
erTors in positions m), my, ..., m, whose error types are em,. p=1,...,r, respectively.
Let there be s erasures declared in positions [,, p = 1,2,...,s. As before, we define
the error locators as L, = a™ . p = 1,2,..., r. and also in a similar vein define the
erasure locators a; Z, = a’».p = 1,2...., s. In the latter case of erasures, all the
locator numbers are known, since erasure positions are specified by the demodulator.
Finally, we let the correct values of the codeword in these erased locations be denoted
by x,.p=1...5.

We begin decoding by first stuffing O symbols into the erased positions, in effect
introducing errors equal to ~x; in code positions /,. The decoder then proceeds to
compute the syndromes S;./ =0, i,...,8 — 2, exactly as before. Again, these may be

482 Block Codes Chap. 5

interpreted as a & — 1 consecutive entries, R;4;,i =0, 1,...,8 — 2, in the DFT of the
received sequence, as modified by insertion of 0’s.
The values of the syndromes are expressible as

r 3
5= en LV 4y —x,Z%, i=01,...,8-2 (5.5.36a)
r=i p=1

where again j is the first power of a in the root set used to define the code. Notice
that each syndrome symbol contains a term due to outright errors in the transmission, as
in the previous section, plus a contribution due to the induced errors. Equivalently, the
syndromes defined are related to the DFT of the error-and-erasure pattern by

Si=Ei4;, i=01,...8-2 (5.5.36b)

where E = (Ey. E|....., E,_) is the DFT of the sequence of outright errors and induced

errors due to zero stuffing.
Next, we define the erasure-locator polynomial as

5
ADY = n(D—ZP)= DT+ MDA, A =1. (5.5.37
p=I1
In contrast with the error locator polynomial, this polynomial is completely specified at
the outset by the erasure positions. Notice also that A(D) is defined to have the error
locators {Z,), rather than their reciprocals, as its roots.
Fomey [44] proposed a modification of the original syndromes according to the
linear transformation

L)
T = ZAPS;+,_,,, 0<i<b-5-2 (5.5.38)
p=0

This expresses the input/output relation for an (s + 1)-tap linear transversal filter excited
by the syndrome sequence ;. The resulting § — 1 — s modified syndromes have erasure
and error information incorporated in a2 manner that will allow the previous strategy
for errors-only decoding to determine the r error locations. To see how, we write the
modified syndromes using (5.5.36a) and (5.5.38) to obtain

5 r 5
Ti=) Im [Z em Ly 4+ 3 —xy, z;’,”-'"ﬂ]
m=0 =1 p=1

r 5
—_ i+
- z: e’"ﬂLf’ !
p=i

The final summation is zero since it can be recognized as the erasure locator polynomial
A (D) evaluated at one of its roots; thus, the second product of sums in (5.5.39) vanishes.
Also, we can note that the second sum in the remaining term is the erasure locator
polynomial evaluated at one of the error locators, L, and write this sum as A(L,).

Next, we introduce the quantity W, = e, L,A(L,),p =1,2,...,r, and we are
then able to write (5.5.39) as

, \ (5.5.39)
Al 43—, 20 Y A 22
(p=i

"=l m=0

Ti=) Wuli/, 0<i<é-s-2. (5.5.40)
m=]

Sec. 5.5 Decoding of Cyclic Codes 483

The important observation now is that (5.5.40) relates the modisied syndromes T,
to the error locators in identical formn to that found in (5.5.21) for errors-only processing,
Specifically. it can be shown that the 7; obey the recursion

==Y 8T, i=rr+l... (5.5.41)
r=1

where the B,'s are coefficients of the connection polynomial introduced in the previous
section. The task is to find the minimal-order recursion consistent with the calculated
modified syndromes. The Berlekamp-Massey algorithm is a convenient procedure for
doing this task.

This LFSR device can be used to extend the T; sequence 1o cover) < i <
n — 1. This sequence is related to the transiomm of the errors-and-erasures pattern
through (5.5.38) and (5.5.36b), and we must invert (5.5.38) to recover this sequence,
Specifically. if we write out the system (5.5.38) beginning with the equation for T;_,._1.
we find it involves only a single unknown. S;_;. Once this is found, we move to the
equation for T;_._;, solving for S;, and so on until we have extended the initial syn-
drome sequence to an n-tuple. Recalling that the syndromes sequence is shifted relative
1o the emor transform by j positions, as in (5.5.36b), we equivalently have recovered
the wransform of the errors-and-erasures pattern. This recovery of the errors-and-erasures
transform from the ¢xtended modified syndrome sequence is effectively the operation
of an auwtoregressive digilal filter with feedback coefficients given by the error-locator
polynomial. This follows from the fact that (5.5.38) is a digital transversal filter relation
with {$;} as the input and {T;] as the output. with the filter coefficients given by A,,.
To solve this inverse problem, we inject T into a feedback filter having feedback taps
specified by A,.. as shown in Figure 5.5.8, and the desired S sequence is produced. This
is related to the transform of the error-and-erasure pattem by

S = Eiqj. =04, n -1 {5.5.42)

and, as before, we merely need to perform the inverse transform to determine &, the

L%}
/]
mn>

Figure 558 Feedback circuit fur recovery of §, = Eiy; from T; in errors-
and-erasures decoding.

484 Block Codes Chap. 5

combined estimate of the original errors ¢; and the discrepancies x; to add to the in-
serted 0's.

Figure 5.5.9 illustrates the sequence of operations to be performed in this formu-
lation of the errors-and-erasures algorithm. Correct decoding ensues whenever 2r + 5 <
& — 1. Again, there are multiple points where decoding failure can be announced.

Compute
Syndromes {S;}

!

Compute
Modified
Syndromes {T;}

4

LFSR
Synthesis on
{7

¥ B(D)

Recursively
Extend {T;}

T

Y

Deconvolvg to
Obtain {E;}

{é

Inverse
DFT

¥

A A
i X=r—-e

Figure 559 Flow chart for BCH/RS
I o errors-and-erasures decoding.

Sec. 55 Decoding of Cyclic Codes 485

Example 527 Errors-and-Erasures Decoding of (7, 3) RS Code
We pursue the decoding of the (7,3) RS code discussed in Example 5.25, illustrating the
erasure processing power of such codes. Specifically, let the received vector possess erasures
in positions O and 1, along with a single error of type o? in position 2. This corresponds
1o a comectable error-and-erasure pattern. After placing O's into the erased positions, the
received polynomial is r (D) = o D2, and the four syndromes are
So = rie') = at,
S =rie?) =ab,
(5.543)
S =r’)=a'.

Si=r@)=a’
From the given erasure locations and appeal to GF(8) 1ables, the erasure locator polynomial is
AD) =D -o®YD-ay=e' +a*D + D (5.5.44)

This allows computation of the 3 — s — 1 = 2 modified syndromes, ‘which foliows from
performing GF(8) arithmetic according to Figure 5.1.1:
To= 28 + 281 +xSe=1,
{5.5.45)
Ti=xS+MS+k8 = a?.
From these modified syndromes, it is found that the connection polynomial is a first-order
polynomial

B(D) =1 +a’D. (5.5.46)

Use of the recursion T; = —B)T;_) for j =2,3,..., 6 yields

1 3

h=a' Th=a® Ty=o'. Ts=0 Ty=0a". (5.5.47)

We now back-solve for $4 using (5.5.38), which in this case becomes
Ty =284 + 4183+ X282, or Se=(Ty— A 83~ kSA; . (5.5.48)

Thus, $4 = a°. Proceeding in similar manner to solve for the entire syndrome sequence.
we obtain

0

S= (0'4. a",a'.a",as.a La?). (5.5.49)

We can then say that the estimae of the errors-and-erasures transform is a one-place rotation
of this sequence (since j = 1), yielding E = @%. o ot o' ¢ of o), which inverse
transforms to the time-domain sequence é = (0, 0, a2, 0. 0, 0. 0), as desired.

If we had stuffed any other value into the erasure locations, the recovered time-domain

estimate of the error/erasure pattern would have been adjusted accordingly.

5.5.4 ML and Near-ML Decoding

In many digital transmission applications, the demodulator is able to provide to the de-
coder more than its best estimate of a given symbol. We have argued in Chapter 4
in favor of providing full likelihood information, or perhaps finely quantized versions
of symbol likelihoods to the decoder. Errors-and-erasures decoding represents a simple

486 Block Codes Chap. 5

step in this direction; the demodulator either makes a minimum-error plﬁbability deci-
sion on each symbol or produces an erasure if confidence in any decision is poor. Of
course, if the threshold is set too high, a large fraction of correct decisions is erased
and performance becomes poor. Conversely, setting a low threshold for being confi-
dent about a decision allows a higher probability of errors entering the decoder, again
lowering decoder performance. On benign channeis such as the AWGN channel, it has
been found that errors-and-erasures decoding buys little gain (< [dB) in performance,
even with optimized erasure declaration. On the other hand, fading channels and jam-
ming environments benefit greatly from erasure processing, provided side information
on fading amplitude or instantaneous noise level is available to assist in erasure decla-
ration.

In this section, we return to the general ML decoding problem, posed initially
in Section 5.2. On a memoryless channel, the codeword likelihood, or metric, is the
sum of log likelihoods for each symbol in the codeword. The obvious difficulty with
computing the ML decision is the exponential complexity; there are ¢* codeword metrics
to evaluate.

We might suspect there are ways to avoid this brute-force search policy. One
category of decoding procedures makes use of trellis formulations of the code, utilizing
the finite-state machine representation of a cyclic encoder as in Figure 5.4.4. Trellis
search for the ML codeword can generally be performed with far less computation than
with brute-force exhaustive search, although trellis decoding may still be prohibitively
time consuming (the trellis has a maximum number of states given by max[¢*, ¢"~]).
We will defer this idea, however, until Chapter 6, where trellis codes are presented.
The decoding of block codes using this viewpoint was initiated by Wolf {47) and lately
studied by Formey [48).

Another category of more heuristic algorithms, due to Chase [49], is approximately
ML. Bounded Hamming distance decoding wil! locate the one and only one codeword
within 1 units of the received hard-decision vector, if one exists. Even if we successfully
decode, the resulting codeword estimate may not be best under the ML metric for the
channel. We expect such candidates will lie close in Hamming distance to the received
vector, but perhaps not within 7 units.

Here is the general idea introduced by Chase. Let's assume an (n. k) cyclic code
over GF(g) with minimum distance d,n, and let r be the demodulator’s hard-decision
(symbol-by-symbol) estimate of the transmitted sequence. We employ a bounded-distance
algebraic decoder to process r, arriving perhaps at a codeword estimate x. (It may be
that the decoder cannot decode if the Hamming distance between r and any codeword
exceeds 7.) The decoded codeword implies an apparent error patiern &, through

é=r—x (5.5.50)

This error pattern is the best error sequence estimate under the criterion of minimum
Hamming distance: however, it is not guaranteed to be the most likely error pattern when
scored according to the ML metric for the problem. For example, if the binary code
symbols are transmitted with antipodal signaling by a white Gaussian noise channel,
the proper decision is in favor of the codeword that is closest in Euclidean distance.
Nonetheless, we expect that the hard-decision sequence r is not a poor estimate and
that small perturbations of this sequence, when decoded, may produce other candidate

Sec. 55 Decoding of Cyclic Codes 487

codeword choices, among which the ML choice lies. In essence, the procedure explores
the vicinity of space near r, trying to locate codewords by the algebraic decoder, and
compare the candidates thus produced according to the ML metric. An efficient procedure
then is one that minimizes the number of perturbations and repeated decodings, while
still locating the ML codeword with high probability.

With reference to Figure 5.5.10, let £ be a test pattern, an n-tuple over GF(q), and
let the perturbed received sequence be

F=r-z, Jj=12../ (5.5.51)

We attempt decoding with this new input vector, and note that the new decision X; has
attached to it a (possibly new) error patien € = F — X;. This apparent error pattern is
clearly related to the previous by

& =%+ +8 (5.5.52)

Note that if both decodings produce the same decision the two implied error patterns are
equivalent. If we repeat this process with different perturbations, we expect to produce
multiple candidate codewords. These should ultimately be judged using the appropriate
metric for the problem, for example, Euclidean distance. Chase refers to this as selecting
in favor of the minimum analog weight sequence.

r Hard Algebraic Rm
Decision and Decoder
Location of *
t Low Confidence
Indexes Compute

Test Likelihood,
I7—> Pattern Compare,
Generator Save Best
Indexes of
J=i+1 |

Low Confidence
Y

3

Outpy‘t Best
X

Figure 5.5.10 Chase's iterative decoder.

Chase argued that the test vectors z should not need to have Hamming weight
larger than [(dwin — 1)/2), for this will allow location and likelihood scoring of code
vectors within 2+ Hamming units of r. In fact, the set of test patterns can be much
smaller without significant sacrifice in performance, at least on the AWGN channel, and
Chase’s algorithm 2 represents an illustration of the method.

21t may not differ from the initial decoder choice.

488 Block Codes Chap. 5

CHASE’'S ALGORITHM 2 (GENERALIZED TO g-ARY CASE)

1. Locate the {dnin/2] positions in the codeword having the smallest likelihood or
reliability.

2. Let T denote the set of vectors over GF(g) with at most |dmin/2) nonzero symbolis
in the low-reliability positions. (This includes the ali-zeros vector.)

3. Perform algebraic decoding for all vectors F =r — %, %, € T.

4. For each successful decoding, compute the codeward likelihood, or metric, and
decide in favor of the best.

The number of test patterns is ostensibly ¢'9~/2) although some preprocessing can
eliminate test vectors that would produce the same error pattern upon bounded-distance
decoding. Thus, such algorithms remain only of interest for small alphabet sizes and.
ore importantly, small minimum distance. Chase formulated the algorithm for the
binary case; it seems logical that rather than trying all g choices in the low-reliability
positions, most of the g choices could be deemed poor at the outset, thereby reducing
complexity back toward 2ldms/2l,

Still another related notion is that of generalized minimum distance decoding
(GMD) introduced by Forney [50] to attempt to approach the performance of maxi-
mum likelihood decoding. The demodulator is assumed to provide reliability measures
attached to each code symbol (hard) decision, reflecting the confidence attached to a
particular decision. The n decisions are rank ordered, and decoding first proceeds with
zero erasures, that is, errors-only decoding. This may or may not produce a decoding.
success, and, if it does, the codeword produced may be incorrect. Next we erase mo
least confident symbols and perform errors-and-erasures decoding. Again, this may or
may not succeed and may produce another choice for the proper codeword. We pro-
ceed until & — 1 least-reliable symbols have been erased, which for RS codes ensures
a successful decoding. There are thus [(5 — 1)/2]| decoding passes. Among the pos-
sibly several candidate code vectors produced, final arbitration is based on the overall
likelihood metric.

5.6 MODIFYING BLOCK CODES

We have by now encountered a variety of block codes that, as defined, have restricted
values of n, k, and ¢. For example, the primitive binary BCH codes have block lengths
n = 2" — 1 and special values for the message length k. Reed-Solomon codes have
block lengths related.to the alphabet size g. Frequently, these natural code parameters are
not convenient for implementation, or operational requirements may dictate certain other
parameters, such as codeword lengths, n, being a power of 2. Therefore, we are faced
with modifying a base code, and we consider several means of doing so in this section.
These constructions, while not necessarily producing optimal codes for a desired (n, k)
pair, are generally quite good and preserve the ease of implementation of the parent code.
We shall discuss code modification in the context of the binary cyclic (7,4) Hamming
code and derivatives, as shown in Figure 5.6.1, but the same ideas pertain to general
g-ary codes as well,

Sec. 5.6 Modifying Block Codes 489

Cyclic (7, 4) Code
aDy=D3+D+1
dmin = 3

Extend Puncture Augment
Expurgate

Shorten
(8, 4) - ~1(7. 3)
Lengthen
Noncyclic Cyclic (7, 3) Code Figure 5.6.1 Basic code
thnin = 4 gD =D+ 1M {DP+D+ 1) modifications surrounding (7, 4) cyclic

Omin = & Hamming code.

5.6.1 Extending and Punciuring

Both of these operations on a base code retain the same code size, but modify the block
length. Extending is a process of adding more code symbols, presumably to increase
the minimum distance, while puncturing is a process of deleting code symbols. As
an object of study, let's again consider the (7, 4) cyclic Hamming code, generated by
g(D) = D*+D'+1. Recall that this code is a perfect code, with dp;, = 3. We may singly
extend this code to an (8, 4) code by appending an extra bit that makes the overall code-
word parity even. In Figure 5.6.2 we show the systematic generator matrix for this code,
as well as the parity check matrix, derived from the generator matrix for the (7, 4) code
and the additional requirement that x; must equal the sum of x, through x¢. In adding
this extra bit, we increase the minimum distance to 4, since all former odd-weight code-
words have been increased in weight by one unit. More generally, this single extension

1000101
Ghamming = 0100111
0010110
LO 001011
10C01011
GextHamming= 01001110
00101101
00010111
6 . .
Appended Bit x7 Satisfies x; = Y, x; =ug +uz + U3 E’?‘S&iﬁa’.ﬁi?ﬁ;??i&‘;ﬁﬁié‘
inQ .
Hamming (7, 4) code.

490 Block Codes Chap. 5

increases dy,, for any code that has odd di;,. A second example would be the extension
of the Golay (23. 12) perfect code to a (24. 12) code with diin = 8. Extended cyclic
codes are no longer cyclic, but encoders and decoders for singly extended codes are
simple modifications of those for the base code.

The singly extended Hamming codes are sometimes referred to as SEC-DED, an
acronym for single error correcting, double error detecting. To see why these codes are
capable of such, consider the parity check matrix for the (8. 4) code. Its columns are
all of odd weight. consequently, all single-error patterns produce odd-weight syndromes,
while any two-error pattem gives a nonzero, even-weight syndrome. In fact, all even-
weight error patterns produce even-weight syndromes and are therefore detectable. In
geometric terms, the minimum distance between codewords is 4, so radius-1 spheres
about each codeword are disjoint, and any two-error pattern lies outside a radius- 1 sphere
and is thus detectable. The extended Hamming codes are all quasi-perfect, since all
possible received n-tuples are within r 4+ | Hamming units of a codeword, where t = |
here. In the case of the (8, 4) code, the code is equivalent to a biorthogonal 16-ary
signal set discussed in Chapter 3 (see Exercise 5.6.1) and to a first-order Reed-Muller
code.

Puncturing is the opposite process of extending; code symbols are merely deleted.
Puncturing symbols eventually reduces dp,,. but the choice of punctured coordinale
affects on the decrease in distance as block length is shoriened. Because relatively
little control is maintained on distance, puncturing is rather uncommon in block coding
practice. It is, however, important in trellis coding.

5.6.2 Expurgation and Augmentation

This pair of operations either increases or decreases the code size, while maintaining
the original codeword length. Expurgation of a code over GF(y) eliminates a fraction
(¢ — 1)/q of the codewords in a parent code for every expurgation step, reducing the
dimension of the linear space. Thus, from an (#. k) code we arrive at an (n, &k — 1) code.
In our working example, the (7. 4) code becomes a (7. 3) code by eliminating any row
of the G matrix. It happens that this corresponds 1o purging the Hamming code of its
eight weight 3 codewords. This construction works in all cases with odd dunn codes. For
example, the (23, i2) Golay code could be expurgated to achieve a {23, 11) code with
minimum distance 8.

If the parent code is cyclic and generated by g(D). multiplying g(D) by any other
factor of D" — | produces an expurgated cyclic code. Since D — 1 is always a factor of
D" — 1, we can always expurgate a code whose g(D) does not already incorporate D — 1
as a factor and retain a cyclic code. Thus, in the example, the generator for the (7. 3)
code is (D + 1)(D? + D + 1). Itis also interesting 10 observe that the (7. 3) code is
the dual of the (7. 4) code, and that the (7. 3) codewords, when antipodally modulated,
form an 8-ary simplex in seven-dimensional space. (Simplex signal sets were discussed
earlier in Section 3.4).

The reverse of expurgation is augmentation, where in essence we glue codes
together to form codes of larger size having the same block length. Thus, two (7, 3)

#Recall that binary polynomials D + 1 and D — | are equivalent.

Sec. 5.6 Modifying Block Codes 491

vodes, one diftering from the other by the addition of the all-1°s vector 10 each codeword
in the first code, form the (7.4) code. The proof of the Gilben lower bound on dp,,
indicates how, in principle, augmentation can be applied to low-rate codes to obtain codes
meeting the Gilbert bound: however, the resultant codes, while linear, do not necessarily
carry the structure needed to implement “good” long block codes.

5.6.3 Lengthening and Shortening

in lengthening a code. we increase both the size and block length. For example, the
(7. 3) code lengthens to (8. 4), both codes having dy. = 4. Note that in doing so the
code rate increases, and in this case at least, dy,, remains constant. After several steps
of lengthening, we must expect the minimum distance to decrease. For example, there
is no linear (9. 5) code with minimum distance of 4.

As earlier noted. Woif {34] has shown that up to two information symbols may be
added to a Reed-Solomon code over GF(¢) with block length n = ¢ — 1 without decrease
in dyin. Thus, a (31,27) code over GF(32) with § = 5 could be lengthened to (32, 28),
while still retaining double-error-correcting ability. The latter code parameters might be
more convenient for implementation. since the code rate is g and codewords are exactly
four bytes long. To accomplish such lengthening, we need to append additional columns
to the parity check matrix H, without changing the property that any combination of
§ — I columns is linearly independent. Such a pair of columns is (1,0.0....,0)" and
0.0.....DO7".

Finally, and probably of most practical interest, is shortening an (n. k) code to
(n — j.k— j) by simply forcing j leading message positions to be zero and then delel-
ing these message positions from a systematic-form codeword. The code amounts to a
fower-order cross section (the coordinates remaining after omitting the leading 0 posi-
tions) of a subcode of the original code. Therefore, a shortened code has d,, at least as
large as the parent code’s dy,in, and with enough shortening, the distance will eventually
increasc. Shortening of systematic cyclic codes is particularly simple to accomplish:
we utilize the parent encoder and decoder, but force the leading j information sym-
bols 10 be zero and do not include these preordained zeros as part of the iransmission
process.

Example 5.28 Obtaining a k = 32 Binary SEC-DED Code

A single-error correcting. double-error detecting code for 32-bit computer memory er-
ror control is obtained by using the (63.57) Hamming code, generated by the primitive
polynomial ¢(D) = D® + D + | as a base code and then expurgating the odd-weight
codewords 10 form a (63, 56) code with dmin = 4. The resuliing generator polynomial
is ¢D) = (D + 1)D® + D +1). Next, we shorten this code to (39.32) by forc-
ing 24 of the 56 information bits to zero. Feedback shift register implementation of
encoder and decoder is possible, but with high-speed application in mind. direct matrix
encoding and syndrome forming is used, followed by logical determination of the error
location or the detection of a double error. Similar schemes have been routinely em-
ployed in most modern mainframe computers for memory error protection and are sup-
ported by LSI integrated circuit encoder/decoders, which may be cascaded to achieve
desirable wora sizes (16, 32, 64, and so on). One interesting aspect of error control

492 Block Codes Chap. 5

in memory systems is that many memory sysiems are implemented using 4 Meg x 1
memory chips (or whatever size is in vogue), parallefing as many as needed to achieve
the required word size. The SEC-DED scheme described can provide continuous op-
eration of the memory despite the complete failure of one chip or its removal. In ef-
fect, the memory organization has provided a natural interleaving so that errors com-
mon to a chip effect at most one bit of a codeword. Shortened RS codes have also
been suggested for memory error control when memory is organized in b-bit wide “nib-
bles” [31].

Example 5.29 INTELSAT’s® Modified BCH Code for TDMA Transmission

INTELSAT, in a high-speed TDMA satellite network, uses a (128, 112) binary code derived
from a length-127 BCH code. The ratio 112/128 is precisely 7/8, making clock generation
easier, and both n and £ are muitiples of 8, the length of a byte. The doubie-error-correcting
BCH code of length 127 has dmin = 5 with 113 information symbols, as discussed in
Section 5.4. By expurgating the odd-weight codewords, we achieve dpin = 6, and by
extending this code, we arrive at the (128, 112) design. Actually, this last step is of marginal
use, for the minimum distance remains at 6. Regarding decoding, the syndrome former
is a 16-bit feedback shift register. Given the memory technology available today, table
lookup of the error location in a 64K read-only memory is an attractive alternative to the
algebraic decoding approach, In this way, some triple-error pattemns are comectable, if
desired. Alternatively, the decoder could be operated in mode 3, correcting up to two errors
and detecting triple-error patterns.

Example 5.30 Modifying the (23,12) Golay Code

The Golay (23. 12) cyclic code can be modified in all the ways depicted in Figure 5.6.1. The
code can be extended to (24, 12}, making the rate exactly 1,2 and increasing the distance
to 8. Or we may expurgate the odd-weight codewords by multiplying the former generator
polynomial by [+ 1, obtaining a (23, 11) cyclic code with dmi, = 8. The weight spectra
of these three codes are listed in Figure 5.6.3.

w A, w A, w A,
0 1 0 1 0 1
7 253 8 759 8 506
8 506 12 2576 12 1288
11 1288 16 759 16 253
12 1288 24 1
15 506
16 253
23 1
(23, 12) Code {24, 12) Cede (23, 11) Code

Figure 5.6.3 Weight specira for (23, 12) Golay code, extended code. and
expurgated code.

BINTELSAT is a consortium managing internationai commercial satellite 1raffic.

Sec. 56 Modifying Block Codes 493

5.7 ERROR DETECTION WITH CYCLIC CODES

In many data transmission applications we are interested in the reliable detection of
transmission errors. and when such errors are detected, message retransmission is re-
quested. Such schemes are used in writing and reading of floppy disks, in checking the
validity of commands sent 1o spacecraft (where invalid messages could be disastrous),
and in checking the validity of packets in packetized data communication networks. In
the packet network application, the term ARQ is ofien applied to denote the automatic
request of retransmission upon detection of message errors. Often, this error detection
takes place after good error-correclion coding has taken place. to detect the presence
of residual error. In that case, the error-detection scheme is concatenated with another
(usually more powerful) coding technique.

The popularity of error detection stems from its simple implementation and high
reliability for surprisingly little message overhead, or redundancy. As we have seen, the
encoder and syndrome generator are simple shift registers with feedback, and integrated
circuits are now available for processing of cenain international standard codes. The
same circuit can be easily conligured to perform either encoding or decoding functions.
The codes for such applications are usually referred to as cyclic redundancy check (CRC)
codes in the literature.

In error-detection applications, we are interested only in the probability that an
error pattern goes undetected at the decoder. denoted Pyg. As earlier noted, this is
exactly the probability that the error pattemn corresponds ta a nonzero code vector. Thus,
knowledge of the complete weight spectrum of a code provides. in principle. the tools
for analyzing Pig.

For general binary (n. k) codes, Korzhik [51] has shown by ensemble-averaging
arguments that binary codes exist whose probability of undetected error on a memoryless
binary symmetric channel is bounded by

Puele) < 27701 — (1 - €)"). (5.7.1)

where € is the channel error probability. This implies that for ¢/f €. or no matier how
poor the channel,

Pug < 2"'""". (5.7

For ¢-ary codes on uniform channels, the corresponding result is Pog < ¢ %,

This result suggests that even under very poor channel conditions. where ermor cor-
rection might be prohibitively difticult. error detection can be quite reliable, being expo-
nentially dependent on the number of parity symbols appended to the message. On typical
channels for which the error probability is small, we expect the Py performance to be
much better than the ¢ ~*'~*> bound. governed by d,,,, and the code’s weight spectrum.

This existence proof does not describe the codes. nor does it even hold that easily
instrumented cyclic codes behave in this manner. It is rather widely assumed. incor-
rectly. that (5.7.2) holds for any specific (n. k) code, for any €. It has been shown
(52 that Hamming codes, extended Hamming codes. and double-error-comecting BCH
codes satisfy (5.7.2), called the 2=~ bound. and other good codes seem lo reflect this
closely. although as we shall see the bound does not strictly hold in all cases of interest.
especially under substantial shortening of cyclic codes.

494 Block Codes Chap. 5

We now analyze the performance of a specific (not necessarily cyclic) code. A
¢-ary memoryless symmetric channel model with error probability P; is assumed. If A,
denotes the number of codewords of weight w, then

N Pt u .
PUE = z A“, ("_—l) (l - R‘_)(ﬂ-u l. (573)

I.l'=|fm
This is just the probability that a ¢-ary error pattem is produced by the channel that takes
an input codeword to another valid codeword. For small error probability, the probability
of undetected error is approximately

P “min
Py ~ Ay, (J) . (5.7.4)
q-—1

Typically, error detection schemes have low redundancy; that is, £ is nearly as large
as n. Consequently, it is often convenient to find the weight spectrum of the smaller
dual code and the MacWilliams identity to determine the required weight spectrum of
the object code. If B, denotes the number of weight w words in the dual code, then
(5.2.21) provides the weight spectrum of the desired code, from which (5.7.3) gives Pyg.
In the case of binary codes, this reduces o

"
Pue(€)=2"""0 3" B(1 - 2e) — (1 - &)". (5.7.5)
w=0
For cyclic codes, other important error-detection claims can be made. Recall that
codewords may be represented (in nonsystematic form) as

x(D) = u(D)g(D). (5.7.6)

Since g(D) has degree n — k, any nonzero code polynomial will have expenents that
span at least n — k + | positions. Consequently, no nonzero codeword can have all its
nonzero symbols confined to n — k or fewer positions, including end-around counting of
positions. Since undetectable error pattems are the same set as the nonzero codewords,
we conclude that all error bursts confined to n — k contiguous positions, including end-
around bursts, are detectable. Furthermore, among error patterns of length nn — & + | bits,
the fraction of undetectable events is known to be ¢=""~*~1 /(g — 1), and for still longer
error events, the undetectable fraction is ¢ ~"% {1, 3], independent of channel quality.
These results also attest to the importance of the number of parity symbols, independent
of the message length.

Example 531 CCITT Code Error Detection Performance

An international standard adopted by CCITT for binary communication in several protocols
uses the 16-bit CRC parity word formed by the generator polynomial
gD =D+ DD +D* + DY 4D 4 p* 4 DY+ D4+ D 1)
(5.7.7
=D +D2 4+ D%+,
where the second polynomial in the first expression is primitive of degree 15 and thus, by
itself, generates a (32767, 32752) Hamming code, with dmiy = 3. The adopted g(D) thus
would produce an expurgated (32767, 32751) cyclic code with dgjp = 4.
The transmitted code polynomial is

x(D) = D" *u(D) + [D"*u(D)} mod g(D), (5.7.8)

Sec. 5.7 Error Detsction with Cyclic Codes 495

496

so the code is in systematic form with message bits in the leading positions, as described
in Section 5.4, The encoder can be implemented with a 16-bit shift register with feedback,
and the syndrome former is essentially identical. This and other CRC codes have been
implemented in integrated circuit form by several manufacturers.

If we were conient with messages of length £ = 32,751, we could readily evaluate
the Pye for this code since it is an expurgated Hamming code, and the weight spectrum
of the parent code is given in {5.2.33). Substitution into (5.7.3) for various € gives Pyg
shown in Figure 5.7.1. Note that for small € crror-detection performance on the BSC
behaves as Aje ~*, since dyn = 4 for this code, and quadruple-error patterns are required
to deceive the decoder. Note also for high ¢ thai Pyg still remains below 276, the 27—%
bound. For this code we may also say that all error bursts confined to 16 bits are detected,
and all but a fraction 271% of error patterns having length 17 bits are detected. as well
as alt but a fraction 27! of longer error patterns. For a random-error channel, these are
correctly subsumed in the calculation of (5.7.3). However, if the channel exhibits a bursty
tendency. the detection performance remains very robust, and performance is actually better
than (5.7.3) for equivalent average channel error probability.

Irr practice, we usually deal with message lengths other than the natural length of
the code, typicaily much shorter packets of perhaps 1000 bits. A common procedure is 1o

103 -
10—4 -
105
106 |-
FPue 107 |-
32767 =n
108

10° - ~— At

j0-10 L.

10-1 i | t] |
101 102 103 10+ 10°5 104

Channel Bit Error Probability, ¢

Figure 5.7.1 Probability of undetected error on BSC, block length varying,
gDy=D24 D" 4+ D5 4,

Block Codes Chap. 5

shorten the code 1o (n— j. k — j) by using the original encoder and syndrome former, except
forcing the leading j bits to be zero and omitting' their transmission. These leading zeros
have no effect on the parity vector, ror will they alter the syndrome. Also, as we saw in the
previcus section, dimin 15 at least as large for the shortened code as for the parent code, since
the shortened code is the truncated subcode formed by codewords having zeros in the leading
j positions. Even though the shortened code is not in general cyclic, we can still claim
detection of all bursts confined to n — k bits. On the other hand, it is somewhat surprising
that, upon shortening, the 2-¢"~%) bound may be slightly exceeded for large € on a BSC.
For example, when the preceding CCITT code is shortened to have n = 1024 (roughly a
1000-bit message), calculations performed in [53] give the results shown in Figure 5.7.1.
Note that for small € the slope remains the same as for the parent code, and in this region
PyE is better than for the parent code, as we would expect. The latter is attributable to the
smaller numbers appearing in the weight spectrum. Fer shortening to » = 1024, it appears
that the 27! bound holds, but further shortening to # = 64, say, will show this bound is
exceeded slightly for a small range of €. The reader is referred: to references {52-54] for
further analysis of this effect, where it is also shown that for very noisy channels some
generator polynomials are better than others when shortened versions of the original code
are used.

Discussion of a 32-bit CRC code employed in the Ethernet protocol is provided in
Exercise 5.7.2. The ATM cell header code is treated in Exercise 5.7.3.

5.8 LAYERED CODES: PRODUCT CODES AND CONCATENAITED
CODES

In this section, we present techniques for combining two or more block codes to produce
a more powerful emror control technique. In essence, both methods seek the power of long
block codes, without the complexity of the associated decoding, by employing shorter
component codes.

5.8.1 Product Codes

We will describe product codes in a two-dimensional context, although the extension to
higher levels of coding should become obvious. Given a k = k;k; symbol message for
transmission, we imagine storing the sequence in an array with k; rows and &, columns.
Suppose that we encode each row using an (7, k) block code, employing any one of
a number of techniques already presented. let the minimum Hamming distance of the
row code be di. In the process, we have filled an array of k, rows and 7, columns.
To each of these columns, we next apply an (2, k;) block code (over the same field),
having dniy = dy. This populates a two-dimensional array of size nn,, and we have
produced a two-dimensional code with parity constraints on rows and columns. (The
order in which the encodings are actually performed is unimportant, and it is possible
that the same code is used in both dimensions.)

The entire array can be viewed as having a message section, a section of row parity
symbols, or row checks, a section of column checks, and a set of checks on checks, as

Sec. 5.8 Layered Codes. Product Codes and Concatenated Codes 497

F:I::::ZI:Z:Z: LIS_'.:Z'_'::*_ Codeword in {ny, k1) Code
k;
Row
Message Parity
n— k Column *Parity on
27 Parity Parity*

Figure 5.8.1 Product code layout.

ilfustrated in Figure 5.8.1. It is clear that we could view the entire code as an (nn,. k\k;)
block code, whose aggregate rate is

R=-"2=R\R,. (5.8.1)

However (and this is the important property), encoding and decoding retain the algorithms
and complexity of the component codes.

Specifically, decoding could take place in the obvious manner. First, each row is
decoded, with the corresponding information positions repaired as indicated. Of course,
incorrect row decoding is possible, in which case residual errors are left. Next, columns
are decoded separately. This two-step decader has decoding effort, or operation count,
given approximately by the sum of the mndividual decoder complexities.

The minimum distance of the code can be shown (Exercise 5.8.1) to be the product
of the minimum distances of the row and column codes; that is,

duig = did>. (5.8.2)

This would, as for standard codes, imply that the guaranteed error-correction capability
of a maximum likelthood decoder is

did> - 1

a“

Unfortunately. this two-step decoding procedure, row decoding followed by column
decoding. is in genera) incapable of correcting all error patterns with t or fewer errors
in the array. Nonetheless, this idea is rather simpie, and we will see that many error
patterns with more than ¢ errors are correctable with this method.

We can easily determine the smallest number of errors that prohibits correct decod-
ing in row/column decoding. Let 1, and ¢> be the guaranteed error-correcting capability
of the row and column codes, respectively. For it to be passible for an array to fail,
we must have a certain number of row failures. Row failures may happen when ¢; + 1
errors occur in any row. For the column decodings to fail, it must be true that + + 1
row failures occurred and, even then, these etrors must be placed rather specially. Thus,
we claim that any error patien with (7, + L}{t> + 1} — | errors or less is correctable. Of
course, this is smaller than r in (5.8.3) (roughly haif as large for large distance codes),
but we should aiso observe that most error patterns with more than the guaranteed limit
are in fact correctable.

498 Block Codes Chap. 5

Example 532 Product Code Involving Binary Hamming and BCH Codes

Suppose that the row code is a (15, 11) binary code with d, = 3, and the column code is
a (63, 51) binary BCH code with d; = 5. The overall rate is roughly R = 0.6, and the
block length is n = n(ay = 945. The minimum distance of the product code is then 15,
but a row/column decoder can only guarantee correction of 2.3 — 1 = 5 errors in the array,
rather than the 7 ensured by minimum-distance considerations. In Figure 5.8.2 we illustrate
a 6-error pattern that is uncorrectable in the row/column decoding order (notice the special
requirements on error placement) and an 1l-error pattern that is correctable, Product codes
are apparenily powerful because of the high likelihood of comecting beyond the guaranteed
limit with simple decoders.

As a design comparison, we might consider other nonproduct codes with approxi-
mately the same block length and rate. A BCH code with » = 1023 and k = 618, hence
rate kK = 0.6, can always correct 44 errors, a far better guarantee than for the product code.
Decoding effort for this code is certainly much larger than that for either component code
given. although total decoding effort must reflect the need for multiple decodings in rows
and columns in the product code situation.

15

+ Denotes
63 Bit Error

{a) Not Correctable, n,=6 (b) Correctable, n, = 11

Figure 5.8.2 Uncorrectable and correctable error pattemns for product code of
Example 5.32.

A particularly simple application of the product code concept is that involving
single symbol parity encoding in each dimension, giving each code a minimum distance
of 2, and the complete code a minimum disiance of 4. Neither row nor column code
is capable by itself of correcling any errors, but their combination admits a very simple
scheme for correcting one emor or detecting three errors. Specifically, any single error is
located at the intersection of the row and column where parity checks fail. At the same
time, any double-error pattern is detectable, so the system is SEC-DED. In this case, we
can attain the error-correcting capability suggested by (5.8.3) with a simple decoder.

Blahut [4] describes an intricate procedure whereby the first decoder declares era-
sure of the entire word when decoding fails and passes suspected error counts 1o the
second decoder otherwise. By judiciously processing this side information, the second
decoder is able to ensure comection of all error patterns with up to t errors, where 1 is
given by (5.8.3). One simpler alternative, which under certain approximations achieves
the same result, is to perform correction of up to r; < ¢, errors on rows, declaring row
erasures when row decoding fails. (Usually, when the error limit r; is exceeded, the

Sec. 58 Layered Codes: Product Codes and Concatenated Codes 499

ki k;

decoding is not to an incorrect codeword, but simply a failure, so we can assume that
residual errors apart from erasures are negligible.) The column decoder can accommodale
up to d> — 1 erasures in a column, assuming that no residual errors are left after row de-
coding. Thus, we can guarantee repair of ervor patterns with up to (d2)(r| +1) — | errors.
It should be clear that reversal of the order of decoding would guarantee (approximately)
(d))(r2 + 1Y — 1 error correction, and it is wise to choose the best order.

Example 5.32 continued

Since the Hamming code is a perfect code with 1 = |, and thus row decoding failure
nomally would not occur, we couid choose ry = (; that is, the row code will be used only
for error detection. At least three errors in a row are required to cause incorrect decoding,
but single or double errors will cause the row to be erased. Column decoding with erasure
filling will guarantee corvection of d2(r| + 1)~ | = 4 errors. (Five errors in any one column
will cause product code failure here.)

Another approach is to perform column decoding first, adopting r» = I as the error-
correcting radius, instead of the guaranteed limit of two-error correction. Accordingly,
four errors in a column are required to cause incorrect decoding, and we may assume that
whenever two or more €rrors in a columa occur then a column erasure is declared. The row
decoder is capable of handiing d, - I erasures. Consequently, the guaranteed correction
capability with this option is ¢y (i + 1) — 1 = 5. In this case, the result is no stronger than the
simple row/column decoding discussed previously; however, for more powerful component
codes. this method begins to excel and approach the possibilities given by (5.8.3).

Product codes have natural burst-error handling capability as well. To see how.
suppose we form the complete array as in Figure 5.8.1 and transmit by cofumns. Decoding
proceeds first on rows after the full array is received and then by columns, as described
previously. Notice that any single error burst confined 1o n1f, transmission slots will
not place more than 7, errors in any row of the received array and is thus correctable.
Thus, n2t) is the guaranteed burst-correcting capability. Obviously, interchange of orders
could achieve n,72, and if burst correction is of principal importance, the better choice
should be adopted. On this topic, the reader is directed 10 |55] for a related discussion
on burst-error correction with “array™ codes.

As a prelude to the next topic, we show in Figure 5.8.3 a schematic illustration of
product encoding. which depicts the layering of one code on 1op of another.

(ny, k) kem | (0, k) M Ny

GF(q)

Encoder [Gfig) | Encoder | GF(qg)

- - Figure 583 Layering of row/column
{kytimes) {ntimes) codes.

5.8.2 Concalenated Codes

A closely allied concept is that of code concatenation. introduced by Forney |38). Again,
we shall limit our discussion to one leve! of concatenation. Figure 5.8.4 illustrates a
general concatenation approach, and remarkable similarity with Figure 5.8.3 is seen.
The primary difference in concatenation is that the two codes normally are defined over
different field sizes, for reasons that will become clear shortiy.

500 Block Codes Chap. §

|
————

]
)
(N.K) | GFgh | ™K | GFq)
—+1 Encoder i— Encoder
over GF{g*) : over GF(g)
| 3]
I
q-ary
Quter Code : Inner Code Channel
|
R
:
(INK] n k) |
Decoder |~ : Decoder |
I
I
I '
Channei Presented
to Quter Code

Figure 5.8.4 Diagram of concatenated coding/decoding.

We usually speak of an outer code and an inner code. The outer code is taken
to be an (N, K) code over GF(q“), and each ocutput symbol in the outer codeword is
represented as a k-tuple over GF(g). These k& symbols are then further encoded by an
(n, k) code over GF(g) whose symbols are compatible with the modulator and channel.
Typically, the inner code is binary (¢ = 2), and the outer code is a Reed-Solomon code
over GF(2¥). It is helpful to visualize the inner encoder/channel/decoder sequence as
providing a superchannel on the field of size ¢* for use by the outer coding system.
Also, the similarity with product codes is made stronger if we treat the outer code as a
(single) column code, with the row code playing the role of the inner code.

Example 533 (16, 12) R~S Code Concatenated with (8,4) Binary Code

Suppose we adopt as an outer code the lengthened (16, 12) Reed—Solomon code over GF(L6),
whose minimum distance is n — k + 1 = 5. Symbols in the RS codeword are represented
as binary 4-tuples, and the inner code can be selected as an extended Hamming (8, 4)
binary code. These binary code symbois are then transmitted using a binary modulation
technique. Recall that the inner code minimum distance is 4. The overall encoding rate is
R = RowerRinner = (3) () = 0.375 bit/channe! use.

Decoding of concatenated codes proceeds inside-out; that is, each inner code-
word is separately decoded, and each &-tuple estimate is then regarded as a symbol
in the field of the outer code. it is worth noting that when the inner decoder errs
it matters not at all whether one of the & symbols or all of them are incorrect, for
the outer code is symbol oriented. In fact, the superchannel may be regarded as a
bursty channel for which Reed-Solomon and other codes over bigger fields are well
suited.

Performance analysis of a given scheme involves iterating previous calculations
for block codes. Let Piy denote the probability of an inner code decoding error, which
will depend on the code employed, the channel, demodulator quantization, and SNR.
Sec. 58

Layered Codes: Product Codes and Concatenated Codes 501

The probability of outer code decoding failure is (for a bounded-distance decoder)

N
(1 = Pcdlow = Z CNPL(1 = PN, (5.8.4)

J=!"t+|

Just as for product codes, concatenation schemes can be viewed as a recipe for
building long codes for the desired channel alphabet, while preserving the complexity
of the composite decoders. Error probability curves can be extremely steep, and con-
catenation is generally regarded as an efficient way to achieve extremely small error
probabilities without resort ta-error detection and retransmission protocols.

As a matter of theoretical interest, concatenation was used by Justesen [56] to
produce the first constructive procedure for producing codes whose normalized mirimum
distance remains bounded away from zero as block length increases indefinitely. The
normalized distance in this construction is still, however, below the Varshamov-Gilbert
asymptotic bound. The construction involves a special allocation of redundancy, or code
rate, in a multilevel concatenation scheme. Even in simple examples, like the one just
given, it is clear that the overall performance is sensitive to the allocation of rate between
inner and outer codes.

Typical practice has been that the inner code is designed to be a powerful, lower-
rate code, while the outer code is a high-rate code, normally a Reed—Solomon code.
It is important that the inner decoder produce the very best superchannel possible in
the sense of channel capacity or Ry; when feasible, this implies maximum likelihood
decoding of the inner code. In the previous example, if the (8, 4) code is used on an
AWGN channel, correlation decoding should be employed if analog demodulator outputs
are available,

5.9 INTERLEAVING FOR CHANNELS WITH MEMORY

In many practical situations, the mapping from encoder sequences to demodulator output
sequences is not a memoryless relation; that is, if we let F = (rg, 1y,..., r,.-1) denote
the collection of received observations,

n—1
PEX) # [P, (5.9.1)
j=0

We say such channels exhibit memory, in that the action of the channel is not a sequence
of independent trials. Physical mechanisms for this memory, or dependence between
channel actions from symbol to symbol, are quite varied and may be due to amplitude
fading on a radio link, sporadic burst noise due to inadvertent interference or hostile
Jamming, magnetic or optical disc recordings with surface defects, and intersymbol in-
terference effects due to channel time dispersion. References [57-59] provide good
surveys of channels with memory and applications of coding to them.

The codes we have been studying are essentially designed for memoryless chan-
nels. When used on channels with memory, these codes tend to be overwhelmed by
the rare periods of poor channel conditions and do not perform as we might predict
based on “average” conditions and memoryless channel analysis. A hypothetical illus-

502 Block Codes Chap. 5

tration is the following: we employ the (23, 12) binary Golay code on a binary channel
whose error mechanism is admittedly atypical. A code block is either error free or
there are exéctly four bit errors present. The probability that a block is corrupted is
1073, so the average or marginal error probability of this channel is (+)(0.001). Be-
cause the Golay code is perfect, a complete decoder will always decode incorrectly on
corrupted blocks and, in fact, will induce additional errors in the codeword. Error-
free blocks are processed correctly. Nonetheless, the postdecoding error probability is
larger than it would have been without coding, rendering this coding technique a poor
choice.

A more typical illustration of memory effects is provided by the Gilbert [60] model
for a binary channel. The channel is assumed to have two underlying states, good = G
and bad = B. In the good state, the channel crossover probability is, say, eg = 1073,
while in the bad state, the channel parameter is g = 10~'. Furthermore, there is
a stochastic model for transitioning between states at every channel time, as shown
in Figure 5.9.1. This represents a two-state ergodic Markov chain whose steady-state
probabilities can be obtained as in Chapter 2. It is easy to show that the steady-state
probability of being in the good state is g for this example, and furthermore the long-
term probability of error is 1.67 - 1072, Also, the expected time of persistence in state
B is 1/0.05 = 20 bits. If a code is used on this channel with a block length of, say,
n = 31 bits, the performance will be much different than predicted by a memoryless error
channel analysis with € = 0.0167. To see why, we show in Figure 59.2 a cumulative
distribution function for th¢ number of errors per block for a memoryless channel with
€ =0.0167 and for the actual channel, in qualitative terms. For the memoryless channel
the expected number of errors is about 0.5, and a double-error-correcting code would
have rather good performance. On the actual channel, however, there is significantly
higher probability of two or more errors, due to the persistence in the bad state once it
arrives. We may again find the decoded error rate is actually poorer than with no coding!
Obviously, we could design a code with better error-correcting power, but it is clear that
the design philosophy is not well matched to the problem at hand.

Another relevant example is the Rayleigh fading channel, as perhaps experienced
in digital cellular radio communication. If the correlation time of the fading process
ts longer than the block length of the code, we will encounter the same difficulties as
before, even in the best situation where the demodulator presents likelihood information
1o the decoder and perhaps channe! state information as well.

It is clear that a more intelligent code design could do better if the design anticipates
the clustering tendency of errors. Such designs have been widely studied under the name
burst-correcting codes [61], but have seen relatively little practical application, with the
possible exception of magnetic disk and tape units [62]. This is because of several factors.
First, the real channel error model is seldom known with sufficient accuracy to have

P (errorlG) = 105, P {erroriB) = 0.1
P{G) = 5/6, P(B) = 1/6, Plerror) = 0.0167

0.01
0.99 .°$°. 0-95 Figure 5.9.1 Gilbert two-state model

for binary channel with memory.

Sec. 5.9 Interleaving for Channels with Memory 503

100

+
167!
® o Two-state Channal
1072 o
M o)
163 Memoryless o
+
-~ 107¢
3
& +
105
106 *
1077
108 L i I L I _ 1
0 1 2 3 4 5 6 7

Number of Channel Errors, m

Figure 59.2 Block error histograms for memoryless and Gilbert channel
model, n = 31.

confidence in any special-case design. Second, the burst-correcting approaches do not
readily provide for incorporation of soft decisions or channel state information, if avail-
able.

A quite different, rather intuitive, approach to coding on these channels is that
of interleaving® of code symbols [63]. Interleaving is nothing more than a regular
permutation of the order of the encoder output sequence prior to chanrsl transmission.
Deinterleaving of the stream produced by the demodulator then unscrambles the order,
restoring the original time ordering of code symbols. The intent is to make channel
actions on symbols in one decoder block appear to be independent, with the same firsi-
order probability model. In more everyday terms, the interieaving technique attempts
to uniformly mix the good and bad intervals, so for the Gilbert model just posed the
channel would appear to the decoder as a memoryless channel with € = 0.0167.

Before providing the details, we should note that such scrambling, or destruction
of statistical dependencies, is antithetical to the information-theoretic view of the coding
problem. Indeed, such scrambling will in general reduce the apparent channel capacity
relative to that of the actual channel. Wolfowitz [64] confirms our intuition that, for two
channels with the same marginal error probability, the one with memory will have larger
capacity. (See Exercise 5.9.1 associated with the Gilbert model.) However, exploitation
of the channel memory in an intelligent way requires possibly long block length codes

“*Interleaving is sometimes referred to a3 interiacing.

504 Block Codes Chap. 5

with complicated decoders eniploying accurate channel state information. (An exception
1s the design of burst-correcting codes for the dense burst channel mentioned previ-
ously [61].) Most importantly, interleaving represents a universal technique applicable
to various codes and channel behaviors and is simple to instrument,

5.9.1 Block Interleaving

Suppose, that we encode as usual with an (i, k) block encoder, and we write successive
codewords x' into a data array that is » symbols wide, as depicted in Figure 5.9.3. We
proceed to write [? such codewords in ventical sequence. filling a rectangular array of
nl symbols. The sequence for transmission, however, is taken “by column™; that is, the
entire first columin is transmitted. followed by the second, and so on, until the array is
exhausted. These transmissions will be acted on by some channel with memory. The
demoxlulator outputs, whether a vector of real numbers or a hard-decision symbol trom
the code alphabet, will be written into another array by columns, in transmitied order.
until the array is full. Conceivably, the demodulator supplies channel state information
as well that could be employed in decoding, and, if so, this is written in similar order.
Decoding then commences in row-hy-row fashion.

1
x' - x| x! Xho
?
X —= x%r.‘
A A] Dxn

P . = — Array of
-1 “~1" Symbols

x 2 I xP K X7

Figure 5.9.3 Armangement of svmbols in block interleaver. Codewords x, are
loaded by rows and then transmitted by columns.,

Itis clear upen deinterleaving at the receiver that the proper channel outputs corre-
sponding to the same codeword have been grouped together in proper order. However.
the channel time- indexes affecting a given decoding cycle are separated by D units (see
Figure 5.9.4). For example, the channel time indexes attached to the symbols of the

n Code Symbols

Figure 5.9.4 Channel time indexes as seen at output of deinterleaver.

Sec. 5.9 Interieaving for Channels with Memory 505

first codeword, after deinterleaving, are 0, D. 2D, ... The parameter D is known as the
interieaving depth. The design goal should now be apparent: if D is sufficiently large
relative to the time scale over which the channel evolves through its various modes,
then the channel has been converted into an apparently memoryless channel with the
same first-order behavior. A code designed for a memoryless channel has much better
prospects for success.

If we employ algebraic decoding, the burst-correcting capability for block interleav-
ing is easy to specify. Suppose that the basic block code has error-correcting capability
t. Then, with the aid of Figure 5.9.3, it is readily seen that a single error pattern con-
fined to r D contiguous symbols will place no more than ¢ symbol errors in any single
row and will thereby be corrected by the decoder operating on each row sequentially.
Alternatively, up to ¢ shorter bursts of length D or less can be accommodated, dependent
on the alignment of these bursts.

Example 5.34 Block Interleaving for a Tape Recording Application

A video cassette recorder is to be used to archive digital data, recording at a rate of several
megabits per second, and storing perhaps 5 gigabytes of data on one video cassette. By
measurements, it is determined that the long-term average crror probability is less than 1077,
but that errors are found in isolated clusters of 256 bits or less in length (duve to media defects,
tape-to-head flutter. and timing jitter). A BCH (31. 21} double-error-correcting binary code
15 10 be used for error correction, and we add a block interleaver of width 31 bits and depth
256 words 10 enhance burst correction. Over a span of 31(256) bits, the decoder is capable
of correcting any two errdr bursts confined to 256 bits appearing anvwhere in the array, as
shown in Figure 5.9.5. Altematively. a single 512-bit burst of errors is correctable.

- 31 .

J _

} Figure 5.9.5 Deinterlcaver array for
Example 5.33 showing two correctable
U error bursts.

The two negative aspects attached to block interleaving are the required storage at
the encoder and decoder (2B symbols each) and the end-to-end delay. We may not stan
transmission untit the array fills, and likewise for decoding, so the waiting time, relative
to time attached to the generation of the first information symbol, is 2rB symbols. (Of
course, other burst-error-correcting approaches are required to have a suitably long delay

506 Block Codes Chap. 5

as well.) In some applications, the end-to-end delay constraint places real limitations
on the effectiveness of interleaving. For example, in two-way speech communication.
one-way delay of more than 100 ms makes verbal communication awkward. In this case,
if the channel fading process has a correlation time on the order of 100 ms, as it may
be in a vehicular communication system with slow-moving vehicles. the interleaving
capability is very limited.

Decoder synchronization is more difficult when interleaving is employed. Not only
are codeword boundaries necessary (as they are in any case at the decoder). but we must
know where the first codeword in an array sequence appears or, equivalently, establish
interleaver frame synchronization. Sequential testing of hypothesized partitions of the
input stream can be used to achieve proper codeword synchronization.

5.9.2 Convolutionai Interieaving?

A more efficient permutation scheme is performed by the system shown in Figure 5.9.6.
The n positions of codewords are delayed by progressively larger amounts at the encoder
output prior to transmission. The delay schedule is reversed at the demodulator output.
however. bringing the symbols into proper time alignment for decoding. Essentially,
we are operating with a triangular memory version of the block interleaver. It may be
seen that symbols within an rn-symbol codeword. examined at the decoder input, are
influenced by channel actions spaced D — I units of channel time apart. Said another
way, we have diffused a given codeword over a time interval of nD time units. With this
arrangement, however, the total memory is only nD symbois, and the end-to-end delay
is nD channel time units. Furthermore, synchrenization of the deinterleaver is somewhat
simpler, as there is only an n-fold ambiguity in placing demodulator outputs.

A refated technique, called interlacing, is shown in Figure 59.7. We imagine
D copies of encoders and decoders that are simply time-multiplexed on the channel.
Successive inputs to any one decoder are separated by B channel time units, and the
end-to-end delay is again nD symbols. It is possible to avoid D copies of hardware
(or software) encoders and decoders to implement the scheme. Indeed, one of each
suffices if a sufficient amount of temporary storage is available. For cyclic codes. the
implementaticn is especially easy; we merely replace each delay cell in the encoder and
decoder by D units of delay (Figure 5.9.7b).

Example 5.35 Interleaving for NASA/ESA Deep-space Coding

The CCSDS (Consuliative Committee on Space Data Systems) coding standard for deep-
space communication employs some of the most powerful techniques in coding theory
to operate with smallest possible power and antenna requirements. Specificaily, an outer
(255.223) RS code over GF(256) is symbol-interleaved to depth § or 16. This could be either
a block or convolutional interleaver since delay issues are not paramount. nor is memory
a real problem. but a frame-oriented block interleaver was selected. The 8-bit symbols
appearing at the interleaver output are convelutionally encoded with a binary code. and
binary PSK modulation of the transmitter carrier is utilized. The decoder uses the Viterbi's
algorithm combined with soft-decision decoding (see Chapler 6} to provide a powerful inner

*TNot to be confused with convolutional codes, to be studied in Chapter 6. convolutional interleavers
may be employed cither with block codes or convolutional codes,

Sec. 5.9 Interleaving for Channels with Memory 507

n o]

f

/
1

D |
k
S
u (n, K anne
Encodar with
Memory
{(nh-1ND }b—

1 (n-1ND
.k
A
u (n, k}
Decoder
/
Channel Time f-nD J+1-(n-1D j+n-1-0 j+n
i] | L 0. s)

Code Position Xo X X3 Xn_1

Figure 5.9.6 Convolutional interleaver. Channel time indexes attached to
consecutive code symbols are D + 1 time units apart. Total delay = nD; total
memory = nD.

channel. Figure 5.9.8 illustrates the block diagram. Typically, the inner channel decoded
bit error probability is 1077 for this inner channel when £,/Ng = 3.5 dB. When the inner
decoder does make ermors, these are typicaily confined to perhaps 8-bit spans; however,
synchronization jitter and other effects could cause the inner channel error patterns 1o span
several RS code symbols. For this reason, the code is interleaved as described. The outer
decoder can correct up to 16 symbol errors in a codeword, which is many inner channel
decoding emror events. The concatenation and interleaving allow the system to operate
acceptably with E,/Np in the range of 2.5 dB. Most of the occasions where a frame is not
decoded correctly are simply decoding failures.

Still another interleaving architecture is known as helical interleaving [65]. The

primary advantage is that reliability information (erasures) can be obtained from previous
channel symbols for decoding current passages.

Block Codes Chap. 5

-—— Encoder 1 — — Decoder 1 }|—

—efo— Encoder 2 —-—o}“—— Channel —aro-- Decoder 2 r—o‘“—

— Encoder D |— —{ Decoder D}—

Encoder
(1 delay — D delay)
cell cells

Figure 5.9.7 Interlaced encoder/decoder method of interleaving.

(a)

- Decoder
" |1 delay — D delays

»| Channel

(b)

Interleaving is traditionally employed around hard-decision channels, and the phi-
losophy is literally one of burst-error correction. We may just as well apply the method
to soft-decision demodulator outputs and, if useful, could carry along channel state in-
formation with the demodulator outputs. The only cost is one of additional deinterleaver

memory.

izs5223) | 2 [Bye]) [Convolutional | ¢
RS Encoder | " Interleave | * Encoder N —‘,
GF (266) D=8 Binary, Rate 1/2 PSK
64 States Modulator
My
PSK

Demodulator

8 1 ML
{255,223) | , Byte <—— Convolutional ‘—Qw"‘—l

RS Dscod Deinterl
oder einterleave Decoder [*+© {Soft Decisions)

Figure 598 Concatenated RS/convolutional coding scheme in NASA/ESA CCSDS
standard.

Sec. 5.9 Interleaving for Channels with Memory 509

