3

Modulation and Detection

As we discussed in Chapter t, a digital modulator is simply a device for converting
a discrete-time sequence of symbols from a finite alphabet, whether precoded or not,
into contirfuous-time signals suitable for transmission by the physical channel provided.
Likewise, a demodulator is a device for processing a noisy, perhaps distorted, version of
the transmitted signal and producing numerical outputs, one per modulator symbol. This
series of actions involves both deterministic and stochastic effects.

There are clearly many possible types of modulation processes, differing in the
manner they manipulate an electromagnetic signal. Such manipulations include changing
the amplitude, frequency, or phase angle of a sinusoidal signal, the polarization of the
electromagnetic radiation, or the pulse position within a modulation interval. Some
examples will follow in the next section. Some descriptions of modulation imply that
modulgtion is only a conversion from a low-frequency (baseband) waveform to a high-
frequency (carrier) signal, but we shall adopt a more unified view, that of a signal
generator driven by a discrete-time, discrete-alphabet sequence.

Most classical modulation schemes are memoryless; that is, the contribution 1o the
transmitted waveform induced by a given modulation symbol is defined purely by that
symbol, and not the previous symbols. (This does not imply that the contribution a given
symbol makes is limited to the time interval between successive symbols, as described
fater.) There are other important schemes, with “modulation” in their adopted name,
that have memory. Nomally, these are oriented toward spectrum control by introducing
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constraints on the signal over several intervals. One example is partial-response modu-
lation, in which the transmitted pulse amplitude depends on several previous information
bits. In cominuous-phase modulation, the phase angle of the transmitted carrier is forced
to be continuous at.all points in time and often to have continuous derivatives, again to
effect a compact power spectrum. Here again, the signaling process has memory.

In this book, however, we will interpret modulation to be a memoryless process.
Any constraints put into the signal, as just described, will be lumped into the device we
will call the channel encoder, whose traditional attribute is a good deal of memory in its
input/output relation. Such a definition is perhaps controversial, for it does not always
provide the most straightforward description of a signaling process. However, it provides
a convenient decomposition that still offers a unified view of coding and modulation.
Furthermore, this decomposition can illuminate the total signal design problem and even
lead to better designs than obtainable without this perspective. We will retumn to this later.
This decomposition should not be construed to mean that we should always separate the
functions of modulation and coding; in fact, they must be seen as a tandem in general
for best performance. Our view merely is to separate the signaling process into a stage
with memory and one without. Finally, if the signaling process is memoryless, and the
cascade of modulator, channel, and demodulator produces zero intersymbol interference
{ISI), then an optimal decision regarding the message can be made in symbol-by-symbol
fashion,

Before proceeding with a thorough study of moedulation and detection theory, we
introduce a generic channel model to be used in the remainder of the book, which in its
various special cases encompasses most of the practically important waveform channel
effects.

3.1 A TRANSMISSION MODEL

A quite general model for a single-sender, single-receiver digital communication system
is depicted in Figure 3.1.1. This model incorporates the most interesting problems faced
by the designer of digital communication systems, including channel distortion due to
filtering, attenuation, amplitude fading effects, and, of course, additive noise. Before
delving into a description of the channel effects, we will consider more specifically some
notation about modulators.

R,

N

1 s
- 3(” = 5;;_“" T
A N

A

X rit) 5
- M-ary 1 | Channel % N\ ”
Modulator Filter T Demodulator [—=

{si{t), i=0, .. M-1 H(f) Alt)zZolt) n(t)
{fading) {additive
noise)

Figure 3.1.1 Generic system model for modulation and demodulation.
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3.1.1 Digital Moduidation

Every T, seconds, in response to an input x, from an alphabet of size M, the modulator
produces a signal s, (¢) from among a set of M real waveforms, {s;(t),i =0.1,...,
M — 1}. We refer to this process as M-ary moduletion. The waveforms may represent
voltages, currents, electric field intensity, and so on,

Often, the M signals are confined to a time interval of length T, but this is
not a necessary requirement, and in some cases, pulse overlap is useful for spectrum
management purposes. In any case, R, = 1/T; is the signaling rate in symbols per
second. Usually, M is a power of 2, that is, M = 2™, so we can think of each symbol as
aitempting to convey m bits per symbol, and the bif rate then would be R, = m/T, =
mR; bits/second, or bps.!

The aggregate signal s(r) produced by the modulation and coding system is a
superposition, in time, of selections from the modulator set

S0 =Y st — aly), (3.1.1)

where {x,} is the M-ary sequence of modulator inputs. Such a representation is possible
because of the assumption of memoryless action by the modulator. It will be convenient
at times to think of (3.1.1) as representing a sample function from a random process;
to make such a process wide-sense stationary, it is customary to.embed in each sample
function random parameters for such quantities as the beginning of the symbol interval
and carrier phase angle.

We shall first assume that signals are amplitude normalized so that ar the transmitter
the expected energy expended per symbol is £, joules, where we define electrical energy
relative to a [-Q impedance. Thus,

E.2E U: (r)dt] = — Zf 2(1) dr, (3.1.2)

where the expectation is with respect to selection of the signal index, and we have as-
sumed equiprobable signal selection. Integration in (3.1.2) is over the duration of the
signals, whether of finite or infinite duration. Normally, we may equate the expected en-
ergy with the energy obtained by a time-averaging operation on a single sample function
of the modulator output process. [Technically, the energy per symbol defined in (3.1.2)
may not represent the actual average energy expended in the signal of (3.1.1) due to
possible signal overlap in time; even in this case we usually find equality in practice,
and we shall overlook this minor issue at this point.)

It is now useful to consider several practical modulation techniques to capture the
essential ideas. These examples span a large range of desired transmission rates.

Puise Amplitude Modulation with Four Levels
Suppose a 4-ary signal set is constructed as

5:(1) = ahr (1), 1=0,12,3, 3.1.3)

'The actual entropy per input symbot may be less if the modutator input is coded in redundant fashion
or if the inpins are memoryless but nat equiprobable.
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where a; is selected from the set {—3a. —a, a, 3a} according to the message index to
be sent, and Ar(t) is a pulse shape common to all signals. The information is thus
conveyed by the amplitude modulation of a basic signaling pulse; hence the terminclogy
pulse amplitude modulation (PAM),

In this situation, the energy attached to the various signals differs. Integration of
the squares of the various signals and averaging over message selection gives that the
average energy expended is 5a°E,, where E, = [|hr(#)]*dt, so to attain a certain
average energy E,, we scale according to a = (E,;/5E,)'/2.

This 4-ary modulation technique forms the basis of the primary rate interface for
ISDN.?2 There the signaling rate is R, = 80 ksps, with an implied bit rate of R, =
160 kbps.

-

4-ary Phase Shift Keying

Suppose we again adopt M = 4 but define the four signals to be bursts of sinusoidal
signal having a center frequency w, and fixed phase angle selected from {0. x /2, r, 3r/2}
radians, dependent on the digital input signal. Thus,

172
5i{t) = (2:-’) cos(wrf +i1,:—), i=0,1,23 0=<1<T, (3.1.4)
£
Here, each signal has the same energy, E; = E|, assuming either w.T;, = nm or more
realistically that w.T; >> 1, and the average energy is then E, as well.

This modulation format represents a typical choice in digital satellite communica-
tions, whereby choosing R, = 772 kHz, we achieve a bit rate R;,=1.544 megabits/second,
the T1 rate in the North American digital transmission hierarchy. Such a channel could
support teleconference quality video service, for example, or 24 simultaneous digitized
voice conversations. Other transmission rates are, of course, possible with this modula-
tion format.

i

Binary Frequency Shift Keying

With M = 2, we implement a frequency modulation scheme that selects the one
of two sinusoidal osciliators having frequencies f, and f,. The oscillator phase angles
are 6y and ). The amplitude is again chosen so that E; is in fact the average energy per
symbol interval, Thus,

2E,\'?
5i(t) = ( T.) cos(2m fit +6,), i=0,1, 0<t<T; (3.1.5)
This forms the essence of the transmission scheme for 300 bps modems (now rather hard
to find!) for the public switched telephone network. There the two frequencies (in one
of the bidirectional paths) are 1070 and 1270 Hz.

A variation on this method uses a single oscillator that is frequency modulated to
one of two frequencies, but this is not strictly speaking a memoryless modulation process
because the phase angle at the beginning of any interval depends on the entire past data
symbols. ’

Imegrated Services Digital Network, an emerging international digital transmission network that seeks
to integrale multimedia services of voice, data, video, and the like. A recent reference is J. W. Griffiths, /SDN
Explained, Wiley, New York, 1990,
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3.1.2 Channel Filtering

The transmitted signal s(r) may first be acted on by a linear filter, described by a
frequency response function H ( f) or by its impulse response, A(t), which forms a Fourier
transform pair. Such filtering action represents a fact of life for the communication
engineer. Bandwidth limitations of the channel, whether due to the physics of the channel
itself or electronic equipment used in the communication process (possibly imposed by
regulatory constraints), affect the signals we transmit. In some situations, the effect
on the signal is negligible, if the available bandwidth is much larger than the intended
signaling rate. When this is not the case, intelligent design can perhaps mitigate the
impact. In still other situations, channel dispersion due to such filtering is the dominant
limitation on data integrity.

Examples of this band limitation occurring in practice are found in the public
switched telephone network (PSTN), engineered in the days when only analog voice
transmission was of interest, and in a typical satellite transponder. Typical frequency
responses for each are shown in Figures 3.1.2a and 3.1.2b. Note that both amplitude-
versus-frequency and phase-versus-frequency descriptions are required.’

The limited frequency response of the voice-band channel is the result of several
factors. At the high-frequency end, distributed inductance and capacitance of the twisted-
wire pair connecting customer premises to central offices induce significant attenuation
for frequencies above 3 kHz. On the other hand, transformer-coupling implies poor
low-frequency response (below about 200 Hz). For speech transmission, the effect is
quite innccuous; after all, the transmission channel was designed for acceptable speech
transmission, but for high-speed data communication over the voice-band channel, the
effect of this limited frequency response proves to be a severe impairment. This kind of
channel would be referred to in the literature as a baseband channel, meaning that the
available frequency response extends from (essentially) zero frequency to some upper
limit, usually a soft constraint, as in Figure 3.1.2a.

The satellite channel on the other hand (whose frequency response is specified
in Figure 3.1.2b) would be classified as a bandpass channel, simply meaning that the
bandwidth available is a small fraction of the center frequency. Typically, a satellite
transponder may provide a 30-MHz usable range of frequencies situated in the mi-
crowave region, say near 4 GHz. It is not essential to make a strong distinction between
these two calegories, and appropriate signal analysis tools can accommodate both cases
together. However, the separation is rather common in the literature, where we often
find a distinction between baseband signaling and carrier modulation, respectively.

It might be suggested that we incorporate the effect of the channel filter into the
description of the signal set, defining the transmitted signals as those that emerge from
the filter H(f). We do not for several reasons. First, the signaling process could no
longer be described in memoryless fashion. Second, we will be interested in the effect
of various channel filters on certain standard signal sets and, in particular, to evaluate
performance against the no-filtering case. Finally, the point at which a power constraint

*Phase information is usually conveyed through the frequency derivative of phase, called the group delay
function.
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ATT Requirements for Two-point or Multipoint
Channel Attenuation Distortion

Frequency Band Attenuation®

{Hz) (dB)
Basic requirements 500 - 2500 -2t0 +8
300 - 3000 -3to +12
C1 conditioning 1000 - 2400 -1t0 +3
300 - 2700 -2t0 +6
2700 - 3000 -3to +12
C2 conditioning 500 - 2800 ~-1to +3
300 - 3000 ~2to +6
C4 conditioning 500 - 3000 -2to +3
300 - 3200 -2t0 +6
C5 conditioning 500 - 2800 -0.5t0 +1.5
300 - 3000 ~-3t0 +3

ATT Requirements for Two-point or Multipoint
Channel Enveiope Delay Distortion

Frequency Band

(Hz) EDD {(us)®
C1 conditioning 800 - 2600 1750
1000 - 2400 1000
C2 conditioning 1000 - 2600 500
600 - 2600 1500
500 - 2800 3000
C4 conditioning 1000 - 2600 300
800 - 2800 500
600 - 3000 1500
500 - 3000 3000 Figure 3.1.2a Specified amplitude
e and delay distortion limits for
C5 conditioning 1000 - 2600 100 voiceband data links. (Source:
600 - 2600 300 Telecommunication Transmission
500 - 2800 600 Engineering, Vol. 2, 2nd ed. American
] ] Telephone & Telegraph Co., New
*Maximum inband envelope delay difference. York.)

on transmission is usually enforced is ahead of the channel filtering,* and it is important
to be able to explicitly identify the transmitted signal in the mathematical model.

For most of the text, we shall assume that the channel filter is nondistorting; that is,
it has constant gain and linear phase versus frequency over the frequency range occupied

*In fact, the significant channel filtenng -may be much nearer the demodutator.
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Figure 3.1.2b Typical envelope for amplitude and delay distortion, satellite
transponder with nominal 36-MHz bandwidth.

by the signal set (see [1] or Exercise 3.1.1). We include the presence of channel filtering
at the outset only for completeness of description. It is convenient to adopt a gain of
unity for the filter so that the average energy per symbol at the filter output is still E
joules. If the gain is not 1, this scaling can be subsumed into the definition of channel
gain. Similarly, we will commonly adopt a zero-delay assumption for the channel, but
this should not hide the need to establish proper timing in the demodulator.

3.1.3 Channel Gain and Fading

The next component of the model accounts for the bulk channel gain and the channel
phaseffrequency shift (if carrier transmission is involved). We can incorporate both
effects using complex envelope notation for the signal. Complex signal notation simply
regards the actual bandpass signal s(7) as

s(1) = Re (5(1)e!*"), (3.1.6)

where §(¢) is defined implicitly as the complex envelope of the signal, relative to the
adopted radian frequency of the carrier w,. It is possible to perform analysis strictly
on the low-pass signal 5(¢), with the high-frequency dependence completely suppressed
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and reinserted at the end {1]. This is essentially the method behind phasor analysis of
steady-state circuits excited by sinusoids.

We shall represent the channel gain in Figure 3.1.1 by the complex envelope process
Ait)e/*, where A(t) represents the amplitude scaling in the channel, and () represents
the aggregate channel phase shift due to propagation delays and oscillator frequency
offsets. [Notice that signal frequency change due to Doppler shift or oscillator frequency
offsets can be subsumed into (¢} by a linear time dependence; that is, 8(t) = Acwr.]
Our representation of the channel gain process means then that if the transmitted signal
is a unit-amplitude, unmodulated sinusoid, cos{w.t), then 5(t) = 1 from (3.1.6) and the
received signal is

r(1) = Re (5(1) A1)l ey
= A(r) cos [w.r +6(t)],

(3.1

showing amplitude and phase modulation by the time-varying channel.

In many cases, A(¢) is regarded as constant, and if chosen as unity, then the average
energy per symbol at the demodulator (the important location to specify this value) is also
E,. Of course, few channels have unit gain from transmitier to receiver, but this scaling
issue will always be avoided by speaking of the received signal energy level relative to
the noise level in performance analysis. Communication link aﬁalysis ultimately supplies
this number, whether we are dealing with a cable medium, a microwave line-of-sight
link, or an optical fiber channel. £ is related to average received power, P,, through
E, =PT,.

In other important cases, the channel gain is modeled as time varying, primarily
due to conditions loosely referred to as “fading” (see [2] for a survey of such channels).
Such fading conditions are also physical in their origin. In mobile radio systems op-
erating at frequencies of several hundred megahertz, fading occurs due to time-varying
recombination of electric field wavelets having differing time delay after reflection from
buildings, hills, trucks, and the like [3]. In VHF over-the-horizon digital communication
using tropospheric scattering, fading is experienced at the receiver due to time-varying
multipath propagation through the lower layers of the aimosphere. Finally, some satellite
links may experience time varying signal levels due to ionospheric scintillation (below
1 GHz) or due to atmospheric absorption (increasingly significant above 10 GHz).

In our treatment of fading we will assume that the time variations of A(¢) are slow
compared to the symbol rate R;, so over a given signaling interval, the amplitude scaling
factor may be treated as constant. More precisely, we model A(r) as a stationary random
process whose autocorrelation function is such that R4(r) &~ R,(0) = 1 forr < T,.
Figure 3.1.3 depicts a typical sample function of such a slow-fading process A(f). In
practice, this slow-fading assumption seems routinely justified, given the demand for high
signaling rates and the relatively slow dynamics of fading processes, such as multipath
in mobile radio, or atmospheric fading conditions. The implication is that in our analysis
we can treat the channel as frozen over a single symbol or, in fact, several consecutive
symbols, but still allow a long-term variation.

Also implicit in our fading model is an assumption of fat-fading; that is, the
gain is the same for all components of the signal spectrum. Transmission engineers
speak of this as nonfrequency-selective fading, in distinction to cases where the fading
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Figure 3.1.3 Sample function of fading process, amplitude A(f) shown.

medium induces a certain time-varying selectivity for frequency bands, similar to the
fixed selectivity performed by a channel filter.

Several models for the randomly varying amplitude A(t) are prevalent in the liter-
ature, based on empirical or analytical study of physical channels. The Rayleigh fading
model will be emphasized in our treatment, however, for several reasons. First, it is a
rather worst-case situation for the design engineer. An increase in signal-to-noise ratio
of several orders of magnitude over nonfading requirements is necessary for standard un-
coded transmission formats to maintain a given error probability, as will be shown later
in this chapter. Second, the Rayleigh model provides analytical convenience, which,
like it or not, is a compelling justification. If we understand the principles here, it is
straightforward to extend them to other appropriate fading models.

The Rayleigh model arises from the combination at the receiver of many randomly
phased point scatterer contributions, each having a small fraction of the total received
power. To see how this model is physically justified, consider the propagation setting
shown in Figure 3.1.4, where the received signal is the sum of K scattered contributions.
We assume that the gain of each scattered component is § and that each has a time-
varying delay (due to motion of the medium or terminals) of 7;(r). Suppose we let

Scattering Facets
* Talt)
N [ ]

s(t)

s rit) =2ﬂi5(f— ‘t,’(f”
oo @

Figure 3.1.4 Idealized scattering mode! leading to Rayleigh fading.

)

Sec. 3.1 A Transmission Model 149



the transmitted signal again be a pure sinusoid, s(t) = cos{w.t). The received signal
(without noise as yet) can be represented as
K
rit) = Bros [w {t — 1;(1))]. (3.1.8)

Using trigonometric expansion, this can be rewritten as

K
rity =48 [Z cos{w, r,-(t))i| cos{e,. 1)
=1

N 3.19
+ B l:Zsin(wrr,-(r))j| sin(aw,t) ( )

=]
2 BX (1) coslw.t) — BY (1) sin(ew,t).

where we have implicitly defined X(7) and Y (¢). If we assume that the carrier frequency
is large relative to the electromagnetic wavelength, and/or the spread of delays 1, (¢) is
large, then w.7; (¢}, at any time ¢, can be considered a uniform random variable on [0, 27 ).
Furthermore, if the scatterers are moving (or, equivalently, if the terminals move relative
to the scattering sources), the various terms contributing to X (¢) and ¥ {¢) can be modeled
as independent random variables. By the central limit theorem developed in Chapter 2,
we may approximate X(r) and Y (r) as Gaussian processes, assuming the number of
scatterers K is large and that none dominates the others in strength. It is a routine matter
to show further that X (¢} and Y (¢) are uncorrelated, and hence independent, due to their
being Gaussian. Furthermore, (3.1.9) becomes in polar form

(1) = BA(1) cos [w.t + 8(1)] (3.1.10)

with A(t) = [Xz(t) + Yz(t)]l”z, so we may argue as in Chapter 2 that the signal ampli-
tude A{r}) is Rayleigh distributed at any time ¢.

The rate of change of A(t) is clearly controlled by the rate of change of the
relative delays of the scatterers. Rapidly changing scattering media, or rapidly moving
terminals and fixed scatterers, produce fast fading, but again we suggest that the changes
are typically slow relative to the time scale of typical signaling speeds. The model
we described is somewhat idealized, but considerably more realistic situations produce
essentially Rayleigh fading under the central limit theorem thesis.

These considerations lead to the model that the gain A during one symbol interval
is a scalar Rayleigh random variable whose probability density function is given by

Fala)=2ae™", a>0 G111

The random variable is scaled so that the mean-square value of A is 1, and thus the
average, or expected, received energy per symbol is still E,.

Other physical assumptions lead to different fading models. For example, we might
let one component of the aggregate in (3.1.8) be stronger than the rest, perhaps modeling
a direct. unscattered propagation path. This leads to Rician fading, whose distribution
was described in Chapter 2. Still another common fading distribution is a log-normal
model, for which the logarithm of the received signal strength is Gaussian distributed.
This model derives from certain empirical observations.
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Equation (3.1.10) shows that along with amplitude fading, the channel induces a
random phase modulation of the signal, also slowly varying over a symbol duration, cor-
responding to a time-varying effective path length change. This phase angle # is modeled
as uniformly distributed on [0, 27). An important issue for system design is whether
the receiver can determine the channel phase parameter and attempt what is known as
coherent detection. In fact, it is important to note that, even apart from fading effects,
the carrier phase angle, measured at the receiver, is in general unknown due to unknown
path lengths and oscillator phase shifts.

3.1.4 Noise Model

Finally, we come to the additive noise process, #(¢), in Figure 3.1.1, We regard it
as a sample function from a stationary Gaussian process, N(r), having zero mean and
constant power spectral density, Ny/2 W/Hz (two-sided).> Furthermore, the noise pro-
cess 1s independent of and additive to the signal. This is commonly referred to as
additive white Gaussian noise (AWGN) and is the archetypal communication noise
model for radio and optical frequency systems. Such a process cannot physically ex-
ist, as discussed in Chapter 2, because it presumes a signal with infinite bandwidth
and infinite power, both of which violate notions about physical systems. Alterna-
tively, the autocorrelation function, R,(7) = (Ny/2)8(7), indicates that the process has
zero correlation time, which is equally strange to contemplate, Nonetheless, these dif-
ficulties can be easily finessed; any communication system we encounter will have fi-
nite bandwidth (for practical intents), and we simply model the noise process to have
fixed power spectral density well beyond this region of interest. Although we will
not dwell on the physics of such noise processes, their origins are principally as
follows:

1. Thermal noise in electrical circuits
2. Shot noise processes developed in electronic or photenic devices
3. Electromagnetic radiation from the earth, sun, and other cosmic sources of radiation

Interested readers are referred to Van der Ziel’s book [4], a classic on noise phenomeéna
and modeling.

Although we shall usually assume that the receiver noise level is fixed, it is straight-
forward to allow the noise level to vary, perhaps on and off in some probabilistic fashion,
to represent hostile interference or jamming.

3.1.5 Model Limitations

Before proceeding, it should be recognized that all cases of possible interest are not
accommodated by our channel model. First, it is a finear model, and some impor-
tant channels in practice are nonlinear, typicaily due to nonlinear amplifiers. Satellite
transponders exhibit such nonlinearities. as do other high-power transmitters.

“This implies that the noise power measured in 4 conceptual 1-Hz band of spectrum is Ny watts,
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Another limitation is that, although we have allowed the channel to be time dis-
persive [in the form of nonideal H(f)], we have assumed this characteristic to be time
invariant. (The time-varying channel gain is not frequency selective by assumption.) A
more general model might have allowed a time-varying transfer function of the form
H(f, ). This is an important phenomenon for long-haul HF radio communications by
ionospheric wave guiding and line-of-sight digital microwave radio {5].

Also, the adopted model is effectively nonfrequency dispersive, meaning that the
channel gain/phase modulation of the signal is so slow that appreciable change does
not occur over T seconds. (This is in actuality the slow-fading assumption made ear-
lier.) The name derives from the fact that such a channel will not produce spectral
broadening, or dispersion, of the transmitted signal. Once again, the claim is that this
is generally the case for typical high-speed digital communication. Both of these ex-
tensions of the model are simply beyond the intended scope of this presentation. Top-
ics studied in this text are, however, the basis for treating these more sophisticated
models.

The noise model does not account for non-Gaussian noise, which may be present
due to interference from other signals, electrostatic discharges in the atmosphere, or elec-
trical machinery. Modeling of such processes is generally ad hoc, receiver optimization
tends to be somewhat heuristic, and performance analysis is “special case” in nature.
Also, nonwhite noise is excluded at the outset; it is usually the case that the additive
noise processes have power spectra that are nearly constant over the range of frequencies
larger than that occupied by the signal. Again, the AWGN model provides a framework
for further study.

Finally, the channel does not apparently incorporate such simple communication
channel models as the binary symmetric channel (BSC), seen in virtually every text on
coding techniques and introduced in Chapter 2. However, this and other discrete channels
are derivatives of the model found in Figure 3.1.1 simply by discretizing, or quantizing,
the outputs of the demodulator. In fact, this is always how discrete channe! models
emerge. For example, a binary symmetric channel can be derived by sign-detecting
the output of a Gaussian noise channel with bipolar signaling. In light of the data-
processing theorem of Chapter 2, such quantization is usually information destroying and
generally unadvisable in coded systems. We shall make this more precise in subsequent
chapters.

3.2 SIGNAL SPACES

As a prelude to the study of optimal demodulation and receiver implementation, we now
represent an M -ary signal set by an orthonormal series expansion, quite analogous to the
classical Fourier series representation. By using the expansion coefficients as coordinates
in a space defined by the expansion basis functions, we capture a powerful geometric
interpretation of demodulation theory and indeed the general signal design problem.
This tool will also supply the bridge between decision theory for sequences of random
variables and waveform problems. This viewpoint was popularized by Wozencraft and
Jacobs [6]. Texts on signal theory by Franks [7] and Weber [8] are also fine references.
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3.2.1 Othoncrmal Basis Sets

Consider a set of real waveforms {¢,(tr),m = 0.1,...} defined over some common
interval (T;, Ty). The set may or may not be finite. and the time interval likewise: The
set of functions is said to be orthonormal if
! ndi=5,=1" ‘L= (3.2.1)
n@m%nr-u- 0. i# 2.
We may say that the functions ¢,(r) are unit energy, since if ¢,;(r) were a voltage
impressed across a 1-Q resistance. the integrai-square value of the function (which is its
energy) is 1.
It is easy to construct very large orthonormal sets. A familiar example to engineers
is the Fourier set for finite intervals T = T, — T;, the infinite set of sinusoids whose
frequencies are integer multiples of 1,7 :

N2 a2 2\ 172 -
{¢>,,,(r)}:[(F) (_f) cosm‘wot.(?) sinmwor,...}. m=1.2, ...,

(3.2.2)
where @y = 27/T. Simple calculations show that (3.2.1} holds for any pair of this
infinite set.

Another example is a finite set of N nonoverlapping pulses:

L\ T
%MZ(F) m{’;f], m=01.2,....,N—1, (3.2.3)

with T = (Ty —T;)/N, and rect[t /T | denoting a pulse of unit height beginning at + = 0
and lasting T seconds. Members of these two orthonormal sets are shown in Figure 3.2.1.
Given a class of deterministic signals {s;(r).i = 1, 2,...}, each having finite en-
ergy, suppose we form an N-term series expansion of the /th signal in terms of an
orthonormal set of functions:
N-1
(N}

T =) Simbm (0. (3.2.4)

m=0

The expansion coefficients, s,¢, are found by

Iy
Sik 2[ s ()y@u(t) di, (3.2.5)
T,

which follows from multiplying both sides of (3.2.4) by ¢.(#) and integrating over
{I;, Ty). Equation (3.2.5) can be interpreted as the projection of the ith signal onto
the kth basis function, and the expansion in (3.2.4) represents the orthogonal projec-
tion of s5;(r) onto the space spanned by the N basis functions. One motivation for
using orthonormal basis functions is that the coefficients can be found separately in any
order, and more terms in an expansion are therefore easily added if necessary. Fur-
thermore, orthonormality induces important geometric properties related to the set of
signals.

For a general class of signals, an N-term representation may never be perfect for
finite N. but if the set (¢, (1)} is complete for the class of signals, then the energy in the
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Figure 3.2.1 Example of simple orthonormal bases. (a) Fourier orthonormal
set; (b) nonoverlapping basis set, N = 4.

error signal can be made arbitrarily small as N grows; that is,
2
lim [[s,-(:)—s}”’(:)] dr = 0. (3.2.6)
Nooo

We frequently term such a set {¢n{7}} a complete orthonormal basis for a given class
of signals. For example, the Fourier set is known to be a complete orthonormal basis
for the class of signals having duration T seconds, with finite energy, a finite number of
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maxima/minima, and finitely many discontinuities (the Dirichlet conditions). At points of
discontinuity, convergence is to the midpoint of the discontinuity, but the integral-square
error (3.2.6) diminishes to zero for all signals in the class as more expansion terms are
added.

3.2.2 M-ary Signal Consteliations

We are now ready to describe the actual M-ary set of modulator waveforms using or-
thonormal series expansions. We can always provide exact expansions with finite basis
sets having N < M elements, and minimal sets will be provided by the Gram-Schmidt
orthogonahization procedure [9). (Haphazard selection of basis functions may not yield
finite basis sets; for example, the Fourier set does not provide an exact finite series
representation for even a single rectangular pulse signal.)

Before describing the Gram~-Schmidt procedure, we should visualize what the ex-
pansion provides. First, every signal s5;(¢) is mapped 1o a point in N-dimensional Eu-
clidean space called signal space, each point represented as s; = (si0, i) ..., SiN=1))
where N is the size of the basis set.- Either setting forms a complete description of a
signal set, once the basis set is specified. Figure 3.2.2 illustrates the decomposition and
reconstruction of signal waveforms in terms of its signal space coordinates.

S,- S."
: 6% Q— L=
dolt) T dolt)
S g j;; . silt) st - 41% J’ Si‘l
oy(1)

Fouct

Sino ® }' Sin-1
%Nﬂ( t)

Class of Signals T dnait)

Figure 3.2.2 Signal generation and coefficient recovery.

The collection of M points in N-space is called the signal constellation, and it
provides a geometry for studying modulation and coding techniques. For example, the
squared distance from the origin to any point in signal space can be easily shown to
. equal the energy in the comesponding signal, and the L,-distance between waveforms
(the integral of the squared difference Signal) is precisely the same as the squared distance
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computed between points in Euclidean signal space.® To verify the former claim, we
expand s;(r), square, and integrate:
T, N=1N-1

T;
Ei= [ swdr= [ 33 subnsasitrar
T T,

m=0 k=0

Tr
= Z Zsjmsikf Pm()r () dt = Zzsimsikamk 3.2
m ok T m Lk
N-1
Sa

m=0

The second property is shown by expressing the squared intrasignal distance as

Ui
d} =j; [s:(0) = 5;(0)] it

2
= f [Zs,-mcﬁm(r)—Zs,mtr)] dr.

Upon expanding the right-hand side and using the orthonormality property of the basis
functions, we have

(3.2.8)

d,-zj = Z(Sim - Sjm)z- (32‘9)
m

Another benefit this representation affords is an immediate assessment of the dimen-
sionality of the signal set, to which bandwidth occupancy is in some sense proportional,
as we will see in Section 3.7. Finally, the number and form of the basis functions indicate
in rough measure the complexity of the modulating and demodulating equipment.

As to the choice of basis functions, many sets {¢,,(r)} are possible. For purposes
of minimizing complexity and correctly visualizing key properties of modulator signal
sets, we should seek a set that is minimal, that is, N is as small as possible, and that is
composed of simple functions. In many classical signaling formats, the proper choice is
obvioug by inspection. For example, suppose cur modulator utilizes the binary signal set
of Figure 3.2.3. An appropriate set of basis functions would be the scaled versions of
the signals themselves, since the original two signals are already orthogonal. These basis
functions are aiso shown in Figure 3.2.3, along with the two-dimensional signal-space
representation. We reemphasize the distance claims made previously; each signal has
squared distance from the origin of E; = AT, /2, which is the same as the energy in
each waveform. Likewise, the squared distance between constellation points sq and s; is
AIT,, which is just the same as the square of the L,-distance between sq¢() and 5i(n).
We could alternatively employ four nonoverlapping rectangular pulses as a basis set,
but this would not be minimal; also the Fourier set would provide a representation that
converges asymptotically, but which is infinite dimensional.

A slightly less obvious basis construction pertains to M-ary PSK (phase shift
keying) modulation, where the M signals are merely phase-shifted versions of a carrier

The importance of L,-distance will become apparent shortly in our detection theory study.
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Figure 3.2.3 Two orthogonal signals and the obvious basis set.

sinusoid, lasting T, seconds, with the phase shift being a multiple of 2x/M radians:

2E,\ "2 2mi

5(1) = : cos(w(.t-+ w—r) i=0,1,... M-, 0<:=<T, (3210
T, M

By trigonometric identities it is obvious that any such signal is expressible in terms of

two orthonormal functions’

2\ 12 2312

do(t) = — cos w,f, (1) = (— sinw, ¢, 0<r=<T,, (32ila)
T, T;

so M-PSK signal sets have two-dimensional constellations (actually one-dimensional if

M = 2). The signal-space coordinates of each signal are given by

2mi . [ 2mi
sio = E cos (—AT) and s; = —E£!?sin (7) (3.2.11b)

The Gram-Schmidt procedure, whose flow chart is shown in Figure 3.2.4, is a
systematic process for determining a minimal, but not unique, orthonormal basis set for
any M -ary signal set. It begins by selecting the scaled version of s5o(¢) to be ¢p(z). Next
s1(t) is projected onto this function, thus forming 5,0, and the signal sio@y(t) is removed

TTechnically, the functions are orthonormal wl'ten we = n2n /T, or nearly so when w. » 2n/T,.
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chart, Is()ll = [f s?(rydr] .

from s,(¢), the residual being orthogonal to the first basis function. A normalized version
of this residual waveform becomes the second basis function, ¢ (r). The next signal is
projected onto these two bases, the residual is found, and if nonzero, scaled to become
the next basis function, and so on. The procedure repeats until the supply of signals
is exhausted, possibly terminating with N < M. (Inequality occurs when the set of
signals is linearly dependent; that is, one or more signals can be expressed as a linear
combination of others.)

We now examine three important generic classes of signal sets and their signal
constellations.

Example 3.1 General Antipodal Signals (Figure 3.2.5)

Two signals, irrespective of their detailed description, are anfipodal if one signal is the
negative of the other; that is, 5;(t) = —sg(t). Obviously, the signal constellation is N = 1
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dimensional, with @g(r) = csp(r), the constant chosen to normalize the energy. The signal
constellation appears as in Figure 3.2.5. Important examples are binary phase shift keying,
binary NRZ (nonreturn to zero) signals, and sequence inversion modulation of spread-
spectrum coded signals (see Exercise 3.3.2).

S](f)
T
Soft)
S 0
' | S sl
’ T —a Qglt) = w
h ' — Figure 3.2.5 Antipodal signal
Ej7 A example and signal constellation.

Example 3.2 General Orthogonal Signais (Figure 3.2.6)

We define an orthogonal signal set to consist of M equal-energy waveforms s;(¢) with

Y soswdi= B =i (32.12)
T T 0, i#j. -
The signal constellation has dimensionality N = M, and by choosing ¢,,(r) to be a scaled
version of the mth signal, we have a constellation with a signal point focated at distance £ ,' 72
from the origin along each coordinate axis, as pictured in Figure 3.2.6. Popular examples
of orthogonal sets are the set of M nonoverlapping rectangular pulses (referred to as pulse-
position modulation), M sinusoids of duration T, displaced in frequency by %TS (M-ary

d
5,
S
os S, Four-dimensional
» . Cartesian Coordinates

$o (Schematically lllustrated)

S,
o2

Figure 3.2.6 Signal constellation for 4-ary orthogonal signals.
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Figure 3.2.7 Four orthogonal signals derived from Hadamard (Walsh) matrix,

frequency shifl keying), and binary sequences formed from rows of Hadamard matrices. A
4-ary Hadamard sequence construction in shown in Figure 3.2.7.

Example 3.3 Two-dimensional Constellations and QAM
A prevalent modulation technique exhibiting good spectral efficiency is formed by choosing

in 172
sity=a; | — coswct + b | — sin w,f, O<r<Ty, i=01..,M-1,
Ts T
(3.2.13)

where the pairs (¢, b;) form the signal space coordinates in two dimensions. Typically,
the pairs (a,. b;) are chosen from points on a two-dimensional square grid, or lattice. We
can view the signal generation as amplitude modulation of phase-quadrature carriers, giving
the name quadrature-amplitude modulation (QAM), Alternatively, we can regard (3.2.13)
as amplitude and phase modulation of a single sinusoid (AM/PM). If all signals have equal
energy, that is, (a? + 4‘71.2)1/2 = £, the modulation is strictly through the phase angie, and
we refer to the signal set as M-PSK, with the constellation points located uniformly spaced
on a circle with radius E:I .

A common variation, pulse-shaped QAM, uses a signal construction of the form

$i(H) = hy (1) [a; cosw1r + b; sinw, 1], —cc<t<oo, (=01,....M-1, 3214
’

where hr(t) is a smooth transmitter pulse function extending beyond T; seconds. The basis
set is correspondingly modified by Ar(r) but the two-dimensional signal constellation is
unchanged.
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3.3 SINGLE-SYMBOL DETECTION OF KNOWN SIGNALS
IN AWGN

We now tum to the topic of optimal decision making and first consider a simple version
of the general setting exhibited in Figure 3.1.1. We suppose that a single message
symbol is conveyed by a single modulator signal and that the channel filter H( f) has
a nondistorting effect on the transmitted signal. Precisely, we assume that the channel
medium has constant gain and a linear phase characteristic for all frequencies where
the signals’ Fourier transforms are nonzero. This implies that the received signal is a
scaled, delayed replica of the transmitted signal; this delay introduces both symbol and
carrier synchronization issues into the problem. The only additional channel effect is
the addition of additive white Gaussian noise (AWGN). Our task is to make a minimum
probability of error decision as to which signal was sent.

We will proceed to formulate the optimal receiver, or detector, for the case where
the M signals are completely known at the receiver. By completely known signals, we
mean that, in addition to knowing the functional form of all signals, which is naturally
assumed, the receiver knows all relevant parameters about the received signals, espe-
cially the signai’s arrival time, often referred 1o as having symbol timing available. In
the case of bandpass, or carrier transmission, we assume in addition that the phase angle
of the signal appearing at the demodulator input are perfectly known. Finally, should it
be necessary, the various received signal amplitudes are known. These assumptions are
tantamount to having perfect synchronization and gain measurement. The demodulator’s
determination of these parameters is certainly not a trivial task.

Although not the usual communication scenario, we justify the single-transmission/
ideal channel assumption as follows. First, assumption of an ideal channel at the outset
simplifies our development, meaning that, except for delay and amplitude, the received
signals are the same as the modulator output signals. Once we have completed the
description of the optimal processor for a single transmission on the ideal channel, it
is straightforward to generalize to the distorting channel case, which we will do at
the end of Section 3.3. Second, the single-transmission model avoids, for the present,
complication of the decision making due to interaction at the receiver of signals pro-
duced by a sequence of message symbols. This phenomenon is broadly referred to
as intersymbol interference (1SI). Such may occur either because the modulator sig-
nals extend in time beyond T, seconds (and thus also the detector’s processing interval
for a given signal) or because the channel introduces memory in the form of A(¢),
making signals formerly time limited to T, seconds overlap into the adjacent signal-
ing intervals at the receiver. This intersymbol interference phenomenon can have a
devastating impact on system performance of a receiver designed in ignorance of its
presence. In particular, decision errors may occur even in the absence of noise. and
consequently its effect cannot be ignored on many channels. However, it may be shown
that the first step in optimal detection of message sequences in an environment con-
taining ISl and additive noise is to process the received signal exactly as if a single,
isolated transmission were made through the distorted chznnel. This initial process-
ing must be followed by a processor that “decodes” the memory induced by the chan-
nel. In summary, we claim that the case treated here is fundamentally important; the
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signal processors develcped here provide sufficient statistics for the more general set-
ting.

Another need for emphasizing that we are treating a one-shot modulator trans-
mission relates 1o coded transmission; that is, when the transmission has embedded
redundancy, the optimal message decision is not formed by a sequence of M -ary symbol
decisions as formulated here, followed by a decoder. Nonetheless, most of the basic
steps in demodulation studied here are fundamental to optimal sequence decoding and
in fact provide sufficient statistics for the sequence decision problem.

The problem then is the following: the modulator sends one of its M messages,
denoted S;, and conveyed in the form of a signal, s;(¢), which is received by a fixed-
amplitude, nondispersive channel. We define the average received energy per symbol to
be £ joules. Added to this waveform is white Gaussian noise having two-sided noise
spectral density No/2 W/Hz. The receiver’s observation interval is (T;, Tf), which spans
" at least the time support of the signal. We wish to find the processor that minimizes the
probability of decision error and ultimately to determine the resulting error probability.

Here’s a sketch of the optimal receiver derivation. It relies on the Karhunen—Loeve
[10] series expansion of the noise process, for which the (random) expansion coefficients
are uncorrelated random variables. In general, this will require the adoption of special
basis functions, called eigenfunctions, as discussed in Section 2.5, but for AWGN the
eigenfunction selection is trivial. By this expansion, we are able to convert a decision
problem involving a waveform observation into one involving a vector observation, a
problem whose solution we have described in Chapter 2. The structure of this vector
decision maker is then recast as a waveform processor.

We saw in the previous section that finite sets of deterministic signals may be
viewed, by orthonormal series expansions, as points in N-dimensional space. Here
we apply the same idea to the stochastic noise process. Consider an L-term series
approximation, N(©(z), for the noise process N (1) over the observation interval (7;, Tr):

L—1

NE@) = Y Nubml), (3.3.1)
m=0

where the basis functions {¢,,(+)} form an orthonormal set over the interval, and the
expansion coefficients, now interpreted as random variables, are obtained by

Ty
N,,,:f NG (Ydt,m=0,1,...,L ~1. (3.3.2)
T;

If the basis function set is complete, we may claim that,’as L becomes large, N“)(r)
" converges in mean-square to N{(¢).® This is expressed as

Jim E[(N () ~ NP@H) 1 =0. (3.3.3)
The expansion coefficients are obtained by a linear operation, (3.3.2), on a Gaussian

random process, and thus we know that the N, are joinily Gaussian r.v.'s, By taking
the expected value of both sides of (3.3.2) and then exchanging the order of expectation

BTechnically, white noise does not satisfy the requirements for this convergence, because it is not a
process with finite mean-square value. However, we may think of white noise as the limiting case of a process
that 1s,
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and integration, we find that the r.v.’s N, have zero mean for all m. To establish the
covariance of the noise coefficients, we form

E[NuN(J=E [fN(t)¢m(t)dt.[N(r)m(T)dT]_
:ffE[N(t)N(T}]¢m(t)¢k(T)dtdl’ (3.3.4)

- f ] Ryt = Dm(n)e (2 di d,

which again follows from an interchange of orders of expectation and integration. By
substituting the autocorrelation function of white noise, Ry (1) = (No/2)8(z) in (3.3.4),
and employing the shifting property of the Dirac impulse function to perform the integral,
we obtain

Ng (7
E[(NuNi] = — Pm()r(t) dt = (3.3.9)

{%ﬂ, m =k,
2 Jr

0, m # k.

Notice that (3.3.5) holds regardless of which orthonormal set we employ! Thus, for any
orthonormal basis set, the noise expansion coefficients for white noise are uncorrelated,
and since they are Gaussian, they are also independent. (More generally, to achieve
this uncorrelatedness of the expansion coefficients, the basis functions must satisfy an
integral equation involving the noise autocorrelation function [see Section 2.5] and the
general solution is the Karhunen-Loeve expansion [10]).

We have thus determined that, for white Gaussian noise, projecting N(¢) onto a
coordinate system defined by any orthonormal basis provides independent Gaussian ran-
dom variables with zero mean and variance Ng/2. This projection operation is schemat-
ically illustrated in Figure 3.3.1, where the spherical symmetry of the p.d.f. for the L
variables in an L-term expansion is indicated. Since any orthonormal basis set has
these properties, the natural set to use incorporates the N-ary basis set employed to
describe the signal set. We augment this set with additional orthonormal functions
needed to complete the set. (It is actually immaterial how we complete the set since
these additional expansion coefficients will be statistically independent of the signal
index.)

Nit) . ? J .;(c Ny
dolt)

.

{1 }-wrotts
br—(1)

3 Figure 3.3.1 Obtaining noise
flng, M, , Ni_q) = —— exp [ (g2 + +n2_WNg] coordinates from white Gaussian noise
(rNo) and resulting p.d.f.
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Next we wrile a series expansion for the received signal r(r} = s;(r) + n(!).
separating the contributions of the first N terms in the sum from the remainder:

N—1 o]
() =50+ n) =Y rum(D+ Y rngm(t), (3.36)
m=0 m=N
which recasts »(¢) in terms of an infinite-dimensional vector (rg, 71, ..., r~_;,...). The
first N components of this random vector, \Nhich we denote by r, are given by
Fot = Sim + N, m=01.... N~1, {3.3.7)

where the s;,, are the signal-space coordinates. The remaining r,, are simply independent
noise variables, n,,, are not statistically influenced by the choice of signal, and are clearly
irrelevant to the detection problem. Thus, the relevant data are conveyed by the vector r.

By this projection process, we have converted a waveform decision problem into
a finite-dimensional vector decision problem, described in Chapter 2. There we found
that the optimal policy to minimize error probability is the MAP rule:

maximize P; fp(r(S;). (3.3.8)
Because of the additive nature of the noise, we have fg(r|S;) = fn(r—s;), where fn(-)

denotes the noise vector p.d.f. Coupling this with the fact that the noise coefficients are
independent, zero-mean Gaussian r.v.’s, the MAP rule becomes

maximize P; fy(r —s;) (3.3.9a)
or
N—I 1 2
I —Fm—5im ) :
maXI‘mlze P,' ”]'—;[n W? § :| (339'))

In maximizing a function over some decision set, it is permissible to maximize
any monotone-increasing function of the original function. (The value of the maximized
quantity will change under such transformation, but the optimizing parameter, here the
decision index, will not.) Because of the product form and the exponential density func-
tions in (3.3.9b), it is convenient to maximize instead the natura logarithm of the term in
brackets in (3.3.9b). Doing so and recalling that 62 = Ny /2, we obtain the equivalent rule

- N 1 =
maximize | In P, — — In(w Np) — — Z(r,,, ——s,-,,,)2 . (3.3.10)
2 No &=
By expanding the quadratic term and eliminating terms common to all /, we can
just as well
g N-l s )
maximize | In P; + — im— — B 3.
’ : + Ny ’grms,m Ne mz=;}s,m (3.3.11a)
The first term in (3.3.11a) accounts for prior probabilities, the second term is a scaled
inner product between the received vector T = (rg,7),...,ry—;) and the signal vector
s;, and the third term is the energy-to-noisé density ratio for the ith signal. In vector
notation, (3.3.11a) could be rewritten as

E; 2
imize [In P, — - + —r -5 3.
maxni 1ze[n N0+N0r s] (3.3.11b)
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The structure of a generic receiver shown i Fizire 3.2 witich we call a basis
function receiver, follows from (3.3.11). The re v projects the received waveform
into signal-space coordinates, computes vector inner products, and adds bias tenms to e
count for the possibility of nonuniform prior probabilities and nonequal signal energies.
Another interpretation can be given based on (3.3.10): project into signal space to obtain
r and then decode to the closest signal in Euclidean distance (with possible addition of
a bias for prior probabilities). In the case where 1he prior probabilities are equal and the
signal energies are equal, the receiver biases can be dropped and we have the simplified
receiver of Figure 3.3.3,

.
ITS o o2
2 Compute
(3.3.11) ~
dolt) forally, | 1
Choose '
Index
T, v | of Largest
IVRTY
Figure 3.3.2 Optimal receiver for AWGN channel.
t=T
t T Iy
r( ) J'o & JG 1]
Form
=% S, I8
0ol1) - Choose [ ! .
Index
. of Largest
Ts Fre-1
At

Own-1{t)

Figure 3.3.3 Optimal basis function receiver, equal priors, equal energies
assumed.

An alternative receiver structure, referred to as a correlation receiver, derives from
realizing that the vector inner product in (3.3.11) could be extended in concept to arbi-
trarily large dimension, without changing the numerical result, by padding zeros in the
higher-order positions of the signal vector. The vector inner product is precisely equiv-
alent to the waveform correlation between waveforms of corresponding dimensionality

(see Exercises 3.3.1 and 3.3.2), and in the limit as dimensionality increases we may
write (3.3.11) as

T

2 rh ] .
maximize [ln P+ -—f riysi(tyder — — .\';(r)dr]. (3.3.12)
i No Jr. Ng Jy,

Sec. 3.3 Single-symbol Detection of Known Signals in AWGN 165



The second integral can be recognized as £; and is a precomputed term. Ir this receiver
the waveform projection is onto each of the M signals, instead of N basis functions,
and biases again are included for prior probabilities and energies. This receiver is shown
in Figure 3.3.4a for the general case and for the special .case of equal priors and signal
energies. (The scaling parameters such as 2/N in Figure 3.3.4 can be eliminated if other
bias terms are properly modified; we include them since the scaling emerges naturally
from the derivation.)

In PQ = EQI’NQ I
r(t) Ts Yo o
2 Choose A
No Solt) . Index i
: of
Largest
Ts | Ym— In_q
3 Sy_(t) In Py_i = En_+/Ny

No

Figure 3.3.4a Optimal receiver in correlator form.

Despite the intuitively appealing correlation structure of the optimal processor, we
caution that 1ts derivation does hinge strongly on an AWGN assumption. Also, although
we are at present interested in demodulation on a symbol-by-symbol basis, the derivation
pentains equally well to situations where the signals are sequences of elementary signals,
for example, codeword sequences. All we need to do to optimally detect such sequences,
in principle, is to correlate with all possible signal waveforms, add any necessary bias
terms, and choose the index of the maximum.

An equivalent version of the receiver of Figure 3.3.4b is known as the matched
filter receiver and is obtained by noting that, in the ith channel of the cormelation

r{1) Ts )

k

Choose A
Solt) Ind;ax /
o

Largest

j Ts IM -1

0
Sa-1it)

Figure 3.3.4b  Correlation receiver for equal priors, equal energies.
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rit)

receiver,
T.'
¥ :f r(s; () dt. (3.3.13)
T,

An identical way of generating y; is with a linear filter h; (¢) whose impulse response is
hilt) = s:(Ty — 1), T <t <Ty. (3.3.14)

which may be verified by expressing the convolution of r(r) with k;(¢) and sampling the
output at ¢+ = T,. Thus, an optimal receiver is formed by a bank of filters whose impulse
responses are the delayed, time-reversed versions of the signals.

It is instructive to interpret the matched filter in the frequency domain. The Fourier
transform of the optimal filter impulse response is obtained by applying the time-scaling
and time-shifting properties of the Fourier transform:

Hi(f) = SH(f)e /T = |8, (f)le 1St N+2nfTr] (3.3.15)

where S;(f) is the Fourier transform of the ith signal. Thus, the magnitude of the
frequency response of the optimal filter follows that of the signal spectrum, which makes
intuitive sense for a filter designed to “extract” signals from noise, but the phase response
is just the negative of the signal’s phase response (in addition to.a linear phase term
accounting for time delay). The latter makes the spectral components of the received
signal properly “add up” at the sample time.

The matched filter is sometimes confused with the inverse filter, defined by

e/ STr = jlagSf)=2n [T, ,
o) =517 S G319
The inverse filter also makes the spectral components of the signal add constructively at
the sample time, but gives low gain to frequencies where the Fourier transform is large
in magnitude. There is a big difference in terms of performance in noise.

The matched filter is often introduced in communication theory courses as the
filter that maximizes the sample-time signal-to-noise ratio, defined .as the ratio of the
squared mean of the filter output at the sampling instant to the variance of the filter
output. While being a reasonable optimization criterion, it does not directly address the
minimum-error-probability objective. For Gaussian noise, these objectives coincide, but
in a more general setting, maximizing this SNR is not necessarily optimal.

The parallel matched filter receiver is shown in Figure 3.3.5, asswming equal priors
and equal signal energies. We remark that the correlation and matched filter receivers

t=T,
J
hoit) —of 0—2
Choose A
Index i
—
of
t=T, Largest
TR : .
hit) —o)ro-——-———- Figure 3.3.5 Maiched filier version
of optimal receiver.
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are equivalent in that they form the same decision statistics /;, but continuous-time
waveforms found within the two processors, in particular just prior to the sampler, are
quite different functions of time. It is also worth emphasizing at this point that the
optimal receiver makes no attempt tc avoid signal distortion, as an analog communication
receiver might attempt. Instead, the task is merely deciding a signal index. This is
one essential difference between the tasks of digital detection and estimation of analog
waveforms.

We have now produced three distinct receiver structures, but all are equivalent in
performance, for they produce the same decision. Preference for one of these receivers
would be based on implementation issues. The matched filter realization may require
synthesis of special filiers, while the correlator version needs waveform generators and
multipliers in general. In the case where the signal set dimensionality, N, is less than
the number of signals, M, the implementation of Figure 3.3.3 is most appealing, because
it minimizes the amount of waveform-level processing (signal generators, multipliers,
integrators, and the like).

Whereas the receivers adopt a general time interval (7. Ty) that is at least as
large as the signal durations, it is clear that, if the signal waveforms are identically
zero outside some finite subinterval, then the various receivers will ignore r{¢) outside
this latter interval, either through adoption of proper basis functions or through the time
support of the waveform set in the correlation process. [The irrelevance of r(¢) outside
the signal interval does not hold for nonwhite noise; see Exercise 3.3.3.] Many of the
subsequent receiver structures will indicate processing over an interval of duration T,
but this strictly is optimal only if the signal set is time-limited to this interval.

Example 3.4 Detection of Rectangular Polar Signals

We illustrate this discussion with perhaps the archetypal digital detection scenario, the op-
timal detection of rectangular,” polar signals in AWGN. The two signals, shown in Fig-
ure 3.3.6a, are assumed equiprobable and have equal energy, £, = A2T, defined at the
input 1o the demodulator. Since the signals are constant over (0, 7], we may ignore the
waveform multiplier shown in Figure 3.3.4a, in which case we obtain the receiver of Fig-
ure 3.3.6b. It is clear that an equivalent processor is that of Figure 3.3.6¢c, however, producing
the unsurprising result that optimal decisions are made by integrating over one symbol and
then comparing with zero. Again, this intuitively expected procedure is optimal only for
the detection of polar rectangular pulses in AWGN. However, if the signals are rectangular
and unipolar, we merely need to adjust the decision threshold.

This detector is somelimes known as the integrate-and-dump (1&D) detector since
the integrator output is erased at the end of each bit before processing of the next. A typical
active circuit realization is shown in Figure 3.3.7a. Still another realization that implements
the matched filter structure and avoids the need for resetting the integrator is depicted in
Figure 3.3.7b. In Figure 3.3.7c, we show the magnitude of the frequency response of the
optimal filter, which has the same shape as the Fourier spectrum of the rectangular pulse
by {3.3.15).

Figure 3.3.8 illustrates oscilloscope displays of the input and output of an integrate-
and-dump detector. Observe that the unprocessed input signal appears rather prone to high
error rate if a decision is based on a single sample of the input r (1), but the optimal detector
output is quite reliable,

“This signaling tormat is sometimes denoted as NRZ. for nonretum to zero.
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integrate-and-dump.

Figure 3.3.7b  Another realization of
matched filter for rectangular pulse,

From Figure 3.3.7¢c we note that the optimal detector is in some sense a low-pass filter,
which is probably expected since the signal spectrum is low pass and the noise is wideband,
but it is a filter we would not obtain by naive thinking about the problem. In particular,
we might be led by intuition to process the received signal r(r) with more traditional tinear
filters, such as a first-order Jow-pass filter, which has the desirable effect of noise removal.
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Figure 3.3.7c  Magniiude of matched filier frequency response.

Figure 3.38 Oscilloscope photos for
integrate and dump detection of NRZ
signal; upper trace is r(?), lower trace
is { and D output prior to sampling.
(top) Noiseless; (bottom) Ej /Ny
approximately 7 dB.

The reader is referred to Exercise 3.3.6 for a treatment of the trade-offs and deficiencies of
this approach.

We have now formulated the general M -ary demodulator, and in the next several

subsections, we specialize the structure in important practical cases as well as analyze
the error performance.
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3.3.1 Error Performance for General Binary Signals in AWGN

Especially compact resuits arise in the binary (M = 2) case, and. because binary signaling
is prevalent in practice, we examine this case in detail.

The optimal receiver for two equiprobable signals is a two-channel correlator, the
general form of which is shown in Figure 3.3.4. We may realize the same decision by use
of the receiver of Figure 3.3.9, which correlates with the difference signal sy(t) — 5, (¢).
If the energies are not equal, we add a bias as indicated or, equivalently, adjust the
decision threshold.

y ! S0
f(!) J‘Ts‘dt + 20
% Q +? 5
2

N. {sp{t} — s¢(t)) (Ey— EodiNg
b

Figure 3.3.9 Optimal binary correlation receiver,

To analyze the performance in general, let us consider the mean of the random
variable at the output of this correlator. Conditioned on transmission of sp(7). the mean,
itg, of the variable Y is

2
#o = EfY[s0] = A f so(Dsalr) — s} dr. (3.3.17a)
0

Similarly, given transmission of s,{r), we have

2
w =E[Y[s]= N—/Sl(f)[sn(f)— si(t)] dt. (3.3.17b)
0

The difference between the conditionai means. defined as Ap = pg — @y, ts easily
simpiified to

(3.3.18)

No

where we have defined E; as the energy in the difference signal so(t) — s,(t).
Furthermore, the variance of the decision variable is not dependent on which signal

was transmitted and is easily shown to be

6’ = Var [f[s(,(() - s[(f)}N({)df]
(3.3.19)

,_.El___
3

since the deterministic waveform we are projecting N (1) onto is not a unit- -energy basis
function, but one that has energy E,.

Figure 3.3.10 shows the two conditionally Gaussian distributions of the decision
variable, along with an optimal threshold midway between the two means. chosen to
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minimize the total error probability. The error probability is seen to be a Gaussian tail
integral:
P(¢) = Pielso) (by symmetry)

AN Es\'? (3.3.20)
—Q(%)—Q[(m) }

iliustrating the importance of maximizing the difference signal energy. This is intuitively
a proper thing to do to enhance distinguishability, but is rigorously correct only for white
Gaussian noise environments.

Another interpretation based on signal space ideas is provided by use of the basis
function receiver. Recall that for M = 2 signals at most two basis functions are needed.
Thus, we may place the two signals in two-dimensional space, arbitrarily chosen as
shown in Figure 3.3.11. The received waveform is also projected to a point in the piane,
and the optimal rule is “pick the closest signal.” The perpendicular bisector divides the
observation space into two half-space decision regions. Now, consider the transmission
of signal sy(r). The received observation (r;,r;) will have a p.d.f. that is circularly
symmetric about the point sy = (3¢, s0;) {recall the fact that the noise coordinates are
zero-mean, equal-variance independent Gaussian variates). The only component of the
noise vector that is harmful to the decision process is that corhponent in the direction
along the line connecting sy and s,. By symmetry, this random noise component is also

Constant p.d.f. Perpendicular Bisector

Contours
for(ry, r)

Figure 3.3.11  Signal-space geometry for general binary detection.
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zero-mean with variance Np/2, If this ncise variable is more positive than d/2, where
d is the intrasignai distance, an error occurs. Thus,

o0
1 I [ d ]
S A N dn = . (3.3.21)
%W)ﬂmummwe S FeTR Y

which follows after a change of variables in the integrand. It is clear that the same holds
for P(e|s;), and thus the fundamental result is'”

24\ 12
d d* )
= = —_— = P . eneral binary detection, AWGN.
P, = P(e) Q[(2N0)1/2} Qlﬁ(ﬂ%) :l g ary

(3.3.22)

This expression actually restates (3.3.20) since the energy residing in the difference signal
is exactly the squared signal-space distance, as shown in (3.2.9).

It is a key point that only the squared signai-space distance between signals influ-
ences efror probability, and performance is invariant to a translation or rotation of points
in signal space. If we recall that in signal space the squared distance from the origin is
the signal energy, the binary signal design problem now becomes quite clear: we wish
to maximize the distance between signals, subject to an energy constraint, or a constraint
on distance from the origin of signal space. The optimal signal design for M = 2 is
the antipodal design; that is, s,(t) = —~so(t), for which Eq = £, = E, and d = 2E.
For antipodal signals, no matter what their detailed nature, we have the important result
that

1,2
Py=Q [(%) :l antipodal signaling, AWGN. 3.3.23)

Several different antipodal designs are shown in Figure 3.3.12 with varying de-
grees of simplicity. We reemphasize that all sets have the same performance if properly
detected, for a given £, and N, although it is commonly misunderstood that wideband
signals such as in Figure 3.3.12c require a greater signal-to-noise ratio for a given level
of performance, since the receiver “admits more noise.” (Actually, if we define signal-
to-noise ratio as the ratio of total signal power to noise power measured in the signal
bandwidth, a smaller SNR is allowed for wideband signals!)

While on the topic of SNR, we note that the figure of merit £, /Ny is

E, _PT, P

No  No =~ NyR,
The latter ratio could be interpreted as a signal power-to-noise power ratio, where noise
power is defined in a bandwidth equivalent to that of the symbol rate, R,. The experi-
mental utility of such a definition is limited, however, by the fact that the actual signal
bandwidth is often very different than the symbol rate.

Another prevalent signal design is the binary orthogonal design, whose signal
constellation is shown in Figure 3.3.13, with some examples also indicated of actual

(3.3.24)

WHereafier we will frequently use P; to denote a symbol error probability.

Sec. 3.3  Single-symbol Detection of Known Signais in AWGN 173



solt} ’ sit)
Ts
Eo = AZTS =E; Ed= 4A2T5
{a}
A _____
T,
SQ“) 51(” l
T,
“Ak-->2
2
£ =E = AZT’ D E,= 28T
(b)
A T, A}
Solit) —I ] si(t) n

AL L] -A L7,

EU = E1 = Asz; Ed= 4A2T5
{c)

Figure 3.3.12 Examples of antipodal signals. (a) Manchester, or split-phase;
(b) half-cycle sinusoid; (c) spread spectrum signals,

04
St
E"
S
Figure 3.3.13 Constellation for
E',,,_ o binary orthogonal signals and example
5

waveforms (a) pulse position
modulation; (b) frequency shift keying,

waveforms for baseband and carrier signaling. Here, both signals have equal energy, but
the signal-space distance between them is only d = (2E,)'/2, whence, from (3.3.22),

No

EN'?
P,=Q |:( ) ] orthogonal signaling, AWGN. (3.3.25)
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Spl?)

S1(tl

Finally, and of lesser interest, is on—off keying, with a constellation shown in
rl
Figure 3.3.14. Here Ey = E,, Eq = 0,d = E{”, and

;2
Pi=¢Q [(2—5—) } on—off signaling, AWGN. (3.3.26)
N

It is important to note the relative energy efficiencies of these three generic bi-
nary signal classes. Relative to antipodal signal sets, orthogonal sets require twice the
energy-to-noise density ratio (or 3 dB more) for equal error probability, and on—off sets
require four times (6 dB) greater E;/Ny. To be fair to the on—off case, we should note
that if a comparison is made on the basis of average energy consumption, rather than
peak energy, then on—off is equivalent in energy utilization to orthogonal signaling and
3 dB inferior to antipodal. This follows since the average energy consumption in on~off
keying is only half the peak energy.

Another subtle point about on—off keying is that the optimal decision threshold,
or equivalently the bias term required in the receiver, depends on the received energy
level, and some type of level control is essential if optimum performance is desired. (See
Exercise 3.3.5.) Most commonly, this is provided by automatic gain control (AGC) in
the receiver. Antipodal and orthogonal signals are not faced with this problem, since the
signal energies are all equivalent, although AGC may be found in these demodulators
for other engineering reasons.

Spl?)

S1(t)
T;Q T; 7}
{a) {b)
$o S
——— 8t
E\72
Figure 3.3.14 Constellation for
{c) binary on-off signaling.

3.3.2 Performance Bounds for M-ary Signaling

In the case of binary signaling, we were able to provide exact performance results for
any signal set. In contrast, for nonbinary transmission either compact expressions are
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not available for the exact performance, or numerical integration procedures must be
invoked. In either situation, is is useful to accurately bound the true error probability as
a function of energy-to-noise density ratio. This is surprisingly easy to do.

Two-signol Lower Bound
We recall that, under assumption of equal prior probabilities,

1 M1
Po=— Y PElS). 33.27
7 Z_; (€lS) ( )

Each term in the sum is lower bounded by the probability of confusing §; (ors; ) for its
nearest signal-space neighbor. Denote this nearest-neighbor distance as dnin,. Then, by
our expression for binary eror probability in AWGN (3.3.22),

1 M dmin.
P> o ZO Q [(2N0)11/2]‘ (3.3.28a)

Because the minimum distances between constellation points are rather easily determined,
(3.3.28a) provides a simple lower bound. Furthermore, if the signal set has symmetry so
that all diy, equal some dp,, (almost always the case in practice), then the lower bound
simplifies to

dmin
h=0 [(2%)‘”]' (3-3:280)
Union Upper Bound
Consider transmission of the message 5. An error occurs if the received vector r
lies in the region of observation space Dy UD>-- U Dy, = Dyg. This error region is
the union of M — 1 half-spaces;

M-1
Dy = by, (3.3.29)
i=1

where D, is the decision region in favor of S; when only §; and S; are compared.
In Figure 33.15, we show these half-spaces for the case of M = 3 signals in N = 2
dimensions. -

We are interested in

M—1 M—1 s
P(reDylSy) =P (U D;,j|s(,) < Y P(Dy,1%)- (3.3.30)
j=1 i=!

The last inequality follows from the union bound of Section 2.1, which gives name to
the upper bound we are developing.

Each term in the sum of (3.3.30) is the probability of error in a binary decision
problem. Thus,

M1t
do;
P J
(€1S0) < §I: 0 [(2N0)1,2], (3.3.31)

i=
where dy; is the signal-space distance between sy and s;. Arguing similarly for the other
signals and letting the prior probabilities be equal, we have

| M-l d,

i=0 j#i
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Figure 33.15 Error region D as
union of error regions Dy for binary
choices.

For the ith signal, the inner sum is bounded by M — 1 times the largest term of the sum,
which in turn occurs when d;; is minimum over j. Thus,

M—1% denin,
P — ); 0 [(:wo)' n]. (3.3.33)

A more compact, but slightly looser bound (unless all dy,, are equal by symmetry),
is the bound -obtained by using the global minimum distance d,,;, in each term of the
sum:

dmin

Ple)<(M-1)Q [W] (3.3.34)
Equation (3.3.34) is the principal result, requiring only the global minimum distance.
Comparing it with (3.3.28), we see that the only difference is a muitiplier M — 1. While
this is not a trivial difference for large M, we can say that the upper and lower bounds
are exponentially equivalent,!’ despite the several stages of inequalities. This follows-
from exponential upper bounds for the Q-function derived in Chapter 2. Equivalently, at
high signal-to-noise operating points, the additional energy needed to offset a factor of
M —1 is increasingly negligible. Often, study of the decision zones will allow tightening
of the multipliers still further, as in Example 3.8.

We illustrate the use of these bounds with a simple example.

'"Two expressions for cror probability, Pi(x) and Pz(x), are said to be exponentially equivalent if they
exhibit identical exponential dependence on x, although differing by constants or algebraic factors dependent
on x. The implication is that the difference in value of the exponent needed to achieve a given probability
becomes vanishingly small as the iarget probability shrinks to zero.
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Example 3.5 M = 4 Orthogonal Signals

A three signal orthogonal consiellation is illustrated in Figure 3.3.16. Note that dmin =
dij = (2E5)'?, and substitution into the bounds (3.3.28) and (3.3.34) produces

12 172
Es E;
Q[(N_o) ] <P = SQ[(N_O) ] (3.3.35)

As a measure of tightness of these bounds, we can compute the E;/Ng required to make
the bounds equal 1075, Using a table of the Q-function and converting E,/Np to decibels
gives lower and upper bounds on E;/Ng of 12.55 and 13.0 dB, respectively. Clearly, the
factor of 3 difference in the probability bounds does not manifest itself as a large difference
in SNR requirements. Furthermore, the difference becomes smaller for lower P;, depicting
the exponential equivalence of the upper and lower bounds.

2]
2] L\
S d = (ZES) 12
AL EiR s 0

Figure 3.3.16 Signal constellation
s, for M = 3 orthogonal signals.

3.3.3 Detection of M-ary Orthogonal, Biorthogonail, and
Simplex Modulation

M-ary Orthogonal Case

Orthogonal signaling provides one means of achieving high energy efficiency in
transmission (in fact, in the limit of large M it can achieve operation at channel capacity
on the AWGN channel, as we shall see), but does so at enormous increase in complexity
and bandwidth for large M. Examples of M-ary orthogonal signals are the following:

L. M-ary frequency shift keying, wherein one of M sinusoidal signals is selected
every T, seconds, with the tone spacing chosen to be some multiple of 17,

2. M-ary pulse-position modulation (PPM), involving transmission of a pulse occu-
pying one of M time slots within an interval T; seconds

3. M-ary signaling using binary signal patterns formed by the rows of binary Hada-
mard matrices, these rows having mutual orthogonatity (see Example 3.6)

We now proceed to evaluate the exact performance of such schemes as a function
of £;/Ny on the AWGN channel. First, recall that the signal space is M-dimensional,
with one signal located at distance £ +* from the origin along each coordinate axis. Each
signal point of the constellation has M — | equidistant neighbors at Euclidean distance
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d = (2E;)'?. By symmetry, each signal has the same conditional error probability,
P(€|S;), and this therefore equals P(¢). Thus, let’s assume the transmission of so(r),

without loss of generality.
In the correlation receiver of Figure 3.3.4 the decision statistics are

yi= / ir(t)s.- (t)dt (3.3.36)
No

and the decision is in favor of the largest correlation. Given our conditioning on the
message Sp, the random variable Y, is distributed as

2E, 2F;
~ —_ — 3.3.37
Yo~ N ( Ne' N ). ( )
while
Y, ~ N (0, 2‘-’5«) i #0, (3.3.38)
No

[Again, our convention is that N (11, &%) designates the Gaussian p.d.f. with mean u and
variance ¢°.]

The receiver errs if any Y;,i # 0, exceeds Y. Thus, the probability of a correct
decision is

oc
P(C) = f P@ Yy, Yar.... Yiaes < YolS)f GolSo) do. (3.3.39)
-
Because of independence of the r.v.’s ¥;, this expression may be written
oo e—U'D*#)?,ng Yo e‘y2ﬂ02 M-1 j .
P = —_— d , ’ . 40
© [w (2na?)'? [m Rral)l2 ¥ Yo ( )

where u = 2E, /Ny, and 0 = 2E,/Ny. The inner integral is 1 — Q(yo/c ). but this is
as far as the expression can be reasonably simplified, and we must resort to numericai
integration to evaluate the probability of symbol eror P, = | — P(C). This numerical
work was first reported by Viterbi [11] and is tabulated for M = 2™ in Lindsey and
Simon {12] as a function of bit energy-to-noise density ratio. We show the results for
symbol error probability P; = | — P(C) in Figure 3.3.17.

The union bound is particularly easy to apply in this case since all signal pairs are
equidistant in signal space. (This was applied in Example 3.5.) Recently, Hughes [13]
has shown that a tighter bound on error probability for orthogonal signals is

SR O (N

which in particular stays below 1 at low SNR.

It is often the case that we wish to compare options for modulation and detection,
including cases with differing alphabet sizes A, all designed to support a certain bir
rate. with a common power constraint at the receiver, P, watts. In such cases, it is
important to compare the performance in terms of equal energy per bit received, which
8 Ep = PTy=PT/log, M = E;/f log, M, since each M-ary symbol conveys log, M
bits in uncoded memoryless modulation. Thus, in presenting performance results, we
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Figure 3.3.17 Symbol error probability for coherent detection of orthogonal

signals.

should plot against £,/Ng, using E, /Ny = (E»/Np) log, M. Such a normalization has
been done in Figure 3.3.17.

Warning: Authors do not always subscribe to the preceding suggestion, and
it is easy to overlook the fact that schemes may be compared on different
deftnitions of energy-to-noise ratios. Similarly, there is a choice whether to
display symbol error probability or bit error probability, which is discussed
below.

A signal-space inspection of the M-ary orthogonal constellation reveals that, to
maintain a fixed symbol error probability, £, must increase with M since the number
of nearest neighbors increases. However, the efficiency measured in E), /Ny actually im-
proves, at least for small error probability, as shown in Figure 3.3.17. We are led to ask
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