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Preface to The Second Edition

The purpose of this book, like its previous edition, is to provide the concepts and theory of signals and systems
needed in almost all electrical engineering fields and in many other engineering and science disciplines as well.

In the previous edition the book focused strictly on deterministic signals and systems. This new edition
expands the contents of the first edition by adding two chapters dealing with random signals and the response
of linear systems to random inputs. The background material on probability needed for these two chapters is
included in Appendix B.

I wish to express my appreciation to Ms. Kimberly Eaton and Mr. Charles Wall of the McGraw-Hill Schaum
Series for inviting me to revise the book.

Hwel P. Hsu
Shannondell at Valley Forge, Audubon, Pennsylvania



Preface to The First Edition

The concepts and theory of signals and systems are needed in almost all electrical engineering fields and in
many other engineering and scientific disciplines as well. They form the foundation for further studies in areas
such as communication, signal processing, and control systems.

This book is intended to be used as a supplement to all textbooks on signals and systems or for self-study.
It may also be used as a textbook in its own right. Each topic is introduced in a chapter with numerous solved
problems. The solved problems constitute an integral part of the text.

Chapter 1 introduces the mathematical description and representation of both continuous-time and discrete-
time signals and systems. Chapter 2 develops the fundamental input-output relationship for linear time-invariant
(LTI) systems and explains the unit impulse response of the system and convolution operation. Chapters 3 and 4
explore the transform techniques for the analysis of LTI systems. The Laplace transform and its application to con-
tinuous-time LTI systems are considered in Chapter 3. Chapter 4 deals with the z-transform and its application to
discrete-time LTI systems. The Fourier analysis of signals and systems is treated in Chapters 5 and 6. Chapter 5
considers the Fourier analysis of continuous-time signals and systems, while Chapter 6 deals with discrete-time
signals and systems. The final chapter, Chapter 7, presents the state space or state variable concept and analysis for
both discrete-time and continuous-time systems. In addition, background material on matrix analysis needed for
Chapter 7 is included in Appendix A.

I am grateful to Professor Gordon Silverman of Manhattan College for his assistance, comments, and careful
review of the manuscript. I also wish to thank the staff of the McGraw-Hill Schaum Series, especially John Aliano
for his helpful comments and suggestions and Maureen Walker for her great care in preparing this book. Last, [ am
indebted to my wife, Daisy, whose understanding and constant support were necessary factors in the completion
of this work.

HweI P. Hsu
Montville, New Jersey



To the Student

To understand the material in this text, the reader is assumed to have a basic knowledge of calculus, along with
some knowledge of differential equations and the first circuit course in electrical engineering.

This text covers both continuous-time and discrete-time signals and systems. If the course you are taking cov-
ers only continuous-time signals and systems, you may study parts of Chapters 1 and 2 covering the continuous-
time case, Chapters 3 and 5, and the second part of Chapter 7. If the course you are taking covers only discrete-time
signals and systems, you may study parts of Chapters 1 and 2 covering the discrete-time case, Chapters 4 and 6,
and the first part of Chapter 7.

To really master a subject, a continuous interplay between skills and knowledge must take place. By study-
ing and reviewing many solved problems and seeing how each problem is approached and how it is solved, you
can learn the skills of solving problems easily and increase your store of necessary knowledge. Then, to test and
reinforce your learned skills, it is imperative that you work out the supplementary problems (hints and answers
are provided). I would like to emphasize that there is no short cut to learning except by “doing.”
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Signals and Systems

1.1 Introduction

The concept and theory of signals and systems are needed in almost all electrical engineering fields and in many
other engineering and scientific disciplines as well. In this chapter we introduce the mathematical description
and representation of signals and systems and their classifications. We also define several important basic sig-
nals essential to our studies.

1.2 Signals and Classification of Signals

A signal is a function representing a physical quantity or variable, and typically it contains information about
the behavior or nature of the phenomenon. For instance, in an RC circuit the signal may represent the voltage
across the capacitor or the current flowing in the resistor. Mathematically, a signal is represented as a function
of an independent variable ¢. Usually ¢ represents time. Thus, a signal is denoted by x(¥).

A. Continuous-Time and Discrete-Time Signals:

A signal x(#) is a continuous-time signal if ¢ is a continuous variable. If ¢ is a discrete variable—that is, x () is
defined at discrete times—then x(f) is a discrete-time signal. Since a discrete-time signal is defined at discrete
times, a discrete-time signal is often identified as a sequence of numbers, denoted by {xn} or x[n], where
n = integer. [llustrations of a continuous-time signal x(¢) and of a discrete-time signal x[n] are shown in Fig. 1-1.

x{f) x[n]
\ ,
\\’/
I L B
- - * e
0 t 5-4-3-2-1012 3466 n

@) (b)

Fig. 1-1 Graphical representation of (a) continuous-time and (b) discrete-time signals.

A discrete-time signal x[n] may represent a phenomenon for which the independent variable is inherently
discrete. For instance, the daily closing stock market average is by its nature a signal that evolves at discrete
points in time (that is, at the close of each day). On the other hand a discrete-time signal x[#] may be obtained
by sampling a continuous-time signal x(#) such as

x(ty),x(t), ..., x(2,), ...

— a»



99— CHAPTER 1 Signals and Systems

or in a shorter form as

or

x[0], x[1], ..., x[n], ...

X, X X

02 Xpo e Xy oot

where we understand that

x, = x[n] = x(z)

and x,’s are called samples and the time interval between them is called the sampling interval. When the sampling
intervals are equal (uniform sampling), then

x, = x[n] = x(nT))

where the constant T is the sampling interval.
A discrete-time signal x[n] can be defined in two ways:

1.

We can specify a rule for calculating the nth value of the sequence. For example,
1 n
x[n]=x, = (7) n=0
0 n<0
11 (1Y
or {x,}= I,E,Z,...,(?) yues

2.  We can also explicitly list the values of the sequence. For example, the sequence shown in

Fig. 1-1(b) can be written as

{x,}=1{..0,0,1,2,2,1,0,1,0,2,0,0,...}

!
or {x,}=1{1,2,2,1,0,1,0,2}

1

We use the arrow to denote the n = 0 term. We shall use the convention that if no arrow is indicated,
then the first term corresponds to n» = 0 and all the values of the sequence are zero for n < 0.
The sum and product of two sequences are defined as follows:
{eny=A{a,}+{b,} > c, =a, +b,
{ea}=Aa,}b,} —c,=a,b,
{c,}=afa,} —c, =aa, o = constant

Analog and Digital Signals:

If a continuous-time signal x () can take on any value in the continuous interval (a, b), where a may be — and
b may be +, then the continuous-time signal x(?) is called an analog signal. If a discrete-time signal x[n] can
take on only a finite number of distinct values, then we call this signal a digital signal.

C.

Real and Complex Signals:

Assignal x(¢) is a real signal if its value is a real number, and a signal x () is a complex signal if its value is a com-
plex number. A general complex signal x(?) is a function of the form

x(H) = x,(0) + jx,(0) (1.1)
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where x,(?) and x,(?) are real signals and j = V-l1.
Note that in Eq. (1.1) # represents either a continuous or a discrete variable.

D. Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any given time. Thus, a
deterministic signal can be modeled by a known function of time ¢. Random signals are those signals that
take random values at any given time and must be characterized statistically. Random signals will be dis-
cussed in Chaps. 8 and 9.

E. Even and Odd Signals:

A signal x(?) or x[n] is referred to as an even signal if

x(—1) = x(®

(1.2)
x[—n] = x[n]
A signal x(#) or x[n] is referred to as an odd signal if
x(—fH = —x() (1.3)
x[—n] = —x[n]

Examples of even and odd signals are shown in Fig. 1-2.

x(f) x[n)

L J
oy ]
@ ——i
G f—
Lo ]

L J

(@) (b)

() xim)

= ]

() (@

Fig. 1-2 Examples of even signhals (a and b) and odd signals (¢ and d).

Any signal x(#) or x[n] can be expressed as a sum of two signals, one of which is even and one of which is
odd. That is,

x(1)=x, (1) + x,(¢) (14)
x[n]=x,[n]+ x,[n]
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Where x, ()= l {x(®)+ x(—1)} even part of x(¢)
2 (1.5)
x,[n]= % {x[n]+ x[—n]} even part of x[n]
x, ()= 1 {x(t) —x(— 1)} odd part of x(t)
2 (1.6)

x,[n] =%{x[n] —x[—n]} odd part of x[n]

Note that the product of two even signals or of two odd signals is an even signal and that the product of an
even signal and an odd signal is an odd signal (Prob. 1.7).

F. Periodic and Nonperiodic Signals:

A continuous-time signal x(?) is said to be periodic with period T if there is a positive nonzero value of T
for which

x(t+T)=x(2 all ¢ (1.7)
An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or Fig. 1-3(a) it follows that
x(t+ mT) = x(2) (1.8)

for all 7 and any integer m. The fundamental period T, of x(¢) is the smallest positive value of T for which
Eq. (1.7) holds. Note that this definition does not work for a constant signal x(#) (known as a dc signal). For
a constant signal x (#) the fundamental period is undefined since x () is periodic for any choice of T (and so there
is no smallest positive value). Any continuous-time signal which is not periodic is called a nonperiodic
(or aperiodic) signal.

x(f)
2T T 0 T 2T '
(@
xin]
8
. T . T . 4 T . 4 T & T &
_oN N 0 N 2N n

)

Fig. 1-3 Examples of periodic signals.
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Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal) x[n] is periodic with
period N if there is a positive integer N for which

x[n + N] = x[n] alln (1.9)
An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it follows that
x[n + mN] = x[n] (1.10)

for all n and any integer m. The fundamental period N, of x[n] is the smallest positive integer N for which Eq. (1.9)
holds. Any sequence which is not periodic is called a nonperiodic (or aperiodic) sequence.

Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may not be
periodic (Probs. 1.12 and 1.13). Note also that the sum of two continuous-time periodic signals may not be
periodic but that the sum of two periodic sequences is always periodic (Probs. 1.14 and 1.15).

G. Energy and Power Signals:

Consider v(#) to be the voltage across a resistor R producing a current i (). The instantaneous power p (f) per ohm
is defined as

p(r)=%=iza> (1.11)

Total energy E and average power P on a per-ohm basis are

E=[" i*()dt joules (1.12)
. L2 5
P—Tll_r.r;;f_r/zz (1) dr  watts (1.13)

For an arbitrary continuous-time signal x(¢), the normalized energy content E of x(t) is defined as
E=fj° | x| de (1.14)
The normalized average power P of x(t) is defined as
_ . 1 T2 2
P—Tll_r_r;;f_m|x(t)| dt (1.15)
Similarly, for a discrete-time signal x[#n], the normalized energy content E of x[n] is defined as

E= Y |xnlf (1.16)

n=—

The normalized average power P of x[n] is defined as

. 1 il 2
P=1
frad 21\/+1,,=2_N|x[n]| (1.17)

Based on definitions (1.14) to (1.17), the following classes of signals are defined:

x(?) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < %, and so P = 0.

2. x(® (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < o, thus implying
that E = .

3. Signals that satisfy neither property are referred to as neither energy signals nor power signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and then the average
power of this signal need only be calculated over a period (Prob. 1.18).
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1.3 Basic Continuous-Time Signals

A. The Unit Step Function:

The unit step function u (?), also known as the Heaviside unit function, is defined as

1 t>0
- 1.18
u(t) {0 1<0 (1.18)

which is shown in Fig. 1-4 (a). Note that it is discontinuous at # = 0 and that the value at # = 0 is undefined.
Similarly, the shifted unit step function u(# — 7,) is defined as

1 t>1,
u(t —ty)= 1.19
¢—f) {0 t<t, (19
which is shown in Fig. 1-4(b)
wif) wit—tg)
1 1}
0 ¢ 0t ¢

@ (b)
Fig. 1-4 (a) Unit step function; (b) shifted unit step function.

B. The Unit Impulse Function:

The unit impulse function 8(f), also known as the Dirac delta function, plays a central role in system analysis.
Traditionally, 6() is often defined as the limit of a suitably chosen conventional function having unity area over
an infinitesimal time interval as shown in Fig. 1-5 and possesses the following properties:

0 t#0
o()y= © f=0

f;ﬁ(t)dt=1

= € t
Fig. 1-5
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But an ordinary function which is everywhere 0 except at a single point must have the integral O (in the Riemann
integral sense). Thus, §(f) cannot be an ordinary function and mathematically it is defined by

[ 6)8(t) di = $(0) (1.20)

where ¢(?) is any regular function continuous at ¢t = 0.
An alternative definition of §(7) is given by

¢(0) a<0<b
fb¢(t)6(t)dt= 0 a<b<0 or 0<a<b (1.21)
a

undefined a=0 or b=0

Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an ordinary Riemann
integral. In this sense, 8(¢) is often called a generalized function and ¢(¢) is known as a testing function.
A different class of testing functions will define a different generalized function (Prob. 1.24). Similarly, the
delayed delta function &(¢ — ¢,) is defined by

[7 06t —15) dr = p(s,) (1.22)

where ¢(?) is any regular function continuous at ¢ = #,. For convenience, 6(¢) and §(¢ — 1)) are depicted graphically
as shown in Fig. 1-6.

8) Bt —tg)

o
(@) (b)

Fig. 1-6 (a) Unit impulse function; (b) shifted unit impulse function.

Some additional properties of §(¢) are

8at) = ——8(1) (1.23)
[a
8(—1)=6(1) (1.24)
x(2)8(t) = x(0)8(z) (1.25)
if x(#) is continuous at = 0.
XXt — 1) = x(1)8(t — 1) (1.26)

if x(?) is continuous at ¢ = £,.
Using Eqgs. (1.22) and (1.24), any continuous-time signal x(#) can be expressed as

x0) =" x(@s@t—1)dr (1.27)
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Generalized Derivatives:
If g(2) is a generalized function, its nth generalized derivative g"(#) = d"g(¢)/dt" is defined by the following relation:

I7 o™ @dr =1y [7 g™ @)g(0)ar (1.28)

where ¢(?) is a testing function which can be differentiated an arbitrary number of times and vanishes outside
some fixed interval and ¢™(¢) is the nth derivative of ¢(#). Thus, by Egs. (1.28) and (1.20) the derivative of 8(z)
can be defined as

[7 s dt =—¢'0) (1.29)

where ¢(?) is a testing function which is continuous at # = 0 and vanishes outside some fixed interval and
#'(0) = dp(r)/dt| —o- Using Eq. (1.28), the derivative of u(#) can be shown to be §(#) (Prob. 1.28); that is,

8)y=u'(t)= du(t) (1.30)
Then the unit step function u(#) can be expressed as
uy= [ s(vyde (1.31)

Note that the unit step function u(#) is discontinuous at ¢ = 0; therefore, the derivative of u(#) as shown in
Eq. (1.30) is not the derivative of a function in the ordinary sense and should be considered a generalized deriv-
ative in the sense of a generalized function. From Eq. (1.31) we see that #(#) is undefined at # = 0 and

o 1 t>0
u —
0 t<0

by Eq. (1.21) with ¢(#) = 1. This result is consistent with the definition (1.18) of u(?).
Note that the properties (or identities) expressed by Eqgs. (1.23) to (1.26) and Eq. (1.30) can not be verified
by using the conventional approach of §(#) as shown in Fig. 1-5.

C. Complex Exponential Signals:
The Complex exponential signal

x(f) = eJo (1.32)
is an important example of a complex signal. Using Euler’s formula, this signal can be defined as

x(t) = e/ = cos wyt + j sin wyt (1.33)

Thus, x(?) is a complex signal whose real part is cos @, and imaginary part is sin wy?. An important property of
the complex exponential signal x(?) in Eq. (1.32) is that it is periodic. The fundamental period T, of x(?) is given
by (Prob. 1.9)

2
Ty =" (1.34)
)
Note that x(?) is periodic for any value of w,.
General Complex Exponential Signals:
Let s = 0 + jw be a complex number. We define x(#) as
x(f) = e = 9O = ¢%(cos wt + j sin wf) (1.35)

Then signal x(#) in Eq. (1.35) is known as a general complex exponential signal whose real part e’ cos wt and imag-
inary part e’ sin wf are exponentially increasing (o > 0) or decreasing (o < 0) sinusoidal signals (Fig. 1-7).
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x(t)

@)

xf)

Fig. 1-7 (a) Exponentially increasing sinusoidal signal; (b) exponentially decreasing sinusoidal signal.

Real Exponential Signals:
Note that if s = o (a real number), then Eq. (1.35) reduces to a real exponential signal

x(f) = e (1.36)
As illustrated in Fig. 1-8, if o0 > 0, then x(?) is a growing exponential; and if o < 0, then x(?) is a decaying
exponential.

D. Sinusoidal Signals:
A continuous-time sinusoidal signal can be expressed as

x(H) = A cos(wyt + 6) (1.37)
where A is the amplitude (real), w, is the radian frequency in radians per second, and 0 is the phase angle in
radians. The sinusoidal signal x(#) is shown in Fig. 1-9, and it is periodic with fundamental period

=2_.7t

T, (1.38)

Wy

The reciprocal of the fundamental period T, is called the fundamental frequency f;;:

fo= TL hertz (Hz) (1.39)
0
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x(f)

L

@

x(f)

\

&)

Fig. 1-8 Continuous-time real exponential signals. (a) o > 0; (b) 0 < O.

Acosi 4

x(t)
2n

B

Fig. 1-9 Continuous-time sinusoidal signal.

From Egs. (1.38) and (1.39) we have

w, = 2af,

(1.40)

which is called the fundamental angular frequency. Using Euler’s formula, the sinusoidal signal in Eq. (1.37)

can be expressed as

A cos(wyt + 6) = ARe{e/®' "}

where “Re” denotes “real part of.” We also use the notation “Im” to denote “imaginary part of.” Then

AlIm{e/ @+ = A sin(wyt+0)

(1.41)

(1.42)
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1.4 Basic Discrete-Time Signals

A. The Unit Step Sequence:

The unit step sequence u[ n] is defined as

1 n=0
u[n]={0 n<0 (1.43)

which is shown in Fig. 1-10(a). Note that the value of u[n] at n = 0 is defined [unlike the continuous-time step
function u(?) at t = 0] and equals unity. Similarly, the shifted unit step sequence u[n — k] is defined as

= 1 n=k 144
uln — k1= 0 n<k (1.44)
which is shown in Fig. 1-10(d).
uln] ufn—K
. . = = & =
2-1 01 2 3 n 2-1 01 k n

(@) (b)

Fig. 1-10 (a) Unit step sequence; (b) shifted unit step sequence.

B. The Unit Impulse Sequence:

The unit impulse (or unit sample) sequence d[n] is defined as

n=0

1
_ 1.45
otnl {0 n#0 (1.45)

which is shown in Fig. 1-11(a). Similarly, the shifted unit impulse (or sample) sequence 6[n — k] is defined as
1 n

oln—k]= (1.46)
0 n

which is shown in Fig. 1-11(b).

8in] 8 k]

210123 n 210 1 K n

@ )

Fig. 1-11 (a) Unit impulse (sample) sequence; (b) shifted unit impulse sequence.
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Unlike the continuous-time unit impulse function 8(#), 6[n] is defined without mathematical complication
or difficulty. From definitions (1.45) and (1.46) it is readily seen that

x[n]6[n] = x[0]6[n] (147)
x[n]d[n — k] = x[k] [n — k] (1.48)

which are the discrete-time counterparts of Egs. (1.25) and (1.26), respectively. From definitions (1.43) to (1.46),
6[n] and u[n] are related by

d[n] = u[n] — uln — 1] (1.49)
uln]= Y Ok]= " &[n— k] (1.50)
k=—o k=0

which are the discrete-time counterparts of Eqgs. (1.30) and (1.31), respectively.
Using definition (1.46), any sequence x[n] can be expressed as

o0

x[n]= 2 x[k18[n — k] (1.51)

k=—o

which corresponds to Eq. (1.27) in the continuous-time signal case.

C. Complex Exponential Sequences:

The complex exponential sequence is of the form
x[n] = e/ (1.52)
Again, using Euler’s formula, x[n] can be expressed as
x[n] = e/®" = cos Qn + jsin Qn (1.53)
Thus, x[n] is a complex sequence whose real part is cos 2,7 and imaginary part is sin Qn.

Periodicity of e/.";
In order for ¢/%" to be periodic with period N (> 0), Q must satisfy the following condition (Prob. 1.11):

QO m .. .

—=— m = positive integer 1.54

w N p g (1.54)
Thus, the sequence /%" is not periodic for any value of Q. It is periodic only if Q /27 is a rational number.
Note that this property is quite different from the property that the continuous-time signal e/’ is periodic
for any value of w,. Thus, if €2 satisfies the periodicity condition in Eq. (1.54), Q2 # 0, and N and m have no
factors in common, then the fundamental period of the sequence x[n] in Eq. (1.52) is N, given by

2
Ny = m(g—:) (155)

Another very important distinction between the discrete-time and continuous-time complex exponentials is
that the signals e/ are all distinct for distinct values of @, but that this is not the case for the signals e/%".
Consider the complex exponential sequence with frequency (Q, + 2sk), where k is an integer:

ej(g()+ 2rkyn — ejg()"ejZ”k" = ejg()" (156)

since e/27%" = 1. From Eq. (1.56) we see that the complex exponential sequence at frequency € is the same as
that at frequencies (QO * 2m), (Q0 * 4n), and so on. Therefore, in dealing with discrete-time exponentials, we
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need only consider an interval of length 2,rin which to choose €2,,. Usually, we will use the interval 0 = Q, < 27
or the interval —r = Q < 7.

General Complex Exponential Sequences:
The most general complex exponential sequence is often defined as

x[n] = Ca” (1.57)

where C and o are, in general, complex numbers. Note that Eq. (1.52) is the special case of Eq. (1.57) with C =1
and a = e/%,

Real Exponential Sequences:

If C and o in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four distinct cases can be identified:
a>1,0<a<1,-1<a<0,and o < —1. These four real exponential sequences are shown in Fig. 1-12. Note
that if a = 1, x[n] is a constant sequence, whereas if @ = —1, x[n] alternates in value between + C and —C.

ATRRRARENARES
BIREIAES

*—
—
>—

*——
¥

>—

—

—

-——
ar

)

Fig. 1-12 Real exponential sequences. (a) a>1;(b)1 > a>0;(c)0>a> —1;(d) a < —1.
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D. Sinusoidal Sequences:

A sinusoidal sequence can be expressed as
x[n] = A cos(Q2,n + 6) (1.58)

If n is dimensionless, then both  and 6 have units of radians. Two examples of sinusoidal sequences are shown
in Fig. 1-13. As before, the sinusoidal sequence in Eq. (1.58) can be expressed as

Acos(Qqn + ) = ARe{e/@n+ 0} (1.59)

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same observations
[Egs. (1.54) and (1.56)] also hold for sinusoidal sequences. For instance, the sequence in Fig. 1-13(a) is periodic
with fundamental period 12, but the sequence in Fig. 1-13(b) is not periodic.

x[n] cosl{L—T n}

ol
12 sl Ja 0 3 9

@)

(X
=R

x[n] EGE{%}

ol
O 31”1‘ "

(b)

B
=

Fig. 1-13 Sinusoidal sequences. (a) x[n] = cos(wn/6); (b) x[n] = cos(n/2).

1.5 Systems and Classification of Systems

A. System Representation:

A system is a mathematical model of a physical process that relates the input (or excitation) signal to the output
(or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system is viewed as a trans-
formation (or mapping) of x into y. This transformation is represented by the mathematical notation

y="Tx (1.60)
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where T is the operator representing some well-defined rule by which x is transformed into y. Relationship (1.60)
is depicted as shown in Fig. 1-14(a). Multiple input and/or output signals are possible, as shown in Fig. 1-14 ().
We will restrict our attention for the most part in this text to the single-input, single-output case.

X Syst y ’ ’
— ysTem E— : System
e —>
Xn ym

@) )

Fig. 1-14 System with single or multiple input and output signals.

B. Deterministic and Stochastic Systems:

If the input and output signals x and y are deterministic signals, then the system is called a deterministic system.
If the input and output signals x and y are random signals, then the system is called a stochastic system.

C. Continuous-Time and Discrete-Time Systems:

If the input and output signals x and y are continuous-time signals, then the system is called a continuous-time
system [Fig. 1-15(a)]. If the input and output signals are discrete-time signals or sequences, then the system is
called a discrete-time system [Fig. 1-15(b)].

x(0) System yt) xin] System yinl
T — — 1
@) (b)

Fig. 1-15 (a) Continuous-time system; (b) discrete-time system.

Note that in a continuous-time system the input x(#) and output y(?) are often expressed by a differential equation
(see Prob. 1.32) and in a discrete-time system the input x[#] and output y[n] are often expressed by a difference
equation (see Prob. 1.37).

D. Systems with Memory and without Memory

A system is said to be memoryless if the output at any time depends on only the input at that same time.
Otherwise, the system is said to have memory. An example of a memoryless system is a resistor R with the input
x(?) taken as the current and the voltage taken as the output y(#). The input-output relationship (Ohm’s law) of
a resistor is

¥(® = Rx(?) (1.61)

An example of a system with memory is a capacitor C with the current as the input x(¢) and the voltage as the
output y(#); then

y0=2 [ xx)dr (162)

A second example of a system with memory is a discrete-time system whose input and output sequences are
related by
n

ylnl= ) xlk] (1.63)

k=—o
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E. Causal and Noncausal Systems:

A system is called causal if its output at the present time depends on only the present and/or past values of the
input. Thus, in a causal system, it is not possible to obtain an output before an input is applied to the system.
A system is called noncausal (or anticipative) if its output at the present time depends on future values of the
input. Example of noncausal systems are

yO =x(@+1) (1.64)
yln] = x[—n] (1.65)

Note that all memoryless systems are causal, but not vice versa.

F. Linear Systems and Nonlinear Systems:

If the operator T in Eq. (1.60) satisfies the following two conditions, then T is called a linear operator and the
system represented by a linear operator T is called a linear system:

1. Additivity:
Given that Tx, = y, and Tx, = y,, then

T{x, + x,} =y, +, (1.66)
for any signals x, and x,.
2. Homogeneity (or Scallng):
T{ax} = ay (1.67)

for any signals x and any scalar a.
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a nonlinear system. Egs. (1.66)
and (1.67) can be combined into a single condition as

T{ox, + a,x,} = oy, + a,y, (1.68)

where «; and a, are arbitrary scalars. Eq. (1.68) is known as the superposition property. Examples of linear
systems are the resistor [Eq. (1.61)] and the capacitor [Eq. (1.62)]. Examples of nonlinear systems are

y = x? (1.69)
y =cosx (1.70)

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.67)] of linear systems is that a zero
input yields a zero output. This follows readily by setting o = 0 in Eq. (1.67). This is another important prop-
erty of linear systems.

G. Time-Invariant and Time-Varying Systems:

A system is called time-invariant if a time shift (delay or advance) in the input signal causes the same time shift
in the output signal. Thus, for a continuous-time system, the system is time-invariant if

T{x(t — 1)} = y(t — 1) (1.71)
for any real value of 7. For a discrete-time system, the system is time-invariant (or shift-invariant) if
T{x[n — k]} = yln — k] (1.72)

for any integer k. A system which does not satisfy Eq. (1.71) (continuous-time system) or Eq. (1.72) (discrete-time
system) is called a time-varying system. To check a system for time-invariance, we can compare the shifted
output with the output produced by the shifted input (Probs. 1.33 to 1.39).
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H. Linear Time-Invariant Systems:

If the system is linear and also time-invariant, then it is called a linear time-invariant (LTI) system.

I. Stable Systems:
A system is bounded-input/bounded-output (BIBO) stable if for any bounded input x defined by

|x| =k (1.73)
the corresponding output y is also bounded defined by
Iyl = &, (1.74)

where k| and k, are finite real constants. An unstable system is one in which not all bounded inputs lead to bounded
output. For example, consider the system where output y[r] is given by y[n] = (n + 1)u[n], and input x[n] = u[n]
is the unit step sequence. In this case the input u[n] = 1, but the output y[#] increases without bound as » increases.

J. Feedback Systems:

A special class of systems of great importance consists of systems having feedback. In a feedback system, the
output signal is fed back and added to the input to the system as shown in Fig. 1-16.

x[t) ¥it)
System

Fig. 1-16 Feedback system.

SOLVED PROBLEMS

Signals and Classification of Signals

1.1. A continuous-time signal x(#) is shown in Fig. 1-17. Sketch and label each of the following signals.
(@ x(t—2); (b) x(20); (c) x(t/2); (d) x(—1)

xt)

2-101 2 3 4 5 t
Fig. 1-17

(@) x( — 2)is sketched in Fig. 1-18(a).
(b) x(21) is sketched in Fig. 1-18(b).
(¢) x(#/2) is sketched in Fig. 1-18(c).
(d) x(—1)is sketched in Fig. 1-18(d).
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x(t—2) x(2t)
3F 1t
L 1 L1 1 1 > L1 1 1 L1 »
101234567 ’ 2-10 1 2 3 ¢
(@) (b)
x(1/2) x| 1)
= -3
| ] F 4 3 1 11 1 : | — 1 1 L1 1 =
101234586788 ¢ 5-4-3-2-10 1 2 t
(c) d)
Fig. 1-18

1.2. A discrete-time signal x[n] is shown in Fig. 1-19. Sketch and label each of the following signals.
(@) x[n —2]; (b) x[2n]; (c) x[—n]; (d) x[—n +2]

#[n]
| ] I
-1 012 3 465 n

Fig. 1-19
(a) x[n — 2] is sketched in Fig. 1-20(a).
(b) x[2n] is sketched in Fig. 1-20(b).
(¢) x[—n] is sketched in Fig. 1-20(c).
(d) x[—n + 2] is sketched in Fig. 1-20(d).

xn-2] x[2n]
3 3
012 345F67F n P a3 n

(@) (b)
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W
|
(%)
|
N
|
[«=]

Fig. 1-20

1.3. Given the continuous-time signal specified by

{1—|t| —1=t=1
x()=

otherwise

determine the resultant discrete-time sequence obtained by uniform sampling of x(#) with a sampling
interval of (@) 0.25 s,(b) 0.5 s,and (c) 1.0 s.

It is easier to take the graphical approach for this problem. The signal x(¢) is plotted in Fig. 1-21(a). Figs. 1-21(b) to (d)
give plots of the resultant sampled sequences obtained for the three specified sampling intervals.

(@) T, = 0.25s.FromFig. 1-21(b) we obtain

x[n]={...,0,0.25,0.5,0.75,1,0.75, 0.5, 0.25, 0, ...}
1

(b) T, = 0.5s.FromFig. 1-21(c) we obtain

x[n]1={...,0,0.5,1,0.5,0,...}
i
(¢) T,=1s.From Fig. 1-21(d) we obtain

x[n]=1{...,0,1,0,...} = 8[n]

1
x(t) x[n] =xin/4)
1
* I- i *
1 1) 1 ¢ 4 101 4 n
(@) (b
x[n] = x{ns2) x[n] =xin)
1
L - = >
-2 -1 v} 1 2 n 71 v} 1 n
(© @)

Fig. 1-21
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1.4. Using the discrete-time signals x,[n] and x,[n] shown in Fig. 1-22, represent each of the following
signals by a graph and by a sequence of numbers.

(@) y/[n] = x/[n] + x,[n]; (B) y,[n] = 2x,[n]; (c) ys[n] = x,[n]x,[n]

-‘31[”] r:\-[n]

—2—101234567

11 DR T 1
31 1 .

Fig. 1-22

(@) y,[n]is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain
yin]={..,0,—2,-2,3,4,3,-2,0,2,2,0,...}
i

(b)  y,[n] is sketched in Fig. 1-23(b). From Fig. 1-23(b) we obtain

y[n]=1{.,0,2,4,6,0,0,4,4,0,...}
1

(¢)  y,[n]is sketched in Fig. 1-23(c). From Fig. 1-23(c) we obtain

¥[nl={...,0,2,4,0,...}
1

yyln] = x,[n] + xyln] ¥oln] = 2x,[n]
B

4l 4t
* L
2 F 2%
29 [
L
L 12 4 5 8.7 n -2-101 2 3 45
- —2

@) (b)

}'-3[”] -*1[”]“2[“]

4
2
a0 25 B9 80
-2-1012 3 456867 n

(©
Fig. 1-23
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1.5. Sketch and label the even and odd components of the signals shown in Fig. 1-24.

Using Eqgs. (1.5) and (1.6), the even and odd components of the signals shown in Fig. 1-24 are sketched in Fig. 1-25.

x(f) xit)
4 4
L I 4 R
" L\«
012345 t' 0 tr
(@) (b)
x[n] x[m]
EX ] 4
80— 0 8 »
0123 4586 " 1012 3 45 n
(© @)
Fig. 1-24

x (0
4L
a L
5 I
* 1 1 1 1 1 1 1 »
L 3 t
=2
(@
x(t)
4 -

-y

(b)
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i
RIS 1101 SEEEE

TTT TTT

43210 23-1 n

L J

@

Fig. 1-25

Find the even and odd components of x(¢) = e/'.
Let x,(r) and x (7) be the even and odd components of e/', respectively.
el = x (1) + x (D)

From Egs. (1.5) and (1.6) and using Euler’s formula, we obtain

" +e "y=cost

-1
xe(t)_ 2

(" —e = Jjsint

-1
xo(t)_ 2

Show that the product of two even signals or of two odd signals is an even signal and that the product of
an even and an odd signal is an odd signal.

Let x(#) = x,(9)x,(2). If x,(£) and x,(¢) are both even, then

x(=0) = x,(=0)x,(—=1) = x,(Dx,() = x (D)
and x(?) is even. If x,(?) and x,(¢) are both odd, then
x(=1) = x,(=nNx,(=0) =

—x,(0) [=x,()] = x,(B)x,(1) = x(2)

and x(¢) is even. If x,(¢) is even and x,(¢) is odd, then
x(=1) = x,(=1) x,(=1) = x,() [ ()] = —x,()x,(5) = —x(¢)

and x(?) is odd. Note that in the above proof, variable ¢ represents either a continuous or a discrete variable.
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1.8. Show that
(a) If x(?) and x[n] are even, then
a a
f_ax(t) dr= 2f0 x(1) dt
k

2 x[n]= x[0]+ 2& x[n]
n=1

n=—k

(b) If x(®) and x[n] are odd, then

x(0) =0 and x[0] =0
k
1) fax(t) dt=0 and > xn]=0

n=—k

(a) We can write

I xwde=[° x@ydr+ [xyde

Letting £ = — A in the first integral on the right-hand side, we get

I x@de= [2x- H(dry= [Ix-2)dA

Since x(f) is even, that is, x(—A) = x(\), we have

f:x(— A)dA = f;‘x(x)dA = f:x(t)dt

Hence, p p a p
[ x@war= [ x@yde+ [ x@yde= 2 x)dt
Similarly,
k -1 k
Y ainl= Y xnl+x(0] + Y x[n]
n=—k n=—k n=1
Letting n = —m in the first term on the right-hand side, we get
-1 k
> xinl= Y x(-m]
n=—k m=1

Since x[n] is even, that is, x[—m] = x[m], we have

k k
x[—m]= E x[m]= E x[n]

m=1 m=1 n=1

k

Hence,
k k k k
E x[n]= E x[n]+ x[0] + E x[n]= x[0] + 2 E xn]
n=—k n=1 n=1 n=1

(b) Since x(¢) and x[n] are odd, that is, x (—f) = —x(¢) and x[—n] = —x[n], we have

x(—0) = —x(0) and x[—0] = —x[0]

— e

(1.75a)

(1.75b)

(1.76)

(1.77)



Hence,
x(—0) = x(0) = —x(0) = x(0) = 0
x[—0] = x[0] = —x[0] = x[0] = 0
Similarly,
ffax(t)dt=ffax(t)dt+f;‘x(t)dt=f:x(—x)da+ [ xwar
=—f:x(A)dA+f:x(t)dt=— f;‘x(t)dt+f:x(t)dt= 0
and
k -1 k k k
E x[n]= E x[n] + x[0] + Ex[n]= E x[—m]+ x[0]+ Ex[n]
n=—k n=—k n=1 m=1 n=1

k

= —i x[m]+ x[0]+ ix[n] =— E x[n]+ x[0] + ix[n]
m=1 n=1

n=1 n=1

=x[0]=0

in view of Eq. (1.76).
1.9. Show that the complex exponential signal
x(f) = el
is periodic and that its fundamental period is 277/ w,.
By Eq. (1.7), x(r) will be periodic if

elot + T) = gjwot

Since

ejoot + ) = gjwot gjwoT

we must have
ejl%T =1
If w, = 0, then x(r) = 1, which is periodic for any value of T. If @, # 0, Eq. (1.78) holds if

2 sl
w,I =m2nx or T=m— m = positive integer
Wg

Thus, the fundamental period T, the smallest positive T, of x(?) is given by 27 /a,.
1.10. Show that the sinusoidal signal
x() = cos(wyt + 6)
is periodic and that its fundamental period is 277/,

The sinusoidal signal x(#) will be periodic if

cos[wy(t + T) + 0] = cos(wyt + 6)

CHAPTER 1 Signals and Systems

(1.78)
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We note that
cos[wy(t + T) + 0] = cos[wyt + 6 + w,T] = cos(wyt + 0)

if
27 s
w,T =m2n or T=m— m = positive integer
)

Thus, the fundamental period T, of x(?) is given by 27/ w,.

1.11. Show that the complex exponential sequence

x [n] = /Son

is periodic only if Q,/27 is a rational number.
By Eq. (1.9), x[n] will be periodic if
IR0 (EN) _ ,jQ0n 4 RN _ ,iQ0n

or

/0N —q (1.79)
Equation (1.79) holds only if
QN = m2n m = positive integer

or

0
=)

z|3

= rational numbers (1.80)

[ (%]

T

Thus, x[n] is periodic only if /27 is a rational number.

1.12. Let x(#) be the complex exponential signal

x(t) = e/?'

with radian frequency w, and fundamental period T, = 27/w,. Consider the discrete-time sequence x[n]
obtained by uniform sampling of x(#) with sampling interval T,. That is,

x[n]=x(nT,)= e/@onTs
Find the condition on the value of T so that x[n] is periodic.

If x[~] is periodic with fundamental period N, then

/00T No)Ts _ pjwonTy 5 jwoNoTs — ,jwonTy

Thus, we must have
JwoNoT, 2x . .
e’ 070 =1 = wyN,T; = T—NoT.s =m2m m = positive integer
0

or
T,

m .
—£ = — = rational number (1.81)

Ty Ny



@< — CHAPTER 1 Signals and Systems

Thus, x[n] is periodic if the ratio T/T, of the sampling interval and the fundamental period of x(¢) is a rational
number.

Note that the above condition is also true for sinusoidal signals x(f) = cos(w,t + 6).
1.13. Consider the sinusoidal signal
x(f) = cos 15¢

(a) Find the value of sampling interval T such that x[n] = x(nT ) is a periodic sequence.

(b) Find the fundamental period of x[n] = x(nT) if T, = 0.1z seconds.

(@) The fundamental period of x(¢) is T, = 27/w, = 27/15. By Eq. (1.81), x[n] = x(nT) is periodic if

L L _m (1.82)
T, 2x=/15 N,
where m and N are positive integers. Thus, the required value of T  is given by
T,= 7, = 2% (1.83)
N, N, 15

(b) Substituting T, = 0.1 = 2/10 in Eq. (1.82), we have

T, 2#x/15 20 4

Thus, x[n] = x(nT,) is periodic. By Eq. (1.82)

N0=mT_0=mi
T 3

N

The smallest positive integer N, is obtained with m = 3. Thus, the fundamental period of x[n] = x(0.17n)
isN, =4,
0

1.14. Let x,(¢) and x,(#) be periodic signals with fundamental periods T, and T,, respectively. Under what
conditions is the sum x(#) = x,(¢) + x,(?) periodic, and what is the fundamental period of x(z) if it is
periodic?

Since x,(¢) and x,(¢) are periodic with fundamental periods T, and T,, respectively, we have

x, O =x@+T)=x@+mT) m = positive integer
X,(0) = x,(t + T,) = x,(t + kT}) k = positive integer

Thus,

x(®) = x,(t + mT)) + x,(t + kT,)

In order for x(?) to be periodic with period T, one needs

X(t+T) = x,(t+ T) +x(t + T) = x,(t + mT,) + x,(t + kT,)

Thus, we must have
ml, =kT,=T (1.84)

or

T, &k .
— = — = rational number (1.85)
T, m
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1.15

1.16.

In other words, the sum of two periodic signals is periodic only if the ratio of their respective periods can be
expressed as a rational number. Then the fundamental period is the least common multiple of 7', and T, and it is
given by Eq. (1.84) if the integers m and k are relative prime. If the ratio T,/T, is an irrational number, then the
signals x,(#) and x,(f) do not have a common period and x(#) cannot be periodic.

Let x,[n] and x,[n] be periodic sequences with fundamental periods N, and N,, respectively. Under what
conditions is the sum x[n] = x,[n] + x,[n] periodic, and what is the fundamental period of x[n] if it is
periodic?

Since x,[n] and x,[#] are periodic with fundamental periods N, and N,, respectively, we have

x,[n] = x[n+ N]=x[n+mN|] m = positive integer

x,[n] = x,[n + N,] = x)[n + kN,] k = positive integer
Thus,
x[n] = x,[n + mN ]+ x[n+ kN,]
In order for x[n] to be periodic with period N, one needs
x[n + N] = x,[n+ N]+ x,[n+ N]=x[n+mN]+ x[n+ kN)
Thus, we must have
mN, = kN, = N (1.86)

Since we can always find integers m and k to satisfy Eq. (1.86), it follows that the sum of two periodic sequences is
also periodic and its fundamental period is the least common multiple of N, and N,.

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its
fundamental period.

(a) x(®)= cos(t + E) (b) x(t)=sin 2—ﬂt
4 3
(c) x(t)=cos%t+sin%t (d) x(t)=cost+sin«/5t
(e) x(t)=sin’¢ (f) x(t) = /211
(g) x[n]=elt™/®m (h) x[n]= cos%n
. T LT . 2 T
(i) x[n]=cos 3 n + sin 2 n (j) x[n]=cos g n

(a) x(t)= cos(t + %) = cos(wot + %) —w, =1

x(t) is periodic with fundamental period T, = 27/ wy = 2.
) x(t)= sinZ?ﬂt —>w, = 2?”

x(t) is periodic with fundamental period T, = 27 / w, = 3.
(c) x(t)= cos%t + sin%t =x(1) + x,(2)
where x, (f) = cos(/3)t = cos w,t is periodic with T, = 27/, = 6 and x,(f) = sin(x/4)t = sin w,t is periodic

with T, = 27/w, = 8. Since T, /T, = g = 43 is a rational number, x(?) is periodic with fundamental period
T,=4T, = 3T, =24.
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(d) x(t) = cost+sin 21 = x,(t) + x,(t)

where x,(f) = cos 7 = cos w,? is periodic with T| = 27r/w, = 2w and x(f) = sin \/5 t = sin w,t is periodic
with T, = 27/w, = \/5 a. Since T, /T, = \/5 is an irrational number, x(?) is nonperiodic.

(¢) Using the trigonometric identity sin? 6 = ;—(1 — cos 26), we can write

x(t)= sin’f = % — %cos 2t = x (1) + x, ()

where x,(f) = ;— is a dc signal with an arbitrary period and x,(f) = — ;— cos 2t = — ;— COs w,t is periodic with
T, = 27/w, = m. Thus, x(?) is periodic with fundamental period T, = 7.
— Pl@DI=1) = pmjpiaID — p=jpi _=x
(f) x(t) = e.’[("r n—1] — e Je,l(” " — e lelwo — wO =2

x(#) is periodic with fundamental period T, = 27/w, = 4.

(g) x[n] = el@n = pjQon QO = %

. _ l . . . . . . . _
Since Q) /27 = gisa rational number, x[r] is periodic, and by Eq. (1.55) the fundamental period is N, = 8.

(h) x[n] = cos ‘l‘—n =cos Qn—> Q) = i—

Since Q/27 = 1/87 is not a rational number, x[n] is nonperiodic.

(i) x[n] = cos gn + sinfn = x [n] + x,[n]

4
where
x[n]= cosZn=cos Qn—>Q = z
3 3
. T b4
Xx,[n]=sin—n=cos Q,n —>Q, =—
2[n] 2 2 277
Since Q /27 = 3 (= rational number), x,[#] is periodic with fundamental period N, = 6, and since Q,/2x = %

(= rational number), x,[#] is periodic with fundamental period N, = 8. Thus, from the result of Prob. 1.15, x[n]
is periodic and its fundamental period is given by the least common multiple of 6 and 8, that is, N, = 24.

(j) Using the trigonometric identity cos? 6 = ;—(1 + cos 26), we can write

2 T 1 1 .4
x[n]=cos” —n= =+ =cos —n=x[n] + x,[n]
g8 2 2 4 2
where x,[n] = ;— = ;—(1)” is periodic with fundamental period N| = 1 and x,[n] = 5 cos(zw/4)n = ;— cos

Qn—Q, = 7/4. Since Q, 127 = é— (= rational number), x,[#] is periodic with fundamental period N, = 8.
Thus, x[#n] is periodic with fundamental period N, = 8 (the least common multiple of N, and N,).

1.17. Show that if x(¢ + T) = x(?), then

f f x(tydi = [ f::x(t)dt (1.87)

f OTx(t) = :+Tx(t) dt (1.88)

for any real a, 8, and a.
If x(t + T) = x(), then letting r = T — T, we have
x(t—T+T)y=x(t)=x(t—T)

and

B BT BT (BT
fa x(t) dt = fa+r x(‘t—T)d‘t—fa” x(t)dr—fa” x(t) dt
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Next, the right-hand side of Eq. (1.88) can be written as
a+T 0 a+T
[ xydi= [ xydi+ [ xt)dt

By Eq. (1.87) we have
0 T
[ xwdr= [ xtydr

Thus,
a+T T a+T
fa x() dt =fa+Tx(t)dt+f0 x(7) dt

=f:+rx(t)dt+f;+rx(t)dt=fOTx(t)dt

1.18. Show that if x(#) is periodic with fundamental period T, then the normalized average power P of x(?)
defined by Eq. (1.15) is the same as the average power of x(#) over any interval of length T, that is,

_ 1 Ty 2
P—ﬁfo |x()[ dt (1.89)

By Eq. (1.15)

.1 pmn2 2
Pzrh_.n:off—nz'x(t)' dt

Allowing the limit to be taken in a manner such that 7 is an integral multiple of the fundamental period,
T = kT, the total normalized energy content of x(#) over an interval of length T is k times the normalized energy
content over one period. Then

. 1 Ty 2 |1 pTo 2
P—I}m[mkfo |x(t)| dt]—T—OfO |x(t)[ dt

1.19. The following equalities are used on many occasions in this text. Prove their validity.

N 1-a” a#l
(a) Ea”= l—-a (1.90)
n=0 N a=1
< 1
(b) Ea”=—1_a lal<1 (1.91)
n=0
© Ya'=r— la]<1 (1.92)
n=k
- a
) na" =—— al<1 1.93
EO i—ap (1.93)
(a) Let
N-1
S=Ya'=1ta+a® ++a""! (1.94)
n=0
Then
N-1
aS=aEa"=a+a2+a3+-~-+aN (1.95)

n=0



@

(b)

()]

(@)
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Subtracting Eq. (1.95) from Eq. (1.94), we obtain
Q-aS=1-a"

Hence if a # 1, we have

g 1-a"
S= a" = 1.96
2 — (1.96)
n=0
If a = 1, then by Eq. (1.94)

N-1

Yo' =1+1+1+-+1=N

n=0

For |a | <1, A}im a" =0. Then by Eq. (1.96) we obtain

Using Eq. (1.91), we obtain

[
+ +
a"=a* +af okt

n=k

0
=ak(l+a+a2+-~)=ak2a"=

s l-a

Taking the derivative of both sides of Eq. (1.91) with respect to a, we have

and
d (

Hence,

1.20. Determine whether the following signals are energy signals, power signals, or neither.

(@)
(©)
(e)

(@)

(b)

x(® =eu@®, a>0 (b) x(t) = Acos(wyt + 6)

x(f) = tu(® (d) x[n] = (—0.5)"u[n]
x[n] = u[n] (f) x[n] = 2e/3

% 2 © _oar _ 1
E=[" [x0[ di=[ e di =<

a
Thus, x(?) is an energy signal.
The sinusoidal signal x(¢) is periodic with T, = 27/w. Then by the result from Prob. 1.18, the average power
of x(¢) is
_ 1 Ty 2 _ wo 2xlwgy 2 2
P= T_Ofo [x(0))? dt = Efo A% cos? (wyt + ) dt

2

A’wy p2xiog 1 A
=—= —[1+ cosRQayt + 20)] dt = — <
> 1, oL Qayt +20))dr ==

Thus, x(¢) is a power signal. Note that periodic signals are, in general, power signals.
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T 2T, (T2
(c) E—Th_r’r;f_m|x(t)| dt_rh_.nl,fo t* dt = lim T—oo

T—>x

3
P= lim lfm |x)[* dt = lim lfm,2 di = tim L2 _
T—o T V-T2 T—oT 90 Tow T 3

Thus, x(?) is neither an energy signal nor a power signal.

(d) By definition (1.16) and using Eq. (1.91), we obtain

o 2_ 1 4
E= Y |n]| =n§00.25"= =5 <=

1-0.25

n=-o

Thus, x[n] is an energy signal.

(e) By definition (1.17)

. 1 < 2
iy _E_ [+t

N
— lim — 212=lim 1 (N+1)=l<oo
N—w 2N +1 N—w 2N +1 2

Thus, x[n] is a power signal.

(f) Since |x[n]| = |2e/3| = 2|ei3| =2,
N

] 2 1
P=1 =1 2
N2 2N +1 n;_N|x["]| o 2N + 1 n;_,v

1

= lim 42N +1)=4<»
N—-»2N +1

Thus, x[n] is a power signal.

Basic Signals

1.21. Show that

-1 0 t>0 197
u(—t)= .
1 t<0 ( )
Let T = —t. Then by definition (1.18)
w-n-um-1 0
0 T<0

Since 7> 0 and 7 < 0 imply, respectively, that # < 0 and ¢ > 0, we obtain

0 >0

“CHZ <o

which is shown in Fig. 1-26.

w(—f)

Fig. 1-26
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1.22. A continuous-time signal x(?) is shown in Fig. 1-27. Sketch and label each of the following signals.
(@ x(@u(l = 1; (b) x(Olu(®) —u — D]; (c) x(6(t — %)

x(f)

(a) By definition (1.19)

a-1 1 <1
u(l—1n-=
0 t>1

and x(Hu(1 — 1) is sketched in Fig. 1-28(a).
(b) By definitions (1.18) and (1.19)

o<tr=l1

otherwise

1
u(t)—ut—1= {0
and x(£)[u(f) — u(t — 1)] is sketched in Fig. 1-28(b).
(c) ByEq.(1.26)
xma(, - i) - x(i]a(t - 1) - za(t - 1)
2 2 2 2
which is sketched in Fig. 1-28(c).

{1 —1) x(t) [uit)—uit -1

x(15{t— 3/2)

L

(©
Fig. 1-28

1.23. A discrete-time signal x[n] is shown in Fig. 1-29. Sketch and label each of the following signals.

(a) x[nlu[l — n]; (b) x[n]{u[n + 2] — u[n]}; (c) x[n]6[ n — 1]



CHAPTER 1 Signals and Systems — &>

x{n]

L

(a) By definition (1.44)

1
"[l_"]z{o n>1

and x[n]u[l — n] is sketched in Fig. 1-30(a).
(b) By definitions (1.43) and (1.44)

—-2=n<0
otherwise

uln+2]—uln]= {:)

and x[n]{u[n + 2] — u[n]} is sketched in Fig. 1-30(b).
(c) By definition (1.48)

1
x[n)d[n—1]=x[1]6[n —1]=6[n—1]= {0
which is sketched in Fig. 1-30(c).

*[nju[1 ~n x[n]{uln+2] - ulnl}

;[Iflr” o
)

(b)
x[n)&[n-1]
3%
?
(V|

23 4 n

pe |

Wk

B p—
~ 8
f=]

iy
e
s

(a

2-1
(©
Fig. 1-30

1.24. The unit step function u(#) can be defined as a generalized function by the following relation:
[ eouwar= [ ar (1.98)

where ¢(#) is a testing function which is integrable over 0 < ¢ < . Using this definition, show that

o 1 t>0
u —
0 t<0
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Rewriting Eq. (1.98) as

[° pou@ydi=[° p@wuydi+ [ sm@di= [T o) dt

we obtain

I° ouyde= [ o)1 - u) dr

This can be true only if

i) io(p(t)u(t) dt=0 and [ :4)([)[1 —u(t)]dr =0
These conditions imply that

o u()=0,t<0 and ¢@)[1—u()]=0,t>0

Since ¢(7) is arbitrary, we have

ut)=0,t<0 and 1—-u(@®)=0,t>0

that is,

1 1>0
“HD=10  1<0

1.25. Verify Eqgs. (1.23) and (1.24); that s,

(@) dan)=——80), (b) 6(—1)=@)

|l

The proof will be based on the following equivalence property:

Let g,(¢) and g,(¢) be generalized functions. Then the equivalence property states that g,(f) = g,(?) if and
only if

[7 o0 gydi= [~ p) gyt (1.99)

for all suitably defined testing functions ¢ (7).
(a) With a change of variable, ar = t, and hence ¢t = t/a, dt = (1/a) dt, we obtain the following equations:
Ifa>0,

-1 50

|a|

[ ¢(r)5(at)dt=lf°° ¢(l]5(r)dr=l¢(l]
@ av" > \a a \a

=0

Ifa<o,

[7 pscarydr = 1 f _°°¢(l)5(r)dr -1 [ ¢(1)5(r)d1
- av® a av~>* \a
. 14,(1)
a a

7 swotan di = L 9(0)

|al

- L 50

|al

=0
Thus, for any a
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1.26.

1.27.

(b)

(@)

(b)

(@)

(b)

Now, using Eq. (1.20) for ¢(0), we obtain
1
|a

= [ g8 dr

|a|

[ o)d(ar dr = —(0) = ﬁ [7 smswdr

for any ¢(z). Then, by the equivalence property (1.99), we obtain

Sar)y= L 5(t)
|al

Setting a = —1 in the above equation, we obtain

S(—1)= ﬁé(t) —5(1)

which shows that §(¢) is an even function.

Verify Eq. (1.26):

xX(0)8(r — 1) = x(1,) 8(1 — 1,)

if x(?) is continuous at # = £,.
Verify Eq. (1.25):

x(H6() = x(0)6(2)
if x(¢) is continuous at £ = 0.
If x(£) is continuous at ¢ = £, then by definition (1.22) we have
I7 olx)d(t — ) de = [~ [9()x(0)16(t — to) dt = P(tg)x(t,)
= x(to) J $()(t —19)
= [7 ¢)x(te)o(t —to)) dt
for all ¢(#) which are continuous at ¢ = £,. Hence, by the equivalence property (1.99) we conclude that

X(O)8(t — 1)) = x(t)8(t — 1)

Setting £, = 0 in the above expression, we obtain

x(06() = x(0)4(1)

Show that

(a) t6() =0

) sintd(® =0

(c) costd(t— nm) = —68(t— m)

Using Egs. (1.25) and (1.26), we obtain

(@)
(b)
()]

t8(H) = (0)6(H) =0
sin t8(f) = (sin 0)6(¥) = (0)6(H) =0
costd(t —m) = (cosm) 6t —m) = (—1)6(t —m) = -8t — n)
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1.28. Verify Eq. (1.30):

) du(r)
6 = =
() =u'(?) "

From Eq. (1.28) we have
[° sew@yde=— 7 gyt (1.100)

where ¢(7) is a testing function which is continuous at # = 0 and vanishes outside some fixed interval. Thus, ¢'(?)
exists and is integrable over 0 < ¢ < o and ¢() = 0. Then using Eq. (1.98) or definition (1.18), we have

[oo0u@di=— [Tgydi=—¢@)f; = [p()~ $(0)]
=90 = [~ p(t)o(t)dt

Since ¢(?) is arbitrary and by equivalence property (1.99), we conclude that

8ty = w(ny = 240
dt
1.29. Show that the following properties hold for the derivative of 6(2):

@ [~ @8 dt=—¢'©0)  where §'(©0)= % 3 (L10D)
(b) 8'() = —5(1) _ (1.102)
(a) Using Eqgs. (1.28) and (1.20), we have

[oowsmdt=— [ ¢®)o@)dt = ¢'(0)
(b) Using Eqgs. (1.101) and (1.20), we have

[ eousnd = [ genswde =~ %W(t)] o
=~ [$O) +1¢'D)]|,_ =~ #(0)
=— [ omdwydt = [~ pN-ow)di

Thus, by the equivalence property (1.99) we conclude that
18'() = — (0

1.30. Evaluate the following integrals:

@ [ 11(31‘2 +1)8(1) dt

® [ 12(3t2 +1)8(7) dt

© [ (& +cos m)d(t—1)dt
@ [~ e'8e—2)dr

) [~ e at
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(@)

(b)

()]

(@)

(©)]

By Eq.(1.21),witha = —1 and b = 1, we have

JLeP e nswdr =G + 1| =1

By Eq. (1.21),witha = 1 and b = 2, we have
2 22
f. B2 +1)8(t)dt =0

By Eq. (1.22)
fio(t2 + cos t)8(t — 1) dt = (£2 + cos 7t) -
=l+cosx=1-1=0
Using Egs. (1.22) and (1.23), we have
[7 ot —2ydi= [T o2 - D)at

o ;1 1 _
=[" e 'mé(t—l)dt=5e !

By Eq. (1.29)

f:,e_t‘sl(t) dr =~ %(e_t)L:o e’ |r=0 -1

1.31. Find and sketch the first derivatives of the following signals:
(@ x(@)=u@® —u(lt—a),a>0
b)) x(® =tu@® —ut—a)l,a>0

(©)

(@)

(b)

()]

1 t>0

t)=sgnt=
x(1)=sg {-1 <0

Using Eq. (1.30), we have

u'(t) = 6(r) and ult—a)=6— a)
Then

XA =u@)—u(@—a)= 60— 6t — a)

Signals x(f) and x'(¢) are sketched in Fig. 1-31(a).
Using the rule for differentiation of the product of two functions and the result from part (a), we have

XK@ = [u@® —ult - a) +16(1) — 6(t — a)]
But by Egs. (1.25) and (1.26)

t5(t) = (0)6()) =0 and t8(t — a) = ad(t — a)

Thus,
X)) =u@®)—ult—a)—ad(— a)

Signals x(#) and x'(f) are sketched in Fig. 1-31(b).
x(f) = sgn t can be rewritten as
x()=sgnt=u@) —u(-1
Then using Eq. (1.30), we obtain
YO =u@®—u(=n=060~-[-61] =260
Signals x () and x'() are sketched in Fig. 1-31(c).
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x() x(f) x{t)
a2
1 1
o a ¢ 0 a ot 0 t
1
X' x'(t) X't}
E W11
&if) 1
g
0 l t 0 a t 0 t
-8(t-a) v
—aéd(l—a)
(@) (b) ()
Fig. 1-31

Systems and Classification of Systems

1.32. Consider the RC circuit shown in Fig. 1-32. Find the relationship between the input x(#) and the output y(#)
(@) Ifx(® = v(»)andy(®) =v/(0).
(b) Ifx(®) = v (9 and y(?) = i(?).

— 1
v ) @ i) == v

(a) Applying Kirchhoff’s voltage law to the RC circuit in Fig. 1-32, we obtain

Fig. 1-32 RC circuit.

v = Ri(®) + v,(0) (1.103)

The current i(?) and voltage v () are related by

o dv ()
i(?) C—dt (1.104)

Letting v (f) = x(#) and v (#) = y(?) and substituting Eq. (1.04) into Eq. (1.103), we obtain

dy(t) -
RC7+ y() = x(t)
or
dy@) , 1 (t):Rl_CX(t) (1.105)

d  RC’
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(b)

Thus, the input-output relationship of the RC circuit is described by a first-order linear differential equation
with constant coefficients.

Integrating Eq. (1.104), we have
V()= é [ iwyar (1.106)
Substituting Eq. (1.106) into Eq. (1.103) and letting v (r) = x(?) and i(#) = y(#), we obtain
Ry(0)+— [y dr=x()

or 1 . 1
YO+ o= [ Y@ dT= 2x(t)

Differentiating both sides of the above equation with respect to #, we obtain

o), 1 (t):ldx(t) (1.107)
dt RC R dr

Thus, the input-output relationship is described by another first-order linear differential equation with
constant coefficients.

1.33. Consider the capacitor shown in Fig. 1-33. Let input x(#) = i(¢) and output y(?) = v (¥).

(a) Find the input-output relationship.

)

(@)

(b)

Determine whether the system is (i) memoryless, (i) causal, (iii) linear, (iv) time-invariant, or (v) stable.

T

o (1) ¢ == v

1

Assume the capacitance C is constant. The output voltage y () across the capacitor and the input current x(f)
are related by [Eq. (1.106)]

Fig. 1-33

YO =T{x()} = %fﬁwx(r)dr (1.108)

(i) From Eq. (1.108) it is seen that the output y(#) depends on the past and the present values of the input.
Thus, the system is not memoryless.

(ii)  Since the output y(#) does not depend on the future values of the input, the system is causal.

(iii) Letx(?) = ax,(f) + a,x,(#). Then
1 pt
YO =T} == [ o (@)+ axn@)dr

=0 [%fﬁwxl(f)d‘t]"' a, [éfiwxz(r)dt]
=y (1) + a,y, (1)

Thus, the superposition property (1.68) is satisfied and the system is linear.
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(iv) Lety,(7) be the output produced by the shifted input current x (f) = x(¢ — #)).
Then
1 pt
y()=T{x(t —15)} = Ef_wx(r —tp)dt

- %f’;“ X(A)dA=y(t — 1)

Hence, the system is time-invariant.

(v)  Letx(?) = k,u(t), with k; # 0. Then
1 pt kot k, k,
y0=7 [ ku(z)de = ¢ f,at= LuO=2r® (1.109)

where r(f) = tu(f) is known as the unit ramp function (Fig. 1-34). Since y () grows linearly in time
without bound, the system is not BIBO stable.

rif) = tulf)

EE

0
Fig. 1-34 Unit ramp function.

1.34. Consider the system shown in Fig. 1-35. Determine whether it is (a) memoryless, (b) causal, (c) linear,
(d) time-invariant, or (e) stable.

(@)

(b
()]

Multiplier
xit) o vt} = x(l) eos w t
4 LQ i .

cos w f ]

Fig. 1-35

From Fig. 1-35 we have
y(® = T{x(®} = x(®) cos w,¢
Since the value of the output y(¢) depends on only the present values of the input x(¢), the system is memoryless.
Since the output y(#) does not depend on the future values of the input x(7), the system is causal.
Let x(#) = a;x(t) + a,x(t). Then
y(#)=T{x(®)} = [ox,(t) + a,x, ()] cos w,t
= ayx,(t) cos .t + oy x,(f) cos w t

=y (1) + axy, (1)

Thus, the superposition property (1.68) is satisfied and the system is linear.
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(d) Lety,(t) be the output produced by the shifted input x,(#) = x(¢ — ¢,). Then
¥,® = T{x(t — 1))} = x(t — 1)) cos w ¢
But
Y@ — 1) = x(t — t,) cos w,(t — 1,) # y,(t)

Hence, the system is not time-invariant.

(e) Since |cos wt| =1, we have

ly®| = |x@) cos w, 1| = |x(®)|

Thus, if the input x(7) is bounded, then the output y(?) is also bounded and the system is BIBO stable.

1.35. A system has the input-output relation given by
y = T{x} = x?
Show that this system is nonlinear.

T{x; +x,}=(x +x2)2 =x12 +x§ +2xx,
#T{x}+T{x,} = xf +x3

Thus, the system is nonlinear.

(1.110)

1.36. The discrete-time system shown in Fig. 1-36 is known as the unit delay element. Determine whether the

system is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable.

x[n]
—

yln] = xfn —1]

Unit
—

delay

Fig. 1-36 Unit delay element

(a) The system input-output relation is given by
yln] = T{x[n]} = x{n — 1]

Since the output value at n depends on the input values at n — 1, the system is not memoryless.
(b) Since the output does not depend on the future input values, the system is causal.
(¢) Letx[n] = ax/[n] + a,x,[n]. Then

y[n] = T{ax,[n] + a x,[n]} = axn— 1] + ax,[n — 1]
= ayy[n]+a,y,(n]

Thus, the superposition property (1.68) is satisfied and the system is linear.

(d) Lety, [n] be the response to x,[n] = x[n — ny]. Then
Wl = TEx [} = xn = 11= xin — 1 = ]
and yin —n)l=xln—ny,— 1] = x[n— 1 — ny] = y,[n]
Hence, the system is time-invariant.

(e) Since
|y(nl] = |xIn— 11| =k  if |x{n]| < kforalln

the system is BIBO stable.

(1.111)
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1.37. Find the input-output relation of the feedback system shown in Fig. 1-37.

Unit L ¥inl
delay .

Fig. 1-37

From Fig. 1-37 the input to the unit delay element is x[n] — y[n]. Thus, the output y[#n] of the unit delay element is
[Eq. (1.111)]

ylnl =x[n— 1] — y[n — 1]
Rearranging, we obtain
yln] + yln — 1] = xn — 1] (1.112)
Thus, the input-output relation of the system is described by a first-order difference equation with constant
coefficients.
1.38. A system has the input-output relation given by
yln] = T{x[n]} = nx[n] (1.113)

Determine whether the system is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable.

(a) Since the output value at n depends on only the input value at n, the system is memoryless.
(b) Since the output does not depend on the future input values, the system is causal.
(¢) Letxln] = a,x/[n] + a,x,[n]. Then

yln] = T{x[n]} = n{ox [n] + a,x,[n]}

= aynx,[n] + a,nx[n] = a,y,[n] + a,y,[n]
Thus, the superposition property (1.68) is satisfied and the system is linear.
(d) Lety, [n] be the response to x,[n] = x[n — ny]. Then
yi[nl = T{x[n — ny1} = nx{n — ng]
But yln — ngl = (n — ny) x[n — ny] # y,[n]
Hence, the system is not time-invariant.

(e) Letx{n] = u[n]. Then y[n] = nu[n]. Thus, the bounded unit step sequence produces an output sequence that
grows without bound (Fig. 1-38) and the system is not BIBO stable.

x[n] = wlA]

r
—e
¥

S o e

-2-10 1 2 3 4 n -2-10 1 2 3 4 n

Fig. 1-38
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1.39. A system has the input-output relation given by
yln] = T{x[n]} = x[kyn] (1.114)

where k, is a positive integer. Is the system time-invariant?
Let y,[n] be the response to x,[n] = x[n — n ]. Then

y,[n] = T{x,[n]} = x,[k,n] = x[kyn—n]
But yln — ngl = x[ ky(n — ny)] # y,[n]

Hence, the system is not time-invariant unless k, = 1. Note that the system described by Eq. (1.114) is called a
compressor. It creates the output sequence by selecting every k th sample of the input sequence. Thus, it is obvious
that this system is time-varying.

1.40

Consider the system whose input-output relation is given by the linear equation
y=ax+b (1.115)

where x and y are the input and output of the system, respectively, and a and b are constants. Is this
system linear?

If b # 0, then the system is not linear because x = 0 implies y = b # 0.If b = 0, then the system is linear.

1.41. The system represented by T in Fig. 1-39 is known to be time-invariant. When the inputs to the system
are x,[n], x,[n], and x,[n], the outputs of the system are y,[n], y,[n], and y,[n] as shown. Determine
whether the system is linear.

z,nl ¥4l

-2-10 12 3 4 n -2-101 2 3 4 i

x4l ¥l

| 2

2-1012 3 4 n 2-101 2 3 4 n
x50 ¥alr]
3
Lol = I
.. > . .
-2-10 1 2 3 4 n -2-1 01 2 3 4 n

Fig. 1-39
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From Fig. 1-39 it is seen that
X,[n] = x,[n] + x,[n — 2]
Thus, if T is linear, then
T{x;[n]} = T{x,[n]} + T {x[n — 2]} = y,[n] + y,[n — 2]
which is shown in Fig. 1-40. From Figs. 1-39 and 1-40 we see that
y;lnl # y,[n] + y,[n — 2]

Hence, the system is not linear.

¥yln] ¥olr — 2] ¥ylnl + yoln - 2]

-2-101 2 3 4 n -2-1 01 2 3 4 n -2-101 2 3 4 n

Fig. 1-40
1.42. Give an example of a system that satisfies the condition of additivity (1.66) but not the condition of
homogeneity (1.67).

Consider a discrete-time system represented by an operator T such that
yln] = T{x{n]} = x*[n] (1.116)
where x*[n] is the complex conjugate of x[n]. Then
T{x,[n] + x,[n]} = {x,[n] + x,[n]}* = x¥[n] + x¥{n] = y,[n] + y,[n]
Next, if a is any arbitrary complex-valued constant, then
T{ax[n]} = {ax[n]} * = a*x* [n] = a*y[n] # ayn]

Thus, the system is additive but not homogeneous.

1.43. (a) Show that the causality for a continuous-time linear system is equivalent to the following statement:
For any time #, and any input x(#) with x(#) = 0 for ¢ < #,, the output y(?) is zero for z =< £,

(b) Find a nonlinear system that is causal but does not satisfy this condition.

(¢) Find a nonlinear system that satisfies this condition but is not causal.

(a) Since the system is linear, if x(¢) = O for all #, then y(#) = O for all 7. Thus, if the system is causal, then
x(t) = O for t = ¢ implies that y(#) = O for # =< ¢,. This is the necessary condition. That this condition is
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1.44.

1.45.

— e

also sufficient is shown as follows: let x,(#) and x,() be two inputs of the system and let y,(#) and y,(7) be
the corresponding outputs. If x (f) = x,(f) for t = 7, or x(#) = x,(t) — x,(t) = 0 for ¢ = £, then y ()= y,(?)

fort=tj,0ry(®) =y, () — y,() = Ofort =1,

(b) Consider the system with the input-output relation

y(@ = x(0) +1

This system is nonlinear (Prob. 1.40) and causal since the value of y(#) depends on only the present value of

x(#). But with x(#) = O fort = £, y(f) = 1 fort = 1,

(c) Consider the system with the input-output relation

y® = x(x@ + 1)

It is obvious that this system is nonlinear (see Prob. 1.35) and noncausal since the value of y (?) at time # depends
on the value of x(# + 1) of the input at time ¢ + 1. Yet x(#) = O for # =< ¢, implies that y(f) = 0 for t =< #,.

Let T represent a continuous-time LTI system. Then show that
T{e*'} = ke
where s is a complex variable and A is a complex constant.
Let y () be the output of the system with input x(¢) = e*'. Then
T{e*'} = y(©)
Since the system is time-invariant, we have
T{es(+} = y(t + 1)

for arbitrary real ¢,. Since the system is linear, we have

T{es(+ 0} = T{es 50} = eS0T {e"} = esy(f)
Hence, Y+ 1) = e*y(D)

Setting ¢ = 0, we obtain
¥(ty) = y(0)esre

Since £, is arbitrary, by changing £, to ¢, we can rewrite Eq. (1.118) as

Y@ = y(0) e = ket
or T{e'} = A e
where A = y(0).

Let T represent a discrete-time LTI system. Then show that
T{z"} = A2"

where z is a complex variable and A is a complex constant.

(1.117)

(1.118)

(1.119)
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Let y[n] be the output of the system with input x[n] = z”. Then
T{z"} = yln]
Since the system is time-invariant, we have
T{z"*"} = y[n + n,]

for arbitrary integer n,. Since the system is linear, we have

T{Zn+m,} - T{Z” Z”"} — ZnoT{Zn} = Znoy[n]
Hence, yln + ny] = z"y[n]

Setting n = 0, we obtain

ylny) = y[0]z" (1.120)
Since nj, is arbitrary, by changing n, to n, we can rewrite Eq. (1.120) as

y[n] = y[0]z" = A 2"
or T{z"} = A 2"
where A = y[0].

In mathematical language, a function x(-) satisfying the equation
T{x()} = Ax() (1.121)

is called an eigenfunction (or characteristic function) of the operator T, and the constant A is called the eigenvalue
(or characteristic value) corresponding to the eigenfunction x(-). Thus, Eqs. (1.117) and (1.119) indicate that the
complex exponential functions are eigenfunctions of any LTI system.

SUPPLEMENTARY PROBLEMS

1.46. Express the signals shown in Fig. 1-41 in terms of unit step functions.

xit)

.I'I:f] 3

Fig. 1-41
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1.47. Express the sequences shown in Fig. 1-42 in terms of unit step sequences.

x[n] x[n]
1@ -1
I 4 -3-2-1
L - 8 i » L '_' L L -
2-101 2 N n ll { A n
= —1
(@) (B)
[n]
I ' XW
-~ ®- k-
4-3-2-1 01 23 4 5 n
(c)
Fig. 1-42

1.48. Determine the even and odd components of the following signals:
(@) x(@t)=u()
(b) x(t)=sin (wot N %)
(¢) x[n]= &/ Gon+a2)
(d) xn]=d[n]

1.49. Let x(?) be an arbitrary signal with even and odd parts denoted by x,(¢) and x (), respectively. Show that

[ 2wadr= " 2wat+ [ x2wyat

1.50. Let x[n] be an arbitrary sequence with even and odd parts denoted by x,[n] and x [n], respectively. Show that

© © ©

E xz[n]= E xez[n]+ E xg[n]

n=—o n=—om n=—om

1.51. Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its
fundamental period.

(a) x(t)=cos (Zt + %)

) x(t)=cos’t
(¢) x(t)=(cos2mt)u(t)
d) x@)=e™

(e) x[n]= eJlni)=xl
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2
(f) x[n]=cos (%)

(g) x[n]= cos (%)cos (%)

(h) x[n]=cos (%) + sin (n_8n) —2cos (%)

1.52. Show that if x[n] is periodic with period N, then

n n+N N ny+N
@ Y Akl= Ykl () D xikl= Y k]
k=ng k=ng+N k=0 k=ng
1.53. (a) Whatis 6(26)?
(b) Whatis 8[2n]?
1.54. Show that
8(—n=—-8®
1.55. Evaluate the following integrals:
@ [ (costyu(r)de ®) [ (cosm)()dr
© 2x .1
© [ (cosu(t — 1)) dt @ £ sin—o(x — ) dt

1.56. Consider a continuous-time system with the input-output relation

1 pe+12
YO=TEOY=— [, ), x®dr

Determine whether this system is (a) linear, (b) time-invariant, (c) causal.

1.57. Consider a continuous-time system with the input-output relation
g

YO=T{x@®}= Y x(1)d(t — KT,)

k=—o00

Determine whether this system is (a) linear, (b) time-invariant.
1.58. Consider a discrete-time system with the input-output relation
y[nl = T{x[n]} = x*[n]

Determine whether this system is (a) linear, (b) time-invariant.

1.59. Give an example of a system that satisfies the condition of homogeneity (1.67) but not the condition of
additivity (1.66).

1.60 Give an example of a linear time-varying system such that with a periodic input the corresponding output is not
periodic.

1.61. A system is called invertible if we can determine its input signal x uniquely by observing its output signal y. This is
illustrated in Fig. 1-43. Determine if each of the following systems is invertible. If the system is invertible, give the
inverse system.
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X y Inverse X
—P System ——Pp —>

system

Fig. 1-43

(@ y()=2x(t)
b) y0)=x*(t)
© yoy =" x@)de

n

(d) ynl= Y xlk]

k=—o

(&) yln]= nx[n]

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.46. (@) x(® =§t[u(t) —u(t — 2)]
By x@O=u@+1)+2u@ —u@t—1)—u@—2)— u®—3)

147. (a) x[n] = u[n] —uln — (N + 1)]
) x[n]l = —ul-n—1]
(¢) x[n] = u[n+ 2] —u[n — 4]

1 1
1.48. (a) x,(t)= > x, ()= > sgnt

b) x,()= %cos wpt, X, (1) = %sin Wyt

(¢) x,[n]= jcosQyn, x,[n]=— sin Qyn
d) x,[n]=dl[n], x,[n]=0

1.49. Hint: Use the results from Prob. 1.7 and Eq. (1.77).

1.50. Hint: Use the results from Prob. 1.7 and Eq. (1.77).

1.51. (a) Periodic, period = & (b) Periodic, period = &
(c¢) Nonperiodic (d) Periodic, period = 2
(e) Nonperiodic (f) Periodic, period = 8
(g) Nonperiodic (h) Periodic, period = 16

1.52. Hint: See Prob.1.17.

1.53. (@) 6(2f) = % 5()
(b) 6[2n] = 8[n]

1.54. Hint: Use Egs. (1.101) and (1.99).

1.55. (a) sint
(b) 1fort> 0andO for ¢t < 0; not defined for t = 0
© 0
@ =
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1.56.

1.57.

1.58.

1.59.

1.60

1.61.

(a) Linear; (b) Time-invariant; (c) Noncausal

(a) Linear; (b) Time-varying
(a) Nonlinear; (b) Time-invariant

Consider the system described by
b 2
yO= TG0} =[ [ 1xF de]
y[n] = T{x[n]} = nx[n]

(a) Invertible; x(t) = %y(t)
(b) Not invertible
(c) Invertible; x(t)= m

dt
(d) Invertible; x[n]= y[n]— y[n—1]
(e) Not invertible

CHAPTER 1 Signals and Systems
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Linear Time-Invariant Systems

2.1 Introduction

Two most important attributes of systems are linearity and time-invariance. In this chapter we develop the fun-
damental input-output relationship for systems having these attributes. It will be shown that the input-output rela-
tionship for LTI systems is described in terms of a convolution operation. The importance of the convolution
operation in LTI systems stems from the fact that knowledge of the response of an LTI system to the unit impulse
input allows us to find its output to any input signals. Specifying the input-output relationships for LTI systems
by differential and difference equations will also be discussed.

2.2 Response of a Continuous-Time LTI System and the Convolution Integral

A. Impulse Response:

The impulse response h(f) of a continuous-time LTI system (represented by T) is defined to be the response of
the system when the input is 6(?), that is,

h(#) = T{6()} 2.1)

B. Response to an Arbitrary Input:

From Eq. (1.27) the input x(#) can be expressed as
x(1)= f:ox(‘r)ﬁ(t —1)dr 22)
Since the system is linear, the response y(#) of the system to an arbitrary input x(f) can be expressed as
y(@)=T{x(t)} = T{ f:o X(T)d(t — 1) dr}
= f: X(OT{8(t — 1)} dr 2.3)

Since the system is time-invariant, we have
h(t — 1) = T{0(t — 1)} 24)
Substituting Eq. (2.4) into Eq. (2.3), we obtain
y®= [ x@ht—7)dr 2.5)

Equation (2.5) indicates that a continuous-time LTI system is completely characterized by its impulse response A(?).

—
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C. Convolution Integral:

Equation (2.5) defines the convolution of two continuous-time signals x(#) and k(f) denoted by

y(t) = x(t)*h(t) = f:o x(T)h(t — T) dT (2.6)

Equation (2.6) is commonly called the convolution integral. Thus, we have the fundamental result that the out-
put of any continuous-time LTI system is the convolution of the input x(t) with the impulse response h(t) of the
system. Fig. 2-1 illustrates the definition of the impulse response A(#) and the relationship of Eq. (2.6).

8(t) - h(t)

system
x(t) y(t) = x(t)  h(t)

Fig. 2-1 Continuous-time LTI system.

D. Properties of the Convolution Integral:

The convolution integral has the following properties.

1. Commutative:

xX(0) * h(t) = h(t) * x(1) Q@7

2. Associative:
{x()) * b, (D} * hy(t) = x(0) * {h,(D) * h,(D)} 2.8)

3. Distributive:
x(t) * {h, (O} + hy() = x(D) * h(£) + x(0) * h(1) 2.9)

E. Convolution Integral Operation:

Applying the commutative property (2.7) of convolution to Eq. (2.6), we obtain
y(t)=h(t)* x(t) = fl h(t)x(t — 1) dt (2.10)

which may at times be easier to evaluate than Eq. (2.6). From Eq. (2.6) we observe that the convolution integral
operation involves the following four steps:

1. The impulse response h(7) is time-reversed (that is, reflected about the origin) to obtain A(—7) and
then shifted by ¢ to form A(z — ) = h[ —(z — )], which is a function of 7 with parameter z.

The signal x(t) and h(¢t — T) are multiplied together for all values of T with ¢ fixed at some value.
3. The product x(T)h(t — T) is integrated over all 7to produce a single output value y(#).
4. Steps 1 to 3 are repeated as ¢ varies over — to % to produce the entire output y(z).

Examples of the above convolution integral operation are given in Probs. 2.4 to 2.6.

F. Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to be the response of the
system when the input is u(f); that is,

s(®) = T{u(n)} (2.11)
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In many applications, the step response s(?) is also a useful characterization of the system. The step response s(#)
can be easily determined by Eq. (2.10); that is,

0 !
s(t)=h(t)*u(r) =f_mh(‘r)u(t —T1)dt =f_wh(‘r) dr (2.12)

Thus, the step response s(#) can be obtained by integrating the impulse response k(#). Differentiating Eq. (2.12)
with respect to ¢z, we get

h(t)=s'(t)=m (2.13)
dt

Thus, the impulse response A(#) can be determined by differentiating the step response s(?).

2.3 Properties of Continuous-Time LTI Systems

A. Systems with or without Memory:

Since the output y(#) of a memoryless system depends on only the present input x(#), then, if the system is also
linear and time-invariant, this relationship can only be of the form

(1) = Kx(1) (2.14)
where K is a (gain) constant. Thus, the corresponding impulse response Ah(f) is simply
o) = Ké(2) (2.15)

Therefore, if h(t,) # 0 for t,# 0, then continuous-time LTI system has memory.

B. Causality:

As discussed in Sec. 1.5D, a causal system does not respond to an input event until that event actually occurs.
Therefore, for a causal continuous-time LTI system, we have

h(® =0 t<0 (2.16)

Applying the causality condition (2.16) to Eq. (2.10), the output of a causal continuous-time LTI system is
expressed as

y()= [ hx(t — 1) dv @.17)
Alternatively, applying the causality condition (2.16) to Eq. (2.6), we have

y(1)= fiwx(r)h(t — 1) dr (2.18)

Equation (2.18) shows that the only values of the input x(#) used to evaluate the output y(#) are those for 7 < ¢.
Based on the causality condition (2.16), any signal x(¢) is called causal if
x()=0 t<0 (2.192)
and is called anticausal if
x(=0 t>0 (2.19b)

Then, from Eqs. (2.17), (2.18), and (2.19a), when the input x(?) is causal, the output y(?) of a causal continuous-
time LTI system is given by

y() =f;h(r)x(t -1)dt =f(;x(r)h(t -1)dt (2.20)



0_ CHAPTER 2 Linear Time-Invariant Systems

C. Stability:

The BIBO (bounded-input/bounded-output) stability of an LTI system (Sec. 1.5H) is readily ascertained from
its impulse response. It can be shown (Prob. 2.13) that a continuous-time LTI system is BIBO stable if its impulse
response is absolutely integrable; that is,

[ @ |dr <o 2.21)

2.4 Eigenfunctions of Continuous-Time LTI Systems

In Chap. 1 (Prob. 1.44) we saw that the eigenfunctions of continuous-time LTI systems represented by T are the
complex exponentials e*, with s a complex variable. That is,

T{e*} = Ae* (2.22)
where A is the eigenvalue of T associated with e*. Setting x(#) = ¢* in Eq. (2.10), we have
y(t)=T{e"} = f: il [ f:h(r) e ST dt] "
=H(s)e" = Ae” (2.23)
where r=H©= [ h@e ™ dr (2.24)
Thus, the eigenvalue of a continuous-time LTI system associated with the eigenfunction e* is given by H(s),
which is a complex constant whose value is determined by the value of s via Eq. (2.24). Note from Eq. (2.23)
that y(0) = H(s) (see Prob. 1.44).

The above results underlie the definitions of the Laplace transform and Fourier transform, which will be dis-
cussed in Chaps. 3 and 5.

2.5 Systems Described by Differential Equations

A. Linear Constant-Coefficient Differential Equations:

A general Nth-order linear constant-coefficient differential equation is given by

N k k
Ekdﬂo Ede) 225
k=0

where coefficients a, and b, are real constants. The order N refers to the highest derivative of y() in
Eq. (2.25). Such differential equations play a central role in describing the input-output relationships of a
wide variety of electrical, mechanical, chemical, and biological systems. For instance, in the RC circuit con-
sidered in Prob. 1.32, the input x(#) = v (¢) and the output y(¢) = v (¢) are related by a first-order constant-
coefficient differential equation [Eq. (1.105)]

dy(1) L 1
dt Y= ch(t)

The general solution of Eq. (2.25) for a particular input x(f) is given by
YO = 3,0 + 9,0 (2.26)

where yp(t) is a particular solution satisfying Eq. (2.25) and y,(?) is a homogeneous solution (or complementary
solution) satisfying the homogeneous differential equation

N k
d y,(t) _
2 akT—O (2.27)
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The exact form of y,(?) is determined by N auxiliary conditions. Note that Eq. (2.25) does not completely spec-
ify the output y(?) in terms of the input x(¢) unless auxiliary conditions are specified. In general, a set of auxil-
iary conditions are the values of

dy(ty a7y

t
Y@ dt arV !

at some point in time.

B. Linearity:

The system specified by Eq. (2.25) will be linear only if all of the auxiliary conditions are zero (see Prob. 2.21).
If the auxiliary conditions are not zero, then the response y(#) of a system can be expressed as

O =y, + 3,0 (2.28)

where y,(?), called the zero-input response, is the response to auxiliary conditions, and y, (#), called the zero-state
response, is the response of a linear system with zero auxiliary conditions. This is illustrated in Fig. 2-2.

Note that y,(#) # y,(#) and y, () # yp(t) and that in general y_(#) contains y,(?) and y, (#) contains both y,(?)
and yp(t) (see Prob. 2.20).

xit) (i ¥, [0 ¥ir)

system

...
v

Yy

Fig. 2-2 Zero-state and zero-input responses.

C. Causality:

In order for the linear system described by Eq. (2.25) to be causal we must assume the condition of initial rest
(or an initially relaxed condition). That is, if x(#) = 0 for t =< ¢, then assume y(#) = 0 for 7 =< ¢, (see Prob. 1.43).
Thus, the response for z > £, can be calculated from Eq. (2.25) with the initial conditions

dy(ty) d" 'y(y)
t =—=...=—=0
Yto) dt ar™ !
k k
where d }’(kfo) _d ylft)
dt dt

t =t
Clearly, at initial rest y,(#) = 0.

D. Time-Invariance:

For a linear causal system, initial rest also implies time-invariance (Prob. 2.22).

E. Impulse Response:

The impulse response A(?) of the continuous-time LTI system described by Eq. (2.25) satisfies the differential
equation

N k M k

d*h(t) dks()
2 ay—" = 2 by — (2.29)
K=o dt K=o dt
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with the initial rest condition. Examples of finding impulse responses are given in Probs. 2.23 to 2.25. In later
chapters, we will find the impulse response by using transform techniques.

2.6 Response of a Discrete-Time LTI System and Convolution Sum

A. Impulse Response:

The impulse response (or unit sample response) h[n] of a discrete-time LTI system (represented by T') is defined
to be the response of the system when the input is §[n]; that is,

hln] = T{S [n]} (2.30)

B. Response to an Arbitrary Input:

From Eq. (1.51) the input x[n] can be expressed as

o0

x[n]= 2 x[k] 8[n— k] (2.31)

k=—o

Since the system is linear, the response y[n] of the system to an arbitrary input x[n] can be expressed as

k=—

y[n]=T{x[n]}=T{ > xlk] 6[n—k]}

e

= E x[K]T {8[n — k]} (2.32)

k=—
Since the system is time-invariant, we have
hln — k] = T{S8[n — k]} (2.33)

Substituting Eq. (2.33) into Eq. (2.32), we obtain

o<

Minl= Y x(klhln—k] (2.34)

k=—
Equation (2.34) indicates that a discrete-time LTI system is completely characterized by its impulse response h[n].

C. Convolution Sum:

Equation (2.34) defines the convolution of two sequences x[n] and h[n] denoted by

00

yln]=x[n]*h[n]= Y x[klh[n—k] (2.35)

k=—o

Equation (2.35) is commonly called the convolution sum. Thus, again, we have the fundamental result that the
output of any discrete-time LTI system is the convolution of the input x[n] with the impulse response h[n] of the
system.

Fig. 2-3 illustrates the definition of the impulse response A[n] and the relationship of Eq. (2.35).

8[n] LTI hin]

system
x[n] yIn] = x[n] + hin]

Fig. 2-3 Discrete-time LTl system.



CHAPTER 2 Linear Time-Invariant Systems —&P»

D. Properties of the Convolution Sum:

The following properties of the convolution sum are analogous to the convolution integral properties shown
in Sec. 2.3.

1. Commutative:

x[n] * h{n) = h[n ] * x[n] (2.36)

2. Associative:
{x[n] * h,[n]} * hy[n] = x[n] * {h,[n] * h[n]} (2.37)

3. Distributive:
x{n] * {h,[n]} + h[n]} = x[n] * h,[n] + x(n] * h,[n] (2.38)

E. Convolution Sum Operation:
Again, applying the commutative property (2.36) of the convolution sum to Eq. (2.35), we obtain

00

yln]=h[n]*x[n]= 2 hlklx[n—k] (2.39)

k=—o

which may at times be easier to evaluate than Eq. (2.35). Similar to the continuous-time case, the convolution
sum [Eq. (2.35)] operation involves the following four steps:

1. The impulse response h[£] is time-reversed (that is, reflected about the origin) to obtain A[—k] and
then shifted by n to form A[n — k] = h[—(k — n)], which is a function of k with parameter n.

2. Two sequences x[k] and h[n — k] are multiplied together for all values of k with n fixed at some
value.

3. The product x[k] h[n — k] is summed over all & to produce a single output sample y[x].
Steps 1 to 3 are repeated as n varies over — to o to produce the entire output y[#n].

Examples of the above convolution sum operation are given in Probs. 2.28 and 2.30.

F. Step Response:

The step response s[n] of a discrete-time LTI system with the impulse response s[n] is readily obtained from
Eq. (2.39) as

s[n]l=h[n)*u[n] = 2 hlklu[n—k]= 2 hlk] (2.40)
k=— k=—
From Eq. (2.40) we have
h[n] = s[n] — s[n — 1] (2.41)

Equations (2.40) and (2.41) are the discrete-time counterparts of Eqgs. (2.12) and (2.13), respectively.

2.7 Properties of Discrete-Time LTI Systems

A. Systems with or without Memory:

Since the output y[n] of a memoryless system depends on only the present input x[#], then, if the system is also
linear and time-invariant, this relationship can only be of the form

yln] = Kx[n] (2.42)



0_ CHAPTER 2 Linear Time-Invariant Systems

where K is a (gain) constant. Thus, the corresponding impulse response is simply
h[n] = Kd[n] (2.43)
Therefore, if hlny] # 0 for ny # 0, the discrete-time LTI system has memory.

B. Causality:

Similar to the continuous-time case, the causality condition for a discrete-time LTI system is
h[n] =0 n<0 (2.44)

Applying the causality condition (2.44) to Eq. (2.39), the output of a causal discrete-time LTI system is
expressed as

y[n]= 2 h[k]x[n— k] (2.45)
k=0

Alternatively, applying the causality condition (2.44) to Eq. (2.35), we have

n

y[n]= 2 x[k1h[n — k] (2.46)

k=—0

Equation (2.46) shows that the only values of the input x[#] used to evaluate the output y[n] are those for k < n.
As in the continuous-time case, we say that any sequence x[n] is called causal if

x[n] =0 n<o0 (247a)
and is called anticausal if
x[n] =0 n=0 (2.47b)

Then, when the input x[n] is causal, the output y[n] of a causal discrete-time LTI system is given by

n

y[n]= 2 h[klx[n— k]= 2 x[k1h[n — k) (2.48)
k=0 k=0
C. Stability:

It can be shown (Prob. 2.37) that a discrete-time LTI system is BIBO stable if its impulse response is absolutely
summable; that is,

k=—0

2.8 Eigenfunctions of Discrete-Time LTI Systems

In Chap. 1 (Prob. 1.45) we saw that the eigenfunctions of discrete-time LTI systems represented by T are the
complex exponentials z", with z a complex variable. That is,

T{z"} = A" (2.50)
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where A is the eigenvalue of T associated with z". Setting x[n] = z" in Eq. (2.39), we have

o0

Ynl=T("}y= Y hlkl" =] Y h[k]z_klz"

k=—o0 k=—0
=H(z)7" = A" (2.51)
where A=H@)= Y hklz* (2.52)
k=—

Thus, the eigenvalue of a discrete-time LTI system associated with the eigenfunction z” is given by H(z),
which is a complex constant whose value is determined by the value of z via Eq. (2.52). Note from Eq. (2.51)
that y[0] = H(z) (see Prob. 1.45).

The above results underlie the definitions of the z-transform and discrete-time Fourier transform, which
will be discussed in Chaps. 4 and 6.

2.9 Systems Described by Difference Equations

The role of differential equations in describing continuous-time systems is played by difference equations for
discrete-time systems.

A. Linear Constant-Coefficient Difference Equations:

The discrete-time counterpart of the general differential equation (2.25) is the Nth-order linear constant-coefficient
difference equation given by

N

M
2 ayln—kl= 2 by x[n — k] (2.53)
k=0 k=0

where coefficients a, and b, are real constants. The order N refers to the largest delay of y[n] in Eq. (2.53). An exam-
ple of the class of linear constant-coefficient difference equations is given in Chap. 1 (Prob. 1.37). Analogous to the
continuous-time case, the solution of Eq. (2.53) and all properties of systems, such as linearity, causality, and time-
invariance, can be developed following an approach that directly parallels the discussion for differential equations.
Again we emphasize that the system described by Eq. (2.53) will be causal and LTI if the system is initially at rest.

B. Recursive Formulation:
An alternate and simpler approach is available for the solution of Eq. (2.53). Rearranging Eq. (2.53) in the form

M N
y[n]=i{2bkx[n—k]— Eaky[n—k]} (2.54)
ao |£=o0

k=1

we obtain a formula to compute the output at time n in terms of the present input and the previous values of
the input and output. From Eq. (2.54) we see that the need for auxiliary conditions is obvious and that to calculate
yln] starting at n = n,, we must be given the values of y[n, — 1], y[n, — 2], ..., y[n, — N] as well as the input x[#]
for n = n, — M. The general form of Eq. (2.54) is called a recursive equation, since it specifies a recursive proce-
dure for determining the output in terms of the input and previous outputs. In the special case when N = 0, from
Eq. (2.53) we have

M
ylnl= L { Y bexln— k]} (2.55)
A |£=o

which is a nonrecursive equation, since previous output values are not required to compute the present output.
Thus, in this case, auxiliary conditions are not needed to determine y[xn].
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C. Impulse Response:

Unlike the continuous-time case, the impulse response h[n] of a discrete-time LTI system described by Eq. (2.53)
or, equivalently, by Eq. (2.54) can be determined easily as

k=1

1 M N
h[n]=—{2bké[n—k]—Eakh[n—k]} (2.56)
%o |k=0

For the system described by Eq. (2.55) the impulse response k[n] is given by

b, /ay 0=n=M

. (2.57)
0 otherwise

1 & s
h[n]=— ) b, 0[n—k]=
4 20 ¢ {

Note that the impulse response for this system has finite terms; that is, it is nonzero for only a finite time dura-
tion. Because of this property, the system specified by Eq. (2.55) is known as a finite impulse response (FIR)
system. On the other hand, a system whose impulse response is nonzero for an infinite time duration is said to
be an infinite impulse response (IIR) system. Examples of finding impulse responses are given in Probs. 2.44
and 2.45.In Chap. 4, we will find the impulse response by using transform techniques.

SOLVED PROBLEMS

Responses of a Continuous-Time LTI System and Convolution

2.1. Verify Eqgs. (2.7) and (2.8); that is,
(@) x(® * h(t) = h(t) * x(¥)
®) {x@ * hy(®} * hy() = x() * {h () * h,(D}

(a) By definition (2.6)

x0)xhn)= [~ x@h(t ~7)dv
By changing the variable 1 — 7= A, we have
O xh® =[xt~ DhA)dA= [ AAIx(— A)dA= hit)* x(1)
(b)  Letx(t) * h(t) = £,(t) and h,(t) * hy() = £,(7). Then
A= " x@m-7)de
and (O * O} b0 = O xh®)= [ [yt~ 0)do
-1 [ [ xm© -7 dr] hy(t — 0) do

Substituting A = o — 7and interchanging the order of integration, we have

@ ) 0= [ x@) [ [ momy@ -7 =) dA] dr

Now, since

AO= [ mhy(t—2)dA
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we have
A== [ Wyt 7~ A)dA

Thus, FO*m©) * b= [ x@f( - d
= X(1)* ()= X(1) * (I ()% hy())

2.2. Show that

(@) x(®)=* () =x(0) (2.58)

B) x(t)* 8(t — 1) = x(t — 1,) (2.59)

©) x()wu(t)= fiwx(r) dr (2.60)
_ Mo

(@) x@)su@t—1)=[ " x@)de 260)

(a) By definition (2.6) and Eq. (1.22) we have
x()*3(0)= [ x@)8(t — 1) dv = x@)|,_, = x(1)
(b) By Egs. (2.7) and (1.22) we have
X(1) % 8(1 — 1) =8t~ 19)* ()= [~ 8(x 1) x(t ~T)
=x(t—7)|,_, =x(t—1p)
(¢) By Egs.(2.6)and (1.19) we have
x@0)xu®)= [ x@u@-de= [ x@de

1 T<t

. )=
since u(t — 1) {0 >t

(d) In a similar manner, we have
x(@)xu —ty) =f_:x(‘r)u(t —T—ty))dt =f::0 x(t)dt

1 z<t—t,

sinceu(t —t—1y)= .
0 {0 T>1-1,

2.3. Let y(¢#) = x(?) * h(?). Then show that

X(t— )% h(t— 1) =yt — 1, — 1) (2.62)
By Eq. (2.6) we have

()= x0)*h®)= [~ _x@ht ) dv (2.63a)
and Xt =) h(t = 1)= " x(z—1)h(t— T~ 1) dr (2.63b)

Let T — ¢, = M. Then 7 = A + ¢, and Eq. (2.63b) becomes

X(t—1) % h(t —t,)= f:x()»)h(t —t,—t, — A)dA (2.63¢)
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Comparing Eqs. (2.63a) and (2.63c), we see that replacing # in Eq. (2.63a) by t — , — ¢,, we obtain Eq. (2.63c).
Thus, we conclude that

Xt — 1)k h(t — 1) =yt — 1, — 1)
2.4. The input x(¢) and the impulse response h(f) of a continuous time LTT system are given by
x(1) = u(?) o =e *u(),a>0

(a) Compute the output y(#) by Eq. (2.6).
(b) Compute the output y(#) by Eq. (2.10).

(@ ByEq.(26)
y(@)= x(t)* h(t) =f:x(r)h(t —1)dt
Functions x(7) and h(t — t) are shown in Fig. 2-4(a) for t < 0 and ¢ > 0. From Fig. 2-4(a) we see that

for t < 0, x(t) and h(r — T) do not overlap, while for r > 0, they overlap from 7 = 0 to T = ¢. Hence, for
1<0,y@® = 0.Fort> 0, we have

y(t):f(;e—a(t—t) dr = e—aff(;ear dr

=e—arl(eat _ l)=l(1—e_a’)
a a

i) hix)

=

hit—1) X({f-1)

t<0 t<0

k.
-

hit—1) Xt —1)

>0 1 >0

L 4
L J

(@) (b)
Fig. 2-4
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Thus, we can write the output y(#) as
YO = (=t 2.64)
(b) ByEq.(2.10)
YO =h)xx®)= [~ h@)xt—7)dr

Functions A(7) and x(t — 7) are shown in Fig. 2-4(b) for t < 0 and ¢ > 0. Again from Fig. 2-4(b) we see
that for r < 0, h(7) and x(¢ — 7) do not overlap, while for r > 0, they overlap from 7 = 0 to 7 = ¢. Hence,
fort < 0,y(r) = 0.For ¢t > 0, we have

_ ! _ar _ l _ —at
y(t)—foe dr—a(l e
Thus, we can write the output y(?) as

Y= é(l —e “u(r) (2.65)

which is the same as Eq. (2.64).

2.5. Compute the output y(#) for a continuous-time LTI system whose impulse response #(#) and the input
x(?) are given by

h(t)=e “u(t) x()=e*"u(-1t) a>0
By Eq. (2.6)
Y(£)=x(t) % h(t) = f: X(@)h(t — 1) dT
Functions x(t) and h(t — T) are shown in Fig. 2-5 (a) for < 0 and ¢ > 0. From Fig. 2-5 (a) we see that for

t < 0,x(7) and h(t — ) overlap fromz = —o to T = ¢, while for # > 0, they overlap from 7= — to 7= 0. Hence,
for t < 0, we have

— ! ar —a(t-1) — ,at ! 2ar — L at (2.66a)
y(@) f_we e dr = e f_we dr 2’
For t > 0, we have
y(@)= O gt gty = et (0 pargp 1 e (2.66b)
f‘°° f—°° 2a

Combining Eqgs. (2.66a) and (2.66b), we can write y(f) as
yy=—Le  g>0 (2.67)
2a

which is shown in Fig. 2-5(b).
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x(t)

Rt 1)
Wit}

t<0

kR
-

P
(=]
[e=]
~

(b)

L ]

[=,
~
-

Fig. 2-5

2.6. Evaluate y(#) = x(¥) * h(f), where x(#) and h(?) are shown in Fig. 2-6, (a) by an analytical technique, and
(b) by a graphical method.

x[f) hit)

Fig. 26
(@) We first express x(#) and A(f) in functional form:
X0 = wt) — ut —3)  h() = u(t) — u(t — 2)
Then, by Eq. (2.6) we have
YO =xO)xh)= [~ x@h(t ~7)dv
=f:°[u(r) —u(t = 3)][ut —7)—u(t — 7 — 2)]dr
= f:u(r)u(t —1)dt — f:u(r)u(t ~-2-T7)dr

[ @ = Iue —vydr+ [ uw -3 -2-1)de
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Since u(tut —t)=

u(t —3u(t—1)=

u(t—3u(t—-2—-1)=

{
uTtu—2—-1)= {1
{
{

we can express y(f) as

0<t<tt>0
otherwise
0<t<t—2,t>2
otherwise
I<r<t,t>3
otherwise
3I<t<t—2,t>5

otherwise

y@®)= (f;dr)u(t) - (f(:_zd‘r)u(t -2)

! =2
- (f3d1:)u(t -3)+ (f3 dr)u(t —-5)

=m(t)— (¢ —2u@—2)—©C—Du—3)+E—S5uE-135)

which is plotted in Fig. 2-7.

it ;
I |
e . N
“ [t-5)uit-5)
1 -
1 L L I >
o 1 - 5 (3] f
1} Tl (t-3wit-3)
i (= 2t~ 2)
Fig. 2-7

(b)

Functions h(7), x(t) and h(t — 7), x(7) h(t — 7) for different values of r are sketched in Fig. 2-8. From

Fig. 2-8 we see that x(7) and A(f — 7) do not overlap for # < 0 and # > 5, and hence, y(f) = 0 forr < 0
and ¢ > 5. For the other intervals, x(7) and A(f — 7) overlap. Thus, computing the area under the

rectangular pulses for these intervals, we obtain

y@®)=

S LN T O

which is plotted in Fig. 2-9.

<0
0<tr=2
2<t=<3
3<t=<5
5<t

2.7. Let h(?) be the triangular pulse shown in Fig. 2-10(a) and let x(#) be the unit impulse train [Fig. 2-10()]

expressed as

x(1)=6,(1)= i 8(t — nT)

(2.68)

n=—oo

Determine and sketch y(¢) = h(f) * x(#) for the following values of T: (@) T =3,(b) T=2,(c) T = 1.5.
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hix) xir)
1 1
1 0 1 2 3 4 1 0 1 2 3 4 =
hit 1) xlehhlt— <)
t<0 t=@
1 1
A 1 1 1 1 1 .l_. 'l 1 1 1 L |.-_.
42 110 1 2 3 4 T -+ 0 1 2 85 &4 =
t-2
hit—) xitih(t—1)
1 [ D<t<2
1
i i 1 i i i =._ i i i 1 L 3
g ~f-49 For § A4 T 1 0 1 ¢t2 3 4
t-2
hit-1) xlc)hit )
2<t<3 2<ted
1 1
2 -1 041 2¢3 4 5 v 1 of1 2:3 4 ¢
t—2 t-2
kel xithit—1)
3=t«h 3=t<h
1 1
i 1 1 i 1 1 1 'l ; 1 i 1 i ;_
2 1 0 142 3¢4 5 61 1 0 1%+2 3 a4 «x
t-2 t-2
hit—1 x(x)hit—T)
S5<t S5«t
1 1
1 1 1 'l 1 i i 1 ; i i i 1 '] ;._
2 -1 0 1 2 314 5 t+ 6 T 1 0 1 2 3 4
t-2
Fig. 2-8
wit)
o
1
1 [] 1 [ ] [} i >
-1 o 1 2 3 4 5 6 t
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2.8.

hit) .t

-1 0 1 ; -2 -T 0 2T ;
@ (b)
Fig. 2-10
Using Egs. (2.59) and (2.9), we obtain
YO =h@)x6p()=h@t)*| ¥ 8t —nT)
= S hyrsa—nTy= S he—nT) (2.69)

(a) For T = 3,Eq. (2.69) becomes

o

Y= h(t—3n)

n=—oo
which is sketched in Fig. 2-11(a).
(b) ForT = 2,Eq. (2.69) becomes

©

Y=Y ht—2n)

n=—o
which is sketched in Fig. 2-11(b).
(¢) ForT=1.5,Eq. (2.69) becomes

©

Y= ht—1.5n)

n=—o

which is sketched in Fig. 2-11(c). Note that when T < 2, the triangular pulses are no longer separated and
they overlap.

If x,(?) and x,(#) are both periodic signals with a common period T, the convolution of x,(#) and x,(?)
does not converge. In this case, we define the periodic convolution of x () and x,(?) as

F@)=x(1)® x,() =f0TO x(T)xy (2 —7)dT (2.70)
(a) Show that f(¥) is periodic with period T,
(b) Show that
a+T
[ =fa x(T)x,(t —T)dr 2.71)

for any a.

(c¢) Compute and sketch the periodic convolution of the square-wave signal x(¢) shown in Fig. 2-12
with itself.
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7 6 S 4 3 2 1 0

@

1 2

¥ir)

T=3
K] 4 5 (] 7

L ]

L

R

)
Fig. 211

i)

Fig. 212

(@) Since x,(?) is periodic with period T, we have

el

Lk

Xt+Ty—1)=x,(t - 7)

Then from Eq. (2.70) we have

To
fe+Ty) =f0 x@x,¢t+T,—1)dt

To
=f0 X (@)xy(t —T)dTr = f(1)

Thus, f(?) is periodic with period T,,.
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(b) Since both x (7) and x,(7) are periodic with the same period T, x,(7)x, (f — 7) is also periodic with period T,.
Then using property (1.88) (Prob. 1.17), we obtain

f@)= fOT° X)Xt —T)dr = f:”" x,(T)x%,(t — 1) dT

for an arbitrary a.

(c) We evaluate the periodic convolution graphically. Signals x(t), x(f — 7), and x(7)x(f — 7) are sketched in
Fig. 2-13(a), from which we obtain

A%t 0<t=T,/2
f= and  f@+To)=f(@)
—A%t—Tp) T,/2<t=<T,

which is plotted in Fig. 2-13(b).

x(1) x(1)
A A

L T, 0 T, T T L T, 0 T, T, v
, 2 2 2 2 :
| | | - 2
; xt—1) : Qzte— ; xit—k ' -eqq 7
; A ‘ I i :
* 4 — A ;
E i i E - i : ] : -
Lt oth i T, 0T tTi
o 2 P2 P2 o
E H : E H T H : ] TI:I -
£ xfrjelt-1) T Oecte—2 ; X)) o E‘H ‘o
'og . o a2 i HE N
v a2l o4 b2l F !

1 1 > ] >
T 0T T T To 0 To T, T

2 ) 2 2
fie)
t

(b)
Fig. 2-13
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Properties of Continuous-Time LTI Systems

2.9. The signals in Figs. 2-14(a) and () are the input x(#) and the output y(?), respectively, of a certain
continuous-time LTT system. Sketch the output to the following inputs: (a) x(t — 2); (b) 12x(t).

(a) Since the system is time-invariant, the output will be y(¢r — 2), which is sketched in Fig. 2-14(c).
(b) Since the system is linear, the output will be % y(#), which is sketched in Fig. 2-14(d).

it it
2
: 1
v 0 1 2 3

(a) (b)

¥it—2) LI
E,rﬂ
2
1 |
i I | L L L A
1 o 1 2 3

(© (@)
Fig. 214

-~
~

Lk ]
Lk ]

ke
[=]
-
ma
(=]
£
o

2.10. Consider a continuous-time LTI system whose step response is given by
s() =e"u(®
Determine and sketch the output of this system to the input x(#) shown in Fig. 2-15(a).
From Fig. 2-15(a) the input x(#) can be expressed as
x(H) =u(t—1) — u( — 3)
Since the system is linear and time-invariant, the output y(?) is given by

y(O) = st — 1) — st — 3)
=e Dyt —1)— e Iyt — 3)

which is sketched in Fig. 2-15(b).
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2.11. Consider a continuous-time LTI system described by (see Prob. 1.56)

(@)
(b)

(@)

(b)

_ _ 1 «+112
y(0)=T{x(t)} = ;f,_m x(r)dt

Find and sketch the impulse response A(?) of the system.
Is this system causal?
Equation (2.72) can be rewritten as

t+T/2

1 1 -T2
YO=7J x(r)dr—;f_w x(r)dr

Using Eqgs. (2.61) and (2.9), Eq. (2.73) can be expressed as

L T el L
y(t)—Tx(t) u(t+ 2) Tx(t) u(t 2)

1 T T
=x(t)*—|ult+—|—u|t——||=x(@)* h(t
) T ( 2) ( 2) () * h(t)
Thus, we obtain
/T —-TR<t=<T/2
h(t)=lut+—T —ut——T = .
T 2 2 0 otherwise

which is sketched in Fig. 2-16.

From Fig. 2-16 or Eq. (2.75) we see that () # O for < 0. Hence, the system is not causal.

hif)

if
T

Ll |

Tr2 0 Tz
Fig. 216

(2.72)

(2.73)

(2.74)

(2.75)

2.12. Let y(f) be the output of a continuous-time LTI system with input x (7). Find the output of the system if
the input is x'(#), where x'(¢) is the first derivative of x(z).

From Eq. (2.10)

()= heyxx0)= [~ h@)x(t —7)dv

Differentiating both sides of the above convolution integral with respect to ¢, we obtain

4
dt
=fi° h(T)x'(t — t)dT = h(t) * X'(t)

()= %[ 7 - dr] — [ Lt - ) dr)

which indicates that y'(?) is the output of the system when the input is x'(¢).

2.13. Verify the BIBO stability condition [Eq. (2.21)] for continuous-time LTI systems.

Assume that the input x(#) of a continuous-time LTI system is bounded, that is,

[x(®)] =k, all ¢

(2.76)

2.77)
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Then, using Eq. (2.10), we have

ly)|= ‘ [ oxt-vdr|= [ |h@)xt - )|dr
= [*Ir@||lx¢ —D]dr =k [ |n@)|dr
since |x(t — )| < k, from Eq. (2.77). Therefore, if the impulse response is absolutely integrable, that is,
[ |h@dr=K <o

then |y(#)| =< k,K = k, and the system is BIBO stable.

2.14. The system shown in Fig. 2-17(a) is formed by connecting two systems in cascade. The impulse
responses of the systems are given by 4 (#) and h,(?), respectively, and

h (1) = e u(1) hy(t) = 2e"u(t)

(a) Find the impulse response A(f) of the overall system shown in Fig. 2-17(b).
(b) Determine if the overall system is BIBO stable.

x(0) w(t) y(0)
—> h) —— 0

@

—_—> ) —>

(b)

Fig. 2-17

(a) Let w(z) be the output of the first system. By Eq. (2.6)
w(t) = x(f) * h (0 (2.78)
Then we have
(@ = w(@®) * hy() = [x(2) * h(D)] * h () (2.79)
But by the associativity property of convolution (2.8), Eq. (2.79) can be rewritten as
YO = x(@) * [h,(©) * hy(D] = x(2) * h(?) (2.80)
Therefore, the impulse response of the overall system is given by
h(®) = h,(1) * hy(D) (2.81)

Thus, with the given h,(f) and h,(7), we have

o= [ @k - d= [ e u@ 2e u - ) de

= 23_'f:° e u@)u —t)dr=2e" [f;e_f dr]u(t)

=2(¢"— e u@)
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(b)

Using the above A(f), we have

[ |hodr=2f 7~ ey dr = Z[f:e_’ dr [re dT]

=2(l—i)=l<oo
2

Thus, the system is BIBO stable.

Eigenfunctions of Continuous-Time LTI Systems

2.15. Consider a continuous-time LTI system with the input-output relation given by

(@)
(b)
(©)

(@)

(b)

()]

y()= f:me‘_('_”x(r) dr (2.82)

Find the impulse response A(#) of this system.
Show that the complex exponential function e* is an eigenfunction of the system.

Find the eigenvalue of the system corresponding to ¢ by using the impulse response h(f) obtained
in part (a).

From Eq. (2.82), definition (2.1), and Eq. (1.21) we get

W= [ e o@dr=e Y =e 1>0

Thus, h(t)= e "u(t) (2.83)
Let x(f) = e*. Then
y(t)=f:we_(’_” e dr= e_'fiwe(””’ dr

L et ifRes>-1 (2.84)
s+1
Thus, by definition (2.22) e* is the eigenfunction of the system and the associated eigenvalue is
1
A= (2.85)
s+1

Using Eqs. (2.24) and (2.83), the eigenvalue associated with e* is given by
A=H@)=[" hwe " dr=[" ¢ ume " dr
= [e et ar = L fRes>—1
0 s+1

which is the same as Eq. (2.85).

2.16. Consider the continuous-time LTI system described by

1 +T/2
Y=o I, '_TT ,, ¥(@)dT (2.86)

(a) Find the eigenvalue of the system corresponding to the eigenfunction e*.

(b) Repeat part (a) by using the impulse function A(#) of the system.
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(a) Substituting x(7) = e*Tin Eq. (2.86), we obtain

4T

1
yO= 7ot €

— L(esT/Z _ e—sT/Z)exr = A ext
sT

Thus, the eigenvalue of the system corresponding to e is

A= é(esle _ e—sT/Z) (2.87)

(b) From Eq. (2.75) in Prob. 2.11 we have

-4

Using Eq. (2.24), the eigenvalue H(s) corresponding to e is given by

_1
h= =

_|ur -TR<t<T/2
0 otherwise

_r EPSN UrC  UPSTy S V)
H(s)—f_wh(r)e dt—T o d‘r—ST(e e )

which is the same as Eq. (2.87).

2.17. Consider a stable continuous-time LTI system with impulse response /(#) that is real and even. Show
that cos wt and sin wt are eigenfunctions of this system with the same real eigenvalue.

By setting s = jw in Egs. (2.23) and (2.24), we see that ¢/’ is an eigenfunction of a continuous-time LTI system
and the corresponding eigenvalue is

A=H(jo)= [~ h@)e " dv (2.88)
Since the system is stable, that is,

[ |h@|dr <o

then f:' h(z)e /¥t

dr=[" ||

dr =f:| h(r)| dr < o
since |e™#?| = 1. Thus, H(jw) converges for any w. Using Euler’s formula, we have
H(jw)= f: h(z) e % dy = f; h(z)(cos wT — j sin wT) dv

=f_wwh(r)cos wtdr — jf:oh(r) sin wt dt (2.89)

Since cos wtis an even function of 7 and sin wtis an odd function of 7, and if A(?) is real and even, then A(T)
cos wrtis even and A(7) sin wtis odd. Then by Eqgs. (1.75a) and (1.77), Eq. (2.89) becomes

H(jw)= Zf:h(r)cosandt (2.90)
Since cos wris an even function of w, changing wto —w in Eq. (2.90) and changing j to — j in Eq. (2.89), we have

H(—jw)= H(jw)* = Zf:h(t)cos(—wr) dt

=2f:h(t)cosw‘rd‘r= H(jw) 291)
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Thus, we see that the eigenvalue H(jw) corresponding to the eigenfunction ¢/’ is real. Let the system be
represented by T. Then by Eqs. (2.23), (2.24), and (2.91) we have

T{e/*'} = H(jw) e/ (2.92a)
T{e/®'} = H(—jw) e /*' = H(jw) e~/*' (2.92b)

Now, since T is linear, we get

T{cos r} = T{%(ef‘"' +e—f‘°'>}= Loy + Lo

= H(jw){%(ef‘"’ + e‘f‘”’)} — H(jw) cos ot (2.93a)
. 1 jwt — jot 1 jwt 1 — jot
and T{smwt}=T{—_(e’ —e/ )}=—,T{e’ }—=—T{e '}
2j 2j 2j
=H (jw){%j(e"”' - e"‘”’)} = H(jw)sin wt (2.93b)

Thus, from Egs. (2.93a) and (2.93b) we see that cos w? and sin w! are the eigenfunctions of the system with the
same real eigenvalue H(jw) given by Eq. (2.88) or (2.90).

Systems Described by Differential Equations

2.18. The continuous-time system shown in Fig. 2-18 consists of one integrator and one scalar multiplier.
Write a differential equation that relates the output y(#) and the input x(?).

x(f) e(f) ¥it)
E P f

<Je
Fig. 218

Let the input of the integrator shown in Fig. 2-18 be denoted by e(¢). Then the input-output relation of the integrator
is given by

y(t)=fiwe(r)dr (2.94)

Differentiating both sides of Eq. (2.94) with respect to ¢, we obtain

dy(1) _ 295
yr e(t) (2.95)

Next, from Fig. 2-18 the input e(?) to the integrator is given by
e(t) = x(t) — ay(1) (2.96)

Substituting Eq. (2.96) into Eq. (2.95), we get

dy@® _ .
I x(®)—ay(®)
or % +ay(t)= x(t) 297)

which is the required first-order linear differential equation.
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2.19. The continuous-time system shown in Fig. 2-19 consists of two integrators and two scalar multipliers.
Write a differential equation that relates the output y(#) and the input x(?).

v

4 j- ¥l

Fig. 219

Let e(#) and w(z) be the input and the output of the first integrator in Fig. 2-19, respectively. Using Eq. (2.95), the
input to the first integrator is given by

e(t)= % =—aw()— ay () + x(t) (2.98)

Since w(?) is the input to the second integrator in Fig. 2-19, we have

dy(t)

=20 2.99
w(r) ” (2.99)
Substituting Eq. (2.99) into Eq. (2.98), we get
a*y(t) dy(t)
dyTZ —a };—t —ay(®)+x(t)
2
or a0 |, DOy vy = xy (2.100)

> ' ar
which is the required second-order linear differential equation.

Note that, in general, the order of a continuous-time LTI system consisting of the interconnection of integrators
and scalar multipliers is equal to the number of integrators in the system.

2.20. Consider a continuous-time system whose input x(#) and output y(?) are related by

B L vy = x) (2.101)

dt

where a is a constant.

(a) Find y(#) with the auxiliary condition y(0) = y, and
x(t) = Ke™*" u(?) (2.102)
(b) Express y(?) in terms of the zero-input and zero-state responses.
(a) Let
YO = Y0 + 3,0
where yp(t) is the particular solution satisfying Eq. (2.101) and y,(?) is the homogeneous solution which satisfies

d
ydh_t(t) +ay, (1) =0 (2.103)
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(b)

Assume that
Y, = Ae bt t>0
Substituting Eq. (2.104) into Eq. (2.101), we obtain
—bAe™b + aAe " = Ke™"
from which we obtain A = K/(a — b), and

et t>0
a—>b

()=

To obtain y,(f), we assume
y,(H) = Be*!
Substituting this into Eq. (2.103) gives
sBe*' + aBe*' = (s + a) Be*' = 0
from which we have s = —a and
y,(t) = Be

Combining yp(t) and y,(7), we get
y(t)= Be ™ + K oo 4o
a—b

From Eq. (2.106) and the auxiliary condition y(0) = y,, we obtain

K
a—>b

B=y,—

Thus, Eq. (2.106) becomes

yn= ()’0 T
For r < 0, we have x(f) = 0, and Eq. (2.101) becomes Eq. (2.103). Hence,
y(t) = Be™™ <0
From the auxiliary condition y(0) = y, we obtain

YO = ye t<0

—

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

Combining Eqs. (2.107) and (2.108), y(#) can be expressed in terms of y . (¢) (zero-input response) and y, ()

(zero-state response) as

()= Yoo + X (e — e M yu(r)
a—>b
=y, () + y,5()

at

where V(1) =o€~

V(1) = —= S =)

a-

(2.109)

(2.110a)

(2.110b)
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2.21. Consider the system in Prob. 2.20.

(@)
(b)

(@)

(b)

Show that the system is not linear if y(0) = y, # 0.
Show that the system is linear if y(0) = 0.

Recall that a linear system has the property that zero input produces zero output (Sec. 1.5E). However, if we
let K = 0 in Eq. (2.102), we have x(f) = 0, but from Eq. (2.109) we see that

y(@® =y, #0 Yo #* 0

Thus, this system is nonlinear if y(0) = y, # 0.

If y(0) = 0, the system is linear. This is shown as follows. Let x,(f) and x,(¢) be two input signals, and let y,(?)
and y,(?) be the corresponding outputs. That is,

M4‘ay.(t)=x|(t) (2.111)
dt
M+ay2(t)=x2(t) (2.112)
dt
with the auxiliary conditions
¥1(0) = y,(0) =0 (2.113)

Consider
x(1) = ax,(t) + a,x(0)

where a, and «, are any complex numbers. Multiplying Eq. (2.111) by «; and Eq. (2.112) by ¢, and adding,
we see that

(O = ay () + a,y,(0)
satisfies the differential equation

dy®) _
ar +ay()=x()

and also, from Eq. (2.113),

y©0) = ay,(0) + a,y,(0) = 0

Therefore, y() is the output corresponding to x(f), and thus the system is linear.

2.22. Consider the system in Prob. 2.20. Show that the initial rest condition y(0) = 0 also implies that the
system is time-invariant.

Let y,(?) be the response to an input x,(#) and

Then

and

x,(H =0 t=<0 (2.114)
DD+ ay,0) = 5,0) @.115)

t
y,0) =0 (2.116)

Now, let y,(7) be the response to the shifted input x,(f) = x,(# — 7). From Eq. (2.114) we have

X0 =0 t=1t (2.117)
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2.23

Then y,(f) must satisfy

% T ay, (1) = %,(0) @.118)

and ¥,(r) =0 (2.119)
Now, from Eq. (2.115) we have

dy,(t — 1)
dt

+ay(t—7)=x—T)=x()
If we let y,(#) = y,(t — 7), then by Eq. (2.116) we have
o=y (-17)=y0)=0
Thus, Egs. (2.118) and (2.119) are satisfied and we conclude that the system is time-invariant.

Consider the system in Prob. 2.20. Find the impulse response A(f) of the system.

The impulse response A(#) should satisfy the differential equation

% +ah(t)=06(t) (2.120)

The homogeneous solution 4,(f) to Eq. (2.120) satisfies

dh
_;t(’) +ah, (1)=0 2.121)

To obtain 4,(7), we assume
h,() = ce*
Substituting this into Eq. (2.121) gives
sces' + ace’ = (s + a)ce’' =0
from which we have s = —a and
h () = ce™“u(r) (2.122)

We predict that the particular solution hp(t) is zero since hp(t) cannot contain 6(f). Otherwise, A(f) would have a
derivative of d(f) that is not part of the right-hand side of Eq. (2.120). Thus,

h(f) = ce " u(t) (2.123)
To find the constant ¢, substituting Eq. (2.123) into Eq. (2.120), we obtain
d —at —at
E[ce u(t)] + ace “u(t)=6(t)

or —ace “u(t)+ce ™ % +ace” ™ u(t)=96(t)

Using Egs. (1.25) and (1.30), the above equation becomes

ce ™ du(t) _

—at _ _
o ce CO()=co(t)=48(t)

so that ¢ = 1. Thus, the impulse response is given by

h(t) = e~ u(r) (2.124)
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2.24 Consider the system in Prob. 2.20 with y(0) = 0.
(a) Find the step response s(?) of the system without using the impulse response A(?).
(b) Find the step response s(#) with the impulse response A(?) obtained in Prob. 2.23.
(¢) Find the impulse response /() from s(#).

(a) InProb.2.20
x() = Ke " u()

Setting K = 1, b = 0, we obtain x(r) = u(?) and then y(#) = s(#). Thus, setting K = 1,5 = 0, and y(0) = y, = 0
in Eq. (2.109), we obtain the step response

s(t)= é(l —e “Nu() (2.125)
(b) Using Egs. (2.12) and (2.124) in Prob. 2.23, the step response s(?) is given by
so={_nwdr={ e u@dr
- [ fiwe_“’d‘r]u(t) = %(1 — e “u(t)

which is the same as Eq. (2.125).
(c¢) Using Egs. (2.13) and (2.125), the impulse response A(?) is given by

dfl _
h(t)=s'(t)=—|—(1—e “u(t
=50) dt[a( e )u()]
=e “ut)+ l(1 —e Myu'(t)
a
Using Eqgs. (1.25) and (1.30), we have
1 —aty 1 —at 1
—(l—eWy=—>10—-e “)o@t)y=—10-1Do@)=0
a a a
Thus, h(t)=e “u(t)
which is the same as Eq. (1.124).
2.25. Consider the system described by
Y@ + 2y(t) = x(t) + x'(t) (2.126)
Find the impulse response A(#) of the system.
The impulse response A(#) should satisfy the differential equation
h'(t) + 2h@t) = o(t) + 6'(2) (2.127)
The homogeneous solution £,(f) to Eq. (2.127) is [see Prob. 2.23 and Eq. (2.122)]
h(t) = c.e” ™ u(t)

Assuming the particular solution hp(t) of the form

h () = c,8(t)
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the general solution is
h(t) = c,e”? u(t) + c,0(1) (2.128)

The delta function §(¢) must be present so that A'(f) contributes §'(?) to the left-hand side of Eq. (1.127).
Substituting Eq. (2.128) into Eq. (2.127), we obtain

= 2ce7Mu(t) + c, e7Mu'(t) + c,0'(t) + 2c,e ¥ u(t) + 2¢, ()
=0@)+ 6

Again, using Eqs. (1.25) and (1.30), we have
(¢, + 2¢,) 8(t) + ¢, 8'(t) = 6(t) + 8'(1)
Equating coefficients of d(¢) and §'(¢), we obtain
¢, +2,=1 c,=1
from which we have ¢, = —1 and ¢, = 1. Substituting these values in Eq. (2.128), we obtain
h(t) = —e 2 u(t) + 8(t) (2.129)

Responses of a Discrete-Time LTI System and Convolution

2.26 Verify Eqgs. (2.36) and (2.37); that is,
(a) x[n] * h[n] = h[n] * x[n]
(b) A{x[n] * h\[n 1} * hy[n] = x[n] * {h,[n] * h,[n]}

(a) By definition (2.35)

©

x[n]*h[n]= E x[k1h[n— k]

k=—o

By changing the variable n — k = m, we have

o o

x[n]*h[n]= E x[n— mlh[m] = E h[m]x[n — m] = h[n]*x[n]

m=—o m=—o

(b) Letx[n] * hj[n] = f,[n] and h [n] * h,[n] = f,[n]. Then

©

Alnl= Y xlkIy[n— k]

k=—o

and {x[n]*h([n]}*hy[n]= filn]*h,[n]= E filmlh,y[n—m]

m=—o

0

-3 ix[k]hl[m—k]}hﬂn—m]

m=—ow |k=—o

Substituting r = m — k and interchanging the order of summation, we have

{x[nl*hy[n]} xhy[n] = Y, x[k][ > h.[r]hz[n—k—r]]

k=—c r=—o
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Now, since
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L= mirlhyln—r]

we have

r=—o

®

hHln=kl= Y hlrihyln—k-r]

Thus,

r=—o

o

k=—o

{(x(n]*m[n]}xhyln]= Y x[K] fyln— k]

= x[n]* fo[n]= x[n]= {h[n]* hy[n]}

2.27. Show that
(a) x[n] * 6[n] = x[n]
(b)

x[n] * 8[n — ny] = x[n — ng]

o<

x[n]*uln] = 2 x[k]

k=—o

()

n—ngy

x[nl*uln—nol= Y x[k]

k=—

(@)

(@)

©

(2.130)
(2.131)

(2.132)

(2.133)

By Eq. (2.35) and property (1.46) of d[n — k] we have

x[n]*8[n] = E x[k18[n— k]= x[n]

k=—o

(b)

Similarly, we have

©

x[n]*8[n—ngl= Y x[k18[n— k= ny]=x[n—ny]

k==

()]

®

©

By Eq. (2.35) and definition (1.44) of u[n — k] we have

n

x[nl*uln]= E x[kluln—k]= E x[k]

k=—o

(@

In a similar manner, we have

©

k=—o

n—ng

x[nl*uln—nol= Y x(kKluln—k=nol= Y x[k]

k=—o

k=—o

2.28 The input x[n] and the impulse response h[n] of a discrete-time LTI system are given by

x[n] = uln]

h[n] = o u[n]

(a) Compute the output y[n] by Eq. (2.35).
(b) Compute the output y[n] by Eq. (2.39).

(a) By Eq.(2.35) we have

0<a<l

©

y[n]= x[n]*h[n]= E x[k]hln — k]

k=—o
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— o

Sequences x[k] and A[n — k] are shown in Fig. 2-20(a) for n < 0 and n > 0. From Fig. 2-20(a) we see that
for n < 0, x[k] and h[n — k] do not overlap, while for n = 0, they overlap from k = 0 to k = n. Hence, for

n<0,y[n]=0.Forn=0,wehave

yln]= ia”"‘
k=0

A

2 3 ;
him—K]
1 n<0
XEA T T "
I v} K
hin - K]
1 n=0
ot?? T I e .
0 n
@
Fig. 2-20

b f—y
v

Changing the variable of summation kto m = n — k and using Eq. (1.90), we have

Mo

ylnl=

m=n

Thus, we can write the output y[n] as

_ ntl
y[n]=(1 @ ]u[n]
—Qa

1

which is sketched in Fig. 2-20(b).
(b) ByEq.(2.39)

©

y[n]= h{n]*x[n]= E hlk]x[n — k]

k=—o

n
a” = Ea”’=
m=0

(2.134)

Sequences A[k] and x[n — k] are shown in Fig. 2-21 for n < 0 and n > 0. Again from Fig. 2-21 we see that
for n <0, h[k] and x[n — k] do not overlap, while for n = 0, they overlap from k = O to k = n. Hence, for

n <0,y[n] = 0.For n =0, we have

< 1-a
- k_
yin] /an —

Thus, we obtain the same result as shown in Eq. (2.134).



hik]
1
- T T2 :
o123 K
x[m — k]
1.1
" 0 k
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Fig. 2-21

2.29 Compute y[n] = x[n] * h[n], where
(@) x[n] = a"uln], h[n] = B"uln]
b) x[n] = a™u[n], h[n] = a "u[-n],0 < a<1

(a) From Eq. (2.35) we have

0 ©

nl= Y alklhln—Kl= Y o ulklp" “uln - k]

k=—o k=—o

o

= Y "B ulkluln — k]

k=—o
. )
since ulklu[n— k]= {0

we have

n

Ynl= E dpE=p"Yy
k=0

k=0

Using Eq. (1.90), we obtain

21— (a/p)!
yln) = 1-(a/B)
B"(n+Du(n)

uln]

B—a
B"(n+Duln]

or

1 (ﬂn+l _an+|)u[n]
yln]=

0<k=n

otherwise

5]

a+f

o=

a+f

o=

CHAPTER 2 Linear Time-Invariant Systems

(2.135a)

(2.135b)
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(b)

yln]= E x[klh[n—k]= i afulkla™ " ul— (n— k)]

k=—o k=—o

= i a "a*ulklulk — n]

k=—o
For n = 0, we have

0<k
otherwise

ulklulk — n]= {i)

Thus, using Eq. (1.91), we have

L —-n

yim=a" Y a* =a" Y (@) = 1a - n=0 (2.136a)
£=0 £=0 -a
For n = 0, we have
1 n<k
ulklulk — n]= .
0 otherwise
Thus, using Eq. (1.92), we have
n < 2\k n a2n an
nl=a a’)y =a = n=0 2.136b
yln] 2”( ) ik (2.136b)
Combining Eqgs. (2.136a) and (2.136b), we obtain
o
y[n]= 3 alln (2.137)
l-a
which is sketched in Fig. 2-22.
¥ln]

1TTTII IITTT! ,

2=-10 1 2 3

Fig. 2-22

2.30. Evaluate y[n] = x[n] * h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an analytical technique,
and (b) by a graphical method.

xfn] hln]

11T 111
9 L * L L *
10123 n 1012 n

Fig. 2-23
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(a) Note that x[n] and A[n] can be expressed as

x[n] = 8[n] + 6[n — 11 + 6[n — 2] + 6[n — 3]
h[n] = 8[n] + 6[n — 1] + 8[n — 2]

Now, using Eqgs. (2.38), (2.130), and (2.131), we have

x[n] = h[n] = x[n] * {6[n] + 8[n — 1] + 6[n — 2]}
= x[n] * 8[n] + x[n] * 6[n —1] + x[n] * 8[n — 2]
=x[n] +x[n—1]1+x[n— 2]

Thus, yln] = é[n] + 6[n — 1] + d[n — 2] + 6[n — 3]
+ 6[n— 11+ 8[n— 2]+ 6[n— 3] + 6[n — 4]
+ 6[n— 2]+ 8[n— 3]+ 6[n— 4] + 6[n — 5]

or yln] = 6[n] + 28[n — 1] + 36[n — 2] + 36[n — 3] + 26[n — 4] + 6[n — 5]
or yln] = {1,2,3,3,2,1}

(b) Sequences h[k], x[k] and h[n — k], x[kK]1h[n — K] for different values of n are sketched in Fig. 2-24.
From Fig. 2-24 we see that x[k] and A[n — k] do not overlap for n < 0 and n > 5, and hence, y[n] = O for
n<0andn>5.For0 < n =35, x[k] and h[n — k] overlap. Thus, summing x[k]h[n — k] for0 =n <35,
we obtain

y01=1 y1=2 21 =3 y31=3 41 =2 ys1=1
or

ynl={1,2,3,3,2,1}

which is plotted in Fig. 2-25.

2.31. If x,[n] and x,[n] are both periodic sequences with common period N, the convolution of x,[»] and x,[n]
does not converge. In this case, we define the periodic convolution of x [n] and x,[n] as

N-1
finl=x[n®x,[n]= Y x[klx,[n— k] (2.138)
k=0

Show that f[n] is periodic with period N.

Since x,[n] is periodic with period N, we have
X[(n— k) + N]=x,[n— k]

Then from Eq. (2.138) we have

N-1 N-1
fln+N1= Y xlklxn[n+ N = k=Y x[klxl(n—k)+N]
k=0 k=0
N-1
= ¥ nlklx[(n— k)= fln]
k=0

Thus, f[n] is periodic with period N.
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hlK] x[K]
111 1111
® o000 > ® o-o-o >
-101234 k -101234 k
hin — K] x[klhn — K]
n<0
~4-3-2-10123 4 k 101234 k
hin — K] x[Klhln — K]
n=0
321012 3 4 k 10123 4 K
hin — K] x[klhln — K]
I1 Lot
°® oo 0000 > ®
210123 4 k -101 234 k
hin — K] lx[k]h[n —K
1 I
° o000 > ® o000 >
-101234 k -101234 k
hin — K] x[Klhln — K]
11 [11
*-® oooo > T oo >
-1012345 k -1012345 k
hin — K] x[Klhln — K]
11 1T
0o -9 > o-o-o *o-o >
10123456 k -1012345 k
hin — K] x[Klhln — K]
11 AT
— o e0¢eoo e >
-10123456 k -1012345 k
hin — K] x[Klhln — K]
TTT n>5
— o000 ® > 000000 0— >
-101234567 k -1012345 k
Fig. 2-24

¥lrl

I,

Fig. 2-25

1 3
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2.32. The step response s[n] of a discrete-time LTI system is given by
s[n] = ou[n] 0<a<l1

Find the impulse response h[n] of the system.
From Eq. (2.41) the impulse response A[n] is given by

h{n] = s[n] — s[n — 11 = a"uln] — a" 'uln — 1]
={6[n] + a™[n— 11} — a" luln — 1]
=4[n] — (1 — a)ya" 'uln — 1]

Properties of Discrete-Time LTI Systems

2.33. Show that if the input x[n] to a discrete-time LTI system is periodic with period N, then the output y[r]
is also periodic with period N.

Let h[n] be the impulse response of the system. Then by Eq. (2.39) we have

0

yinl= Y hiklx[n— k]

k=—o

Letn = m + N.Then

ylm+N]= i hlk]x[m+ N — k]= i hlk]x[(m — k)+ N]
k=—o k=—o

Since x[n] is periodic with period N, we have

x[(m—k)+ N]=x[m— k]
Thus, ylm+ N]= i hlk]x[m — k]=y[m]

k=—o

which indicates that the output y[#] is periodic with period N.
2.34. The impulse response h[n] of a discrete-time LTI system is shown in Fig. 2-26(a). Determine and
sketch the output y[n] of this system to the input x[n] shown in Fig. 2-26(b) without using the

convolution technique.

From Fig. 2-26(b) we can express x[n] as

x[n] = 8[n — 2] — 8[n — 4]

hin] xin]

(@) (b)
Fig. 2-26
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Since the system is linear and time-invariant and by the definition of the impulse response, we see that the output
y[n] is given by

ylnl = hln — 2] = hln — 4]

which is sketched in Fig. 2-27.

hln-2]
JRin
67
-~ - i ¥n] = hln—2]—hln—4]
0123::5113 n
1+ 1r
1,11
8 9§ L
hin—4] o] 1 2345 B O n
1_
1_
RRNEE
— e O
0123455?1 n
1_
Fig. 2-27

2.35. A discrete-time system is causal if for every choice of n, the value of the output sequence y[n] atn = n
depends on only the values of the input sequence x[n] for n =< n,, (see Sec. 1.5D). From this definition
derive the causality condition (2.44) for a discrete-time LTI system; that is,

0

h[n] =0 n<o0

From Eq. (2.39) we have

ylnl= > hlklx[n— k]
k=—
-1 ©
= E h[k]x[n— k] + E h[klx[n— k] (2.139)

k=—o k=0
Note that the first summation represents a weighted sum of future values of x[n]. Thus, if the system is causal, then
-1
>, hlklx{n—k1=0
k=—o
This can be true only if

h[n] =0 n<o0

Now if A[n] = O for n < 0, then Eq. (2.139) becomes
ylnl="Y hlklx[n K]
£=0

which indicates that the value of the output y[n] depends on only the past and the present input values.
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2.36. Consider a discrete-time LTI system whose input x[n] and output y[n] are related by

yln]= 2 257 [k +1]

k=—
Is the system causal?

By definition (2.30) and Eq. (1.48) the impulse response h[n] of the system is given by

h[n]= i 258k + 1] = i 27Dk + 1)=2""*D i S[k+1]

k=—o k=—o k=—o
By changing the variable k£ + 1 = m and by Eq. (1.50), we obtain

n+l
hin=2""0 N sim1=2"""Duln +1] (2.140)

m=—s
From Eq. (2.140) we have A[—1] = u[0] = 1 # 0. Thus, the system is not causal.
2.37. Verify the BIBO stability condition [Eq. (2.49)] for discrete-time LTI systems.
Assume that the input x[rn] of a discrete-time LTI system is bounded, that is,
[x[n]| <k, alln (2.141)
Then, using Eq. (2.35), we have

©

E h[k1x[n — k]

k=—o

|y[n]|= = Y [kl xin— K=k Y |hK]|
k=—o k=—o

Since |x[n — k]| < k, from Eq. (2.141). Therefore, if the impulse response is absolutely summable, that is,

i |hlk]|=K <o

k=—o

we have
|y[n]| = kK =k, <
and the system is BIBO stable.

2.38. Consider a discrete-time LTI system with impulse response k[n] given by

h[n] = ao"u[n]

(a) Is this system causal?
(b) Is this system BIBO stable?

(a) Since h[n] = 0 for n < 0, the system is causal.

(b) Using Eq. (1.91) (Prob. 1.19), we have

i |nik]|= i |a"u[n]|=§|a|"= ! la|<1
k==o k=0 1-|a|

k=—o

Therefore, the system is BIBO stable if || < 1 and unstable if |a| = 1.
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Systems Described by Difference Equations

2.39. The discrete-time system shown in Fig. 2-28 consists of one unit delay element and one scalar
multiplier. Write a difference equation that relates the output y[n] and the input x[n].

xm] ¥in]

Unit
delay

Fig. 2-28

In Fig. 2-28 the output of the unit delay element is y[n — 1]. Thus, from Fig. 2-28 we see that
y[n] = ay[n — 1] + x[n] (2.142)
or y[n] — ayln — 1] = x[n] (2.143)

which is the required first-order linear difference equation.

2.40. The discrete-time system shown in Fig. 2-29 consists of two unit delay elements and two scalar
multipliers. Write a difference equation that relates the output y[#] and the input x[#n].

x[n]

]
*

Unit < Linit
yln -2] | deldy yln = 1] delay

Fig. 2-29

In Fig. 2-29 the output of the first (from the right) unit delay element is y[n — 1] and the output of the second (from
the right) unit delay element is y[n — 2]. Thus, from Fig. 2-29 we see that

ylnl = ayln — 11 + a,y[n — 2] + x[n] (2.144)
or yln] — ayln — 1] — a,y[n — 2] = x[n] (2.145)
which is the required second-order linear difference equation.

Note that, in general, the order of a discrete-time LTI system consisting of the interconnection of unit delay
elements and scalar multipliers is equal to the number of unit delay elements in the system.

2.41. Consider the discrete-time system in Fig. 2-30. Write a difference equation that relates the output y[n]
and the input x[n].

x[n] Ly qln] L 5"[”' =
n ng L
|
Unit
2
ry dalla',r
qln —1]

Fig. 2-30



0_ CHAPTER 2 Linear Time-Invariant Systems

Let the input to the unit delay element be g[n]. Then from Fig. 2-30 we see that

qln] = 2q[n — 1] + x [n] (2.146a)
y[nl = gln] + 3¢[n — 1] (2.146b)

Solving Eqs. (2.146a) and (2.146b) for g[n] and g[n — 1] in terms of x[n] and y[n], we obtain

gln] = %y[n] +§x[n] (2.1472)

gln—11= < y[n] - ~xn] (2.147b)
5 5
Changing nto (n — 1) in Eq. (2.147a), we have
2 3
qln— l]=§y[n— l]+§x[n— 1] (2.147¢)
Thus, equating Eq. (2.147b) and Eq. (2.147c), we have
1 1 2 3
—y[n]—=x[n]==y[n—1]+=x[n—1
5Y[]S[]Sy[ ]5[ 1

Multiplying both sides of the above equation by 5 and rearranging terms, we obtain
y[n] — 2y[n — 1] = x[n] + 3x[n — 1] (2.148)

which is the required difference equation.

2.42. Consider a discrete-time system whose input x[#] and output y[r] are related by

yln] — ay[n — 1] = x[n] (2.149)
where a is a constant. Find y[n] with the auxiliary condition y[—1] = y_, and
x[n] = Kb"u[n] (2.150)

Let yln] = y,[n] +y, [n]

where yp[n] is the particular solution satisfying Eq. (2.149) and y,[n] is the homogeneous solution which satisfies

y[n] —ayln—1]1=0 (2.151)
Assume that

y,[n] = Ab" n=0 (2.152)
Substituting Eq. (2.152) into Eq. (2.149), we obtain

Ab" — aAb"~! = Kb"
from which we obtain A = Kb/(b — a), and

y,,[n]=%b"+I n=0 (2.153)
To obtain y,[n], we assume

y,[n] = Bz

Substituting this into Eq. (2.151) gives

B"—aBz" '=(z—a)Bz"'=0
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2.43.

from which we have z = a and
y,[n] = Ba"
Combining yp[n] and y,[n], we get

K bn+l

y[n]=Ba”+b— n=0
—a

—

(2.154)

(2.155)

In order to determine B in Eq. (2.155) we need the value of y[0]. Setting n = 0 in Egs. (2.149) and (2.150), we have

y[0] — ay[—1] = y[0] — ay_, = x[0] = K
or Y0l =K +ay_,
Setting n = 0 in Eq. (2.155), we obtain

y[0]=B+KL
b—a

Therefore, equating Eqs. (2.156) and (2.157), we have

b
b—a

K+ay =B+K

from which we obtain

B=ay_,— K
Y-1 b—

Hence, Eq. (2.155) becomes

bn+l _ an+|

y[n]=y_la"+l+Kb— n=0
—a

For n < 0, we have x[n] = 0, and Eq. (2.149) becomes Eq. (2.151). Hence,
y[n] = Ba”"
From the auxiliary condition y[—1] = y_,, we have
yI-11=y_, = Ba™!
from which we obtain B =y _ a. Thus,
ylnl =y_a"*! n<o0
Combining Eqgs. (2.158) and (2.160), y[n] can be expressed as

+1 n+l

n
ylnl=y_,a""! +Kbb—u[n]

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)

Note that as in the continuous-time case (Probs. 2.21 and 2.22), the system described by Eq. (2.149) is not linear
if y[—1] # 0. The system is causal and time-invariant if it is initially at rest; that is, y[— 1] = 0. Note also that

Eq. (2.149) can be solved recursively (see Prob. 2.43).

Consider the discrete-time system in Prob. 2.42. Find the output y[n] when x[n] = K§[n] and

yi-1l=y_,=a.

We can solve Eq. (2.149) for successive values of y[n] for n = 0 as follows: rearrange Eq. (2.149) as

yln] = ay[n — 1] + x[n]

(2.162)
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Then
y[0] = ay[—1] + x[0] = ac + K
y[1] = ay[0] + x[1] = a(ac + K)
y[2] = ay[1] + x[2] = a*(aa + K)
y[n] = ay[n — 1] + x[n] = a"(@a + K) = a"*' a + a"K

Similarly, we can also determine y[n] for n < 0O by rearranging Eq. (2.149) as

yln=11=~ (y{n] = x{n)
Then y-1]=a
2= - 12~ ) =~a=aa
a a

yI- 31=%{y[— 21— x[- 2]} = a2a

y[- n]=%{y[—n+1]—x[—n+1]}=a_"+'a

Combining Eqgs. (2.163) and (2.165), we obtain

yln] = a"*! a + Ka"u[n]
Consider the discrete-time system in Prob. 2.43 for an initially at rest condition.
(a) Find in impulse response A[n] of the system.

(b) Find the step response s[n] of the system.
(¢) Find the impulse response A[n] from the result of part (b).

(a) Setting K = 1and y[—1] = a = 0 in Eq. (2.166), we obtain
h[n] = a"u[n]

(b) SettingK =1,b=1,and y[—1] = y_, = 0 in Eq. (2.161), we obtain

n+l
s[n]=(l_a )u[n]
l—a

(c) From Egs. (2.41) and (2.168) the impulse response A[n] is given by

n+l1 n
h[n]:s[n]—s[n—1]=(1_a )u[n]—(l_a )u[n—l]
1—a l1—a

Whenn =0,
h[01=(i:“ )u[0]=1
Whenn =1,
h[n]=;[1—a"+l —(1-a")]= ad-a_ .
1-a 1—
Thus, hln] = a"uln]

which is the same as Eq. (2.167).

CHAPTER 2 Linear Time-Invariant Systems

(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)
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2.45. Find the impulse response h[n] for each of the causal LTI discrete-time systems satisfying the following
difference equations and indicate whether each system is a FIR or an IIR system.

(a) y[n] = x[n] — 2x[n — 2] + x[n — 3]
) y[n] + 2y[n — 1] = x[n] + x[n — 1]
(© ylnl = 3yln — 2] = 2x[n] — x[n — 2]
(a) By definition (2.56)
hln] = 8[n] — 26[n — 21+ 8[n — 3]
or
hln] = {1,0, — 2,1}
Since h[n] has only four terms, the system is a FIR system.
(b) h[n] = —2h[n — 1] + 6[n] + 6[n — 1]
Since the system is causal, #[ —1] = 0. Then
h[0]=—2h[—1]+8[0]+6[-1]1=4[0]=1
(1] =—2h[0]+O6[1]1+6[0]=—2+1=—1
h[2]=—-2h[1]1+6[2]1+0[l]=-2(-1)=2
h[3]=—2h[2]+8[3]+8[2]=—2(2)=—22

h[n]=—2h[n—1]+68[n]+8[n—1]=(-1)"2"""
Hence, h[n]l=68[n]+ (12" uln—1]

Since h[n] has infinite terms, the system is an IIR system.

(¢) h[n]= %h[n —2]1+24[n]—d[n—2]
Since the system is causal, h[— 2]= h[—1]= 0. Then
h[0]= %h[— 2]+26[0]—6[—2]=26[0]1=2

h[1] =%h[— 11+26[1]-o6[—1]1=0

21~ O]+ 25(2] - 6[0]= £ ()=~ 1=0

h[3]= %h[l] +28[3]1-6[1]1=0

Hence, h[n]=268[n]

Since h[n] has only one term, the system is a FIR system.

SUPPLEMENTARY PROBLEMS

2.46. Compute the convolution y(r) = x(¥) = h(f) of the following pair of signals:

1 —a<t=a 1 —a<t<a
(a) x(t)= ., ht)= .

0 otherwise 0 otherwise

t o<t=T 1 0<t=2T
) x@t)= . h@)= .

0 otherwise 0 otherwise

(¢) x(t)=u(t—1), h(t)=e u(t)
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2.47.

2.48.

2.49.

2.50.

2.51.

2.52.

2.53.

Compute the convolution sum y[n] = x[n ] * h[n] of the following pairs of sequences:
(@) x{n] = u[n], h[n] = 2"u[—n]

(b) x[n] = u[n] — u[n — N], h[n] = ad"u[n],0 < a <1

(© xlnl = (3)'uln], hin] = 8[n] = 3 8[n — 1]

Show that if y(r) = x(r) * h(z), then
y'(t) = x'(1) * h(r) = x(1) * h'(£)
Show that
X0y % 8'(t) = X (1)
Let y[n] = x{n]  h[n]. Then show that
xn—n)*hln— n) = yln—n, — n,)
Show that

ny+N-1

M@ xnl= Y x[klxln—kl

k=no

for an arbitrary starting point n,.

The step response s(7) of a continuous-time LTI system is given by
5(8) = [cos w,f]u(?)

Find the impulse response A(f) of the system.

The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse responses of the
systems are given by

b)) = e 2 u(®) and hy(t) = 2e~"u(?)

—p Hll

x(f) ¥ty

ﬂ

Fig. 2-31

(a) Find the impulse response A(f) of the overall system.

(b) Is the overall system stable?



CHAPTER 2 Linear Time-Invariant Systems

2.54.

2.55.

2.56.

2.57.

2.58.

2.59.

Consider an integrator whose input x(f) and output y(f) are related by

yo= [ x@adr

(a) Find the impulse response h(f) of the integrator.

(b) Is the integrator stable?

Consider a discrete-time LTI system with impulse response A[n] given by
h[n] = 6[n — 1]
Is this system memoryless?

The impulse response of a discrete-time LTI system is given by
1 n

hln]=|—| uln

[n] ( 5 ) [n]

Let y[n] be the output of the system with the input
x[n] = 26[n] + 6[n — 3]

Find y[1] and y[4].

Consider a discrete-time LTI system with impulse response A[n] given by
1 n
hln]l=——]| uln—1
[n] ( > ) (n—1]

(a) Is the system causal?

(b) Is the system stable?

Consider the RLC circuit shown in Fig. 2-32. Find the differential equation relating the output current y(f) and the
input voltage x(¥).

[l
|
o

x(f) () wit)

Fig. 2-32

Consider the RL circuit shown in Fig. 2-33.
(a) Find the differential equation relating the output voltage y(#) across R and the the input voltage x(7).
(b) Find the impulse response A(f) of the circuit.

(c) Find the step response s(f) of the circuit.
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2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

() vt
x(0) C) n§ it — hy —

Fig. 2-33
Consider the system in Prob. 2.20. Find the output y(?) if x(f) = e~“u(t) and y(0) = 0.

Is the system described by the differential equation

dy(®) _
&t +5y(@)+2=x()

linear?

Write the input-output equation for the system shown in Fig. 2-34.

.D . ¥l
2 E

fn]

Fig. 2-34

Consider a discrete-time LTI system with impulse response

1 n=0,1
hln]= .
0 otherwise

Find the input-output relationship of the system.

Consider a discrete-time system whose input x[n] and output y[#n] are related by

1
yln]— EY[n —1]=x[n]
with y[—1] = 0. Find the output y[#] for the following inputs:

(@) x[n]= (—;) ulnl;

(b) x[n]= (—12) uln]

Consider the system in Prob. 2.42. Find the eigenfunction and the corresponding eigenvalue of the system.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

2.46. (a) y(t)={2a_|t| j1]<2a
0 |t|=2a
0 1<0
%tz 0<t=<T
®) y(t)=<%T2 T<t=2T

—%t2+2T—%T2 2T <t=<3T

0 ar<t

© %a—e”“”bua—n

1-n
247. (@) yn=1> n=0

2 n>0

0 n<o0

_ ntl

®) yim= | n=0=N-1

N

a"_NH(l—a) N-1<n
l-a

(¢) yln]=9[n]

2.48. Hint: Differentiate Eqs. (2.6) and (2.10) with respect to r.
2.49. Hint: Use the result from Prob. 2.48 and Eq. (2.58).
2.50. Hint: See Prob.2.3.

2.51. Hint: See Probs.2.31and 2.8.

2.52. h(t) = 6(1) — wy[sin wytlu(f)

2.53. (@) h(t) = (e +2e Hu®)
(b) Yes

2.54. (a) h(@) = u@®)
(b) No

2.55. No, the system has memory.
2.56. y[1] = landy[4] =2

2.57. (a) Yes; (b) Yes

2
258. (0 Rdy®) L 1dx0)
d* L dt  LC L dr



@ —

2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

dy@)

(a) 7t

R =R
+Z)’(t)— LX(t)

®) h(r)=§e‘“"“’u(x)

(© sty=[1-e ® u@)

te~ " u(r)

No, it is nonlinear.

2y[n] — y[n — 1] = 4x[n] + 2x[n — 1]

ylnl = x{n] + xn — 1]

4 o

®) ylnl=(n+ 1)(—12) uln]

(@) y[n]=6

CHAPTER 2 Linear Time-Invariant Systems



Laplace Transform and
Continuous-Time LTI Systems

3.1 Introduction

A basic result from Chap. 2 is that the response of an LTI system is given by convolution of the input and the
impulse response of the system. In this chapter and the following one we present an alternative representation
for signals and LTT systems. In this chapter, the Laplace transform is introduced to represent continuous-time
signals in the s-domain (s is a complex variable), and the concept of the system function for a continuous-time
LTI system is described. Many useful insights into the properties of continuous-time LTI systems, as well as
the study of many problems involving LTI systems, can be provided by application of the Laplace transform
technique.

3.2 The Laplace Transform

In Sec. 2.4 we saw that for a continuous-time LTI system with impulse response (%), the output y(#) of the
system to the complex exponential input of the form e*' is

y(0) = T{e’'} = H(s)e*' (3.1)
where H(s)= [ :oh(t)e_”dt (32)

A. Definition:

The function H(s) in Eq. (3.2) is referred to as the Laplace transform of A(#). For a general continuous-time
signal x(7), the Laplace transform X(s) is defined as

X(s)= [~ x(t)e *'dt (3.3)
The variable s is generally complex-valued and is expressed as
s=0+jw (34

The Laplace transform defined in Eq. (3.3) is often called the bilateral (or two-sided) Laplace transform in
contrast to the unilateral (or one-sided) Laplace transform, which is defined as

X, ()= [ x()e ' dt (3.5)

—
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where 0- = lim, _ (0 — ¢). Clearly the bilateral and unilateral transforms are equivalent only if
x(t) = 0 for t < 0. The unilateral Laplace transform is discussed in Sec. 3.8. We will omit the word “bilateral”
except where it is needed to avoid ambiguity.

Equation (3.3) is sometimes considered an operator that transforms a signal x(#) into a function X(s)
symbolically represented by

X(s)= £ {x(1)} (3.6)
and the signal x(#) and its Laplace transform X(s) are said to form a Laplace transform pair denoted as

x(f) <> X(s) 3.7

B. The Region of Convergence:

The range of values of the complex variables s for which the Laplace transform converges is called the region of
convergence (ROC). To illustrate the Laplace transform and the associated ROC, let us consider some examples.

EXAMPLE 3.1 Consider the signal
x(H) = e u(®) areal (3.8)
Then by Eq. (3.3) the Laplace transform of x(?) is

X(s)= f:e‘“’u(t)e‘”dz= f; e Gra gy

©

1 e—(s+a)t
s+a

Re(s) > —a 39

of sta

because lim, _, Le ¢t =0 only if Re(s + a) > 0 or Re(s) > —a.

Thus, the ROC for this example is specified in Eq. (3.9) as Re(s) > —a and is displayed in the complex plane
as shown in Fig. 3-1 by the shaded area to the right of the line Re(s) = —a. In Laplace transform applications,
the complex plane is commonly referred to as the s-plane. The horizontal and vertical axes are sometimes referred

to as the o-axis and the jw -axis, respectively.

jo jw

NN
N

_ M__

N
5,

_”

R,

s-plane

7

",
%,

S
- Y

=
...}.:‘:. \_-
N
o
'\.""\

T,

N
—

O
=
G

Fig. 3-1 ROC for Example 3.1.
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EXAMPLE 3.2 Consider the signal
x(H) = —e Yu(—1) areal

Its Laplace transform X(s) is given by (Prob. 3.1)

1
X(S)_s-i-—a RC(S)< —a

—

(3.10)

(3.11)

Thus, the ROC for this example is specified in Eq. (3.11) as Re(s) < —a and is displayed in the complex plane
as shown in Fig. 3-2 by the shaded area to the left of the line Re(s) = —a. Comparing Egs. (3.9) and (3.11), we see
that the algebraic expressions for X(s) for these two different signals are identical except for the ROCs. Therefore, in
order for the Laplace transform to be unique for each signal x(#), the ROC must be specified as part of the transform.

8
,
%Y

k4

‘\

S
N
N\
NN
St
S,
N N
1 e
\“\\ )
LY
N,
iy
\
Sy
N
-
M,

0 7

" 5

.y F
7

%

N
\.:\\.‘\

,

W - "-- oy
', % %, N o,
\':Q‘\\ e -
\\\
,

",

(a)
Fig. 3-2 ROC for Example 3.2.

C. Poles and Zeros of X(s):

Usually, X(s) will be a rational function in s; that is,

X(s)

\

o

_aps” +als'"_1 +-ta, ay (s—z)

MR

,
o
o
2

bys" +bys" ekl by (5= p)-

(b)
'(S_Zm)
"(S_Pn)

L J

(3.12)

The coefficients a, and b, are real constants, and m and n are positive integers. The X(s) is called a proper rational
function if n > m, and an improper rational function if n = m. The roots of the numerator polynomial, z,, are called
the zeros of X(s) because X(s) = O for those values of s. Similarly, the roots of the denominator polynomial, p,, are
called the poles of X(s) because X(s) is infinite for those values of s. Therefore, the poles of X(s) lie outside the ROC
since X(s) does not converge at the poles, by definition. The zeros, on the other hand, may lie inside or outside the
ROC. Except for a scale factor ay/b,, X(s) can be completely specified by its zeros and poles. Thus, a very compact
representation of X(s) in the s-plane is to show the locations of poles and zeros in addition to the ROC.

3 L)

Traditionally, an “Xx” is used to indicate each pole location and an “0” is used to indicate each zero. This is

illustrated in Fig. 3-3 for X(s) given by

2s+4 -9 s+2

X — —3
O P ast3 GG

Re(s)>—1

Note that X(s) has one zero at s = —2 and two poles at s = —1 and s = —3 with scale factor 2.
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Fig. 3-3 s-plane representation of X(s) = (2s + 4)/(s? + 4s + 3).

D. Properties of the ROC:

As we saw in Examples 3.1 and 3.2, the ROC of X(s) depends on the nature of x(#). The properties of the ROC
are summarized below. We assume that X(s) is a rational function of s.

Property 1:
Property 2:

Property 3:

Property 4:

Property 5:

The ROC does not contain any poles.

If x(?) is a finite-duration signal, that is, x(f) = 0 except in a finite interval £, = 1 = 1,
(= <1, and t, < ), then the ROC is the entire s-plane except possibly s = 0 or s = oo,

If x(?) is a right-sided signal, that is, x(#) = 0 for r < ¢, < o, then the ROC is of the form
Re(s) > o,,,

where 0, _equals the maximum real part of any of the poles of X(s). Thus, the ROC is a half-
plane to the right of the vertical line Re(s) = o, in the s-plane and thus to the right of all of

the poles of X(s).
If x(?) is a left-sided signal, that is, x(f) = 0 for £ > £, > —oo, then the ROC is of the form

Re(s) < 0.

where o, equals the minimum real part of any of the poles of X(s). Thus, the ROC is a half-
plane to the left of the vertical line Re(s) = g, in the s-plane and thus to the left of all of the

poles of X(s).

If x(?) is a two-sided signal, that is, x(?) is an infinite-duration signal that is neither right-
sided nor left-sided, then the ROC is of the form

o, <Re(s) < g,

where 0, and 0, are the real parts of the two poles of X(s). Thus, the ROC is a vertical strip
in the s-plane between the vertical lines Re(s) = o, and Re(s) = o,.

Note that Property 1 follows immediately from the definition of poles; that is, X(s) is infinite at a pole. For
verification of the other properties see Probs. 3.2 to 3.7.
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3.3 Laplace Transforms of Some Common Signals

—

A. Unit Impulse Function §(t):
Using Egs. (3.3) and (1.20), we obtain

L10)= [~ s *'dr=1  alls
B. Unit Step Function u(t):

L= [~ ue*'dt = f;'; e dt

oo

1

N

0+

Re(s)>0

@ | =

where 0* = lim,_, (0 + ¢).

C. Laplace Transform Pairs for Common Signals:

(3.13)

(3.14)

The Laplace transforms of some common signals are tabulated in Table 3-1. Instead of having to reevaluate the
transform of a given signal, we can simply refer to such a table and read out the desired transform.

TABLE 3-1 Some Laplace Transforms Pairs

x(t) X(s) ROC
(1) 1 All s
u(?) % Re(s) >0
—u(—1) % Re(s) < 0
tu(?) slz Re(s) >0
k!
t*u(d) s Re(s) >0
1
e~ y(r) Tt a Re(s) > —Re(a)
1
—e @ y(—1) Tt a Re(s) < —Re(a)
1
te= 4 u(t) G+ a)y Re(s) > —Re(a)
1
—te~aty(— 1) G+ap Re(s) < —Re(a)
s
cos W, fu(t) P Re(s) >0
0
in o, fu(f) %o Re(s) > 0
sin u e(s) >
0 5%+ w3
s+ a

e~ cos ytu(r)

e~ sin @tu(t)

Re(s) > —Re(a)

Re(s) > —Re(a)




®_ CHAPTER 3 Laplace Transform and Continuous-Time LTI Systems

3.4 Properties of the Laplace Transform

Basic properties of the Laplace transform are presented in the following. Verification of these properties is given
in Probs. 3.8 to 3.16.

A. Linearity:

If
x,(0) <> X,(s) ROC = R,
X,(8) < X,(s) ROC =R,
Then ax, (D) + a,x) (D) <> a X (s) + a,X,(s) R' DR NR, (3.15)

The set notation A D B means that set A contains set B, while A N B denotes the intersection of sets A and B,
that is, the set containing all elements in both A and B. Thus, Eq. (3.15) indicates that the ROC of the resultant
Laplace transform is at least as large as the region in common between R, and R,. Usually we have simply
R’ = R, N R,. This is illustrated in Fig. 3-4.
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e .ffma

A,

Fig. 3-4 ROC of a,X,(s) + a,X,(s).

B. Time Shifting:
If

x(t) < X(s) ROC =R
then x(t—ty) <> e "0 X(s) R'=R (3.16)

Equation (3.16) indicates that the ROCs before and after the time-shift operation are the same.

C. Shifting in the s-Domain:
If

x(t) < X(s) ROC =R
then eV x(t) <> X(s — s5¢) R'=R+Re(sy) (3.17)
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Equation (3.17) indicates that the ROC associated with X(s—s,) is that of X(s) shifted by Re(s,). This is
illustrated in Fig. 3-5.

p+Rels)

ik
f i Rels,) y / -

-

(a) (b)
Fig. 3-5 Effect on the ROC of shifting in the s-domain. (a) ROC of X(s); (b) ROC of X(s — s,).

D. Time Scaling:

If
x(t) < X(s) ROC =R
then xane x| R=ar (3.18)
la| \a

Equation (3.18) indicates that scaling the time variable ¢ by the factor a causes an inverse scaling of the variable
s by 1/a as well as an amplitude scaling of X (s/a) by 1/|a|. The corresponding effect on the ROC is illustrated
in Fig. 3-6.

aw

ac

Fig. 3-6 Effect on the ROC of time scaling. (a) ROC of X(s); (b) ROC of X(s/a).
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E. Time Reversal:
If

x(f) < X(s) ROC =R
then x(-f) < X(-s) R =-R (3.19)

Thus, time reversal of x(f) produces a reversal of both the o- and jw-axes in the s-plane. Equation (3.19) is
readily obtained by setting a = —1 in Eq. (3.18).

F. Differentiation in the Time Domain:

If
x(f) < X(s) ROC =R

then @ <sX(s) RDR (3.20)
t

Equation (3.20) shows that the effect of differentiation in the time domain is multiplication of the corresponding
Laplace transform by s. The associated ROC is unchanged unless there is a pole-zero cancellation at s = 0.

G. Differentiation in the s-Domain:

If
x(f) < X(s) ROC =R
then —x(t) < @ R =R (3.21)
A)

H. Integration in the Time Domain:
If

x(f) < X(s) ROC =R

then ) " xT)dreLiX(s) R=RN{Re(s)> 0} (3.22)
. ;

Equation (3.22) shows that the Laplace transform operation corresponding to time-domain integration is multi-
plication by 1/s, and this is expected since integration is the inverse operation of differentiation. The form of R’
follows from the possible introduction of an additional pole at s = O by the multiplication by 1/s.

I. Convolution:

If
x ()< X(s) ROC =R,
x,() <> X(s)  ROC =R,
then X0 *x,() <> X(5)X (s) R DR,NR, (3.23)

This convolution property plays a central role in the analysis and design of continuous-time LTI systems.
Table 3-2 summarizes the properties of the Laplace transform presented in this section.
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TABLE 3-2 Properties of the Laplace Transform

PROPERTY SIGNAL TRANSFORM ROC
x(#) X(s) R
x, () X,(s) R,
x,(0) X,(s) R,
Linearity ax, (1) + a,x,(0) a, X,(s) + a, X,(s) R'DR NR,
Time shifting x(t—1ty) e S X(s) R'=R
Shifting in s &5 x(1) X(s—s,) R'=R+Re(s;)
1
Time scaling x(at) mX(a) R =aR
a
Time reversal x(—1) X(—s) R'=-R
dx(t
Differentiation in ¢ J:i(t ) sX(s) R'DR
ax
Differentiation in s —1x(1) % R'=R
s
' 1
Integration f x(t)dT =X(s) R'DRN{Re(s) > 0}
-00 s
Convolution X, (2) * x,(1) X, (s) X,(s) R'DRNR,

3.5 The Inverse Laplace Transform

Inversion of the Laplace transform to find the signal x(#) from its Laplace transform X(s) is called the inverse
Laplace transform, symbolically denoted as

x()= L7 X(5)} (3.24)

A. Inversion Formula:

There is a procedure that is applicable to all classes of transform functions that involves the evaluation of a line
integral in complex s-plane; that is,

1 ctjo st
x(t)=— X(s)e ' ds 325
0= g S XS (3.25)

In this integral, the real c is to be selected such that if the ROC of X(s) is g, < Re(s) < 0,, then 0, < ¢ < 0,.
The evaluation of this inverse Laplace transform integral requires understanding of complex variable theory.

B. Use of Tables of Laplace Transform Pairs:
In the second method for the inversion of X(s), we attempt to express X(s) as a sum
X(s) = X (s) + - + X (5) (3.26)

where X,(s), ..., X,(s) are functions with known inverse transforms x,(?), ..., x,(f). From the linearity property
(3.15) it follows that

xX(®) = x,() + - + x (0) (3.27)
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C. Partial-Fraction Expansion:

If X(s) is a rational function, that is, of the form

NG) _ =2) (s —2,)

X(s)= (3.28)
D(s)  (s—p)-(G—p,)
a simple technique based on partial-fraction expansion can be used for the inversion of X(s).
(a) When X(s) is a proper rational function, that is, when m < n:
1. Simple Pole Case:
If all poles of X(s), that is, all zeros of D(s), are simple (or distinct), then X(s) can be written as
X(s)= i L B (3.29)
ST D $ ™ Pn
where coefficients c, are given by
¢, = (s = pp)X(s) =i (3.30)

2. Multiple Pole Case:
If D(s) has multiple roots, that is, if it contains factors of the form (s — p,)", we say that p, is the multiple pole
of X(s) with multiplicity r. Then the expansion of X(s) will consist of terms of the form

Mo M 2+...+Lr (3.31)

s—=pi (s—p) (s—p)
h =L o yx 332
where r—k _Hds—k[(s pi) (S)]|S=pi (3.32)

(b) When X(s) is an improper rational function, that is, when m = n:
If m = n, by long division we can write X(s) in the form

N(s) R(s)
=1 = 4+ =27
D(s) Q) D(s)

where N(s) and D(s) are the numerator and denominator polynomials in s, respectively, of X(s), the
quotient Q(s) is a polynomial in s with degree m — n, and the remainder R(s) is a polynomial in s
with degree strictly less than n. The inverse Laplace transform of X(s) can then be computed by
determining the inverse Laplace transform of Q(s) and the inverse Laplace transform of R(s)/D(s).
Since R(s)/D (s) is proper, the inverse Laplace transform of R(s)/D(s) can be computed by first
expanding into partial fractions as given above. The inverse Laplace transform of Q(s) can be
computed by using the transform pair

X(s) (3.33)

k
dj;” osb k=123, (3.34)
t

3.6 The System Function

A. The System Function:

In Sec. 2.2 we showed that the output y(#) of a continuous-time LTI system equals the convolution of the input
x(#) with the impulse response h(?); that is,

y(@) = x(0) * h(®) (3.35)
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Applying the convolution property (3.23), we obtain
Y(s) = X(s)H(s) (3.36)

where Y(s), X(s), and H(s) are the Laplace transforms of y(%), x(¢), and h(%), respectively. Equation (3.36) can be
expressed as

_Y@)

H
(s) X(s)

(3.37)
The Laplace transform H(s) of h(#) is referred to as the system function (or the transfer function) of the system.
By Eq. (3.37), the system function H(s) can also be defined as the ratio of the Laplace transforms of the output
y(?) and the input x(#). The system function H(s) completely characterizes the system because the impulse response
h(#) completely characterizes the system. Fig. 3-7 illustrates the relationship of Egs. (3.35) and (3.36).

h(t)
x(t) Y(t)=x(t)  h(t)

b

X(s) Y(s)=X(s)H(s)
H(s)

Fig. 3-7 Impulse response and system function.

B. Characterization of LTI Systems:

Many properties of continuous-time LTI systems can be closely associated with the characteristics of H(s) in the
s-plane and in particular with the pole locations and the ROC.

1. Causality:
For a causal continuous-time LTI system, we have

=0 <0

Since h(?) is a right-sided signal, the corresponding requirement on H(s) is that the ROC of H(s) must be of
the form

Re(s) > 0,

That is, the ROC is the region in the s-plane to the right of all of the system poles. Similarly, if the system is
anticausal, then

=0 t>0
and A(?) is left-sided. Thus, the ROC of H(s) must be of the form
Re(s) < g,
That is, the ROC is the region in the s-plane to the left of all of the system poles.

2. Stability:
In Sec. 2.3 we stated that a continuous-time LTI system is BIBO stable if and only if [Eq. (2.21)]

S I nar]dr <o

The corresponding requirement on H(s) is that the ROC of H(s) contains the jw-axis (that is, s = jw)
(Prob. 3.26).
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3. Causal and Stable Systems:
If the system is both causal and stable, then all the poles of H(s) must lie in the left half of the s-plane; that is,
they all have negative real parts because the ROC is of the form Re(s) > o, ,and since the jw axis is included
in the ROC, we must have O < 0.

C. System Function for LTI Systems Described by Linear Constant-Coefficient
Differential Equations:

In Sec. 2.5 we considered a continuous-time LTT system for which input x(#) and output y(7) satisfy the general
linear constant-coefficient differential equation of the form

M

N k k
3 4 Yo _ 3 b 4 x) (3.38)

% %
ko dt K=o 4t

Applying the Laplace transform and using the differentiation property (3.20) of the Laplace transform, we obtain

N M
Y asY(9)="Y b s*X(s)
k=0 k=0
N M
or Y(5) Y aps* =X(s) Y, by s* (3.39)
k=0 k=0
Thus, M
2 by s
H(s)=Y&) _k=0 (3.40)

X(s)

M=
RS
o
.

=
I
o

Hence, H(s) is always rational. Note that the ROC of H(s) is not specified by Eq. (3.40) but must be inferred with
additional requirements on the system such as the causality or the stability.

D. Systems Interconnection:

For two LTI systems [with 4,(?) and h,(?), respectively] in cascade [Fig. 3-8(a)], the overall impulse response
h(z) is given by [Eq. (2.81), Prob. 2.14]

h(®) = h,(®) * h(2)
Thus, the corresponding system functions are related by the product
H(s) = H,(s)H\(s) (3.41)

This relationship is illustrated in Fig. 3-8(b).

x(t) y(t) x(t) y(t)
h(t)  —|  hyft) — — —» h

h(t)=h(t)  hy(t)
(a)

X(s) Y(s) X(s) Y(s)
Hi(s) f——p| Hyls) — = ——» He)

H(s)=H,(s)H(s)
(k)

Fig. 3-8 Two systems in cascade. (a) Time-domain representation; (b) s-domain representation.
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Similarly, the impulse response of a parallel combination of two LTI systems [Fig. 3-9(a)] is given by
(Prob. 2.53)

h(t) = h(1) + hy(0)

Thus,
H(s) = H\(s) + Hy(s) (3.42)
This relationship is illustrated in Fig. 3-9(b).
— i
in 1] x(t) y(t)
| LTS —
—p At h(t)=h,(t)+h,(t)
(a)
—  H.is)
Xis) ¥(s) X(s) Y(s)
EE— —» —P| Hs) P——»
—_— H.is) H(s)=H,(s)+H,(s)

(b)

Fig. 3-9 Two systems in parallel. (a) Time-domain representation; (b) s-domain representation.

3.7 The Unilateral Laplace Transform

A. Definitions:

The unilateral (or one-sided) Laplace transform X, (s) of a signal x(?) is defined as [Eq. (3.5)]

X, ()= [ :; x(t)s ' dt (3.43)

The lower limit of integration is chosen to be 0~ (rather than 0 or 0*) to permit x(¢) to include 8(?) or its
derivatives. Thus, we note immediately that the integration from 0~ to 0% is zero except when there is an
impulse function or its derivative at the origin. The unilateral Laplace transform ignores x(#) for £ < 0. Since
x(#) in Eq. (3.43) is a right-sided signal, the ROC of X (s) is always of the form Re(s) > o, , that is, a right
half-plane in the s-plane.

B. Basic Properties:

Most of the properties of the unilateral Laplace transform are the same as for the bilateral transform. The
unilateral Laplace transform is useful for calculating the response of a causal system to a causal input when the
system is described by a linear constant-coefficient differential equation with nonzero initial conditions. The basic
properties of the unilateral Laplace transform that are useful in this application are the time-differentiation
and time-integration properties which are different from those of the bilateral transform. They are presented
in the following.
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1. Differentiation in the Time Domain:

B s 5%,(5)~ x(07) (3.44)
dt
provided that lim, _, , x(f)e™* = 0. Repeated application of this property yields
2
ddxg’ ) s 2, (s) — sx(07) — ¥'(07) (3.45)
t
n
% < 5"X, ()= 5" 'x(07) =" 2X(07) = = x"7P(07) (3.46)
t
,
where X0y = LE10)
dt" =0~
2. Integration in the Time Domain:
f;_ x(@dr < L1%,(s) (3.47)
s
t 1 1 p0”
f_ x(‘r)d‘r<—>—X,(s)+—f x(t)dt (3.48)

C. System Function:

Note that with the unilateral Laplace transform, the system function H(s) = Y(s)/X(s) is defined under the
condition that the LTI system is relaxed, that is, all initial conditions are zero.

D. Transform Circuits:

The solution for signals in an electric circuit can be found without writing integrodifferential equations if the
circuit operations and signals are represented with their Laplace transform equivalents. [In this subsection the
Laplace transform means the unilateral Laplace transform and we drop the subscript / in X/(s).] We refer to a
circuit produced from these equivalents as a transform circuit. In order to use this technique, we require the
Laplace transform models for individual circuit elements. These models are developed in the following discus-
sion and are shown in Fig. 3-10. Applications of this transform model technique to electric circuits problems
are illustrated in Probs. 3.40 to 3.42.

1. Signal Sources:
v(H) < V(s) () < I(s)
where v () and i(?) are the voltage and current source signals, respectively.
2. Resistance R:

v(#) = Ri(t) < V(s) = RI(s) (3.49)

3. Inductance L:

_, di()
vO=L=

< V(s)=sLI(s)— Li(0") (3.50)
The second model of the inductance L in Fig. 3-10 is obtained by rewriting Eq. (3.50) as

i(t) < I(s)=LV(s)+li(0_) (3.51)
sL s
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4. Capacitance C:

i(t)= C% < [(s)=sCV(s)— Cv(0 ) (3.52)
The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as
v(t)<=V(s)= L I(s)+ lv(O_) (3.53)
sC s
Circuit element Representation
t-Domain s-Domain
Voltage source O+ O _O O+ O _O
v(t) Us)
Current source Q Q
oO— 9 o— 9
it) I(s)
itt) R I(s) R
Resistance O+ > AN _O O+ > AMA _O
v(t) Us)
Li(0™
I(s) sL - C’( ) +
+ j—
itt) L Ws)
Inductance O+ > /BT _O sl

sC
I L
11
s}
cvio) O
C :
Capacitance O+’(t): {| _O V(s) o
v
v(t) s) % N s -
V(s)

Fig. 3-10 Representation of Laplace transform circuit-element models.



®_ CHAPTER 3 Laplace Transform and Continuous-Time LTI Systems

SOLVED PROBLEMS

Laplace Transform

3.1. Find the Laplace transform of
(@ x(n)=—e“u(-1
(®) x(@® = e“u(-1

(a) From Eq. (3.3)

0 0_
X(s)= —f_we—afu(_ f)e_‘"dt — _f_we_(“'a)tdt

0— 1 R
= e(s) < —a
- Sta )

1 e—(x+a)t
s+a

Thus, we obtain
_ 1
—e "u(—t)eo—— Re(®) < —a (3.54)
s+a
(b) Similarly,

0 0~
X = [ uC-ne = [* e a

1 - 1
=— e T = Re(s)<a
s—a s—a

-

Thus, we obtain

Eu(—t) < — L Re(s)<a (3.55)
s—a

3.2. A finite-duration signal x(#) is defined as
0 fH=t=t,
x(t) .
=0 otherwise

where 7, and ¢, are finite values. Show that if X(s) converges for at least one value of s, then the ROC of
X(s) is the entire s-plane.

Assume that X(s) converges at s = o, then by Eq. (3.3)

|X@)|= [ | xwre | dr = f’:2|x(t)|e_°°'dt <
Let Re(s) = o, > g,. Then
i —(oy+ jo)t _ o2 -oyt
[ |xwe @t |dt—ft| | x(0)| e " ar
=f:|2|x(t)|e_°°'e_(°‘_°°)’ dt

Since (0, — ¢,) >0, e (@9

value of this exponential is e

is a decaying exponential. Then over the interval where x(#) # 0, the maximum

(0, = %! and we can write

ft'z | x(t) e dr < (@17 o0 ft'z | x()] et < (3.56)
1 1
Thus, X(s) converges for Re(s) = 0, > ¢. By a similar argument, if 0, < g, then

f':2|x(t)|e_°"dt < e_("‘_"O)'ZJ":2|X(t)| e %dt < oo (3.57)

and again X(s) converges for Re(s) = 0, < g,. Thus, the ROC of X(s) includes the entire s-plane.
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3.3.

34.

3.5.

Let

e 0=t=T
x(t)=
0 otherwise

Find the Laplace transform of x(?).
By Eq. (3.3)
X(S) _fT e—ate—srdt _ T —(s+a)tdt
“Jo _fo €

1 e—(s+a)r T — 1 [1 _ e—(“'a)T] (358)
s+a o Sta

Since x(7) is a finite-duration signal, the ROC of X(s) is the entire s-plane. Note that from Eq. (3.58) it appears that
X(s) does not converge at s = —a. But this is not the case. Setting s = —a in the integral in Eq. (3.58), we have

T T
)= —(ata) 4. —
X(—a) foe dt fo dt=T
The same result can be obtained by applying L’Hospital’s rule to Eq. (3.58).

Show that if x(?) is a right-sided signal and X(s) converges for some value of s, then the ROC of X(s) is
of the form

Re(s) > g,
where o, equals the maximum real part of any of the poles of X(s).
Consider a right-sided signal x(#) so that
x=0 1<t

and X(s) converges for Re(s) = o;. Then

| x)|=[" |xtre

dr= " |xo)]e” "t
= [ |x)|e ' dr < o0
1
Let Re(s) = o, > g,. Then

[0l = [l ve @
< e—(al—oo)t|f:°| () |e_°°'dt <
1

Thus, X(s) converges for Re(s) = o, and the ROC of X(s) is of the form Re(s) > g,. Since the ROC of X(s) cannot
include any poles of X(s), we conclude that it is of the form

Re(s) > o,

X

where g, equals the maximum real part of any of the poles of X(s).

Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the following
signals x(?):

(@ x(®=e2u@® + e 3u@)

®) x(® =e3u@ + e*u(—9

() x() = e*u(® + e 3u(—1)
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(a) From Table 3-1

_ 1
e Mu@t) < T, PRe®>-2 (3.59)
e_3'u(t) < 13 Re(s) > —3 (3.60)

We see that the ROCs in Eqgs. (3.59) and (3.60) overlap, and thus,

2 s+§
1 1 2

s+2 s+3:(s+2)(s+3)

X(s)= Re(s) > -2 (3.61)

From Eq. (3.61) we see that X(s) has one zero at s = —% and two poles at s = —2 and s = —3 and that the
ROC is Re(s) > —2, as sketched in Fig. 3-11(a).

(b) From Table 3-1

- 1

e u(t) < o Re(s)>-3 (3.62)
1

lu(—1) < - =5 Re@<2 (3.63)

We see that the ROCs in Eqgs. (3.62) and (3.63) overlap, and thus,

1 1 -5

X(s)= - =
s+3 s—2 (s—2)(s+3)

—3<Re(s)<2 (3.64)

From Eq. (3.64) we see that X(s) has no zeros and two poles at s = 2 and s = —3 and that the ROC is
—3 < Re(s) < 2, as sketched in Fig. 3-11(b).

(c) From Table 3-1

1

Elu(t) < — Re(s)>2 (3.65)
_ 1

e Mu(-1 - 3 Re(s) < -3 (3.66)

We see that the ROCs in Egs. (3.65) and (3.66) do not overlap and that there is no common ROC; thus, x(f)
has no transform X(s).

Jo jo
- 'y
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. // ' / i v " "z.-”".-'" - ../.- Far Ay
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Fig. 3-11
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3.6. Let
_x(t = e 4 ]
Find X(s) and sketch the zero-pole plot and the ROC for a > 0 and a < 0.

The signal x(7) is sketched in Figs. 3-12 (a) and (b) for both a > 0 and a < 0. Since x(?) is a two-sided signal, we
can express it as

x(f) = e~u(t) + e u(—1) (3.67)

Note that x(#) is continuous at t = 0 and x(0~) = x(0) = x(0*) = 1. From Table 3-1

e “ut) < L Re(s)>—a (3.68)
s+ta

eEu(—1) e — L Re(s)<a (3.69)
sS—a

If a > 0, we see that the ROCs in Egs. (3.68) and (3.69) overlap, and thus,

X(5)=—— L= 2_2“2 —a<Re(s)<a (3.70)
sta s—a s"—a

From Eq. (3.70) we see that X(s) has no zeros and two poles at s = a and s = —a and that the ROC is —a < Re(s) < a,
as sketched in Fig. 3-12(c). If a < 0, we see that the ROCs in Eqgs. (3.68) and (3.69) do not overlap and that there is no
common ROC; thus, x(#) has no transform X(s).

x(ti=a ™ x(f)=a "

a=0 a=<0

(a) (b)

NN
“ \\

\\' \"-.\\
N
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N RN
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N
, \:\ ks
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: e »

a:, A ;/ & A8 o
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Properties of the Laplace Transform

3.7. Verify the time-shifting property (3.16); that is,
x(t—1) < e % X(s) R' =R

By definition (3.3)

FLx(t —1y)} = fiox(t —ty)e dt
By the change of variables 7 = ¢ — #, we obtain

Lixt—1y)) =f:x(r)e‘-“’+’°’dr
= e_‘"of_:x(r)e_”d‘t = e 10X (s)

with the same ROC as for X(s) itself. Hence,

x(t—t)<e Xs) R =R
where R and R’ are the ROCs before and after the time-shift operation.

3.8. Verify the time-scaling property (3.18); that is,

x(at) < lx(i

) R' =aR
|al

a
By definition (3.3)

Pix(at)) = f:x(at)e‘”dt

By the change of variables T = af with a > 0, we have

Pixtan} =L [7 x@e “mar = lx(i) R'=aR
a a a

Note that because of the scaling s/a in the transform, the ROC of X (s/a) is aR. With a < 0, we have
Fixaryy =2 [ x@e "y
a 0

-1 [7 x@e “dr - lx(i) R'=aR
av~® a a

Thus, combining the two results for a > 0 and a < 0, we can write these relationships as
xatyox[2|  R=ar
la] \a
3.9. Find the Laplace transform and the associated ROC for each of the following signals:
(@ x(@ =060 1)
®) x(@ = u(t— 1)
() x(®=e Zul@® — u—>5)]
d) x@t)= 2 8(t — kT)
£=0

(e) x(® = d(at + b), a, b real constants
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(a) Using Egs. (3.13) and (3.16), we obtain

1

6t — 1) < e all s (3.71)
(b) Using Egs. (3.14) and (3.16), we obtain
e—sto
u(t —ty) < Re(s)>0 (3.72)

(c¢) Rewriting x(7) as

x(t) = e ¥ [u@) — u(t— 5] = e 2u@® — e 2u(t — 5)
= e 2u(t) — e % 20~y (t — 5)

Then, from Table 3-1 and using Eq. (3.16), we obtain

1 —10 -ss 1 1 —5(s+2)
X(s)=———¢e e T ——= l—e Re(s) >—2
) s+2 s+2 s+2( ) )

(d) Using Egs. (3.71) and (1.99), we obtain

X(s)= ie_"” = i(e_"T)k = 1_;7 Re(s)> 0 (3.73)
k=0 k=0 |
(e) Let
f(o = d(ar)

Then from Egs. (3.13) and (3.18) we have

£(t) = 8(at) <> F(s)= ﬁ all s (3.74)
Now x(t)=2d(at +b)=0 a(t+%) =f(t+%)
Using Egs. (3.16) and (3.74), we obtain

X(s)=e""F(s)= ﬁe‘b/" all s (3.75)

3.10. Verify the time differentiation property (3.20); that is,

dx (t)
dt

<> sX(s5) R' DR

From Eq. (3.24) the inverse Laplace transform is given by

1 ety st
x@)=—[ . X(s)e'ds (3.76)
2 jde=je

Differentiating both sides of the above expression with respect to #, we obtain

dx(®) _ L C+..ijX(s)eS’dS 3.77)
dt 2mjJe-je

Comparing Eq. (3.77) with Eq. (3.76), we conclude that dx(#)/dt is the inverse Laplace transform of sX(s). Thus,

dx(t)

< 5X(8) R' DR

Note that the associated ROC is unchanged unless a pole-zero cancellation exists at s = 0.
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3.11. Verify the differentiation in s property (3.21); that is,

dX(s)
s

R'=R

—tx(t) <
From definition (3.3)
X()= [ x@ye "t

Differentiating both sides of the above expression with respect to s, we have

% =7 Coxwede=[" [-ixo)le di

Thus, we conclude that

dX(s)
s

—Ix(t) < R'=R

3.12. Verify the integration property (3.22); that is,

f’ X@)dT < 2X(s) R =RN {Re(s)>0)
. p

Let
!
f® =f_WX(T)dT < F(s)
Then x(t)= m
dt
Applying the differentiation property (3.20), we obtain
X(s) = sF(s)

Thus,
F)=1X(s) R =RN {Re(s)>0)
s

The form of the ROC R’ follows from the possible introduction of an additional pole at s = 0 by the multiplying by 1/s.

3.13. Using the various Laplace transform properties, derive the Laplace transforms of the following signals
from the Laplace transform of u(%).

(@) 6(» ® &80
() tu(® d) e u(r)
(e) te u(r) (f) cos wytu (7)

(g) e cos wytu(?)
(a) From Eq. (3.14) we have
1
u(t) <> — for Re(s)>0
s

From Eq. (1.30) we have

du(t)
dt

Thus, using the time-differentiation property (3.20), we obtain

o@)=

6(t)<—>sl=1 all s
s
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(b) Again applying the time-differentiation property (3.20) to the result from part (a), we obtain
() es all s (3.78)
(c) Using the differentiation in s property (3.21), we obtain
d(1 1
@) ——|—|== Re(s)>0
® ds(s) 2 () (3.79)
(d) Using the shifting in the s-domain property (3.17), we have

e u@t) < L Re(s) > —a
s+a

(e) From the result from part (c) and using the differentiation in s property (3.21), we obtain

—at e—i L1 - 3.80
te"“'u(r) ds(s+a) (s+a)2 Re(s) > —a (3.80)

(f) From Euler’s formula we can write
1 Joot — jwot 1 Jwot 1 — jwot
cos wytu(t)= E(e 0+ e ()= Ee Cu(t)+ Ee Ou(t)
Using the linearity property (3.15) and the shifting in the s-domain property (3.17), we obtain

1 1 1 1 K]
coswytu(t) <> — + 5

— = Re(s)>0 3.81
25— jo, 2s+ jo, s2+w0 () ( )

(g) Applying the shifting in the s-domain property (3.17) to the result from part (f), we obtain

s+a

e ' cos wy tu(t) <> Re(s) > —a (3.82)

(s+a)2 +w§

3.14. Verify the convolution property (3.23); that is,

X, *x,() <> X,(s)X,(s) R DR/ NR,

Let
Y0 =10 50= [ x@xt-1)do
Then, by definition (3.3)
=", [ [ n@ne - d‘r] ¢t

=f_:x1(t) [f_:xz(t—r)e_‘" dt]dr

Noting that the bracketed term in the last expression is the Laplace transform of the shifted signal x,(t — 1), by
Eq. (3.16) we have

Y()= 7 x(D)e Xy (s)dr

-[J7n@e a0 = X0 %0

with an ROC that contains the intersection of the ROC of X|(s) and X,(s). If a zero of one transform cancels a pole
of the other, the ROC of Y(s) may be larger. Thus, we conclude that

X *x(0) <> X,() X,(s) RDRNR,
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3.15 Using the convolution property (3.23), verify Eq. (3.22); that is,
f' x(@)dr o L1X(s) R =R {Re(s)> 0}
—® s
We can write [Eq. (2.60), Prob. 2.2]

[ x@dr=x0)su@ (3.83)

From Eq. (3.14)
u(t) < % Re(s)>0
and thus, from the convolution property (3.23) we obtain
x(t)xu(t) < %X(s)
with the ROC that includes the intersection of the ROC of X(s) and the ROC of the Laplace transform of u(f). Thus,
f:wx(r)dr < %X(s) R'= RN {Re(s)>0}

Inverse Laplace Transform

3.16. Find the inverse Laplace transform of the following X(s):

1
@ X(s)=——.Re(s) > —1

1
(®) X(s)=——.Re(s) < -1

N

() X(@s)= 7 +4,Re(s)>0

s+1
d) X(s)=———,R -1
(d) X(s) Gt 14 e(s) >

(a) From Table 3-1 we obtain

x(f) = e"'u(®
(b) From Table 3-1 we obtain

x(t) = —e u(—1)
(c) From Table 3-1 we obtain

x(f) = cos 2tu(t)
(d) From Table 3-1 we obtain

s(t) = e~"cos 2tu(f)

3.17. Find the inverse Laplace transform of the following X(s):

2s+4

X(5)=————— Re(s) > —1
@ X s*+4s+3 ¢
2s+4
b) X(s)=————— Re(s) < —3
®) Xe) s*+4s+3 e
© Xo)=52Ft _3<Re(s) < -1

s“+4s+3
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Expanding by partial fractions, we have

25 +4 s+2 cl c,

X($)=— = = +
s +4s+3 (s+D(s+3) s+1 s+3

Using Eq. (3.30), we obtain

s+2
c=(s+DX(s =2 =
=GEDXO| =2
s=-—1
s+2
¢y =(s+3)X(s =2— =1
2=+ IXE) | =2 )
s=—3
Hence,
1 1
X(s)=——+
® s+1 s+3

(a) The ROC of X(s) is Re(s) > —1. Thus, x(?) is a right-sided signal and from Table 3-1 we obtain
x(t) = e~'u@®) + e 3u) = (e7' + e Nu(r)
(b) The ROC of X(s) is Re(s) < —3. Thus, x(?) is a left-sided signal and from Table 3-1 we obtain

x() = —e u(—10 — e u(—1H) = —(e7" + e Nu(—1)

—

(c) The ROC of X(s) is —3 < Re(s) < —1. Thus, x(?) is a double-sided signal and from Table 3-1 we obtain

x(f) = —e u(—1) + e 3u@)

3.18. Find the inverse Laplace transform of

X(s)=—35*13

=— """~  Re(s)>0
s(s? + 45 +13)

We can write

PHas+13=(s+22+9=(s+2—3)(s +2+3)

Then
5s+13 5s+13
X(s)=— = . .
s(s“+4s+13) s(s+2—j3)(s+2+j3)
=4 ) ‘
s s—(=2+j3) s—(=2-j3)
where
5s+13
c;=sX(s = =
=Xl sP+ds+13 | _,
5s+13 1
Q=(6+2-3X®)| __,, = =——(1+3j)
S=T2H3 0 (s + 24 73) =2+ 3 2
5s+13 1
=(s+2+j3)X(s L m— =——=(-j
c3=(s XS,y 62|, SA=D
Thus,
1 1 , 1 1 . 1
X@)=—--(A+j)———— -1 j)———
s 2 s—(—2+j3) 2 s—(—2—j3)

The ROC of X(s) is Re(s) > 0. Thus, x(?) is a right-sided signal and from Table 3-1 we obtain

x(t) = u(t) — %(1 + e () — %(1 — e P
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Inserting the identity
T2 PN = o~Uetf3 = ¢~ (cos 3t + jsin 3f)
into the above expression, after simple computations we obtain
x(f) = u(®) — e~ (cos 3t — sin 31) u(f)
= [1 — e~ ?(cos 3t — sin 30)] u()
Alternate Solution:

We can write X(s) as

Ss+13 _a, Cys +c3

Cs(s*+4s+13) s sP+4s+13

X(s)

As before, by Eq. (3.30) we obtain

5s+13
a=sX@®)|,_,=5———=| =1
5 s°+4s5+13 o
Then we have
cstey 55s+13 1 —s+1

2 +4s+13 s(s>+4s+13) s s> +4s+13

Thus,
1 s—1 1 s+2-3
X()=-—— =—= 5
s s“+4s+13 s (s+2)°+9
1 s+2 3

+
s (s+2P¢ 3% (s+2)+3?

Then from Table 3-1 we obtain

x(f) = u(t) — e~ ¥ cos 3tu(t) + e~ sin 3tu(r)
= [1 — e %(cos 3t — sin 3)]u(?)

3.19. Find the inverse Laplace transform of

s24+2s+5

&~ Re@s)>-3
(s +3)(s +5)° °(s)

X(s)=
We see that X(s) has one simple pole at s = —3 and one multiple pole at s = —5 with multiplicity 2. Then by
Egs. (3.29) and (3.31) we have

¢ Ay A,

+ 2Ly 2 (3.84)
s+3 s+5 (s+5)

X(s)=

By Eqgs. (3.30) and (3.32) we have

_ s2+25+5
5==3  (s+5)

¢ = (s +3)X ()]

s=-3
2
+2s+5
Ay = (s +5PX(s SIESTA — 0
2= (s+5°X(9)|,__ 3
s==5
d ) d[s*+2s+5
A =—[(s+5)°X(s =—
! ds[(s ) (3)] s=- ds s+3 s
_s2+6s+l N
(s+3)7° | __,
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Hence,

2 1 10
s+3 s+5 (s+5)°

X(s)=

The ROC of X(s) is Re(s) > —3. Thus, x(?) is a right-sided signal and from Table 3-1 we obtain

x(0) = 2e73u(t) — e~ >'u(t) — 10te™>"u(r)
=[2e73 — 73 — 10te™>"] u(p)

Note that there is a simpler way of finding A, without resorting to differentiation. This is shown as follows: First
find c, and A, according to the regular procedure. Then substituting the values of ¢, and A, into Eq. (3.84), we
obtain

SH245 2 M 10
(s+3)(s+5)7 s+3 s+5 (s+5)

Setting s = 0 on both sides of the above expression, we have

> 2, M 10

75 3 5 25

from which we obtain A; = —1.

3.20. Find the inverse Laplace transform of the following X(s):

2s +1

X(s)= , Re(s) > —2
(a) X(s) 12 e(s)
2
+ 65+
®) X(s)=s2#, Re(s) > —1
s +3s+2
3 2
+2s% +
© X)=222F8 Re(s) >0
s° 4+ 3s

25+1_2s+2)-3_, 3

X(s)= =
@ X(s) s+2 s+2 s+2

Since the ROC of X(s) is Re(s) > —2, x(?) is a right-sided signal and from Table 3-1 we obtain

x(t) = 28(8) — 3e2u(t)

(b) Performing long division, we have

s2+6s+7 3545 s
X($)=— B : i
s°+3s+2 §°+3s+2 (s+Ds+2)
Let
 +
X, ()= B$+5 _ a9
(s+D+2) s+l s+2
where
3s+5
o =0+DX, (s = -2
) ( ) |( )L:—l s+2 s=—1
3s+5
=(s+2)X, (s = )
¢ =(+2X()|,__, s+t __,
Hence,

X(s)=1+i+;
s+1 s+2
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The ROC of X(s) is Re(s) > — 1. Thus, x(?) is a right-sided signal and from Table 3-1 we obtain
x() = 6(t) + Qe+ e )u()

(c) Proceeding similarly, we obtain

3 2
° +25°+6 35+6
X(s)= g2 =g 1
s°+ 3s s(s+3)
Let
 +
X,(s) = 3s+6 =ﬁ+ c,
s(s+3) s s+3
where
3s+6
c, =X (s = =2
! 1€ )|“=° s+3 ] _,
35+6
¢ =@6+3X (5)|,__,= =1
s=-3
Hence,

X(s)=s—1+g+ 1
s §+3

The ROC of X(s) is Re(s) > 0. Thus, x(¢) is a right-sided signal and from Table 3-1 and Eq. (3.78) we obtain
x()=6'() — 8@F) + 2 + e *u()

Note that all X(s) in this problem are improper fractions and that x(#) contains 8(?) or its derivatives.

3.21. Find the inverse Laplace transform of

242se ¥ 407

X(s)=
(s) s2+4s5+3

Re(s) > —1

We see that X(s) is a sum
X(s) = X\ () + X,(8) e™> + X, (9)e™*

where
2 2s 4

X\(8)=5——— X,(s)= X3(89)=—5—"——
1) s?+4s+3 2 s?+4s+3 () s?+4s+3

If
X0 < X\(5) x0<=X(s) x0 <X
then by the linearity property (3.15) and the time-shifting property (3.16) we obtain
x(@) =x,(0) +x(t—2) + x,(t — 4) (3.85)

Next, using partial-fraction expansions and from Table 3-1, we obtain

N L1 PR 1
X.(s)——SJr1 13 xt)=(  —e u()
‘ :__1 —3 «> =(—e ! —3
X,(s) s+1+s+3 xX,(t)=(—e " +3e T)Hu(t)
2 2 -t -3
X;($)=—————<x3()=2(e " —e Hu(t)

s+1 s+3
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Thus, by Eq. (3.85) we have

x(®) = (e7"—eNu(l) + [~ e 7D + 3730~ Dyt - 2)
+2[e ™Y — 73Nyt - 4)

3.22. Using the differentiation in s property (3.21), find the inverse Laplace transform of

1
X(S)=m Re(s) > —a

We have

SN L O T
ds\s+a (s+a)2
and from Eq. (3.9) we have

e u@t) < L Re(s) > —a
s+a
Thus, using the differentiation in s property (3.21), we obtain
x(t) = te™'u(t)

System Function

3.23 Find the system function H(s) and the impulse response A(?) of the RC circuit in Fig. 1-32 (Prob. 1.32).
(a) Let
x@® =v® Yy =v.()

In this case, the RC circuit is described by [Eq. (1.105)]
dy(t) 1

+_
dr  RC’

Taking the Laplace transform of the above equation, we obtain

1
(t)—EX(t)

1 — Ly
sY(s)+ EY(.S)— RC X(s)

1 1 )
or (3+E)Y(s)—EX(.s)

Hence, by Eq. (3.37) the system function H(s) is

H(s)=Y(S)= 1/RC 1 1
X(s) s+1/RC RC s+1/RC

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse response A(?) is
- 1
ht)= % "(H(s)} = —¢ "R
® {H(s)} RC ®
(b) Let
m=v yO=i®

In this case, the RC circuit is described by [Eq. (1.107)]

dy(t 1 1 dx(t
p©) | L 1 dx®
dt RC R adt
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Taking the Laplace transform of the above equation, we have

U yior= Laxes
sY(s)+ RY(.S) = RsX(.s)

or (s + %)Y(s) = %sX(s)

Hence, the system function H(s) is

:Y(s): s/IR 1 s

H(s)
X(s) s+1/RC Rs+1/RC

In this case, the system function H(s) is an improper fraction and can be rewritten as

1 s+1/RC—1/RC 1 1 1
R  s+1/RC R R*C s+1/RC

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse response A(?) is
- 1 1 -
h(t)= L YH(s)} = —8(t) — ——e "RCu(t
® {H(s)} R() e ®
Note that we obtained different system functions depending on the different sets of input and output.
3.24. Using the Laplace transform, redo Prob. 2.5.
From Prob. 2.5 we have
h(t) = e~ *'u(t) x(t) = e*'u(—1) a>0
Using Table 3-1, we have
1
H(s)=—— Re(s) > —a
s+a
X(s)=— ; Re(s) < a
s—a
Thus,
1 1

Y(S)=X(S)H(S):_(S+a)(s—a):_s2—a2 —a<Re(s»)<a

and from Table 3-1 (or Prob. 3.6) the output is
1 _
HN=—e alt|
y(®) oa
which is the same as Eq. (2.67).

3.25. The output y(?) of a continuous-time LTI system is found to be 2¢~3u(z) when the input x(2) is u(f).
(a) Find the impulse response h(?) of the system.
(b) Find the output y(#) when the input x () is e~ u(%).

(@ x(1) = u(?),y () = 2e>'u(t)
Taking the Laplace transforms of x(#) and y(f), we obtain

X(s)=% Re(s) > 0

2
Y(.s)—m Re(s) > —3
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Hence, the system function H(s) is

3= Y _ 28 _
H(s) XG) 543 Re(s) > -3
Rewriting H(s) as
H(s)= 2s _2(s+3)—6:2_ 6 Re(s) > — 3

s+3 s+3 s+3

and taking the inverse Laplace transform of H(s), we have
h(t) = 26(8) — 6e~3u(t)

Note that A(?) is equal to the derivative of 2e~%u (£), which is the step response s(?) of the system [see Eq. (2.13)].
(b) xt)=e "u(t) < 1 Re(s) > —1
s+1

Thus,

2s
Y(é)—X(S)H(s)—m Re(s) > —1

Using partial-fraction expansions, we get

1 3
Y(§)=——+
) s+1 s+3

Taking the inverse Laplace transform of Y(s), we obtain

YO = (—e"+3e ) u@)

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system function H(s)
must contain the imaginary axis; that is, s = jw.

A continuous-time LTI system is BIBO stable if and only if its impulse response A(?) is absolutely integrable, that is
[Eq. 2.21)],

[ Inolar<e
By Eq. 3.3)

H(s)= [ h)e "di

Let s = jw. Then

| H(jw)|= ‘ I° nwye @ at

= [7 |nwe 7 ar= [ |ae)|de <oo

Therefore, we see that if the system is stable, then H(s) converges for s = jw. That is, for a stable continuous-time
LTI system, the ROC of H(s) must contain the imaginary axis s = jw.

3.27 Using the Laplace transfer, redo Prob. 2.14

(a) Using Eqgs. (3.36) and (3.41), we have
Y(s) = X(s)H (s)H,(s) = X(s)H(s)

where H(s) = H,(s)H,(s) is the system function of the overall system. Now from Table 3-1 we have
_ 1
h(t)=e Hu(t) < H(s)=——  Re(s) > —2
s+2

hy()=2¢"u(t) < Hy(s)=——  Re(s) > —1
s+1
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Hence,

2 2 2

HE= B = (6T 511 s+2

Re(s)>—1
Taking the inverse Laplace transfer of H(s), we get
h(t) =2(e™" — e ?u (1)

(b) Since the ROC of H(s), Re(s) > —1, contains the jw-axis, the overall system is stable.

3.28. Using the Laplace transform, redo Prob. 2.23.

The system is described by

dy®) _
a T ay(t) = x(t)

Taking the Laplace transform of the above equation, we obtain
sY(s) + a¥Y(s) = X(s) or (s + a)Y(s) = X(s)

Hence, the system function H(s) is

ERACI.
X(s) s+a

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse response A(?) is

H(s)

h(t) = e “u(t)
which is the same as Eq. (2.124).
3.29. Using the Laplace transform, redo Prob. 2.25.
The system is described by
Y@ +2y(0) = x@) + x'(0)
Taking the Laplace transform of the above equation, we get

sY(s) + 2Y(s) = X(s) + sX(s)
or (s + 2)Y(s) = (s + 1)X(s)

Hence, the system function H(s) is

Y(s):s+l_s+2—1:1 1

H(s)= = -
X(s) s+2 s+2 s+2

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse response A(?) is
h(® = 8(f) — e u(®)
3.30. Consider a continuous-time LTI system for which the input x(#) and output y(¢) are related by
Y'(0) + y'(0) = 2y(1) = x(1) (3.86)

(a) Find the system function H(s).

(b) Determine the impulse response h(?) for each of the following three cases: (i) the system is causal,
(ii) the system is stable, (iii) the system is neither causal nor stable.

(a) Taking the Laplace transform of Eq. (3.86), we have
$2Y(s) + sY(s) — 2Y(s) = X(s)
or (s2+ 5 — 2)Y(s) = X(s)
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Hence, the system function H(s) is

H(S)=M= 5 ! = !
X(s) s°+s—2 (s+2)(s—1)

(b) Using partial-fraction expansions, we get

1 1 1 1

H(s)= =—= +l
(s +2)(s—2) 3s+2 3s5-—1

(i) If the system is causal, then A(?) is causal (that is, a right-sided signal) and the ROC of H(s) is Re(s) > 1.
Then from Table 3-1 we get

h(t)=— % e —eHu@)

(i) If the system is stable, then the ROC of H(s) must contain the jw-axis. Consequently the ROC of H(s) is
—2 < Re(s) < 1. Thus, A () is two-sided and from Table 3-1 we get

N D TN
h(t) 3e u(t) 3e u(—t)

(iii) If the system is neither causal nor stable, then the ROC of H(s) is Re(s) < —2. Then A(?) is noncausal
(that is, a left-sided signal) and from Table 3-1 we get

S TN A
h(t)—3e u(—1) 3eu( 1)

3.31. The feedback interconnection of two causal subsystems with system functions F(s) and G(s) is depicted
in Fig. 3-13. Find the overall system function H(s) for this feedback system.

xit) aff) ¥it)
P Fis)
Gis)
Fig. 3-13 Feedback system.

Let x(1) < X(s) y(@) < Y () r(t) <> R(s) e(t) <> E(s)
Then,

Y(s) = E(s)F(s) (3.87)

R(s) = Y(s)G(s) (3.88)
Since

e(t) =x@) + r(
we have

E(s) = X(s) + R(s) (3.89)

Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we obtain

Y(s) = [X(s) + Y(s)G()] F(s)
or [1 = F()G(s)] Y(s) = F(s)X(s)

Thus, the overall system function is

Ye) __ @)

H(s)= —
X(s) 1-F(s)G(s)

(3.90)
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Unilateral Laplace Transform

3.32. Verify Eqgs. (3.44) and (3.45); that is,

dx (1)
(a) 4

< 5X;(s)—x(07)

d’x(1)

— < $2X,(s)—sx(07)—x'(07)

(b)

(a) Using Eq. (3.43) and integrating by parts, we obtain
¥ dx(1)) _ w_ dx(t) ot
B dt 0 dt

=x(t)e '

:_ + sf; x(t)e "dt
=—x(07)+sX,(s) Re(s)>0

Thus, we have

d’;(’) < $X,(s)— x(07)

(b) Applying the above property to signal x'(#) = dx(f)/dt, we obtain

d*x (1) _ d dx(t)
dr?  dt dt
=s2X,(s)— sx(07)— x'(07)

< s[sX,(s)— x(07)]—x'(07)

Note that Eq. (3.46) can be obtained by continued application of the above procedure.

3.33. Verify Eqgs. (3.47) and (3.48); that is,

1
(@) f;_ X(©)d7 <> X;(s)

(b) fiwx(r)dr - %X, (s)+ % f: x(t)dr

(@) Let ot) = f(;_ x(T)dr
Then M = x(t) and g(07)=0
dt
Now if
8(t) <> G(s)

then by Eq. (3.44)

X;()=35G;(s)— g0 )=5G,(s)
Thus,

Gy(s)= %X,m

or f;_x(r)dr P %X,(s)

(b) We can write

fiwx(r) dt =f:x(1:) drt +f(:_x(‘r) drv
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Note that the first term on the right-hand side is a constant. Thus, taking the unilateral Laplace transform of
the above equation and using Eq. (3.47), we get

[ x@dre x4+t fo_ x(@)dr
—® s R

3.34. (@) Show that the bilateral Laplace transform of x(#) can be computed from two unilateral Laplace
transforms.

(b) Using the result obtained in part (a), find the bilateral Laplace transform of e2I"l,
(a) The bilateral Laplace transform of x(#) defined in Eq. (3.3) can be expressed as

X()= [ x@e*'dt = f?;x(t)e_"'dt [ xe ar

= [ox(netdi+ [ x (e dt (391

Now [Cxwed=X,s) Re()>o0" (3.92)
Next, let

LHHD}=X; (5)= [ x(-)e "dt  Re(s)>0" (3.93)

Then [T xnedi=[" x-ne "Vd=X](-s) Re(s)<o” (3.94)

Thus, substituting Eqgs. (3.92) and (3.94) into Eq. (3.91), we obtain
X(s) = X, (s) + X7 (=9) ot <Re(s) < o~ (3.95)
() x(®) = e2l
(1) x(¢) = e~ % for t > 0, which gives
L x)} =X, (s)= ﬁ Re(s) > —2
(2) x(f) = ¥ fort <0.Then x(— £) = e~ % for t > 0, which gives

— () = 1 g —
Ei{x(=}=X,(s) Py Re(s)>—-2
Thus,
_ _ )
X,(—s)—_s+2— - Re(s)<?2

(3) According to Eq. (3.95), we have

1 1

s+2 s—2

X)) =X;5)+X; (—s)=

- 7 —2<Re(s)<2 (3.96)

which is equal to Eq. (3.70), with a = 2, in Prob. 3.6.

3.35. Show that

(@) x(07)= lim sX,(s) (3.97)
() lim x(1)= lim 5X, (5) (3.98)
t—> Nind

Equation (3.97) is called the initial value theorem, while Eq. (3.98) is called the final value theorem for
the unilateral Laplace transform.
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3.36.

(a) Using Eq. (3.44), we have

X, 20 = [ ED oy
=f0+ —dx(t)e_‘" dt +f°° dx(t)e_‘"dt
0" dt ot dt

= x(t) Oj + f:; d’;?)e“" dt

= x(07)— x(0 )+f0 dx(t) s
Thus,

(0= x(0")= [ EO e ay

and llm.sX,(s) x(o* )+1 f df;y) oSt

xO")+ [ dx(’)( _me_"')dt=x(0+)

since lim e =0,

§—> 0

(b) Again using Eq. (3.44), we have

dX(t) o

lim [5X, (s) = x(07)] = lim f dt

= fw_dx(t)(lim e“')dt
0 dr

s—0

e dx(t) ®
= [y == x|
= lim x(¢) — x(0")
t—>
Since lin}) [sX;(s)—x(07)]= lil‘l‘(l) [sX;(s)]— x(07)
= §—
we conclude that

lim x(¢) = 11m sX,;(s)

t—>
The unilateral Laplace transform is sometimes defined as

L AxO} =X (5)= f: x(t)e *'dt (3.99)

with 0% as the lower limit. (This definition is sometimes referred to as the 0" definition.)
(a) Show that

£, {df:)} = sX{(s)—x(0")  Re(s)>0 (3.100)
(b) Show that
L qu)y =1 (3.101)
S
£ (61} =0 (3.102)

(a) Letx(f) have unilateral Laplace transform X7 (s). Using Eq. (3.99) and integrating by parts, we obtain

& dx(t) © dx(t) St
1 dr 0" dr

st|®

_ - y ® -5t
=x(t)e 0++.sf0+x(t)e dt

=—x(0")+sX,(s) Re(s)>0
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Thus, we have

dx (1)
dt

< sX7 (s)—x(0)
(b) By definition (3.99)

£ {u@®)} :f; u(t)e *'dt :f; e dt

_ le—sl ®

N

+=l Re(s)>0
0 s

From Eq. (1.30) we have

du(t)

0 ==2

—

(3.103)

Taking the 0* unilateral Laplace transform of Eq. (3.103) and using Eq. (3.100), we obtain

L. {o(t)})= sio u0"H=1-1=0
K]
This is consistent with Eq. (1.21); that is,

RE0) =f;6(t)e_"dt =0

Note that taking the 0~ unilateral Laplace transform of Eq. (3.103) and using Eq. (3.44), we obtain

L_{6()}= sl—u(O‘)= 1-0=1
s
Application of Unilateral Laplace Transform

3.37. Using the unilateral Laplace transform, redo Prob. 2.20.

The system is described by
Y@ + ay(t) = x()
with y(0) = y, and x(?) = Ke " u(?).
Assume that y(0) = y(07). Let
y@) < Y, (s)
Then from Eq. (3.44)
Y (@) < sY,(s) = y(07) = sY,(s) — y,

From Table 3-1 we have

K
x@) <« X, (s)=—— Re(s) > —b
)< X, (s) s €))
Taking the unilateral Laplace transform of Eq. (3.104), we obtain

_ K
[sY,(s) = yol + a¥,(s)= Py

K
s+a)Y,;(s)=y, +——
or s+ @l ($)=yo +——

Thus,

Y,(s)= 2+ K
s+a (s+a)(s+b)

(3.104)
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3.38.

Using partial-fraction expansions, we obtain

Y, ()= Yoo K 11
st+ta a—-bls+b s+a

Taking the inverse Laplace transform of Y (s), we obtain

ya= [yoe“” + aKTb(e“” - e‘“’)]u(t)
which is the same as Eq. (2.107). Noting that y(0*) = y(0) = y(0~7) = y,, we write y(?) as

y(t)=ype '+ aKTb(e"” -y =0
Solve the second-order linear differential equation

Y'(®) + 5y'()) + 6y(@) = x(9) (3.105)
with the initial conditions y(0) = 2,y'(0) = 1, and x() = e~ 'u(?).
Assume that y(0) = y(0~) and y'(0) = y'(07). Let
y(@) <= Y, (9)

Then from Egs. (3.44) and (3.45)

Y(t) < sY(s) — y(07) = sY,(s) — 2
Y'(0) < $2Y,(s) — 5y(07) — y'(07) = $2¥,(s) — 25 — 1

From Table 3-1 we have

x(1) < X, (s) = slTl

Taking the unilateral Laplace transform of Eq. (3.105), we obtain

[sZY,(s)— 25 — 1]+ 5[sY;(s) — 2] + 6Y;(s) = L
s+1

1 252 +13s +12
or (2455 +6)Y,(5) = ——+2s +11= 2T 2
s+1 s+1
Thus,
25> +13s+12 252 +13s+12
Y (s)= =

(s+1D(2+55+6) (s+H1)(s+2)(s+3)

Using partial-fraction expansions, we obtain

Y (s)= 1.1 +6 L o 1
2s5+1 st+2 2s5+3
Taking the inverse Laplace transform of Y, (s), we have

1 2 9 3
t)y=|—e  +6e " ——e u(t
y(®) > > ®

Notice that y(0*) = 2 = y(0) and y'(0*) = 1 = y'(0); and we can write y(f) as

1 - 9
ty=—e ' +6e " —=e¢ t=0
y(@) 5 5
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3.39. Consider the RC circuit shown in Fig. 3-14(a). The switch is closed at # = 0. Assume that there is an
initial voltage on the capacitor and v (07) = v,,.

(a) Find the current i(?).
(b) Find the voltage across the capacitor v (7).

3{ ANN—» —— AAN

Vv — c = vlt — ) v,(t) c == vt

s —

v(07)=v,
(a) (b)
Fig. 3-14 RC circuit.

(a) With the switching action, the circuit shown in Fig. 3-14(a) can be represented by the circuit shown in
Fig. 3-14(b) with v(#) = Vu(#). When the current i(?) is the output and the input is v (?), the differential
equation governing the circuit is

R+ iwyde=
i+ = [ i@dr=v,(@) (3.106)

Taking the unilateral Laplace transform of Eq. (3.106) and using Eq. (3.48), we obtain

11 1 .07, \%4
RI(s)+E ;I(s)+;fi)mt(‘c)d‘r =: (3.107)
where I1(s)=2Z,{i(t)}
1 e
Now vc(t)=6f_wt(‘r)d1:
_ 1 .07,
and v.(0 )=Ef_wt(‘r)d1:=v0

Hence, Eq. (3.107) reduces to
(R+ L)I(s)+v_°= 4
Cs s s
Solving for I(s), we obtain

I(s)=V_v0 1 =V—v0 1
s R+1/Cs R s+1/RC

Taking the inverse Laplace transform of I(s), we get
. V=% -urc
ity=———e u(t
® R ®

(b) When v (¢) is the output and the input is v (#), the differential equation governing the circuit is
dv.(t) + 1 v,
dt RC
Taking the unilateral Laplace transform of Eq. (3.108) and using Eq. (3.44), we obtain
1 1V

V.(s)— N+ —V(s)= — =
sV, (s)=v.(0 )+RC (5) RC 3

1
(t)—ﬁvs(t) (3.108)
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Solving for V (s), we have
1 4%

\%
Vo($)=—
RC s(s+1/RC) s+1/RC
_ i_ 1 n Vo
s s+1/RC) s+1/RC

Taking the inverse Laplace transform of V (s), we obtain
v(t) = VI1 — e "RCu () + vye~""Ru(t)

Note that v (0*) = v, = v_(07). Thus, we write v () as
v(6) = V(1 — e ""RC) + y e 1RC t=0
3.40. Using the transform network technique, redo Prob. 3.39.
(a) Using Fig. 3-10, the transform network corresponding to Fig. 3-14 is constructed as shown in Fig. 3-15.

R I{s)
At - -
+
.
P f Cs T
‘O
¥a
=G
_"__
Fig. 3-15 Transform circuit.
Writing the voltage law for the loop, we get
(R+—1)I(s)+v—°=z
Cs s s
Solving for I(s), we have
I(s)=V_v0 1 =V—v0 1
s R+1/Cs R s+1/RC

Taking the inverse Laplace transform of I(s), we obtain

. V=V _ure
ity=——"=e u(t
® R ®

(b) From Fig.3.15 we have

1 Vo
V.(s)=—1(s)+—
(8) Cs () p

Substituting /(s) obtained in part (a) into the above equation, we get
1 Vo

Vc(s)=V_v0
RC s(s+1/RC) s

1 1 v
=V-y)|———|+=2

( 0)(s s+1/RC) s

=V i_ 1 + Yo
s s+1/RC) s+1/RC

Taking the inverse Laplace transform of V (s), we have
v(t) = V(1 — e "Ryu(t) + ve~"""u(t)
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3.41. In the circuit in Fig. 3-16(a) the switch is in the closed position for a long time before it is opened at
t = 0. Find the inductor current i(¢) for t = 0.

When the switch is in the closed position for a long time, the capacitor voltage is charged to 10 V and there is no
current flowing in the capacitor. The inductor behaves as a short circuit, and the inductor current is %= 2A.

Thus, when the switch is open, we have i(07) = 2 and v(07) = 10; the input voltage is 10 V, and therefore it can
be represented as 10u(?). Next, using Fig. 3-10, we construct the transform circuit as shown in Fig. 3-16(b).

1
ilf) 2 20 i[5} 3 5 5 £

1 62
10V —— 20 % () "5_':' 2 %

(a) (b)
Fig. 3-16

From Fig. 3-16(b) the loop equation can be written as

Loy - 1421050+ L)+ 210
2 s K] K]
or (ls+2+@)l(s)=l
2 s
Hence,
1 2s
I(s)= =5
—s+2420/s § T4s+40
C2s+)-4 . (s+2) 2 6
+2?2+6% (s+2°+6% 3(s+2)P%+6°

Taking the inverse Laplace transform of I(s), we obtain

i(r)= e_z'(Z cos 6t — %sin6t)u(t)

Note that i(0*) = 2 = i(07); that is, there is no discontinuity in the inductor current before and after the switch is
opened. Thus, we have

i(t)y=e *(2cos6t — %sin6t) =0

3.42. Consider the circuit shown in Fig. 3-17(a). The two switches are closed simultaneously at # = 0. The
voltages on capacitors C, and C, before the switches are closed are 1 and 2 V, respectively.

(a) Find the currents i ,(#) and i,(?).

(b) Find the voltages across the capacitors at = 0*.

(a) From the given initial conditions, we have

10 =1V and v, (0) =2V
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Thus, using Fig. 3-10, we construct a transform circuit as shown in Fig. 3-17(b). From

i
o
I((:_I::I
Nl &

(@)

Fig. 3-17

Fig. 3-17(b) the loop equations can be written directly as

(2 + i)],(s) AT
8 s

—2I,(s) + (2 + l)lz(s) -2
S S

Solving for 7,(s) and I,(s) yields

3
+1 Styty 301
Il(s)_°_1_4—14=1+_

s+ — s+ — 4s+—
4 4 4

s-1srl 3
L s e e
s+ — s+ — 4s+—
4 4 4

Taking the inverse Laplace transforms of /,(s) and 1,(s), we get

i\(1)=06@t)+ %e_mu(t)

i (t)=8(t) — %e_’mu(t)

(b) From Fig. 3-17(b) we have

1 1
Ve, =N+

1 2
Ve, ()= h)+=

Substituting /,(s) and I,(s) obtained in part (a) into the above expressions, we get

1s+1 1
Ve, ()= s

1
Ve ()=~ 242
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Then, using the initial value theorem (3.97), we have

'+

ve, (0%)= lim sV, (s)= lim ——+1=1+1=2V
§—>00 §—>00

=

ve, (0*)= 321; Ve, ()= slgrolo

Note that vcl(0+) # Ve, (07) and vcz(0+) # Ve, (07). This is due to the existence of a capacitor loop in the
circuit resulting in a sudden change in voltage across the capacitors. This step change in voltages will result in
impulses in i () and i,(#). Circuits having a capacitor loop or an inductor star connection are known as
degenerative circuits.

SUPPLEMENTARY PROBLEMS

3.43. Find the Laplace transform of the following x(f):
(@) x(1) = sin o tu()
(b)  x(t) = cos(wyt + ¢) u(r)
(c) x() = e “u(t) — e“u(—1)
d) x@=1
(e) x(f)=sgnt

3.44. Find the Laplace transform of x(f) given by

L=t=<t,
x(t)= .
0 otherwise

3.45. Show that if x(?) is a left-sided signal and X(s) converges for some value of s, then the ROC of X(s) is of the form
Re(s) < 0,

where o

min

equals the minimum real part of any of the poles of X(s).

3.46. Verify Eq. (3.21); that is,

—tx(t) < ax(s) R' =R
ds

3.47. Show the following properties for the Laplace transform:
(a) If x(¢) is even, then X(—s) = X(s); that is, X(s) is also even.
(b) If x(¢) is odd, then X(—s) = —X(s); that is, X(s) is also odd.

(¢) If x(¢¥) is odd, then there is a zero in X(s) at s = 0.
3.48. Find the Laplace transform of

x(®)= (e "cos2t — 5¢ 2 Hu(t) + %ez'u(—t)
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3.49. Find the inverse Laplace transform of the following X(s):

@ X(s)=—— Re(s) > 1
s

(s +1)
(®) X(5)= ——,~1<Re()<0
s(s

+1)

© X(s)= —— Re(s) < —1

s(s+1)
s+1
d) X(s)=————,Re(s -2
@ X Gy W
s
(e X(S)=W,Re(s)>0
f) X@s)= Re(s) > —2

s> +252 +9s+18’
3.50. Using the Laplace transform, redo Prob. 2.46.

3.51. Using the Laplace transform, show that

(@) x(f) * 8(r) = x(r)
) x(t)*6'(H)=x'(d)

3.52. Using the Laplace transform, redo Prob. 2.54.
3.53. Find the output y(#) of the continuous-time LTI system with
h(®) = e 2u(f)

for the each of the following inputs:
(@) x(t) = e 'u(®)
®) x0) = e u(=n

3.54. The step response of an continuous-time LTI system is given by (1 — e~") u(#). For a certain unknown input x(#),
the output y(?) is observed to be (2 — 3e~' + e~ 3")u(f). Find the input x(7).

3.55. Determine the overall system function H(s) for the system shown in Fig. 3-18.

xit)
O
| £+1 }

1 ¥it)

i | =
F

Fig. 3-18

3.56. If x(7) is a periodic function with fundamental period 7, find the unilateral Laplace transform of x(7).

3.57. Find the unilateral Laplace transforms of the periodic signals shown in Fig. 3-19.
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3.58.

3.59.

3.60.

3.61.

xlf)
— 1 h " ¥ ¥
—1 0 1 2 3 4 5 ¢
(a)
x(t)
— 1 ] : ] : ]
L1 0 i 12 '3 14 '5 t
: , : : : : :
(b)
Fig. 3-19

Using the unilateral Laplace transform, find the solution of
Y'(@0) =y - 6y() = ¢
with the initial conditions y(0) = 1 and y'(0) = 0 for # = 0.

Using the unilateral Laplace transform, solve the following simultaneous differential equations:

Y@ +y®+ X0+ x@) =1
Y@ —y® - 2x@®) =0

with x(0) = 0 and y(0) = 1 fort = 0.
Using the unilateral Laplace transform, solve the following integral equations:

!
(@) y)=1+ afoy(r)dr,t >0

b) y@)=¢ [1 +f(:e_7y(1:)d1:], =0

Consider the RC circuit in Fig. 3-20. The switch is closed at # = 0. The capacitor voltage before the switch closing
is v,. Find the capacitor voltage for t = 0.
05@

t=0

C =/ g R
1]

Fig. 3-20 RC circuit.
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3.62. Consider the RC circuit in Fig. 3-21. The switch is closed at 7 = 0. Before the switch closing, the capacitor C, is
charged to v, V and the capacitor C, is not charged.

(@)
©]

()

Fig. 3-21 RC circuit.

Assuming C, = C, = C, find the current i(?) for t = 0.

Find the total energy E dissipated by the resistor R, and show that E is independent of R and is equal to half of
the initial energy stored in C,.

Assume that R = 0 and C| = C, = C. Find the current i() for f = 0 and voltages Ve, (0*) and vcz(0+).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) X(s)= 52—, Re(s)>0
$7 + g

3.44.

3.45.

3.46.

3.47.

3.48.

)

()

(d)

(e)

X(s)

Hint:

Hint:

Hint:
(@)
(®)
©

X(s)

X(s)= scosq;:_woz51n¢,Re(s)>0
s

0

2s
Ifa>0, X(s)= 22 @ < Re(s) < a.If a < 0, X(s) does not exist since X(s) does not have an ROC.

Hint:  x(®) = u(®) + u(—9
X(s) does not exist since X(s) does not have an ROC.
Hint:  x(t) = u(f) — u(—1)

X(s) does not exist since X(s) does not have an ROC.

1 _ _
=—[e " —e '], all s
s
Proceed in a manner similar to Prob. 3 4.

Differentiate both sides of Eq. (3.3) with respect to s.

Use Egs. (1.2) and (3.17).
Use Egs. (1.3) and (3.17).
Use the result from part (b) and Eq. (1.83a).

o+
ot 5 L1 Re<2
(s+1)"+4 s+2 2s5-2
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3.49.

3.50.

3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

3.57.

3.58.

3.59.

3.60.

3.61.

3.62.

(@ x@)=10—-e"—te Hu@)
) x(t)=—u(=1)—A+e 'u@)
©) x)=(1+e "+t Hu(-1)

d x(t)=e? (cos 3t — %sin 3t]u(t)
(e) x(t)=%tsin2tu(t)
(2o 2y 2
(@d) x(t)—( 13e +l3cos3t+l3sm3t)u(t)

Hint:  Use Eq. (3.21) and Table 3-1.

Hint:
(a) Use Eq.(3.21) and Table 3-1.
(b) Use Egs. (3.18) and (3.21) and Table 3-1.

Hint:

—

(a) Find the system function H(s) by Eq. (3.32) and take the inverse Laplace transform of H(s).

(b) Find the ROC of H(s) and show that it does not contain the jw-axis.

(@ y@®=("—eHu@
b) y@® =e'u(—0+ e u@®

x(t) =2(1 — e *u()

Hint:  Use the result from Prob. 3.31 to simplify the block diagram.

2

H(s)= 4———5——
) $4+3s2+s5-2

X(s) = —— (" x(t)e *'dt, Re(s)> 0
s _l_e‘-‘Tfo‘x e , Re(s

1 1—¢*

a) —— ,Re(s)>0; b ,Re(s)>0
@ Saveny ey eV
1,2 5,15
H=——¢ += +—¢e", =0
y(@®) 66 36 2e
x)=e'—1Lyt)=2—-e",t=0
(@ y@®=e"1=0; ®) yt)y=e¥1t=0

_ ~1IRC
v.(D) = ve ,t=0

(@) i(t)=(vy/R)e *® t=0

(b) E= %vgc

(c) i(t)=%v0C6(t), v, (07)= vy /2# v (07)= vy, v, (07) = vy /2# v, (07)=0



CHAPTER 4

The zTransform and
Discrete-Time LTI Systems

4.1 Introduction

In Chap. 3 we introduced the Laplace transform. In this chapter we present the z-transform, which is the
discrete-time counterpart of the Laplace transform. The z-transform is introduced to represent discrete-time
signals (or sequences) in the z-domain (z is a complex variable), and the concept of the system function for
a discrete-time LTI system will be described. The Laplace transform converts integrodifferential equations into
algebraic equations. In a similar manner, the z-transform converts difference equations into algebraic equa-
tions, thereby simplifying the analysis of discrete-time systems.

The properties of the z-transform closely parallel those of the Laplace transform. However, we will see
some important distinctions between the z-transform and the Laplace transform.

4.2 The zTransform

In Sec. 2.8 we saw that for a discrete-time LTI system with impulse response h[n], the output y[n] of the system
to the complex exponential input of the form z" is

yln] = T{z"} = H(2)z" 4.1

where

o0

H()= Y hinlz" 42)

n=—w

A. Definition:

The function H(z) in Eq. (4.2) is referred to as the z-transform of h[n]. For a general discrete-time signal x[n],
the z-transform X(z) is defined as

X(z)= E x[n]z" 4.3)

The variable z is generally complex-valued and is expressed in polar form as

7= rel® 44)

@ —
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where r is the magnitude of z and Q is the angle of z. The z-transform defined in Eq. (4.3) is often called the bilat-
eral (or two-sided) z-transform in contrast to the unilateral (or one-sided) z-transform, which is defined as

X, ()= 2 x[n]lz™" 4.5)

n=0

Clearly the bilateral and unilateral z-transforms are equivalent only if x[n] = O for n < 0. The unilateral
z-transform is discussed in Sec. 4.8. We will omit the word “bilateral” except where it is needed to avoid
ambiguity.

As in the case of the Laplace transform, Eq. (4.3) is sometimes considered an operator that transforms a
sequence x[n] into a function X(z), symbolically represented by

X(z) = 3{x[n]} (4.6)
The x[n] and X(z) are said to form a z-transform pair denoted as
x[n] < X(z) “@.7

B. The Region of Convergence:

As in the case of the Laplace transform, the range of values of the complex variable z for which the z-transform
converges is called the region of convergence. To illustrate the z-transform and the associated ROC let us con-
sider some examples.

EXAMPLE 4.1 Consider the sequence
x[n] = a"uln] areal “4.8)

Then by Eq. (4.3) the z-transform of x[n] is

X(@)= i d"ulnlz™" = i(az_')"
n=0

n=—o0

For the convergence of X(z) we require that

n
< 00

o]
2 ‘az_l
n=0

Thus, the ROC is the range of values of z for which |az™!| < 1 or, equivalently, |z| > |a|.Then

1
1—az™!

X@)= 20("2_5" = |2]>]al (4.9)

Alternatively, by multiplying the numerator and denominator of Eq. (4.9) by z, we may write X(z) as
X@=——|z[>]a| .10)
zZ—a

Both forms of X(z) in Egs. (4.9) and (4.10) are useful depending upon the application. From Eq. (4.10) we
see that X(z) is a rational function of z. Consequently, just as with rational Laplace transforms, it can be char-
acterized by its zeros (the roots of the numerator polynomial) and its poles (the roots of the denominator
polynomial). From Eq. (4.10) we see that there is one zero at z = 0 and one pole at z = a. The ROC and the
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pole-zero plot for this example are shown in Fig. 4-1. In z-transform applications, the complex plane is com-
monly referred to as the z-plane.

Re Re(z
2) Unit circle & @
z-plare
Imjz)
imiz)
—i1<a<0 a< —1

Fig. 4-1 ROC of the form |z| > |a]|.

EXAMPLE 4.2 Consider the sequence
x[n] = —a"u[—n—1] “4.11)

Its z-transform X(z) is given by (Prob. 4.1)

X(2)=

<l (4.12)

Again, as before, X(z) may be written as

X@=——|z|<|d] (4.13)
i—a
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Thus, the ROC and the pole-zero plot for this example are shown in Fig. 4-2. Comparing Eqgs. (4.9) and
(4.12) [or Egs. (4.10) and (4.13)], we see that the algebraic expressions of X(z) for two different sequences
are identical except for the ROCs. Thus, as in the Laplace transform, specification of the z-transform requires
both the algebraic expression and the ROC.

Imfz) Im(z)

O<ac<1 a>1

Im(z) Im(2)

-1<a<0 a< -1

Fig. 4-2 ROC of the form |z| < |a|.

C. Properties of the ROC:

As we saw in Examples 4.1 and 4.2, the ROC of X(z) depends on the nature of x[r]. The properties of the ROC
are summarized below. We assume that X(z) is a rational function of z.

Property 1: The ROC does not contain any poles.
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Property 2: If x[n] is a finite sequence (that is, x[n] = 0 except in a finite interval N, < n < N, ,where N,
and N, are finite) and X(z) converges for some value of z, then the ROC is the entire z-plane
except possibly z =0 orz = .

Property 3: If x[n] is a right-sided sequence (that is, x[n] = 0 for n < N, < ) and X(z) converges for
some value of z, then the ROC is of the form

|z| > T or oo > |z| > o

ax ax

where r__equals the largest magnitude of any of the poles of X(z). Thus, the ROC is the

max
exterior of the circle |z| = r,_,_in the z-plane with the possible exception of z = .

2.

Property 4: If x[n] is a left-sided sequence (that is, x[n] = O for n > N, > —) and X(z) converges for
some value of z, then the ROC is of the form

lz| <7, or 0<|z| <r,,

where r_, is the smallest magnitude of any of the poles of X(z). Thus, the ROC is the inte-

rior of the circle |z| = r_, in the z-plane with the possible exception of z = 0.

Property 5: If x[n] is a two-sided sequence (that is, x[n] is an infinite-duration sequence that is
neither right-sided nor left-sided) and X(z) converges for some value of z, then the
ROC is of the form

r<lz| <r,
where r, and r, are the magnitudes of the two poles of X(z). Thus, the ROC is an annular
ring in the z-plane between the circles |z| = r and |z| = r, not containing any poles.

Note that Property 1 follows immediately from the definition of poles; that is, X(z) is
infinite at a pole. For verification of the other properties, see Probs. 4.2 and 4.5.

4.3 zTransforms of Some Common Sequences

A. Unit Impulse Sequence 6[n]:
From definitions (1.45) and (4.3)

X(2)= 2 8nlz "=z"=1 allz (4.14)

Thus,

d[n] =1 all z (4.15)
B. Unit Step Sequence u[n]:
Setting a = 1 in Eqgs. (4.8) to (4.10), we obtain

== e (4.16)

uln] <
1-z!

C. ZTransform Pairs:

The z-transforms of some common sequences are tabulated in Table 4-1.
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—

TABLE 4-1 Some Common z-Transform Pairs

x[n] X@) ROC
S[n] 1 All z
1 b4
uln] I ’—Z— |z] > 1
1 b4
—u[—n—1] ol |z <1
1-z7 z—
S[n—m] zm All z except 0 if (m > 0) or o if (m < 0)
o 21> lal
n k
au[n] l—az' 7—a Z a
L2 |21 < lal
—a'yl—n— .
a'u[—n—1] l—az' ' 7—a z a
az™ az
n s >
nau(n] (l—az ) (z—a) |z] > lal
az™ az
_ e , <
na"u[—n—1] (I—az 'V (z—a) |z] < |al
: L [i} 21> lal
(n+1)a™uln] (U—az") | z—a b4
2
z°— (cos Q,)z
cos Q. n)uln Y > 1
¢ onuln] 72— (2cos Q)z+1 Izl
. (sin Q,)z
Q >
(sin Lm)uln] 72— (2cos Q)z+1 |zl >1
2
, Z2°—(rcos Q,)z
>
(r" cos Q n)uln] 22— (2rcos QO)Z‘HZ |z| > r
n . (rsin Q,)z
(r" sin Q,n)uln] = (2roos Q) 2+ 7 |z| > r
a" 0=n=N-1 l—aVz "
. - |z] >0
0 otherwise l—az

4.4 Properties of the zTransform

Basic properties of the z-transform are presented in the following discussion. Verification of these properties is
given in Probs. 4.8 to 4.14.
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A. Linearity:
If

x,[n] < X,(2) ROC = R,
x,[n] < X,(z) ROC =R,

then
ax [n] + a,x,[n] < a X (2) + a,X,(2) R'DR NR,
where a, and a, are arbitrary constants.

B. Time Shifting:
If

x[n] < X(2) ROC =R
then

an = nl <> z7™X@)  R'=RN{0<|z] <o}

Special Cases:

xn—11<z'X@z R =RN{0< |z|}
aln + 1] < 2X(2) R = RN {]z] <}

(4.17)

(4.18)

(4.19)
(4.20)

Because of these relationship [Egs. (4.19) and (4.20)], z~! is often called the unit-delay operator and z is called
the unit-advance operator. Note that in the Laplace transform the operators s~! = 1/s and s correspond to time-

domain integration and differentiation, respectively [Eqgs. (3.22) and (3.20)].

C. Multiplication by z":

0
If
x[n] < X(2) ROC =R

then

n Z '

zgxlnl< X|=—|  R=|z|R
)

In particular, a pole (or zero) at z = z, in X(z) moves to z = z,z,

or contracts by the factor |z, .

Special Case:

e/ xn] < X(e/%0z) R'=R

In this special case, all poles and zeros are simply rotated by the angle Q and the ROC is unchanged.

(421)

after multiplication by zj and the ROC expands

(4.22)
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D. Time Reversal:

If
x[n] < X(2) ROC =R
then
x[—n]e X(i) rR=1 4.23)
b4 R

Therefore, a pole (or zero) in X(z) at z = z, moves to 1/z, after time reversal. The relationship R' = 1/R indi-
cates the inversion of R, reflecting the fact that a right-sided sequence becomes left-sided if time-reversed, and
vice versa.

E. Multiplication by n (or Differentiation in 2):
If

x[n] < X(z) ROC =R
then

dX(z)
dz

nx[n] < —z R'=R (4.24)

F. Accumulation:
If

x[n] < X(z) ROC =R
then

> xlkl - 1_,X(z)=ZZ1X(z) R ORA{z|>1) 25)
- -

k=—0o

Note that 3 __. x[k] is the discrete-time counterpart to integration in the time domain and is called the accumu-
lation. The comparable Laplace transform operator for integration is 1/s.

G. Convolution:
If

x,[n] < X,(2) ROC =R,
x,[n] < X\(2) ROC =R,

then
x,[n] * x,[n] <> X (2)X,(2) R' DR NR, (4.26)

This relationship plays a central role in the analysis and design of discrete-time LTI systems, in analogy with
the continuous-time case.

H. Summary of Some z-transform Properties:

For convenient reference, the properties of the z-transform presented above are summarized in Table 4-2.
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TABLE 4-2. Some Properties of the z-Transform

PROPERTY SEQUENCE TRANSFORM ROC
x[n] X(2) R
x,[n] X,(2) R,
x,[n] X,(2) R,
Linearity ax,[n] + ayx,[n] a,X,(z) + a,X,(z) R'DR,NR,
Time shifting x[n—ng] 77" X(z) R'DRN{0 <|z] < o}
Multiplication by ) Zx[n] X(ij R'=|z,|R
%
Multiplication by e /o e Qnx(n] X(e™ /fhz) R'=R
1
Time reversal x[—n] X(—J R'= 1
b4 R
T dX(z) ,
Multiplication by n nx[n] —zd— R'=R
Z
~ 3 xin) L x()
Accumulation k=_”x n —7" z R'DRN{|z|>1}
Convolution X [n]* x,[n] X, (2)X,(2) R'DR\NR,

4.5 The Inverse zTransform

Inversion of the z-transform to find the sequence x[n] from its z-transform X(z) is called the inverse z-transform,
symbolically denoted as

x[n] = 37X} 4.27)

A. Inversion Formula:

As in the case of the Laplace transform, there is a formal expression for the inverse z-transform in terms of an
integration in the z-plane; that is,

— 1 n—1
x[n]—z—ﬂjfﬁcX(z)z dz (4.28)

where C is a counterclockwise contour of integration enclosing the origin. Formal evaluation of Eq. (4.28)
requires an understanding of complex variable theory.

B. Use of Tables of zTransform Pairs:
In the second method for the inversion of X(z), we attempt to express X(z) as a sum
X@=X@+ - +X (2) (4.29)

where X (@), ..., X (z) are functions with known inverse transforms x[n], ..., x [n]. From the linearity property
(4.17) it follows that

x[n] = x,[n] + -+ + x, [n] (4.30)
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C. Power Series Expansion:

The defining expression for the z-transform [Eq. (4.3)] is a power series where the sequence values x[n] are the
coefficients of z7”. Thus, if X(z) is given as a power series in the form

o

2 x[n]z™"

n=—o0

X[z]

c+ x[-2]2% + x[-1]z + x[0] + x[1]z”" + x[2]2 2 +

(4.31)

we can determine any particular value of the sequence by finding the coefficient of the appropriate power of 7z~
This approach may not provide a closed-form solution but is very useful for a finite-length sequence where X(z)
may have no simpler form than a polynomial in z™! (see Prob. 4.15). For rational z-transforms, a power series
expansion can be obtained by long division as illustrated in Probs. 4.16 and 4.17.

D. Partial-Fraction Expansion:

As in the case of the inverse Laplace transform, the partial-fraction expansion method provides the most gen-
erally useful inverse z-transform, especially when X(z) is a rational function of z. Let

_N@)_, z=z)(2=2,)

X(2) (4.32)
D) (z=p) (2= p,)
Assuming n = m and all poles p, are simple, then
&:C_O+C—l+ Foe “n =C_0+ Sk (4.33)
z Z Z=p Z7Pp, 2=p, T =717 D
where
X(z
@=X@|,_,  a=G-p)T2 (4.34)
=px
Hence, we obtain
n
X(@)=cyt¢ z +--+c, z =C0+2Ck £ (4.35)
T h L7 Pn =N

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z) and using Table 4-1, we can then
invert each term, producing thereby the overall inverse z-transform (see Probs. 4.19 to 4.23).

If m > nin Eq. (4.32), then a polynomial of z must be added to the right-hand side of Eq. (4.35), the order
of which is (m — n). Thus for m > n, the complete partial-fraction expansion would have the form

m-—n n
X@)=3 b2+ o, — (4.36)
4=0 k=1 27 Pk

If X(z) has multiple-order poles, say, p, is the multiple pole with multiplicity r, then the expansion of X(z)/z
will consist of terms of the form

! 2 oy —T (4.37)
=P (z—p) (z—p)
where
X(z)
,k—F;{( } 438)
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4.6 The System Function of Discrete-Time LTI Systems

A. The System Function:

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the convolution of the input x[r]
with the impulse response k[n]; that is [Eq. (2.35)],

yln] = x[n] * hln] (4.39)
Applying the convolution property (4.26) of the z-transform, we obtain
Y(z) = X(2)H(z) (4.40)

where Y(z), X(z), and H(z) are the z-transforms of y[n], x[n], and h[n], respectively. Equation (4.40) can be
expressed as

Y(2)
H(z) =% (4.41)
(2) )

The z-transform H(z) of h[n] is referred to as the system function (or the transfer function) of the system. By
Eq. (4.41) the system function H(z) can also be defined as the ratio of the z-transforms of the output y[»n] and
the input x[n]. The system function H(z) completely characterizes the system. Fig. 4-3 illustrates the relation-
ship of Egs. (4.39) and (4.40).

—_—p  hin] >
x[n] yln]=yln] » h[n]
X(z) Y(2)=X(2)H(z)

—_—> H —>

Fig. 4-3 Impulse response and system function.

B. Characterization of Discrete-Time LTI Systems:

Many properties of discrete-time LTI systems can be closely associated with the characteristics of H(z) in the
z-plane and in particular with the pole locations and the ROC.

1. Causality:
For a causal discrete-time LTI system, we have [Eq. (2.44)]

h[n] =0 n<0
since h[n] is a right-sided signal, the corresponding requirement on H(z) is that the ROC of H(z) must be of the form

|z| >rm

ax

That is, the ROC is the exterior of a circle containing all of the poles of H(z) in the z-plane. Similarly, if the sys-
tem is anticausal, that is,

h[n] =0 n=0
then A[n] is left-sided and the ROC of H(z) must be of the form
|Z| < rmin

That is, the ROC is the interior of a circle containing no poles of H(z) in the z-plane.
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2. Stability:
In Sec. 2.7 we stated that a discrete-time LTI system is BIBO stable if and only if [Eq. (2.49)]

o

2 |h[n]|<oo

n=-o

The corresponding requirement on H(z) is that the ROC of H(z) contains the unit circle (that is, |z| = 1).(See
Prob. 4.30.)

3. Causal and Stable Systems:

If the system is both causal and stable, then all of the poles of H(z) must lie inside the unit circle of the
z-plane because the ROC is of the form |z| > 1> @and since the unit circle is included in the ROC, we must
haver , < 1.

C. System Function for LTI Systems Described by Linear Constant-Coefficient
Difference Equations:

In Sec. 2.9 we considered a discrete-time LTT system for which input x[#] and output y[n] satisfy the general lin-
ear constant-coefficient difference equation of the form

N

M
Y ayln—kl=Y bxln—kl (4.42)
k=0 k=0

Applying the z-transform and using the time-shift property (4.18) and the linearity property (4.17) of the
z-transform, we obtain

N M
E akz_kY(z) = E bkz_kX(z)
£=0 k=0

or
N M
Y@ a2 =X@) bz " (4.43)
k=0

Thus,

(N
»U'
N
il

(4.44)

Il
> |~
—_~ |~
ISHKa
N | N

Il

=

I
[=)

M=
Q
K
N
1]

==
I
o

Hence, H(z) is always rational. Note that the ROC of H(z) is not specified by Eq. (4.44) but must be inferred
with additional requirements on the system such as the causality or the stability.

D. Systems Interconnection:
For two LTI systems (with h,[n] and h,[n], respectively) in cascade, the overall impulse response A[n] is given by
h[n] = h,[n] * h,[n] (4.45)
Thus, the corresponding system functions are related by the product
H@) = H(@H,x)  RDR NR, (4.46)
Similarly, the impulse response of a parallel combination of two LTI systems is given by

hin] = h,[n] + h,[n] (4.47)
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and

H(z) = H,(2) + Hy2) RDR,NR, (4.48)

4.7 The Unilateral zTransform

A. Definition:

The unilateral (or one-sided) z-transform X,(z) of a sequence x[n] is defined as [Eq. (4.5)]

o<

X, (2)= 2 x[nlz™" (4.49)
n=0

and differs from the bilateral transform in that the summation is carried over only n = 0. Thus, the unilateral
z-transform of x[n] can be thought of as the bilateral transform of x[n]u[n]. Since x[n]u[n] is a right-sided
sequence, the ROC of X/(z) is always outside a circle in the z-plane.

B. Basic Properties:

Most of the properties of the unilateral z-transform are the same as for the bilateral z-transform. The unilateral
z-transform is useful for calculating the response of a causal system to a causal input when the system is described
by a linear constant-coefficient difference equation with nonzero initial conditions. The basic property of the uni-
lateral z-transform that is useful in this application is the following time-shifting property which is different
from that of the bilateral transform.

Time-Shifting Property:

If x[n] « X,(2), then form = 0,
xln—ml e z7mX (2) + 27" x[—1] + 27" 2x[=2] + - + x[—m] (4.50)
x[n + m] < z"X (z) —z"x[0] — z" " 'x[1] — -+ — zx[m — 1] 4.51)

The proofs of Eqgs. (4.50) and (4.51) are given in Prob. 4.36.

D. System Function:

Similar to the case of the continuous-time LTI system, with the unilateral z-transform, the system function
H(z) = Y(z)/X(z) is defined under the condition that the system is relaxed; that is, all initial conditions are zero.

SOLVED PROBLEMS

The z-Transform

4.1. Find the z-transform of
(a) x[n] =—a"u[—n— 1]
b) x[n]l =a"u[—n—1]
(a) From Eq.(4.3)

-1
X(2)=- E a"u[—n—l]z‘"=_ E a7 "

n=—o n=—o

=- i(a_'z)" =1- i(a_'z)"
n=1 n=0
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By Eq. (1.91)
N 1 -
'Eo(a IZ)n:l—a_'z 1f|a lz|<lor|z|<|a|
Thus,
1 -a'z 2 1
X =1— = = =
@ l-a'z 1-a'z z-a 1-az’! |2l<la|

(b) Similarly,

© -1
X(z)= E a "u[-n—-1]z7"= E (az)™"

n=—o n=—o
=Y (@) =y ()" -1
n=1 n=0
Again by Eq. (1.91)
d " 1 . 1
E(dz) = if|az|<lor|z|<i—
“ 1-az |a
Thus,
_ 1 ez 1
X(Z)_l—az ! 1-az z—1/a <] |a]

4.2. A finite sequence x[n] is defined as

#0 N,=n=N,
x[n] .
=0 otherwise

(4.52)

(4.53)

where N, and N, are finite. Show that the ROC of X(z) is the entire z-plane except possibly z = 0 or z = .

From Eq. (4.3)

Ny

X@= Y xlnl™"

n=N;

(4.54)

For z not equal to zero or infinity, each term in Eq. (4.54) will be finite and thus X(z) will converge. If N; < 0 and
N, > 0, then Eq. (4.54) includes terms with both positive powers of z and negative powers of z. As |z| = 0, terms

with negative powers of z become unbounded, and as |z| — o, terms with positive powers of z become unbounded.
Hence, the ROC is the entire z-plane except for z = 0 and z = . If N, = 0, Eq. (4.54) contains only negative powers
of z, and hence the ROC includes z = ». If N, = 0, Eq. (4.54) contains only positive powers of z, and hence the ROC

includes z = 0.

4.3. A finite sequence x[n] is defined as

x[n]=1{5,3,—-2,0,4,— 3}
1
Find X(z) and its ROC.
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From Eq. (4.3) and given x[n] we have

o

X(2)= Y x[nlz "= i x[nlz™"

n=-o n=-2
= x[~212% + x[~ 1z + x[0] + x[1]z”" + x[2]z"? + x[3]z*
=57 +3z-2+477 237"
For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will converge. Note that

X(z) includes both positive powers of z and negative powers of z. Thus, from the result of Prob. 4.2 we conclude
that the ROC of X(z) is 0 < |z| < 0.

4.4. Consider the sequence

a" 0=n=N-1a>0
x[n]=
0 otherwise

Find X(z) and plot the poles and zeros of X(z).

By Eq. (4.3) and using Eq. (1.90), we get

N-1

N-1 —1\N N N
_ 1 1N
X@=Sa" =3 @y =1 ) 1z 4.55)
n=0 n=0 1-az 4 Z—a

From Eq. (4.55) we see that there is a pole of (N — 1)th order at z = 0 and a pole at z = a. Since x[n] is a finite
sequence and is zero for n < 0, the ROC is |z| > 0. The N roots of the numerator polynomial are at

7, = ae/ @M k=0,1,..,.N—1 (4.56)

The root at £ = O cancels the pole at z = a. The remaining zeros of X(z) are at

7, = ael@mkN) k=1,..,N-1 (4.57)

The pole-zero plot is shown in Fig. 4-4 with N = 8.

Im(z)
L3
Z-plane
) - -~
iM - 1)th g “o
order pole .~ T, Pale-zero cancel
\é\‘ | i / =
; Rez)
o ,"3’
B R

Fig. 4-4 Pole-zero plot with N = 8.
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4.5.

4.6.

Show that if x[#] is a right-sided sequence and X(z) converges for some value of z, then the ROC of
X(z) is of the form

|z| > T or oo > |z| > T

ax ax

where r,is the maximum magnitude of any of the poles of X(z).

Consider a right-sided sequence x[n] so that

x[n] =0 n<N,

and X(z) converges for |z| = r,. Then from Eq. (4.3)

| X(2)|= E | xnl|ry " = E |xnl|ry " <

n=—o n=N,

Now if r; > r,, then

E |xn]|r " = E |x[n]|(rbi] = E |x[n]|r0_”(ﬂ)
h 0

n=N, n=N, n=N,
N
s(_rl) > |alnl|rg " <o
o n=N,

since (r,/r,)~" is a decaying sequence. Thus, X(z) converges for r = r, and the ROC of X(z) is of the form
|z| > r,
Since the ROC of X(z) cannot contain the poles of X(z), we conclude that the ROC of X(z) is of the form
|2 > rpae

where r_ is the maximum magnitude of any of the poles of X(z).

If N, <0, then

X(2)= E x[nlz " =x[NJz ™M+ +x[- 1z + E x[nlz ™"
n=N; n=0

That is, X(z) contains the positive powers of z and becomes unbounded at z = . In this case the ROC is of
the form
o> |z| > r.

ax

From the above result we can tell that a sequence x[n] is causal (not just right-sided) from the ROC of X(z) if z = =
is included. Note that this is not the case for the Laplace transform.

Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the following sequences:

@ xtm=| utm+|| uln

) x[n]= —1 nu[n]+ —1 "u[—n—l]
3 2

(¢) x[n]= —1 "u[n]+ —1 "u[—n—l]
2 3
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(a) From Table 4-1

1) 1
(3) u[n]e—z_z T >3 458)
2
1)’ 1
(3) un} e — |2|>3 459)
i

|z|>= (4.60)

From Eq. (4.60) we see that X(z) has two zeros at z = 0 and z = % and two poles at z = % and z = 13 and that
theROC is |z| > % , as sketched in Fig. 4-5(a).
(b) From Table 4-1
n
(%) ”["]“’Z_Ll |Z|>% @61)
3
n
(%) “[—"—1]“’—2% |Z|<% (4.62)
2
We see that the ROCs in Eqgs. (4.61) and (4.62) overlap, and thus
1 1
X@=— - y <lzl=3 4.63)

1
I "1 6 1 1) 3
—— I—— - -
From Eq. (4.63) we see that X(z) has one zero at z = 0 and two poles at z = % and z = % and that the ROC
is 13< |z| < %,as sketched in Fig. 4-5 (b).

Imiz) Imiz)

F '

Relz] Reiz)

@ (b)

Fig. 4-5
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(c) From Table 4-1

! 1
(_) ulnle——= ¢ > (4.64)
‘2
Z_§ 3

We see that the ROCs in Egs. (4.64) and (4.65) do not overlap and that there is no common ROC, and thus

x[n] will not have X(z).

4.7. Let
x[n] = al"l a>0 (4.66)

(a) Sketch x[n] fora < 1landa > 1.
Find X(z) and sketch the zero-pole plot and the ROC fora < 1anda > 1.

®)

(a) The sequence x[n] is sketched in Figs. 4-6(a) and (b) for botha < 1 and a > 1.

xn]=ahl x[n]=ah!

Dca<1 - ax1

ol
LT 11T
0 ;1 0 d

(b)

@
Fig. 4-6

Since x[n] is a two-sided sequence, we can express it as

®
x[n] = a"u[n] + a "u[—n — 1] 4.67)
From Table 4-1
duln] < ——  |z|>a 4.68)
z—a
“n 1
a"ul[-n—1]< — |z]<— (4.69)
z—1/a a
If a < 1, we see that the ROCs in Eqs. (4.68) and (4.69) overlap, and thus,
(4.70)

2
-1 1
X(=—2—-—~1_-1 2 a<|z|<—
z—a z-—1/a a (z—a)(z—1/a) a

From Eq. (4.70) we see that X(z) has one zero at the origin and two poles at z = a and z = 1/a and that the
ROC s a < |z| < 1/a, as sketched in Fig. 4-7.If a > 1, we see that the ROCs in Egs. (4.68) and (4.69) do

not overlap and that there is no common ROC, and thus x[n] will not have X(z).
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Unit circle

Z-plane

Fig. 4-7

Properties of the zTransform

4.8. Verify the time-shifting property (4.18); that is,
R'DRN{0< |z| <}

x[n = nyl <> 27X (2)

By definition (4.3)
Blxln—nly= Y x[n—nylz "

n=-o

By the change of variables m = n — n,, we obtain

B{xln—nyl}= E x[m]z~(m+no)

m=—o
®©

=z " E x[m]z”" =z7""X(z)

m=—o

Because of the multiplication by z~", for n, > 0, additional poles are introduced at z = 0 and will be deleted at z = .
Similarly, if n, < 0, additional zeros are introduced at z = 0 and will be deleted at z = . Therefore, the points z = 0
and z = o can be either added to or deleted from the ROC by time shifting. Thus, we have

x{n — n)] < z7"X(z) RDORN{0< |z] < o}

where R and R’ are the ROCs before and after the time-shift operation.

4.9. Verify Eq. (4.21); that s,
i] R'=|z|R

zgx[n] < X[
29
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By definition (4.3)

3= 3 @iz = 3 x[n](i) =X(

)

n=-o n=—o

—

A pole (or zero) at z = z, in X(z) moves to z = z,,Z,, and the ROC expands or contracts by the factor |z0| . Thus,
we have

4.10. Find the z-transform and the associated ROC for each of the following sequences:

(@)
(©
(e)

(@)

(b)

()]

)

(e)

zﬁx[n]ex(i) R'=|z¢|R

x[n] = 8[n — ng] )  x[n] = uln — ng)
x[n] = a™lun + 1] (d) x[n] = u[—n]
x[n] = a ™ "u[—n]

From Eq. (4.15)
o[n] <1 all z
Applying the time-shifting property (4.18), we obtain

0<|z],n,>0
O6[n—n)] < z7"
|z] <o,n,<0

From Eq. (4.16)
Z
<« — >1
uln] -1 |z|

Again by the time-shifting property (4.18) we obtain

z g "D
uln—nylez ™ = 1<|z|<e
z—1 z—1
From Eqs. (4.8) and (4.10)
a”u[n]<—>L |z|>|a|
z—a
By Eq. (4.20) we obtain
Z Z2
a"Muln+1] ez = la|<|z|<
z—a z—a
From Eq. (4.16)
Z
uln] < —— z[>1
e
By the time-reversal property (4.23) we obtain
1/z 1
—nle =— <1
L by e

From Eqs. (4.8) and (4.10)

a”u[n]<—>L |z|>|a|
z—a

(4.71)

(4.72)

(4.73)

4.74)
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Again by the time-reversal property (4.23) we obtain

a "u[-n] e

Vz _ 1 lo|<L
1/z—a 1-az |a |
4.11. Verify the multiplication by »n (or differentiation in z) property (4.24); that is,

dX(z)
dz

R'=R

nx[n]le —z

From definition (4.3)

X@= Y x[nlz™"

n=-o

Differentiating both sides with respect to z, we have

axX(2) _ E —nx[n]z !

dz e

and
dX(z ol .
R N O PR i)
dz 2w
Thus, we conclude that
nx[n] < — zM R'=R
dz
4.12. Find the z-transform of each of the following sequences:
(a) x[n] = na"uln]
(b) x[n] = na" 'uln]
(a) From Egs. (4.8) and (4.10)
a"u[n]ei |z|>|a|
z—a
Using the multiplication by n property (4.24), we get
d Z az
nau[n]< — 7 — = z|>|a

dz(z—a) (z—a)? [2[>la]

(b) Differentiating Eq. (4.76) with respect to a, we have
na"_'u[n]<—>iL =_*% 5 |z|>]a|
da\ z-a (z—a)

Note that dividing both sides of Eq. (4.77) by a, we obtain Eq. (4.78).

4.13. Verify the convolution property (4.26); that is,
x,[n] * x,[n] <> X,(2)X,(2) R'DR NR,

By definition (2.35)

©

yinl=xnlxxlnl= Yy xlklxln k]

k=—o

(4.75)

(4.76)

4.77)

(4.78)
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Thus, by definition (4.3)

Y[z]= i ( i x,[k]xz[n—k]]z_"= i x,[k]( i xz[n—k]z_”]

n=—oo\k=—00 k=—o

Noting that the term in parentheses in the last expression is the z-transform of the shifted signal x,[n — £], then by

the time-shifting property (4.18), we have

Yiz= x,[k][z_sz(z)]=[ Y alklz " | X,(2) = X,(2)X,(2)

k=—o

n=-o

with an ROC that contains the intersection of the ROC of X|(z) and X, (z). If a zero of one transform cancels a pole

of the other, the ROC of Y(z) may be larger. Thus, we conclude that
x,[n] = x,[n] <> X,(z) X,(2) RDOR NR,

4.14. Verify the accumulation property (4.25); that is,

n 1 z ’
D ke — X0 X0 R SRN{z|>1}

k=—o

From Eq. (2.40) we have

yinl= Y x[k]=x[n]*u[n]

k=—o

Thus, using Eq. (4.16) and the convolution property (4.26), we obtain

_ 1 _ 4
Y(z)—X(z)(l z") X(z)(z_l)

with the ROC that includes the intersection of the ROC of X(z) and the ROC of the z-transform of u[n]. Thus,

n 1 z !
kzz_wx[k] T X@=5X@ RO RO{|z|>1}
Inverse zTransform
4.15. Find the inverse z-transform of
X@)=2* (1 - %z_' )(1 -7 ha+2z7")  0<|z]<e (4.79)

Multiplying out the factors of Eq. (4.79), we can express X(z) as

1 5. -
X@=2"+=z->+7"
@)=z AR

Then, by definition (4.3),
X(z) = x[-2]2* + x[— 1]z + 0] + x[1]z~!

and we get
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4.16. Using the power series expansion technique, find the inverse z-transform of the following X(z):

1
@ X@=——, |z|>|a]
1—az

1
®» X@=——7, |z|<|a|
1—az

(a) Since the ROC is |z| > |a| , that is, the exterior of a circle, x[n] is a right-sided sequence. Thus, we must
divide to obtain a series in the power of z~!. Carrying out the long division, we obtain

1+az '+a?z2+--

1-az”'[1
1—-az’!
az’!
az” ' —a?77?
272
Thus,
X(29)= ! _l=1+az_l+a2z_2+...+akz‘k +.
1-az
and so by definition (4.3) we have
x[n] =0 n<o0
x[0] =1 All=a x[2] = a? K] = a*

Thus, we obtain
x[n] = a"uln]

(b) Since the ROC is |z| < |a| , that is, the interior of a circle, x[n] is a left-sided sequence. Thus, we must
divide so as to obtain a series in the power of z as follows. Multiplying both the numerator and denominator
of X(z) by z, we have

Z
Z—a

X(2)=

and carrying out the long division, we obtain

—alz—alP2 g pB—
—a+7z

z—a 'z

a—lZZ

a2 — a2
q_2z3

Thus,

1 - - - -
X(Z): _lz—a Iz—a Zzz—a 323—...—‘1 kzk—...
l—az

and so by definition (4.3) we have

x[n] =0 n=0

x[-1]= —a™! x-2]=—a>? x[-3]=—a? x[—kl= —a~*
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Thus, we get

x[n] = —a"u[—n — 1]

4.17. Find the inverse z-transform of the following X(z):

(@) X(@)= log(l—_,],
l1—az

z|>]al

) X(z)=log(l_1—],|z|<|a|

a'z

(a) The power series expansion for log(1 — r) is given by

(b)

log(l—r)=—2%r" [r]<1 (4.80)

n=1
Now

X(z)=log(1—_l)=—log(1—az_') |z|>]|a]
1-az

Since the ROC is |z| > |a|, thatis, |az~'| < 1, by Eq. (4.80), X(z) has the power series expansion
— < l —I\n _ o l n_—n
X(z)—E (az ) —E a'z
n=1 n n=1 n
from which we can indentify x[n] as

{(l/n)a" n=1
x[n]=
0 n=0

or x[n]=%a"u[n— 1] (4.81)

X(z)=log(1_la_lz)=—log(l—a_lz) |z|<|a]

Since the ROC is |z| < |a|, thatis, |a~'z| < 1, by Eq. (4.80), X(z) has the power series expansion

— —

1 _ | 1, -
X@=Y—-@'2'=Y ——@'"=Yy ——a"z"
n=|n n=-1 n n=-1 n
from which we can identify x[n] as
0 n=0
x[n]=
(] —(1/n)a" n=-1
1,
or x[n]l=——a'u[—n—1] 4.82)
n

4.18. Using the power series expansion technique, find the inverse z-transform of the following X(z):

Z 1
a Xz=— Z<—
@) X() 272 —3z+1 <] 2
Z
®) X@)=———— z|>1
) X 272 —3z+1 2|
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(a) Since the ROCis |z| < %, x[n] is a left-sided sequence. Thus, we must divide to obtain a series in power of z.
Carrying out the long division, we obtain

2+322+73+15z24 + -

1-3z+27%z
7237 +27°
3% -27°
322 - 97> + 67°
7% — 62
72° - 21z +147°
15z% .
Thus,
X()= -+ 152 +72 + 322+ 2

and so by definition (4.3) we obtain

x[n]={...,15,7,3,1,0}
i

(b) Since the ROCis |z| > 1, x[n] is a right-sided sequence. Thus, we must divide so as to obtain a series in
power of z~! as follows:
1

3 7

AR LA LA
272 -3z + 1|z
N g
2 2
3.1 4
2 2
39 .3,
Z_ o 2
2 4° T4t
7 . 3
—Z —Z
4 4

Thus,

1 1 3 ., 7 4
X@)=—z +—z"+—-z2 "+
@ 2 4 8

and so by definition (4.3) we obtain

’

x[n]= {0,%,

»|w
0|

4.19. Using partial-fraction expansion, redo Prob. 4.18.

T z 1
@ X s 1 I21=3
Z(Z_l) 2_7

Using partial-fraction expansion, we have

X@) _ 1 _ 1 ¢
b4 272 - 3z+1 1 z—1 1
_ _ - =
2(z 1)(2 2) )
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where o=——— =1 c, =

and we get

Z

X(7)=—=— - % _ 2
() p— z—l |z|<

2

Since the ROC of X(2) is |z| < %, x[n] is a left-sided sequence, and from Table 4-1 we get

x[n]=—u[—n—1]+(%) u[—n-— 1]=“%) —llu[—n— 1]

x[n]={...,15,7,3,1,0}
i

which gives

®) X@=——-—=  |z[>1
z—1 _1
)

Since the ROC of X(z) is |z| > 1, x[n] is a right-sided sequence, and from Table 4-1 we get

G GRE BH]

which gives

4.20. Find the inverse z-transform of

X)=—mm >2
O -7 !

Using partial-fraction expansion, we have

&_%:L M Ay > (4.83)
Z (z—1Xz—2) z-1 z—-2 (z-2)
where c -1 =1 A2=L =1
SCEE z=1 2-1,

Substituting these values into Eq. (4.83), we have

1 1A 1
7 + + 2
@-D-2)" z=1 z=2 (z-2)

Setting z = 0 in the above expression, we have

T WU N J
2 4

I
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Thus,

Z Z Z
X(g)=———- 2 4+ *
@ =1 z-2 (z-2)

BB
Since the ROC is |z| > 2, x[n] is a right-sided sequence, and from Table 4-1 we get

x[n] = (1 — 2" + n2" Yu[n]
4.21. Find the inverse z-transform of

223 -524+2z+3
X(z)=# |z|<1
(z—D(z—2)

222 -522+z+3 222-572+7z+3
X(z): = 5
(z—1D(z—2) 7Z—3z7+2

Note that X(z) is an improper rational function; thus, by long division, we have

1 1
X(2)=2z+1+ ———=27+14+——nv—
2 —3z+2 (z—D(z—2)
1
Let X, ()=
)
Then X@__ 14, o
z 2(z—=1(z—-2) 2z z—-1 z-2
1 1 1
where a=— =5 ©= T
@-DE-2)|_, 2 =2,
1 1
C3 = ==
Z(Z_l) z=2 2
Thus,
1 Z 1 z
XQ="—"-+——
1(2) 2 z-1 2z-2
3 z 1 z
and X@=2z+>-——+-——= [z]<I

Since the ROC of X(z) is |z| < 1, x[n] is a left-sided sequence, and from Table 4-1 we get

x[n]=28[n+ 1]+%6[n]+u[— n— 1]—%2"14[— n—1]

=28[n+1] +%6[n] +(1- 2"_')u[— n—1]
4.22. Find the inverse z-transform of
3
X(2)=—— >2
@=-=3 |z

X(z) can be rewritten as

3 -1 Z
X(7)=——=3 >2
(@) i (2_2) |z|
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Since the ROC is |z| > 2, x[n] is a right-sided sequence, and from Table 4-1 we have
Z
2"u[n] & ——
[l z—2

Using the time-shifting property (4.18), we have

_ _ 1
2" un—1]es 72| = ——
[ ] z—2
Thus, we conclude that
x[n] = 32)" 'uln — 1]

4.23. Find the inverse z-transform of

+7 24378

2
X(z)= >0
@) 22 +4z+3 <]

We see that X(z) can be written as

X(z)=Qz'+ 273+ 3775 X, (2)

Z
where 1@ z2+4z+3
Thus, if

x,[n] < X, (2)

then by the linearity property (4.17) and the time-shifting property (4.18), we get

x[n]=2x[n—1]+x[n— 3]+ 3x[n—5] (4.84)
Now X _ i 1 _ 1 _a 6
z " +4z+3 (z+1z+3) z+1 z+3
Where C|=L :l ¢y = 1 :_l
Z+3z=—l 2 z+1z=_3 2
1 z 1 z
Then X@=-2—2-22 |z>0

27+1 2z+3

Since the ROC of X (2) is |z] > o0, x,[n] is a right-sided sequence, and from Table 4-1 we get
Xl = S L= 1 = (= 3" Juln]
Thus, from Eq. (4.84) we get
Al =[ D" = (=3 un—1) +%[(— D' = (= 3" luln—3]
2T - 3 i)

4.24. Find the inverse z-transform of

1

X _—————
@ (1—az ">

|2|>]a|

_ 1 __ 7 4385
XQ= = e 4>l (4.85)
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From Eq. (4.78) (Prob. 4.12)

na" " 'uln] < |z|>]al (4.86)

Z
(z—a)’

Now, from Eq. (4.85)

x<z>=z[ ] I2|>|al

4
(z—a)’
and applying the time-shifting property (4.20) to Eq. (4.86), we get
x[n] = (n+ 1)a"uln + 1] = (n + 1)a"u[n] (4.87)
sincex[—1] =0atn= —1.
System Function
4.25. Using the z-transform, redo Prob. 2.28.

From Prob. 2.28, x[n] and h[n] are given by

x[n] = u[n] h[n] = a"u[n] 0<ac<l
From Table 4-1
Z
xnl=ulnl < X(@)=— |z|>1]
hinl=a"uln] = H@)=—— |z|>]a|
i—a
Then, by Eq. (4.40)
4
Y@Q)=X@H()=——— z|>1
@=X@H@ Z-Dz—a) 2
Using partial-fraction expansion, we have
Y@ _ z _a &
z (@-Dz-a) z-1 z-a
Z 1 z o
where o =— = Cy=—"— -
z-af,_ l-a z—1,_, l-a
Thus,
Y=——f & L >
l1-az-1 l-az—«a

Taking the inverse z-transform of ¥(z), we get

n—1
yln]= u[n]—ianu[n]=(l_ ]u[n]
l-a l-a

1-a
which is the same as Eq. (2.134).

4.26. Using the z-transform, redo Prob. 2.29.

(a) From Prob. 2.29(a), x[n] and h[n] are given by

x[n] = a"uln] h[n] = B"u[n]
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From Table 4-1

x[n]=oz"u[n]<—>X(z)=L |z|>|a|
z—a
Z
hin]= B"uln] <> H(z)= —— |z|>|8]
z—p
2
Then Y2)=X@H(g)=———— z|> max(a, B)
@—a)z=P) 2
Using partial-fraction expansion, we have
Y(z) _ Z 4, &
2 (@-a)z—p) z-a z—B
where cl=L - cz—L - _F
Z_ﬁz=a a-p tTa z=p a-p
Thus,
Y(2)= i : b z |z|> max(a, B)
a—Bz—a a—-Bz—B
a n ﬁ " an+l _ﬁn+l
nj=|——oa ———p |uln]=|———— (uln
and y[][a_ﬁ a_ﬁﬂ][] ( vl U0
which is the same as Eq. (2.135). When a = S,
2
4
Y()=—— Z|>a
0=
Using partial-fraction expansion, we have
Yooz Mk
b4 z-a)Y z-a (z-a)
where A, = z|z=a =a
and Z _ Ay " a

(z—a) z-a (z—a)
Setting z = 0 in the above expression, we have

L WU
(04 a

Thus,

az

__z
N e ar

HE
and from Table 4-1 we get
y[n] = (a" + na”) u[n] = a" (1 + n)u[n]

Thus, we obtain the same results as Eq. (2.135).
(b) From Prob. 2.29(b), x[n] and h[n] are given by

x[n] = a"u[n] h[n] = a~"u[—n] 0<a<l
From Table 4-1 and Eq. (4.75)
x[n]=a"uln] <= X@)=——  |z|>|a]
—a

— o " T— n] < =l=— 1
hm=a”ul-n) <> H@Q=—-=— o= al<

Jo]

— e
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1 Z 1
Then Y)=X@H(Z)=———"—— a<|z|<—
(2)= X(2)H(2) @ @ a ) |z| p”
Using partial-fraction expansion, we have
Yo_ 11 e, q
4 a(z—a)z—1/a) alz—a z-1/a
1 a 1 a
where ¢ = =- 3 6= - 2
2=1af _, l-a z-al,_y, l-a
Thus,
1 z 1 Z 1
Y(@)= - a<|z|<—
@ 1-a’z—a 1-a’z-1/a 2| a
and from Table 4-1 we obtain
1 1 1Y
[n]= a"uln]— —| = u[-n—1]
Y 1- o? 1-o? o
_ 1 n - 11— 1 |n]
= o'uln]+ a “u[—-n—1]= o

2 2

which is the same as Eq. (2.137).

4.27. Using the z-transform, redo Prob. 2.30.

From Fig. 2-23 and definition (4.3)

Al ={L,L,L,1} > X@@)=1+z"+2z?%z7
hln]={1,1,1} «» H(z) =1+2z7'+ 772

Thus, by the convolution property (4.26)

Y@ =XQH@D=0+7"+72+7H1+z"'+77?
=1+27 ' 43272 +373+274+ 77

Hence,
h[n] = {1,2,3,3,2,1}

which is the same result obtained in Prob. 2.30.

4.28. Using the z-transform, redo Prob. 2.32.

Let x[n] and y[n] be the input and output of the system. Then

x[al=uln] < X@)=—— |z|>1
z—1
yinl=a"ulnl <= Y(@)=—— |z|>|«|
i—a
Then, by Eq. (4.41)
Hp-1@_ 21 |z|>a

X2 z—a
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Using partial-fraction expansion, we have

Z (z—a) z z—a

where o =— =

Thus,

Taking the inverse z-transform of H(z), we obtain
ninl = Loin]— L% arun)
a a

Whenn =0,

Then

Thus, h[n] can be rewritten as
Aln] = 6[n] — (1 — &) a" 'uln — 1]
which is the same result obtained in Prob. 2.32.

4.29. The output y[n] of a discrete-time LTI system is found to be 2(%)”u[n] when the input x[n] is u[n].
(a) Find the impulse response h[n] of the system.

(b) Find the output y[n] when the input x[n] is (%)"u[n].
(@ x[n]=u[n]<—>X(z)=ﬁ |z|>1

1
3

yln= 2(%) Ul Y@= -2 |e|>

z7—

[SSE

Hence, the system function H(z) is

Y(z) 2(z—1) 1
Hi7))=——= >_
@ %0, 1 I3
3
Using partial-fraction expansion, we have
H®_2@-D) _a, 9 _
z 1 z -1
Z|Z ? 3
where ¢ = 2z-1|  _ 6 ¢ = 2(z—1) 4
- 2 =13
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Thus,

_*
1
3

H[z]=6—4 |z|>%

Taking the inverse z-transform of H(z), we obtain

h[n]=66[n]— 4(%) u[n]

n
1 1
®) xinl=|=| ulnleX@=—~  |z|>=
2 z— 1 2
2
2z(z—1 1
Then, Y(@)= X@H(2)= % 2>
7 —I|d— —
Again by partial-fraction expansion we have
M — 2(Z - 1) — C; + Cy
z 1y, 1 z— 1 7— 1
Z 72' Z ?; 2 3
where c1=2(Z—_11) =—6 2=2(z_—11) 8
- = - =
3 .= 2 l=13
Thus,
Y@)=-6—F+8—F |z >%
i E i~ §

Taking the inverse z-transform of Y(z), we obtain

—6| 4| +8|~
2 3
4.30. If a discrete-time LTI system is BIBO stable, show that the ROC of its system function H(z) must
contain the unit circle; that is, |z| = 1.

ylnl= uln]

A discrete-time LTI system is BIBO stable if and only if its impulse response A[n] is absolutely summable, that is

[Eq. (2.49)],

E |h[n]|<oo

n=—o
Now H(z)= E h(n]z™"

n=—o
Let z = e/®sothat |z| = |e/?| = 1. Then
|[HE|=| S hime ™
n=—o

= i |h[n]e‘f""

n=—o

= i |hln]|<
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Therefore, we see that if the system is stable, then H(z) converges for z = ¢/%. That is, for a stable discrete-time
LTI system, the ROC of H(z) must contain the unit circle |z| = 1.

4.31. Using the z-transform, redo Prob. 2.38.
(a) From Prob. 2.38 the impulse response of the system is

h[n]=a"u[n]

Then H(Z)=L |z|>]a]
z—a

Since the ROC of H(z) is |z| > |a|, z = = is included. Thus, by the result from Prob. 4.5 we conclude that
h[n] is a causal sequence. Thus, the system is causal.

(b) If |a| > 1, the ROC of H(z) does not contain the unit circle |z| = 1, and hence the system will not be stable.
If |a| < 1, the ROC of H(z) contains the unit circle |z| = 1, and hence the system will be stable.

4.32. A causal discrete-time LTI system is described by

y[n]—%y[n - 1]+%y[n — 2= x[n] (4.88)

where x[n] and y[n] are the input and output of the system, respectively.
(a) Determine the system function H(z).

(b) Find the impulse response h[n] of the system.

(c) Find the step response s[n] of the system.

(a) Taking the z-transform of Eq. (4.88), we obtain

Ym—%in+%[Wm=X@

3 4,1
l-—z +—z2 Y ()=X(z
or ( 2 s ) (2)=X(2)
Thus,
2
H(Z)szigz 3 |l 1 5 g 1
1->z +—-z° z"—>z+—
4 8
2
1
>3
2 4
(b)  Using partial-fraction expansion, we have
H(z)= Z __ a4 ©
Z Ly, 1 z—l z—l
Y | 2 4
where o= 4 =2 cz——z =—1
4l=12 2lz=14
Thus,
1
HQ=2—1-—7 [¢[>3
i——~ I
2 4
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Taking the inverse z-transform of H(z), we get

w5k

x[n]=u[n]<—>X(z)=ﬁ |z|>1
2
Then Y(2)= X(@H (@)= |2|>1
(z—1) PR (PR
2 4
Again using partial-fraction expansion, we have
Y(2) _ Z _ Cll+ 021+ c31
b4 1 1 - _ —
2—=Djz——|[z——= z Ty
. o2 | .8 2
where 1 1 1 3 2 1
z——|z—— Z—-D|z——
2 4 z=1 4 =12
z 1
C3 = 25
(z=D|z——
z=1/4
Thus,
8 z z 1z
Y()=— -2 += >1
@=37 R |z
2 4

Taking the inverse z-transformation of Y(z), we obtain

|8 o) 1Y
y[n]l=s[n] [3 2(2)+3(4”u[n]

4.33. Using the z-transform, redo Prob. 2.41.

As in Prob. 2.41, from Fig. 2-30 we see that

qln] = 2q(n — 1] + x[n]
yln] = gln] + 3q[n — 1]

Taking the z-transform of the above equations, we get

0()=27"'01) + X(z)
Y(z) = Q(z) + 327! Q(2)

Rearranging, we get

(1 -227H0(2) = X(@)
(1+32710) = Y@

from which we obtain

Y@ _1+37"
HO= Y0 120

CHAPTER 4 The z-Transform and Discrete-Time LTI Systems

(4.89)
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Rewriting Eq. (4.89), we have
(1-2z7YY(@) =1+ 32X ()
or
Y(z) — 227'Y(2) = X(z) + 327" X(2) (4.90)
Taking the inverse z-transform of Eq. (4.90) and using the time-shifting property (4.18), we obtain
y[n] — 2y[n — 1] = x[n] + 3x[n — 1]

which is the same as Eq. (2.148).

4.34. Consider the discrete-time system shown in Fig. 4-8. For what values of « is the system BIBO stable?

x[n]

..@

gln-1] | qln]

L J

e

vinl

Fig. 4-8
From Fig. 4-8 we see that

k
al)= xnl+ Sqln =1}
yIn1= qin+ Sqin—1]

Taking the z-transform of the above equations, we obtain

0@) = X()+ gz_'Q(z)
Y(2)= () + gz"Q(z)

Rearranging, we have

(1 - %z")Q(z)= X(2)

k
(1 te ')Q(z)= Y(2)
from which we obtain

Y@) _1+k/3z 2z +k/3

HO= o0  1=wine 1=k
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which shows that the system has one zero at z = —k/3 and one pole at z = k/2 and that the ROC is |z| > |k/2].
Thus, as shown in Prob. 4.30, the system will be BIBO stable if the ROC contains the unit circle, |z| = 1. Hence,
the system is stable only if |k| < 2.

Unilateral z-Transform

4.35. Find the unilateral z-transform of the following x[n]:
(a) x[n] = a"uln]
(b)) x[n] =a" 'uln + 1]

(@) Since x[n] = 0 forn <0, X,(z) = X(z), and from Example 4.1 we have

1 4

_|:

1—az z—a

X,(2)= |z|>|a] (4.91)
(b) By definition (4.49) we have

X](Z)= Eanﬂu[n_'_llz—n — Eanﬂz—n —a (az—l)n
n=0 n=0

=
ige

—a—t e % g5 (4.92)
1—az Z—a

Note that in this case x[n] is not a causal sequence; hence, X,(z) # X(z) [see Eq. (4.73) in Prob. 4.10].
4.36. Verify Eqgs. (4.50) and (4.51); that is, for m = 0,
(@) x[n—m]<>z7mX,(z) + 7" x[—1] + z7m*2[=2] + -+ +x[—m]
(b) x[n+ m] < z"X,(z) — z"x[0] — 2" 'x[1] — -+ — zx[m — 1]

(a) By definition (4.49) with m = 0 and using the change in variable kK = n — m, we have

© 0

B{xln—ml}= E x[n—mlz " = E x[kJz~ "0
n=0 k=—m
=S stk + Y kit
k=0 k=—1

=7 "{X, @)+ x[- 1]z + x[— 212% + -+ x[— m]Z™}
=27 "X, @+ 2 " [ 14 27" [ 2]+ 4 x[— m)

(b) Withm=0

© ©

B {xln+ml}= E x[n+m)z "= E x[k)z =™

n=0 k=m

© m—1

=" E x[k1z 7 - E x[k1z7*

k=0 k=0
= z'” {X,(Z)— (X[O] +x[1]z_| +...+x[m _ I]Z_(m_l))}
=7"X,(2)— 2"x[0]— 2" "x[1] = - — 2x[m — 1]

4.37. Using the unilateral z-transform, redo Prob. 2.42.
The system is described by
y[n] — ayln — 1] = x[n] (4.93)
with y[—1] = y_, and x[n] = Kb"u[n]. Let

yln] < Y(2)
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Then from Eq. (4.50)
yin— 1<z, @) +y[-11=27"Y, @) +y_,
From Table 4-1 we have

Z
x[n]<—>X,(z)=Kz_—b |z|>|b]

Taking the unilateral z-transform of Eq. (4.93), we obtain

Y, ()~ afz Y@+ y. =K ——
z—b
or 1- az_l)Y,(Z)=ay_I + K2
Z2—b
or Ly, () =ay_, + K——
Z z—b
Thus,
2
Z Z
Y,(2)=ay_ K
O L N e ae-b)

Using partial-fraction expansion, we obtain

Y,(2)=ay_, 4 K b—* —a %
z—a b—a\ z—0b z—a

Taking the inverse z-transform of ¥,(z), we get

ylnl=ay _,a"u[n]+ KLb”u[n]— k-2
b—a b

a"uln]

n+l _ n+l
= y_lan+|+Kbb_—Z)u[n]

which is the same as Eq. (2.158).

4.38. For each of the following difference equations and associated input and initial conditions, determine the
output y[n]:
(@) yln] =3yln — 11 = x[n], with x[n] = 3)", y[~1] = 1
(b) 3yln] — 4yln — 1] + yln — 2] = x[n], with x[n] = (12)”,y[—1] =1,y[-2]=2

(@) x[n] < X, ()= —— |z|>‘%‘
-

W=

Taking the unilateral z-transform of the given difference equation, we get
1, _
Y-S M@+ Y- 1) =X,@)

Substituting y[— 1] = 1 and X, (z) into the above expression, we get

1_| 1 Z
1-—z72 Y, (9)==+——
(-2 -t

z_

3

1

z—_
or 2 Y,(z)=l+—Z
z 2,1

w
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Thus,
2
V=12 + < SN S
2 1 2 1 1
2 2 3 2 3
Hence,
1 n+l 1 n
n]=7[— -2|— n=-1
Z 1
(b) x[n] < X, ()= —— |z|>‘§‘

z7—

N | —

Taking the unilateral z-transform of the given difference equation, we obtain
3Y,(2) - 4z 'Y, +y[- 11} + {z7?Y, (@) + 7' y[- 1] + y[-2]} = X,(2)
Substituting y[—1] = 1, y[-2] = 2, and X, (2) into the above expression, we get

BG-47' + 7Y@ =2-7 "+

Z—l
2
1 1
3(Z_1)Z_§ 322274~
or — 2y (p)=—2
S AT
2
Thus,
:.[3:.: 22 1]
2
Y (2)- - : .|
Az 11[:. l.: ]
2 3
_3. ¢z |1z
2z—-1 z—l 22_1
2 3
Hence,

J3 (o)) o
y[n]—2 (2)+2(3) n=-2

4.39. Let x[n] be a causal sequence and
x[n] < X(z)
Show that

x[0]= lim X(z) (4.94)
7—>®

Equation (4.94) is called the initial value theorem for the z-transform.

Since x[n] = 0 for n < 0, we have

X[z]= E x[nlz " = x[0]+ x[1]z~ " + x[2]12 2 +---
n=0
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As 7z = »,z7"— 0 for n > 0. Thus, we get

lim X(z) = x[0]

4.40. Let x[n] be a causal sequence and

x[n] < X(z)

Show that if X(z) is a rational function with all its poles strictly inside the unit circle except possibly for
a first-order pole at z = 1, then

h}im x[N]= liml(l -z HX(2) (4.95)
— 00 -
Equation (4.95) is called the final value theorem for the z-transform.

From the time-shifting property (4.19) we have
B{xln] — x[n— 11} = (1 — 27 H X(2) (4.96)

The left-hand side of Eq. (4.96) can be written as
© N
E {x[n] - x[n—11}z7" = lim E {x[n]—x[n—11}z"
n=0 N_Won=0
If we now let z — 1, then from Eq. (4.96) we have

N
lim(1-z HX(2)= lim E {x[n] - x[n—1]} = lim x[N]
z—1 N—-oon=0 N—ox

SUPPLEMENTARY PROBLEMS

4.41.

4.42.

4.43.

Find the z-transform of the following x[n]:

_Jjr. 1
(a) x[n]—{z,l, 3}

() x[n]=26[n+2]—38[n—2]

(¢) x[n]= 3(— %) uln]—203)'u[—n—1]

N PR (1
d) x[n]—3(2)u[n] 2(4]14[ n—1]

Show that if x[#] is a left-sided sequence and X(z) converges from some value of z, then the ROC of X(z) is of
the form

|z] < Foin or 0<|z| < Foin
where r,, is the smallest magnitude of any of the poles of X(z).

Given

2(z—4)

X(z) =
R P Y Y

(a) State all the possible regions of convergence.

(b) For which ROC is X(z) the z-transform of a causal sequence?



@

4.44.

4.45.

4.46.

4.47.

4.48.

4.49.

4.50.

4.51.

4.52.

4.53.

Verify the time-reversal property (4.23); that is,

x[— n]eX(i) R =
Z

x|

Show the following properties for the z-transform.
(a) If x[n] is even, then X(z™1) = X(2).
(b) If x[n] is odd, then X(z™") = —X(2).

(¢) If x[n] is odd, then there is a zero in X(z) at z = 1.

Consider the continuous-time signal

x(t) = e t=0

Let the sequence x[n] be obtained by uniform sampling of x(¢) such that x[n] = x(nT,), where T is the sampling

interval. Find the z-transform of x[n].
Derive the following transform pairs:

2 - (cos Q)z
ZZ—(ZCOSQO)Z+1 | |
(sin )z
P (2cosQpz+1

>1

(cos Qon)u[n] <

(sin Qyn)u[n] < |z|>1

Find the z-transforms of the following x[n]:
(@) x[n]=(n—3)uln— 3]

(6) x[n] = (n— 3)uln]

(¢) x[n] = u[n] — uln — 3]

(d) x[n] = n{uln] — uln - 3]}

Using the relation
a”u[n]<—>L |z|>|a|
z—a

find the z-transform of the following x[n]:

(a) x[n] = na"'u[n]

(b) x[n] = n(n — 1)a" %u[n]

© x[nl=n(n—1)---(n—k+ 1)a" *u[n]

Using the z-transform, verify Eqgs. (2.130) and (2.131) in Prob. 2.27; that is,
(a) x[n] *8[n] = x[n]
(b) x[n] xd[n — ny] = x[n — ny)

Using the z-transform, redo Prob.2.47.
Find the inverse z-transform of
X(z) = e** |z] >0

Using the method of long division, find the inverse z-transform of the following X(z):

Z

X(7)= ——=
@ XO= " he 2

. lz]<1

CHAPTER 4 The z-Transform and Discrete-Time LTI Systems
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Z
b X(g)=———m, 1 2
b X©@ —De=2) <|z|<
Z
X@)=—2 2
© X@= =5y 147

4.54. Using the method of partial-fraction expansion, redo Prob. 4.53.

4.55. Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response h[n].

x[n] ¥l

v

4.56. Consider the system shown in Fig. 4-10.
(a) Find the system function H(z).

(b) Find the difference equation relating the output y[#] and input x[#n].

x[n]

Fig. 410

4.57. Consider a discrete-time LTI system whose system function H(z) is given by

1
2

H(z)=—~

|2[>

i3

(a) Find the step response s[n].

(b) Find the output y[n] to the input x[n] = nu[n].
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4.58. Consider a causal discrete-time system whose output y[z] and input x[n] are related by
5 1
yinl=eyln =11+ cyln=2]=x[n]

(a) Find its system function H(z).

(b) Find its impulse response h[n].

4.59. Using the unilateral z-transform, solve the following difference equations with the given initial conditions:
(@) y[n] — 3y[n — 1] = x[n], with x[n] = 4u[n],y[—1] =1
(b) y[n] — Syln — 1] + 6y[n — 2] = x[n], with x[n] = u[n],y[—1] = 3,y[-2] =2

4.60. Determine the initial and final values of x[r] for each of the following X(z):

e 3)

PR S 1
@ X(@)- [ |{ ],l. |2|>
®) X@)=————, |2|>1
272 - 3z+1

ANSWERS TO SUPPLEMENTARY PROBLEMS

1o 1 -
441 (@) X@=—+2 l_§z 2, 0<|z]

b)) X()=27>-3773, 0<|z|<oo

(© X@=—L8 Lopg)<s

(Z + 7)(2 -3)
(d) X(z)does not exist.

4.42. Hint: Proceed in a manner similar to Prob. 4.5.

443. (a) 0<|z|<1,1<|z] <2,2<z| <3,]|z] >3
®) |z| >3

4.44. Hint: Change nto —n in definition (4.3).

4.45. Hint: (a) Use Egs. (1.2) and (4.23).
(b) Use Egs. (1.3) and (4.23).
(¢) Use the result from part (b).

1
4.46. X(2)= W

4.47. Hint: Use Euler’s formulas.
1 JQon —jQon : 1 JQon —jQon
cosQOn=§(e +e ) stOn=7(e —e )

and use Egs. (4.8) and (4.10) with a = e*/%o,
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4.48.

4.49.

4.50.

4.51.

4.52.

4.53.

4.54.

4.55.

4.56.

-2

Z
—_—, >1
@ o Il

— 372 + 47

b
®) (z—1

. |z|>1

-2
-2
7 s z|>1

()

7—47 % +37°

d
@ (z— 1)

s |z|>1

Hint: Differentiate both sides of the given relation consecutively with respect to a.

@ |2[>]al

(z—a)*’
2z
(®) o |z|>]a]

| 4¥4
(Z _ a)k+l ?

(c)

z|>]a

Hint:

Hint: Use Eq. (4.26) and Table 4-1.

Hint:  Use the power series expansion of the exponential function e’.

x[n]= a—'u[n]
n!

70}

t

(b) x[n]= {...,—%,—%,—%,—1,—1,—1,...)
i

_ 131
(a) )c[n]—{...,8,4,2

(¢) x[n]={0,1,3,7,15,...}

(@ x[nl={A—2"u[—n— 1]
b) x[n]= —u[n] — 2"u[—n— 1]
() x[n] = (=1 + 2"uln]

1 (1Y
H(Z)_$, h[n] (2) u[n]

by + b,z +byz 2

(@) H()= 2

1+az" + a2

(b) ylnl+ayln—1]1+ ayy[n— 2] = byx[n]+ byx[n — 1]+ byx[n — 2]

Use Eq. (4.26) of the z-transform and transform pairs 1 and 4 from Table 4-1.

—
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4.57.

4.58.

4.59.

4.60.

(a)

(b)

(a)

(b)

(a)
()

(a)
(b)

s[n]= [2 - (—;) ]u[n]
y[n]= 2[(—;) +n— l]u[n]

Z 1

EREIE

ylnl=—-24+93)", n=-1

H()=

)= 2+ 82) ~ 23, n=-2

x[0] =2, x[] =0
x[0] = 0, x[] =1



Fourier Analysis of
Continuous-Time
Signals and Systems

5.1 Introduction

In previous chapters we introduced the Laplace transform and the z-transform to convert time-domain
signals into the complex s-domain and z-domain representations that are, for many purposes, more conven-
ient to analyze and process. In addition, greater insights into the nature and properties of many signals and
systems are provided by these transformations. In this chapter and the following one, we shall introduce
other transformations known as Fourier series and Fourier transform which convert time-domain signals
into frequency-domain (or spectral) representations. In addition to providing spectral representations of
signals, Fourier analysis is also essential for describing certain types of systems and their properties in the
frequency domain. In this chapter we shall introduce Fourier analysis in the context of continuous-time
signals and systems.

5.2 Fourier Series Representation of Periodic Signals

A. Periodic Signals:

In Chap. 1 we defined a continuous-time signal x(#) to be periodic if there is a positive nonzero value of T
for which

x(t+T)=x() all ¢ 5.1)
The fundamental period T, of x(?) is the smallest positive value of T for which Eq. (5.1) is satisfied, and 1/T; = f
is referred to as the fundamental frequency.
Two basic examples of periodic signals are the real sinusoidal signal
x(?) = cos(wyt + ¢) (5.2)
and the complex exponential signal

x(t) = /@’ (5.3)

where w, = 2a/T, = 2xf  is called the fundamental angular frequency.
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B. Complex Exponential Fourier Series Representation:

The complex exponential Fourier series representation of a periodic signal x(#) with fundamental period T is
given by

o<

ik 27
x(1)= kzwckel @ 0= (54)
where c, are known as the complex Fourier coefficients and are given by
1 — jkwgt
e =— | x(®)e " dt )
T 7, x® (5.5)

where fr(, denotes the integral over any one period and 0 to T, or —T,/2 to T,/2 is commonly used for the
integration. Setting k£ = 0 in Eq. (5.5), we have

_ 1
Co —ﬁ T x(t) dt (56)
which indicates that c, equals the average value of x(#) over a period.

When x(?) is real, then from Eq. (5.5) it follows that

= c* (5.7

¢ k

—k

where the asterisk indicates the complex conjugate.

C. Trigonometric Fourier Series:

The trigonometric Fourier series representation of a periodic signal x(#) with fundamental period T}, is given by

ay ad . 2

x(t)y=—"—+ a, cos kw ot + b, sin kw,t) Wy =—
=" gl( i €08 kot + by sin kay =T (58)

where a, and b, are the Fourier coefficients given by
=2 (t) cos kwyt dt 59

a, ﬁfTox cos kawy (5.9a)
b =if x(1) sin ket dt 5.9b
) 0 (5.9b)

The coefficients a, and b, and the complex Fourier coefficients c, are related by (Prob. 5.3)
7=Co a,=c, tc, b, =jlc, —c_y) (5.10)
From Eq. (5.10) we obtain

(a, + jby) (5.11)

N | =

1 .
G = E(ak —Jb) Cy =
When x(?) is real, then a, and b, are real and by Eq. (5.10) we have
a, =2Re[c] b, =—2Im[c;] (5.12)

Even and Odd Signals:
If a periodic signal x(?) is even, then b, = 0 and its Fourier series (5.8) contains only cosine terms:

x(t)= “70 + 3 a; cos kot wy =2 (5.13)
k=1
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If x(?) is odd, then a, = 0 and its Fourier series contains only sine terms:

x(t)= 2 by sin kwyt Wy =— (5.14)
k=1

D. Harmonic Form Fourier Series:

Another form of the Fourier series representation of a real periodic signal x(#) with fundamental period T, is

=2_‘7t

X(1)=Cy+ Y, Cy cos(kwot —6;)  wg (5.15)

k=1 To

Equation (5.15) can be derived from Eq. (5.8) and is known as the harmonic form Fourier series of x(#). The term
C, is known as the dc component, and the term C,cos(kw,t — 6,) is referred to as the kth harmonic component
of x(#). The first harmonic component C, cos(w, — 6,) is commonly called the fundamental component because
it has the same fundamental period as x(#). The coefficients C, and the angles 6, are called the harmonic ampli-
tudes and phase angles, respectively, and they are related to the Fourier coefficients a, and b, by

C, ="70 C, =«/a,§ +b? 0, —tan' 2 (5.16)
ay

For a real periodic signal x(#), the Fourier series in terms of complex exponentials as given in Eq. (5.4) is
mathematically equivalent to either of the two forms in Eqgs. (5.8) and (5.15). Although the latter two are
common forms for Fourier series, the complex form in Eq. (5.4) is more general and usually more convenient,
and we will use that form almost exclusively.

E. Convergence of Fourier Series:
It is known that a periodic signal x(#) has a Fourier series representation if it satisfies the following Dirichlet

conditions:

1. x(¥) is absolutely integrable over any period; that is,
fTOIx(t)Idt<°° (5.17)

2. x(? has a finite number of maxima and minima within any finite interval of ¢.

3.  x(? has a finite number of discontinuities within any finite interval of ¢, and each of these
discontinuities is finite.

Note that the Dirichlet conditions are sufficient but not necessary conditions for the Fourier series representation
(Prob. 5.8).

F. Amplitude and Phase Spectra of a Periodic Signal:

Let the complex Fourier coefficients ¢, in Eq. (5.4) be expressed as
¢, = |c,| e (5.18)

Aplotof |c,| versus the angular frequency w is called the amplitude spectrum of the periodic signal x(), and a
plot of ¢, versus wis called the phase spectrum of x(z). Since the index k assumes only integers, the amplitude
and phase spectra are not continuous curves but appear only at the discrete frequencies kw,. They are therefore
referred to as discrete frequency spectra or line spectra.

For a real periodic signal x(#) we have c_, = c%. Thus,

|C—k| = |Ck| ¢—k = _¢k (5.19)
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Hence, the amplitude spectrum is an even function of w, and the phase spectrum is an odd function of w for a
real periodic signal.

G. Power Content of a Periodic Signal:

In Chap. 1 (Prob. 1.18) we introduced the average power of a periodic signal x(f) over any period as
P=2[ |xf ar (5.20)
Ty Yo '

If x(?) is represented by the complex exponential Fourier series in Eq. (5.4), then it can be shown that (Prob. 5.14)

1 2 - 2
T_Ofn)'x(t)' ="y || (5.21)

k=—

Equation (5.21) is called Parseval’s identity (or Parseval’s theorem) for the Fourier series.

5.3 The Fourier Transform

A. From Fourier Series to Fourier Transform:

Let x(#) be a nonperiodic signal of finite duration; that is,
x()=0 |z] > T,

Such a signal is shown in Fig. 5-1(a). Let x; (?) be a periodic signal formed by repeating x(#) with fundamental
period T, as shown in Fig. 5-1(). If we let T; — o, we have

T(l)i_r{lm xg, (1) = x() (5.22)
x(t)
T1 1] T1 t
(@)
x,nU]
A | A 1 A | A | A »
-7, T, T Ty 2T, t

1 0T Ty
2 2
(b)

Fig. 5-1 (a) Nonperiodic signal x(t); (b) periodic signal formed by periodic extension of x(t).
The complex exponential Fourier series of x; () is given by

=3 ¢ wy =2 (5.23)

k=—c
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_ 1 rhn2 — jkaot
where = ﬁ f g xp, (t)e dt (5.24a)

Since xTo(t) = x(1) for |t| < T,/2 and also since x(#) = 0 outside this interval, Eq. (5.24a) can be rewritten as

_ 1 pn2 —jkogt 4, _ 1 = — jkw ot
Ck ——f_Tolzx(t)e 0 dt—T—Of_wx(t)e 0" drt (5.24b)

Let us define X(w) as

X@)=[" x(ye ™ dt (5.25)

Then from Eq. (5.24b) the complex Fourier coefficients c, can be expressed as

1
& =7~ X(koo) (5.26)
0

Substituting Eq. (5.26) into Eq. (5.23), we have

o

x5, ()= 2 TiX(kwo)ef"“’O’
k=—0"0

1 < kot
or xr (1) =— X(kwy) e 5.27
n(")=>— k;_w (ke 0 (5.27)
As T, — », w, = 27/T becomes infinitesimal (w, — 0). Thus, let w, = Aw. Then Eq. (5.27) becomes

o

1

xq, (t)|T T 2 X(kAw) e Awy (5.28)
0 T =
Therefore,
. ol ,
x(l‘):T(l)lglwaO(t)=All)Tog 2 X(kAw) e Aw (5.29)

k=—

The sum on the right-hand side of Eq. (5.29) can be viewed as the area under the function X(w) e/*', as shown
in Fig. 5-2. Therefore, we obtain

x(t)= ﬁ [~ X(@)e!'do (5.30)

which is the Fourier representation of a nonperiodic x(?).

Xiew) gt

\ Area = Xk Aw)e 4™ A

Xik .:I.EI'I'I'E'".' Sral|

V] Kk Aw w

Fig. 5-2 Graphical interpretation of Eq. (5.29).
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B. Fourier Transform Pair:

The function X(w) defined by Eq. (5.25) is called the Fourier transform of x(f), and Eq. (5.30) defines the inverse
Fourier transform of X(w). Symbolically they are denoted by

X(@)=Fx0) = [~ xtyedt (5.31)

() =F X)) = é f: X(w)e! do (5.32)

and we say that x(#) and X(w) form a Fourier transform pair denoted by

x(1) < X(w) (5.33)

C. Fourier Spectra:

The Fourier transform X(w) of x(?) is, in general, complex, and it can be expressed as
X(w) = | X(w)| e/*@ (5.34)

By analogy with the terminology used for the complex Fourier coefficients of a periodic signal x(7), the Fourier
transform X(w) of a nonperiodic signal x(?) is the frequency-domain specification of x(#) and is referred to as the
spectrum (or Fourier spectrum) of x(f). The quantity | X(w)| is called the magnitude spectrum of x(#), and ¢(w)
is called the phase spectrum of x(f).

If x(?) is a real signal, then from Eq. (5.31) we get

X(-w)= | :ox(t)ejw'dt (5.35)

Then it follows that
X(— ) = X*(w) (5.36a)
and |X(—w)| = |X()] P(—w) = —¢(w) (5.36b)

Hence, as in the case of periodic signals, the amplitude spectrum | X(w)| is an even function and the phase spec-
trum ¢(w) is an odd function of w.

D. Convergence of Fourier Transforms:

Just as in the case of periodic signals, the sufficient conditions for the convergence of X(w) are the following
(again referred to as the Dirichlet conditions):

1. x(z) is absolutely integrable; that is,

S x0ar <o (5.37)

2. x(?) has a finite number of maxima and minima within any finite interval.

3. x(¢) has a finite number of discontinuities within any finite interval, and each of these discontinuities
is finite.

Although the above Dirichlet conditions guarantee the existence of the Fourier transform for a signal, if impulse
functions are permitted in the transform, signals which do not satisfy these conditions can have Fourier trans-
forms (Prob. 5.23).

E. Connection between the Fourier Transform and the Laplace Transform:

Equation (5.31) defines the Fourier transform of x(?) as

X(@)= [" x()e ' dr (5.38)
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The bilateral Laplace transform of x(7), as defined in Eq. (4.3), is given by
X(s)= [ x(t)e™"dr (5.39)

Comparing Eqgs. (5.38) and (5.39), we see that the Fourier transform is a special case of the Laplace transform
in which s = jw; that is,

X(s)| =F{x(1)} (5.40)

5= jw
Setting s = o + jw in Eq. (5.39), we have

X(o + jo)=[" xe M dr= [T [x(t)e 71 dr
or X(o + jo)=F{x(t)e "} (5.41)

which indicates that the bilateral Laplace transform of x(#) can be interpreted as the Fourier transform of x(#) e~ .

Since the Laplace transform may be considered a generalization of the Fourier transform in which the frequency
is generalized from jw to s = 0 + jw, the complex variable s is often referred to as the complex frequency.

Note that since the integral in Eq. (5.39) is denoted by X(s), the integral in Eq. (5.38) may be denoted as X(jw).
Thus, in the remainder of this book both X(w) and X(jw) mean the same thing whenever we connect the Fourier
transform with the Laplace transform. Because the Fourier transform is the Laplace transform with s = jw, it should
not be assumed automatically that the Fourier transform of a signal x(?) is the Laplace transform with s replaced
by jw. If x(#) is absolutely integrable, that is, if x(#) satisfies condition (5.37), the Fourier transform of x(#) can be
obtained from the Laplace transform of x(#) with s = jw. This is not generally true of signals which are not absolutely
integrable. The following examples illustrate the above statements.

EXAMPLE 5.1 Consider the unit impulse function 6(z).
From Eq. (3.13) the Laplace transform of 6(?) is

LMY =1 all s (542)
By definitions (5.31) and (1.20) the Fourier transform of §(¢) is

Fomy= [~ snedr=1 (5.43)

Thus, the Laplace transform and the Fourier transform of 6(7) are the same.
EXAMPLE 5.2 Consider the exponential signal
x() = e "u(r) a>0
From Eq. (3.8) the Laplace transform of x(#) is given by
1
L(x(O}=X(s)=—— Re(s)>—a (5.44)
s+ta

By definition (5.31) the Fourier transform of x(?) is

FxO}=X@)= [~ e utye " dt

1

=f e ationg = - (5.45)
0 a+ jo
Thus, comparing Eqgs. (5.44) and (5.45), we have
X(w) = X(s)| (5.46)

s=jw

Note that x(?) is absolutely integrable.
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EXAMPLE 5.3 Consider the unit step function u(?).

From Eq. (3.14) the Laplace transform of u(?) is

F{u(r)} = % Re(s)>0 (5.47)
The Fourier transform of u(?) is given by (Prob. 5.30)

F{u(t)} =nd(w)+ ]Lw (5.48)

Thus, the Fourier transform of u(f) cannot be obtained from its Laplace transform. Note that the unit step function
u(?) is not absolutely integrable.

5.4 Properties of the Continuous-Time Fourier Transform

Basic properties of the Fourier transform are presented in the following. Many of these properties are similar to
those of the Laplace transform (see Sec. 3.4).
A. Linearity:

ax,(f) + ayx,(f) < a X /(w) + a,X,(w) (5.49)

B. Time Shifting:

x(t — ty) <> e " X(w) (5.50)

Equation (5.50) shows that the effect of a shift in the time domain is simply to add a linear term — wf, to the
original phase spectrum 6(w). This is known as a linear phase shift of the Fourier transform X(w).

C. Frequency Shifting:
e/ x(t) < X(w — wy) (5.51)

The multiplication of x(7) by a complex exponential signal e/“' is sometimes called complex modulation. Thus,
Eq. (§.51) shows that complex modulation in the time domain corresponds to a shift of X(w) in the frequency
domain. Note that the frequency-shifting property Eq. (5.51) is the dual of the time-shifting property Eq. (5.50).

D. Time Scaling:

xan oL x| 2

]
where a is a real constant. This property follows directly from the definition of the Fourier transform. Equation (5.52)
indicates that scaling the time variable ¢ by the factor a causes an inverse scaling of the frequency variable w by 1/a,
as well as an amplitude scaling of X(w/a) by 1/|a|. Thus, the scaling property (5.52) implies that time compression
of a signal (a > 1) results in its spectral expansion and that time expansion of the signal (a < 1) results in its
spectral compression.

(5.52)

E. Time Reversal:
x(—1) < X(—w) (5.53)

Thus, time reversal of x(#) produces a like reversal of the frequency axis for X(w). Equation (5.53) is readily
obtained by setting a = —1 in Eq. (5.52).

F. Duality (or Symmetry):
X(1) < 27x(—w) (5.54)
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The duality property of the Fourier transform has significant implications. This property allows us to obtain
both of these dual Fourier transform pairs from one evaluation of Eq. (5.31) (Probs. 5.20 and 5.22).

G. Differentiation in the Time Domain:

dx(t)

< joX(w) (5.55)

Equation (5.55) shows that the effect of differentiation in the time domain is the multiplication of X(w) by jw in
the frequency domain (Prob. 5.28).

H. Differentiation in the Frequency Domain:
(—jox(n) = K@ (5.56)
dw
Equation (5.56) is the dual property of Eq. (5.55).

I. Integration in the Time Domain:

[ x(v)dv < 2X(0) 8(w) + Jiw X(w) (5.57)

Since integration is the inverse of differentiation, Eq. (5.57) shows that the frequency domain operation corre-
sponding to time-domain integration is multiplication by 1/jw, but an additional term is needed to account for a
possible dc component in the integrator output. Hence, unless X(0) = 0, a dc component is produced by the
integrator (Prob. 5.33).

J. Convolution:
x,()* x,(1) < X,(0) X,(@) (5.58)

Equation (5.58) is referred to as the time convolution theorem, and it states that convolution in the time domain
becomes multiplication in the frequency domain (Prob. 5.31). As in the case of the Laplace transform, this con-
volution property plays an important role in the study of continuous-time LTI systems (Sec. 5.5) and also forms
the basis for our discussion of filtering (Sec. 5.6).

K. Multiplication:

X, (0)x, () < é X, () * X, () (5.59)

The multiplication property (5.59) is the dual property of Eq. (5.58) and is often referred to as the frequency
convolution theorem. Thus, multiplication in the time domain becomes convolution in the frequency domain
(Prob. 5.35).

L. Additional Properties:

If x(?) is real, let
x(®) = x,(0) + x,(9) (5.60)
where x(¢) and x (?) are the even and odd components of x(?), respectively. Let

x(#) <> X(w) = A(w) + jB(w)

Then X(—w) = X*(w) (5.61a)
x, (1) <> Re{X(w)} = A(w) (5.61b)
x () < jIm{X(w)} = jB(w) (5.61c)

Equation (5.61a) is the necessary and sufficient condition for x(7) to be real (Prob. 5.39). Equations (5.61b)
and (5.61c) show that the Fourier transform of an even signal is a real function of w and that the Fourier
transform of an odd signal is a pure imaginary function of w.
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M. Parseval’s Relations:

7 X, dr= [ XA, (A) dA (5.62)

[ xx@di= L [7 X(@)X,(-0) do (5.63)
—® 2x Y ~*®

[7 |x)[ de= ﬁ [7 | X@)[ do (5.64)

Equation (5.64) is called Parseval’s identity (or Parseval’s theorem) for the Fourier transform. Note that the quan-
tity on the left-hand side of Eq. (5.64) is the normalized energy content E of x(¢) [Eq. (1.14)]. Parseval’s identity says
that this energy content E can be computed by integrating | X(w) |2 over all frequencies w. For this reason, | X(w) |?
is often referred to as the energy-density spectrum of x(t), and Eq. (5.64) is also known as the energy theorem.

Table 5-1 contains a summary of the properties of the Fourier transform presented in this section. Some com-
mon signals and their Fourier transforms are given in Table 5-2.

TABLE 5-1 Properties of the Fourier Transform

PROPERTY SIGNAL FOURIER TRANSFORM
x(t) X(@)
x,(1) X, @)
x,(2) X,(@)
Linearity ax,(t) + a,x,(t) a,X,@) + a,X,@)
Time shifting x(t— 1) e~ 9% X(w)
Frequency shifting e/t x(¢) X(o— o)
. . 1 X(g)
Time scaling x(at) 12l \a
Time reversal x(—1) X(—w)
Duality X 2 x(— )
. . . dx(t) .
Time differentiation 7 joX(w)
Frequency differentiation (—jt)x(1) d)fi(w)
0}
Integration [ x@)ar TX(0) (0)+—— X(o)
e jo
Convolution X, ()% x,(2) X, (@)X,(w)
Multiplication x, (D) x,(0) 2i X, (0)* X,(®)
T

Real signal

Even component
0Odd component
Parseval’s relations

x(t) = x,(t) + x,(1)

x,(0)
x,(1)

X(@) = A@) + jB®)
X(—0) = X*)
Re{X(@)} = A(®)
J Im{X(@)}= jB(@®)

[ x WX, ad =] X,(A)x,(A) dA
- 1 ¢
[ xx,0 de= Ej_wx,(w)xz (-0) do

- 1 ¢
[xF di=—[" |x@)F do
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TABLE 5.2 Common Fourier Transforms Pairs

x(@®) X(w)
8(2) 1
ot — 1) e jol
1 270 (w)
e 0ot 276 (0 —w,)
coswt n[6(w —wo) +6(w + )]
sin w,, ¢ — jrld(w —w;) — 6(w + w,)]
u(t) né(w) + L
Jo
1
u(—1) w(w) ——
Jo
e “u(t),a>0 1
jo+a
te “u(t),a>0 N S
(jo + a)*
e~ a>0 2a
a’ +w?
1 -alo|
—_— e
a? +1*
e—arz a>0 \/Ee—wz l4a
’ a
1 |t|<a sin wa
0=
Pa {0 | t|> a a wa
. 1 (w|<a
sin at Pa(w) — | |
wt 0 |w|>a
sgnt i
jo
= X 2n
k;wé(t —kT) wokz_mé(w —kw ) w, = 3

5.5 The Frequency Response of Continuous-Time LTI Systems

A. Frequency Response:

In Sec. 2.2 we showed that the output y(#) of a continuous-time LTI system equals the convolution of the input
x(#) with the impulse response k(f); that is,

y() = x(2) * h(z) (5.65)

Applying the convolution property (5.58), we obtain
Y(w) = X(w)H(w) (5.66)
where Y(w), X(w), and H(w) are the Fourier transforms of y(#), x(f), and A(?), respectively. From Eq. (5.66) we have

_Y()

H
(w) X@)

(5.67)



®_ CHAPTER 5 Fourier Analysis of Continuous-Time

The function H(w) is called the frequency response of the system. Relationships represented by Eqs. (5.65)

and (5.66) are depicted in Fig. 5-3. Let
H(w) = |H(w)| e/

(5.68)

Then | H(w)| is called the magnitude response of the system, and 6,,(w) the phase response of the system.

1 H(e)
3(t) m h)
x(t) system y(t)=x(t) « h(t)
X(o) Y(w)=X(w)H(w)

Fig. 5-3 Relationships between inputs and outputs in an LTI system.

Consider the complex exponential signal
x(1) = el
with Fourier transform (Prob. 5.23)
X(w) =27x6(w — w,)
Then from Egs. (5.66) and (1.26) we have
Y(w) = 2xH(w,) 6(w — w,)
Taking the inverse Fourier transform of Y(w), we obtain

y(t) = H(w)) e/

(5.69)

(5.70)

(5.71)

(5.72)

which indicates that the complex exponential signal e/#*' is an eigenfunction of the LTI system with corresponding
eigenvalue H(w,), as previously observed in Chap. 2 (Sec. 2.4 and Prob. 2.17]. Furthermore, by the linearity

property (5.49), if the input x(#) is periodic with the Fourier series

o<

x(t)= E Ch ekt

k=—o
then the corresponding output y () is also periodic with the Fourier series

oo

Y= cHkog)e ™

k=—o
If x(?) is not periodic, then from Eq. (5.30)
1 po ‘
x)=—| X(w)e'™ dw
0= [ X@)

and using Eq. (5.66), the corresponding output y(f) can be expressed as

Y1) = ﬁ [ H@)X(@)e™ do

(5.73)

(5.74)

(5.75)

(5.76)

Thus, the behavior of a continuous-time LTI system in the frequency domain is completely characterized by its

frequency response H(w). Let

X(w) = |X(w) | V(@) = |V(w)]e

(5.7
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Then from Eq. (5.66) we have
[Y(0)| = | X(w) || H(w)| (5.78a)
0, (w) = Oy (w) + O,(w) (5.78b)

Hence, the magnitude spectrum |X(w)| of the input is multiplied by the magnitude response |H(w)| of the
system to determine the magnitude spectrum | ¥(w)| of the output, and the phase response 6, (w) is added to
the phase spectrum 6,(w) of the input to produce the phase spectrum 6,(w) of the output. The magnitude
response |H(w)| is sometimes referred to as the gain of the system.

B. Distortionless Transmission:

For distortionless transmission through an LTI system we require that the exact input signal shape be repro-
duced at the output, although its amplitude may be different and it may be delayed in time. Therefore, if x(?) is
the input signal, the required output is

y(@® = Kx(t— 1) (5.79)

where 2, is the fime delay and K (> 0) is a gain constant. This is illustrated in Figs. 5-4(a) and (b). Taking the
Fourier transform of both sides of Eq. (5.79), we get

Y(w) = Ke /%% X(w) (5.80)
Thus, from Eq. (5.66) we see that for distortionless transmission, the system must have
H(w) = |H(w)|e/%®) = Ke~ivt (5.81)
Thus,
|H(w)| =K (5.82a)
0, (w) = —jor, (5.82b)

That is, the amplitude of H(w) must be constant over the entire frequency range, and the phase of H(w) must be
linear with the frequency. This is illustrated in Figs. 5-4(c) and (d).

() H o)l

v

(@) ()

\l B
0 \ i}
r

Slope t
(b) (@)

¥

v

~

d

Fig. 5-4 Distortionless transmission.
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Amplitude Distortion and Phase Distortion:

When the amplitude spectrum | H(w)| of the system is not constant within the frequency band of interest, the
frequency components of the input signal are transmitted with a different amount of gain or attenuation. This
effect is called amplitude distortion. When the phase spectrum 6,(w) of the system is not linear with the
frequency, the output signal has a different waveform than the input signal because of different delays in pass-
ing through the system for different frequency components of the input signal. This form of distortion is called
phase distortion.

C. LTI Systems Characterized by Differential Equations:

As discussed in Sec. 2.5, many continuous-time LTI systems of practical interest are described by linear constant-
coefficient differential equations of the form

N k M k
d*y @) dkx(r)
Ya—= Db — (5.83)
k=0 dt k=0 dt

with M = N. Taking the Fourier transform of both sides of Eq. (5.83) and using the linearity property (5.49) and
the time-differentiation property (5.55), we have

N M
> a(jo) Y (@)= b(jo) X(@)
k=0 k=0
N M
or Y(@) Y a(jo) =X@) Y, b(jo) (5.84)

k=0 k=0

Thus, from Eq. (5.67)

M
> b(jo)
H(w)= ;Z; =420 (5.85)
> a(jo)
k=0

which is a rational function of w. The result (5.85) is the same as the Laplace transform counterpart H(s) = Y(s)/X(s)
with s = jw [Eq. (3.40)]; that is,

H(w) = H(s)| = H(jw)

s=jw

5.6 Filtering

One of the most basic operations in any signal processing system is filtering. Filtering is the process by which
the relative amplitudes of the frequency components in a signal are changed or perhaps some frequency
components are suppressed. As we saw in the preceding section, for continuous-time LTI systems, the spectrum
of the output is that of the input multiplied by the frequency response of the system. Therefore, an LTI system
acts as a filter on the input signal. Here the word “filter” is used to denote a system that exhibits some sort of
frequency-selective behavior.

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of frequencies and completely
rejects the rest. The band of frequencies passed by the filter is referred to as the pass band, and the band of
frequencies rejected by the filter is called the stop band.

The most common types of ideal frequency-selective filters are the following.
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1. Ideal Low-Pass Filter:
An ideal low-pass filter (LPF) is specified by

1 |o|< o, (5.86)
O P -
which is shown in Fig. 5-5(a). The frequency w_ is called the cufoff frequency.
2. Ideal High-Pass Filter:
An ideal high-pass filter (HPF) is specified by
0 |o|< o, (5.87)
H@=Y ol -
which is shown in Fig. 5-5(b).
3. Ideal Bandpass Filter:
An ideal bandpass filter (BPF) is specified by
o= 1 o <|o|<w, (5.88)
| (a))| o otherwise ’
which is shown in Fig. 5-5(¢).
4. Ideal Bandstop Filter:
An ideal bandstop filter (BSF) is specified by
0 o <|o|<w,
| H(w)|= . (5.89)
1 otherwise
which is shown in Fig. 5-5(d).
li/{ o)l I ()]
1
- 1
w, 0O w, :u w, O w, t:)
@ (b)
IH{ el IH el
1
-1
w, w, V] w, w, t:) w, w, 0 w, &

(@)

Fig. 5-5 Magnitude responses of ideal frequency-selective filters.
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In the above discussion, we said nothing regarding the phase response of the filters. To avoid phase distortion
in the filtering process, a filter should have a linear phase characteristic over the pass band of the filter; that is
[Eq. (5.82b)],

0, (w) = —wt, (5.90)

d

where ¢, is a constant.
Note that all ideal frequency-selective filters are noncausal systems.

B. Nonideal Frequency-Selective Filters:

As an example of a simple continuous-time causal frequency-selective filter, we consider the RC filter shown
in Fig. 5-6(a). The output y(?) and the input x(f) are related by (Prob. 1.32)

dy(t)
RC—=+y(t)=x(t
” (1) = x(2)
Taking the Fourier transforms of both sides of the above equation, the frequency response H(w) of the RC filter
is given by

Y(w 1 1
H@) =D - - (5.91)
X(w) 14+ jwRC 1+ jw/w,
where @, = 1/RC. Thus, the amplitude response | H(w)| and phase response 6,,(w) are given by
1 1
|H(w)|= , = 72 5.92
|1+ jolw,| [1+@/w0)] (552)
-1 @
0y (w)=—tan"' — (5.93)
W

which are plotted in Fig. 5-6(b). From Fig. 5-6(b) we see that the RC network in Fig. 5-6(a) performs as a
low-pass filter.

IH[oa)l

R =
+ +
x(t) @ —_—C yb
----- =/d
@ :
I'IFI.l D II‘I.lI (1 ]

nfd p---
B et e

Fig. 5-6 RC filter and its frequency response.
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5.7 Bandwidth
A. Filter (or System) Bandwidth:

One important concept in system analysis is the bandwidth of an LTI system. There are many different defini-
tions of system bandwidth.

1. Absolute Bandwidth:

The bandwidth W, of an ideal low-pass filter equals its cutoff frequency; that is, W, = w, [Fig. 5-5(a)]. In this case
W, is called the absolute bandwidth. The absolute bandwidth of an ideal bandpass filter is given by W, = w, — o,
[Fig. 5-5(c)]. A bandpass filter is called narrowband if W, << w,, where w, = % (w, + m,) is the center frequency

of the filter. No bandwidth is defined for a high-pass or a bandstop filter.

2. 3-dB (or Half-Power) Bandwidth:
For causal or practical filters, a common definition of filter (or system) bandwidth is the 3-dB bandwidth W, .. In
the case of a low-pass filter, such as the RC filter described by Eq. (5.92) or in Fig. 5-6(b), W, ,; is defined as the
positive frequency at which the amplitude spectrum | H(w)| drops to a value equal to | H(0)|/V/2, as illustrated
in Fig. 5-7(a). Note that | H(0)| is the peak value of H(w) for the low-pass RC filter. The 3-dB bandwidth is also
known as the half-power bandwidth because a voltage or current attenuation of 3 dB is equivalent to a power atten-
uation by a factor of 2. In the case of a bandpass filter, W, ., is defined as the difference between the frequencies
at which | H(w)| drops to a value equal to 1/\/2 times the peak value |H(w,,)| as illustrated in Fig. 5-7(b). This
definition of W, ., is useful for systems with unimodal amplitude response (in the positive frequency range) and
is a widely accepted criterion for measuring a system’s bandwidth, but it may become ambiguous and nonunique
with systems having multiple peak amplitude responses.

Note that each of the preceding bandwidth definitions is defined along the positive frequency axis only and

always defines positive frequency, or one-sided, bandwidth only.

L)l IH el

Fig. 5-7 Filter bandwidth.

B. Signal Bandwidth:

The bandwidth of a signal can be defined as the range of positive frequencies in which “most” of the energy or
power lies. This definition is rather ambiguous and is subject to various conventions (Probs. 5.57 and 5.76).

3-dB Bandwidth:

The bandwidth of a signal x(#) can also be defined on a similar basis as a filter bandwidth such as the 3-dB band-
width, using the magnitude spectrum | X(w) | of the signal. Indeed, if we replace | H(w)| by | X(w)| in Figs. 5-5(a)
to (¢), we have frequency-domain plots of low-pass, high-pass, and bandpass signals.

Band-Limited Signal:
A signal x(?) is called a band-limited signal if

| X(w)] =0 |o| > w, (5.94)

Thus, for a band-limited signal, it is natural to define ,, as the bandwidth.
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Fourier Series

5.1.

5.2.

We call a set of signals {W (1)} orthogonal on an interval (a, b) if any two signals W, (?) and W,(?) in the
set satisfy the condition

b * 0 m+*k
[ 9,0 W@y d = {a (5.95)

m=k
where * denotes the complex conjugate and a # 0. Show that the set of complex exponentials
{e/k@d: k= 0,% 1, % 2, ...} is orthogonal on any interval over a period T, where T,= 2n/w0.

For any 7, we have

to+7To

f%+meﬂwydt: .1 eﬁwd _ 'l @WWM%+%)_6WWM)
o Jmaw, o Jjmaq
= L MmNt (pIm2T _1y =0 m#0 (5.96)
Jmay

since /2% = |, When m = 0, we have ef'"‘”0'|m=0 =1land

[0 To gimant gy = [0 To gy — 7, (5.97)
fo fo

Thus, from Egs. (5.96) and (5.97) we conclude that

0+To _jmwgt  jkw oty s gp — (0770 j(m—k)wgt g, _ 0 m# k
fro e (e Y*¥dt f’o e dt T, m=k (5.98)

which shows that the set {e/*®": k = 0, = 1, + 2, ...} is orthogonal on any interval over a period T,
Using the orthogonality condition (5.98), derive Eq. (5.5) for the complex Fourier coefficients.

From Eq. (54)

0
x(t)= E c el wy ==~

k=—o0

Multiplying both sides of this equation by e~/™“ and integrating the result from #; to (¢, + T), we obtain

00
to+Tp — 1o +Ty ; _;
fto x(t)e "o dgp = f N E c e | g Imed gy

k=—co
i k_i ofy e (599)

Then by Eq. (5.98), Eq. (5.99) reduces to
f ’:’”0 x(t)e M gt = ¢, T, (5.100)

Changing index m to k, we obtain Eq. (5.5); that is,

G==f ,?+T° x(tye oot gy (5.101)
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5.3.

We shall mostly use the following two special cases for Eq. (5.101): 7, = O and 7, =

l — jkwgt
c 10 y(t)e kot gy
k= To (t)e
_ 1 — jkaot
ck—T—Ofm x(t)e o dt

—

- TO/ 2, respectively. That is,

(5.102a)

(5.102b)

Derive the trigonometric Fourier series Eq. (5.8) from the complex exponential Fourier series Eq. (5.4).

Rearranging the summation in Eq. (5.4) as

0 =]
x(t)= E e =y + E (c e + c_ e ooty
k=—o k=1

and using Euler’s formulas

* jkwot — + 7gi
e k@l = cos kawyt * jsin kawyt

we have
x(t)=co+ E [(cx + c_) cos kw ot + j(c, — c_;) sin kawyt ]
k=1
Setting
% — ; —
00—7 c te_=a Jleg —c_ )=b;

Eq. (5.103) becomes

x(t)= %0 + E (a, cos kayt + by, sin kawyt)
k=1

(5.103)

(5.104)

5.4. Determine the complex exponential Fourier series representation for each of the following signals:

(a) x(r) = cos w,t

() x(?) = sin w,t
(¢) x(t)=cos (2t + %)

(d) x(f) = cos 4t + sin 6¢
(e) x(?) = sin’t

(@) Rather than using Eq. (5.5) to evaluate the complex Fourier coefficients ¢, using Euler’s formula, we get

- 1
cos wyt = 5 (eJ“'O' + e /o0y = 2 e Joot 4 L ejwor E c et

k=—o0
Thus, the complex Fourier coefficients for cos w,t are
1 1
) =— c_ == c, =0, k| #1
173 173 k | |
(b) In a similar fashion we have
sin wyt = 1 (/0 — w0ty = — Le_j‘”‘" e""O' E c e
2j 2j Pl
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Thus, the complex Fourier coefficients for sin w, are
€ =— o =—— ¢ =0,]k|#1

(¢) The fundamental angular frequency w, of x(7) is 2. Thus,

0
x(t)= cos(2t + —) = E c e’ = E c el
k=—o k=—o
i1 1 . s
Now x(£) = cos| 2t + — | = — (/G174 Tt xl4)y
4 2
_ le—jn/4e—j2r +1 e”"“e’z' E c el
2 .

Thus, the complex Fourier coefficients for cos(2t + n/4) are

c_ =—e =——=—(1-j
(d) By the result from Prob. 1.14 the fundamental period T, of x(?) is wand w, = 27/T, = 2. Thus,

3 00
x(t)= cos4t + sin6t = E c e = E el

k=—o k=—o
Again using Euler’s formula, we have

x(t) = cos4t +sin6t = %(ef“’ +e iy + %(616' — e ity
J

Z_Le—j6r+le—j41+lej4r E c e
2j 2

k=—o
Thus, the complex Fourier coefficients for cos 4¢ + sin 67 are

1
C3——

C3=—— Cp= 2]

Cy =

[\
~.
N | =
N | —

and all other ¢, = 0.
(e) From Prob. 1.16(e) the fundamental period T, of x(?) is 7w and w, = 27/T, = 2. Thus,

d d
x(t)=sin*t = E c e = E c el

k=—o k=—o
Again using Euler’s formula, we get

. \2

Jt _ =t . .

x(t)=sin2t=(—e 2.6 ) =—%(e’2’ —2+e /)
J

_1 -
— 4 jZ!+ ej2r E ¢ ejZkt

k=—
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Thus, the complex Fourier coefficients for sin? ¢ are

C = —l Cn = l Cc = _l
-1 4 0 ) 1 4
and all other ¢, = 0.
5.5. Consider the periodic square wave x(#) shown in Fig. 5-8.
(a) Determine the complex exponential Fourier series of x(?).
(b) Determine the trigonometric Fourier series of x().
x(t)
A
o T, 0 T, T, 27,
2 2
Fig. 5-8
(a) Let
_ N Jkagt _2x
x(t)= E cp e wO—T—
k=—o 0
Using Eq. (5.102a), we have
1 rTo — jkawgt I rT072 iyt
e, =— | "x(t)e N dt = — Ae 0 dt
¢ T, fo ® T~ 0
A ke A (& o )
—JkaT, 0 L
_ A
A ey = Ay
Jjk2m ( ) jk2n[ b ]
since w,T, = 2w and e ** = (—1)*. Thus,
¢ =0 k=2m+0
=2 k=2m+1
Jkm
1 Ty 1 To/2 A
Cp=— x(t)dt=— Adt=—
T, Jo'=o T, fo 2
Hence,
o= A ¢y =0 c -4
0 ) 2m 2m+1 ](2m + 1)”
and we obtain
ej(2m+l)wot

:||:'>
|||M8

A
xt:_
© 2 m+1

(5.105)

(5.106)
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(b) From Egs. (5.105), (5.10), and (5.12) we have

a A
70:C0:5 a2m=b2m=0,m#0
_ _ _ _ 2A
Gmr1 = 2Re[Cyp ] ]=0 by —_ZIm[szH]—m
Substituting these values in Eq. (5.8), we get
A 24 1
xt)=—+— sin(2m + Dwyt
©=3 nmE=02m+l @+ ey
=é+ﬁ sinw0t+Lsin 3w0t+isin Swgt + - (5.107)
2 3 5
5.6. Consider the periodic square wave x(#) shown in Fig. 5-9.
(a) Determine the complex exponential Fourier series of x().
(b) Determine the trigonometric Fourier series of x(f).
xit)
A
1 1 1 >
T, To 0 TO Ty 27, t
4 4
Fig. 5-9
(a) Let
x(t)= i ¢, ef w,= 2r
k=—o Ty

Using Eq. (5.102b), we have

1 To/2 — jkaot 1 To/4 — jkaw,
¢ =— x(t)e " dr = — A e el gy
A e L

—To/2 —To/4
_ A (e JkooTold _ , jkw0T0/4)
— JkwyT,
_ A (e w2 _ gkt _ isin kx
—jk2m kx 2
Thus,
¢, =0 k=2m+#0
ck=(—l)mi k=2m+1
km
1 rTo 1 pTo2 A
Cp = — x(t)dt=— Adt=—
0 T, fo ® Ty fo 2
Hence,
cozg Com =0,m+0 Com = (D" A

m (5.108)
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and we obtain

G J@m+agt 510
2m+1 (5.109)

©

x(t)y=—+

(SN
ENES

I8

m

(b) From Egs. (5.108), (5.10), and (5.12) we have

(%0:00:% a,,, = 2Re[c,,, 1= 0, m# 0
a =2Re[c ]=(—1)'"L b, =-2Im[c,]=0
2m+1 2m+1 am+ n (3 k
Substituting these values into Eq. (5.8), we obtain
A 24 Q (D"
x()=—+— cos(2m + Dyt
=3 nm2=02m+1 @+ Do
=é+ﬁ coswot—icos3w0t+Lc055w0t—--- (5.110)
2 = 3 5

Note that x(?) is even; thus, x(f) contains only a dc term and cosine terms. Note also that x(¢) in Fig. 5-9 can be
obtained by shifting x(#) in Fig. 5-8 to the left by 7)/4.

5.7. Consider the periodic square wave x(f) shown in Fig. 5-10.
(a) Determine the complex exponential Fourier series of x(f).

(b) Determine the trigonometric Fourier series of x().
Note that x(f) can be expressed as
x@H) =x@®—-A

where x,(#) is shown in Fig. 5-11. Now comparing Fig. 5-11 and Fig. 5-8 in Prob. 5.5, we see that x,(?) is the
same square wave of x(7) in Fig. 5-8 except that A becomes 2A.

xit)
A
Ty L o |Te 2T, t
A
Fig. 5-10
X (I}
24
L To 0 T, T 2T, t
2 2

Fig. 511
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(a) Replacing A by 24 in Eq. (5.106), we have

xl(l‘)=A+ﬁ E o g/ @m+ Dyt
jm 2m+1

m=—o

Thus,

x(t)=xl(t)—A=§—2 ﬁem’“”‘”‘}’ (5.111)

m=—o

(b) Similarly, replacing A by 24 in Eq. (5.107), we have

4A 1
x(t)y=A+— sin(2m + Dawyt
1® nmE=02m+1 ( o

Thus,

4 > ! sin(2m + Dyt

x(t)=
© 2m+1

CNES

m=0

N

44
4

sinwot+%sin3w0t+%sin5w0t+--- (5.112)
Note that x(?) is odd; thus, x(#) contains only sine terms.

5.8. Consider the periodic impulse train 6T0(t) shown in Fig. 5-12 and defined by

ép, (=" &t —KTy) (5.113)
k=—o
Brgft
ot Tgl
Bl
F
T, 0 T, 2T, ¢
Fig. 5-12

(a) Determine the complex exponential Fourier series of 8,.(7).
0

(b) Determine the trigonometric Fourier series of &, (7).
0

(a) Let

3
jkaogt
dq,(1)= E c e Wy ==

k=—o

Since 4(?) is involved, we use Eq. (5.102b) to determine the Fourier coefficients and we obtain

_ 1 rTon2 —jkeogt g _ 1
c —T—Of_rolza(t)e o dt—T—O (5.114)
Hence, we get
Sr,(1=" 5(t—kT0)=i P w0=2—” (5.115)

k=—0 Tbk=—w Yb
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(b) Let
a = 2
6. 1) ==+ (a, cos kwyt + by sin kwyt wy ===
(0= 3, (@ cos ka + by sin ko) T
Since 6;,() is even, b, = 0, and by Eq. (5.9a), g, are given by
2 pT2 2
%= i) 7,2 0(0) cos kgt dr = 7 (5.116)
Thus, we get
12 27
7 (1)=—+ =) cos kawgyt Wy =— (5.117)
’ I, Tp ,2. Ty

5.9. Consider the triangular wave x(#) shown in Fig. 5-13(a). Using the differentiation technique, find (a) the
complex exponential Fourier series of x(#), and () the trigonometric Fourier series of x(?).

The derivative x'(¢) of the triangular wave x(¢) is a square wave as shown in Fig. 5-13(b).

(a) Let
- ’ 27
x(6) = kgwckefkwot wy = T_O (5.118)
Differentiating Eq. (5.118), we obtain
X()= Y, jkogee!? (5.119)
k=—o
(£}
A
1 i 1 1 >
L ~ Ty o E Ty 27, t
2 2
@
x[1)
s
rl:l
Ll Gl | | 27, t
2 2
al
TI'.
(b)

Fig. 5-13
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Equation (5.119) shows that the complex Fourier coefficients of x'(#) equal jkwc,. Thus, we can find ¢, (k # 0)
if the Fourier coefficients of x'(r) are known. The term ¢, cannot be determined by Eq. (5.119) and must be
evaluated directly in terms of x(¢) with Eq. (5.6). Comparing Fig. 5-13(b) and Fig. 5-10, we see that x(f) in
Fig. 5-13(b) is the same as x(?) in Fig. 5-10 with A replaced by 2A/T|,. Hence, from Eq. (5.111), replacing A by
2A/T,, we have

©

4A 1 i
X'(t) = ej(2m+l)w0r 5.120
© jnT0m§w2m+1 ( )

Equating Eqs. (5.119) and (5.120), we have

¢ =0 k=2m+0
2A

jkawgc, = or C=— —— k=2m+1
00k = Sk, AR

From Fig. 5-13(a) and Eq. (5.6) we have

1 (7 A
c0=T—f0°x(t)dt=5
0

Substituting these values into Eq. (5.118), we obtain

24 2m+1)wgt
x==-== e/@m*Dwo 5.121
e ; (2m+1) (5.121)

(b) In asimilar fashion, differentiating Eq. (5.8), we obtain

xX'(t)= E kawy (b, cos kawyt — a sin kawgyt) (5.122)
k=1

Equation (5.122) shows that the Fourier cosine coefficients of x'(f) equal to kw,b, and that the sine
coefficients equal to —kw,a,. Hence, from Eq. (5.112), replacing A by 2A/T, we have
84 o 1
nTO o 2m+1

X ()= sin(2m + 1) wyt (5.123)

Equating Eqs. (5.122) and (5.123), we have

by=0  a=0 k=2m#0

84 or ak=—i k=2m+1

—kwya, =
Ok kT, K

A 4A O 1
x(t)=—— E —l)zcos(2m+l) Wyt (5.124)
5.10. Consider the triangular wave x(f) shown in Fig. 5-14(a). Using the differentiation technique, find the
triangular Fourier series of x(?).
From Fig. 5-14(a) the derivative x'(f) of the triangular wave x(?) is, as shown in Fig. 5-14(b),

, A S
X(O)= =+ A F 8t~ KTy) (5.125)

0 k=—
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=(f)
A
Ty o Ty 27, t
(@)
x'(t)
AT}
ABlt) &
T ] Ty 27, t
AT,
(b)
Fig. 5-14
Using Eq. (5.117), Eq. (5.125) becomes
, o 24 27
X'(t)= E ——cos kwyt Wy =— (5.126)
k=1 Ty Ty
Equating Eqs. (5.126) and (5.122), we have
a,=0, k#0 kwobk=& or bk=i
TO kr
From Fig. 5-14(a) and Eq. (5.9a), we have
ay 1 Ty A
L=— [Pxt)ydt==
2 T, f 0 © 2
Thus, substituting these values into Eq. (5.8), we get
A A 1. 2n
x(t)=—=+=") —sinkw,t W, =— 5.127
® 2 /¢E=1 X o =T ( )

5.11. Find and sketch the magnitude spectra for the periodic square pulse train signal x(#) shown in Fig. 5-15(a)
for(a)d =T,/4,and (b) d = T/8.

Using Eq. (5.102a), we have
¢ = LfTO x(2) e o dp = Afde_jk‘”"' dt
oo o7 0

d
i—.l e ko | = A - ! (1— e ooty
TO - kao 0 TO ]ka

.kA - o Jkwodl2 (e Jkwgdl2 _ e—jkwod/2)
—JKkwolo

A d sin(kwyd /2) o Jkwod’2

T, koyd/2 (5.128)
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x(t)
A
T o d T 2T 4
(a)
le,l
EiH] 1a
[ ]
A _I
4=
od T t 0g, 28 o
d
(b)
Icil
X[
1
A T 1a
d=L
8 "a
0d T t 0 w, 2 o
d

(©
Fig. 515

Note that ¢, = 0 whenever kw,d/2 = mu; that is,

nwy = —— m=0,*1,*2,..
d
(@) d=T,/4,kwd/2 = knd/T, = kn/4,
A |sin(kz/4)
o |= 5| 2k
4| kal4

The magnitude spectrum for this case is shown in Fig. 5-15(b).
by d=T,/8,kw,d/2 = knd/T,= kn/8,

A
8

sin(kz / 8)

1= 5| Thnrs

The magnitude spectrum for this case is shown in Fig. 5-15(c).

5.12. If x (?) and x,(?) are periodic signals with fundamental period T, and their complex Fourier series
expressions are

© 0
i i 2r
x ()= 2 dje’ ! X, ()= 2 e el w0=T—
0

k=—0 k=—x
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5.13

5.14.

show that the signal x(¢) = x,(#)x,(?) is periodic with the same fundamental period 7, and can be
expressed as

o<

i 2
x(t) = E Cke',kwot wO = _ﬂ
k=—o @
where c, is given by
&%= dnm (5.129)
m=—w
Now x(t + Ty = x,(t + T)x,(t + T) = x,(O)x,(5) = x(2)
Thus, x() is periodic with fundamental period T,,. Let
x(t)= i c el Wy = 2
k=-0 Ty
_1 rhon —jkogt g _ 1 pTol2 — jikagt
Then ¢ = T i) g OL dt = T i) B IGINOE dt

) _T‘;f/z( > dme"”"”"’]xz W€k dy
0 m=—o

R 1 pTor2 —jk—m)wgt g, | _ <
) dm[T—O f_Tolzxz(t)e dt|= duep

m=—o m=—o

. 1 pTon2
since e =— f

— Jkwot
T, -1 x,(t)e dt

and the term in brackets isequalto e, _ .

Let x,(#) and x,(?) be the two periodic signals in Prob. 5.12. Show that

1 pnp2 e
T—Of_ro/2x|(t)x2(t)dt— N dey (5.130)

k=—o
Equation (5.130) is known as Parseval’s relation for periodic signals.

From Prob. 5.12 and Eq. (5.129) we have

R ) R
w7 f_TOlzx,(t)xz(t)e dt="Y dye_p

m=—o
Setting k = 0 in the above expression, we obtain
1 (To2 o e
T i) O di = S dye = kE dee_,
m=—o =—0
Verify Parseval’s identity (5.21) for the Fourier series; that is,

1 2 o 2
EfTO|x(t)| di="Y |e|

k=—o

If x0)="Y e

k=—o
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then x*(t)=( E ckejk“’O') = E c e ot = E cik ek (5.131)

k=—o k=—o00 k=—o

where * denotes the complex conjugate. Equation (5.131) indicates that if the Fourier coefficients of x(?) are c,,
then the Fourier coefficients of x*(7) are c* . Setting x,(#) = x(¢) and x,(#) = x*(?) in Eq. (5.130), we have d, = c,
and e, = c*, or (e_, = c¥), and we obtain

1 (T2 e .
o Ox 0d= 3 o (5.132)
1 p1o2 2, had 2
or T—Of_T0/2|x(t)| dt = k;J e |

5.15. (a) The periodic convolution f(#) = x,(#) ® x,(#) was defined in Prob. 2.8.If d and e, are the complex
Fourier coefficients of x,(#) and x,(?), respectively, then show that the complex Fourier coefficients
¢, of f(z) are given by

¢, =Tyde, (5.133)

where T is the fundamental period common to x,(#), x,(#), and f(2).

(b) Find the complex exponential Fourier series of f(f) defined in Prob. 2.8(¢).
(a) From Eq. (2.70) (Prob. 2.8)

FO=x0® %0 = [ x @0~ 7)de

Let x ()= E d e’ x,(t)= E e
k=—o k=—o
Then f(t)=f;.°x(r)( E ekejk“"’(’_”)dr
k=—o
= E e e f OTOx(‘r)e_jk‘"O’ dt
k=—o
Since de = Lfrox(f)e_jkwot dt
=7 do
we get
fO=" Todiee™ (5.134)

k=—
which shows that the complex Fourier coefficients ¢, of f(7) equal T d,e,.
(b) InProb.2.8(c), x,(f) = x,(t) = x(t), as shown in Fig. 2-12, which is the same as Fig. 5-8 (Prob. 5.5). From
Eq. (5.105) we have

4 A 4 0 k=2m,m+#0
0"h =7 k=% 7 Aljkn k=2m+1
Thus, by Eq. (5.133) the complex Fourier coefficients ¢, of f(¢) are
2
o = Todoey =To AT
0 k=2m,m+0

¢, =Tydie, =
O {—ToAzlkznz k=2m+1
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Note that in Prob. 2.8(c), f(£) = x,(#) ® x,(#), shown in Fig. 2-13(b), is proportional to x(#), shown in Fig. 5-13(a).
Thus, replacing A by A>T, /2 in the result from Prob. 5.9, we get

A2 {0 k=2m,m+0
=

co=T,—
0 0y ~T,A? I K k=2m+1
which are the same results obtained by using Eq. (5.133).

Fourier Transform

5.16. (a) Verify the time-shifting property (5.50); that is,
x(t — ty) < el X(w)
By definition (5.31)
Fixt—to)} = [7 xt—ty)e " dt
By the change of variable T = ¢ — £, we obtain
Flxt— 1)} = [ x(we T dr
= /ol fi)x(‘l:)e_j‘”r dt = e /¥ X(w)
Hence,
x(t —ty) <> e 10 X ()
5.17. Verify the frequency-shifting property (5.51); that is,
x(1)e!™" < X(w — wy)
By definition (5.31)
Flx) ey = [ x()ele " dt
= 7 x(t)e 70" dt = X(w - w,)
Hence,
x(1)e! < X(w — wy)
5.18. Verify the duality property (5.54); that is,
X(®) < 2ax(—w)
From the inverse Fourier transform definition (5.32), we have
[° X do=2mx(t)
Changing f to —t, we obtain
[° X@e " do=2mx(-1)
Now interchanging # and w, we get

[° x@e " dt = 27x(-w)
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Since FXOY= [ X)e " dr

we conclude that
X(t) < 2ax(— w)
5.19. Find the Fourier transform of the rectangular pulse signal x(¢) [Fig. 5-16(a)] defined by

3 3 1 |t|<a

By definition (5.31)

X@)= [ pae " dt= [* eI dr

_ .L(ef‘”“ _ e_j‘”“) —» sinwa _ 2a sin wa
Jjo w wa
Hence, we obtain
pa(t)eZSmwa _pgSinwa (5.136)
wa
The Fourier transform X(w) of x(¢) is sketched in Fig. 5-16(b).
xit) M)

a 0 a t ®

(a) (b)

Fig. 5-16 Rectangular pulse and its Fourier transform.

5.20. Find the Fourier transform of the signal [Fig. 5-17(a)]

X(t) = sin at
From Eq. (5.136) we have
sin wa
Pa (t) <
w
Now by the duality property (5.54), we have
o Sin at 27p,(—w)

Dividing both sides by 2z (and by the linearity property), we obtain

sin at
gt

where p (w) is defined by [see Eq. (5.135) and Fig. 5-17(b)]

< p,(~w)= p,(w) (5.137)

B |o|<a
Pa(@)= 0 |w|>a
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Mloa)
1
a 0 a f.:
(b)
Fig. 5-17 sin at/at and its Fourier transform.
5.21. Find the Fourier transform of the signal [Fig. 5-18(a)]
)c(t)=e_a|r| a>0
Signal x () can be rewritten as
e t>0
x(t)=e M =
® e t<0
Then X(w)= ffme“'e_j“” dr + f:e_“’e_j‘”' dt
[0 i gy g [ o gy
—® 0
1 1 2a
- a— i + ] 2
Jo a+tjo a" +tw
Hence, we get
P pe— (5.138)
a”tw
The Fourier transform X(w) of x(¢) is shown in Fig. 5-18(b).
Xea)
2/a
«—
0 t 0 w
Fig. 5-18 e~l2lt and its Fourier transform.
5.22. Find the Fourier transform of the signal [Fig. 5-19(a)]
x(t)=
a*+12
From Eq. (5.138) we have
ol 2a
a* + w?
Now by the duality property (5.54) we have
220 - < 270l = 2 el
a” +t
Dividing both sides by 2a, we obtain
LT el (5.139)
a“+t a

The Fourier transform X(w) of x(¢) is shown in Fig. 5-19(b).
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x(t) Xijen)

1/a*
2 n/a

» *

0 ¢ 0 0

Fig. 519 1/(a? + t?) and its Fourier transform.

5.23. Find the Fourier transforms of the following signals:
(@ x(»=1 b) x(p) = el
(c) x(p) = e oot (d) x(1) = cos w,t
(e) x(2) = sin wt
(a) By Eq. (5.43) we have
8 <=1 (5.140)
Thus, by the duality property (5.54) we get
1 < 276 (— w) = 278(w) (5.141)

Figs. 5-20(a) and (b) illustrate the relationships in Eqs. (5.140) and (5.141), respectively.

xif) M)
L il 1
-
0 t 0 w
(@)
x(f) M)
1 L3 2nd{um)
—F
0 0 w

(b)

Fig. 5-20 (a) Unit impulse and its Fourier transform; (b) constant (dc) signal and its Fourier transform.

(b) Applying the frequency-shifting property (5.51) to Eq. (5.141), we get

e/ <> 2738(w — wy) (5.142)



CHAPTER 5 Fourier Analysis of Continuous-Time _®

(c¢) From Eq. (5.142), it follows that

e < 278(w + W) (5.143)

(d) From Euler’s formula we have
cos wyf = %(ej‘”"’ + g0y
Thus, using Egs. (5.142) and (5.143) and the linearity property (5.49), we get

cos wyt <> nld(w — @) + 6(w + w))] (5.144)

Fig. 5-21 illustrates the relationship in Eq. (5.144).

(e) Similarly, we have
sin wyt = L.(ej‘”"' — e Jooty
2j

and again using Eqs. (5.142) and (5.143), we get

sin wyt <> —ja[é(w — wy) —6(w + w,)] (5.145)

x{t) Xlen)

Y

(@ (b)

Fig. 5-21 Cosine signal and its Fourier transform.

5.24. Find the Fourier transform of a periodic signal x(#) with period T|,.

We express x(f) as
N Jkeogt _2n
x(t)= E ce Wy ==
k=—o
Taking the Fourier transform of both sides and using Eq. (5.142) and the linearity property (5.49), we get
X@)=27 Y ¢ 8 koy) (5.146)
k=—
which indicates that the Fourier transform of a periodic signal consists of a sequence of equidistant impulses

located at the harmonic frequencies of the signal.

5.25. Find the Fourier transform of the periodic impulse train [Fig. 5-22(a)]

87, ()= 2 8t — kTy)

k=—



®_ CHAPTER 5 Fourier Analysis of Continuous-Time

From Eq. (5.115) in Prob. 5.8, the complex exponential Fourier series of 6T“(t) is given by

1w keont 2x
S5+ ()= = Pl Wy = —
n® T, 2 T,

k=—o

Using Eq. (5.146), we get

Fo7,O1= 2= Y (e~ kp)
TO k=—o
=w, E 8w — kawy) = wyb,, ()
k=—o

®

or Y 81—k wy Y 8 kog) (5.147)

k=—o k=—o

Thus, the Fourier transform of a unit impulse train is also a similar impulse train [Fig. 5-22(b)].

X[ty Xlus)
— To ¢} TO E'TO t —ay ¢} W 2000
(a) (b)
Fig. 5-22 Unit impulse train and its Fourier transform.
5.26. Show that
1 1
x(t) cos woteEX(w—w0)+5X(w+w0) (5.148)
. |1 1
and x(2)sin wyt <> — j EX(w—wO)—EX(w+a)O) (5.149)

Equation (5.148) is known as the modulation theorem.
From Euler’s formula we have
oS Wt = %(ej‘”‘)' D)
Then by the frequency-shifting property (5.51) and the linearity property (5.49), we obtain
Fx(t) cos wytl = F %x(t) el 4 %x(t) e Jo!

X(w—wgy) + %X(w + )

N | =

Hence,

x(t) cos wyt <> %X(w— wg) + %X(w+ )



CHAPTER 5 Fourier Analysis of Continuous-Time

In a similar manner we have

sin wyt = L.(ef“’O’ — g ooty
2j
and F[x(t) sin wyt]= @[%x(t) eled _ %x(t) e—jwol]
J

1
=—X(w—wy) - —X(w+w,
27 ( 0) 27 ( o)
Hence,

x(t) sin wyt <> —j[%X(w— wy) — %X(w +w0)}

5.27. The Fourier transform of a signal x(?) is given by [Fig. 5-23(a)]

1 1
X(w)=5pa(w—w0)+5pa(w+wo)
Find and sketch x(7).

From Eq. (5.137) and the modulation theorem (5.148), it follows that

sin at
x(t)= cos wyt
Tl

which is sketched in Fig. 5-23(b).

Xlea)
11
.................. i -
I I I I | I
-, 6] w,—a o, ogta
(@)

i)

(b)

Fig. 5-23
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5.28. Verify the differentiation property (5.55); that is,

—d’;(t’ ) o> joX(w)

From Eq. (5.32) the inverse Fourier transform of X(w) is

1 o ,
x)=— [ X)e' dw 5.150
O=5-f X (5.150)
Then
dx(r) 1 d[ » ot
—_t = X(w) e’ dw
dt 2 dt J . x@

1 = d
=_— X(w)— (" dw
1 = i
=— jwX(w) ™" dw 5.151
oo jeX@) (5.151)
Comparing Eq. (5.151) with Eq. (5.150), we conclude that dx(#)/dt is the inverse Fourier transform of jowX(w). Thus,

% < joX(w)

5.29. Find the Fourier transform of the signum function, sgn(#) (Fig. 5-24), which is defined as

1 t>0
sgn(t) = {_1 1<0 (5.152)

sgnit)

Fig. 5-24 Signum function.
The signum function, sgn(?), can be expressed as
sgn(?) = 2u() — 1
Using Eq. (1.30), we have
%sgn(t) =26(t)
Let
sgn(?) < X(w)

Then applying the differentiation property (5.55), we have

joX (@)= FI250)] =2 > X(@) = =
J(U
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Hence,

2
sgn(t) <> — (5.153)
jw
Note that sgn(?) is an odd function, and therefore its Fourier transform is a pure imaginary function of w (Prob. 5.41).
5.30. Verify Eq. (5.48); that s,
1
u(t) < né(w) + — (5.154)
jw
As shown in Fig. 5-25, u(f) can be expressed as

u(t)= % + %sgn(t)

Note that % is the even component of u(#) and % sgn(?) is the odd component of u(#). Thus, by Egs. (5.141) and (5.153)
and the linearity property (5.49), we obtain

u(t) <> adé(w) + L
Jjo

u(t) L sgnit)

LS

B =

by -

Fig. 5-25 Unit step function and its even and odd components.

5.31. Prove the time convolution theorem (5.58); that is,
x,(0) * x() < X |(w) X,(w)

By definitions (2.6) and (5.31), we have

Flx 0 x,0)= [ :[ [ x@xy - r)dr] eI gy
Changing the order of integration gives

Fia®*x01= [ x (@) [ [EAGE e_f‘”’dt] dt
By the time-shifting property (5.50)

f:oxz(t —7)e dt = X, (w) e /T
Thus, we have
Fla O x,0l1= [~ x @)X, @)e " dr
= [ I° x(@me dr| X, (@) = X, ()X, (@)

Hence,

X,(0) * x,(1) < X () X,(w)
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5.32.

5.33.

5.34.

Using the time convolution theorem (5.58), find the inverse Fourier transform of X(w) = 1/(a + jw)?.

From Eq. (5.45) we have

_ 1
e u(t) < . (5.155)
a+ jo

Now

o et
(a+ jw) a+t jo/\a+ jo

Thus, by the time convolution theorem (5.58) we have

x@)= e "u(t)xe “ut)

= fio e u(t)e " Out — 1) dv
_mat (1 —at
=e f Od‘r =te “u(t)

Hence,

1

te u(t) > ——
® (a+ jo)

(5.156)
Verify the integration property (5.57); that is,

[ x(v)dv < 2X(0)8(w) + Jiw X(w)
From Eq. (2.60) we have

f:wx(‘r) dt = x(t) % u(t)
Thus, by the time convolution theorem (5.58) and Eq. (5.154), we obtain

Fx(t) xu(®)] = X(w)[né(w) + L
jo

=nX(w)dé(w)+ 'LX(w)
Jjow
= a7X(0)6(w) + .LX(w)
jo
since X(w)d(w) = X(0)6(w) by Eq. (1.25). Thus,
[ [ x@ d'r] < 2X(0)8(0) + - X(w)
e P

Using the integration property (5.57) and Eq. (1.31), find the Fourier transform of u(?).

From Eq. (1.31) we have

un)= [ o)dr
Now from Eq. (5.140) we have
ORS!
Setting x(7) = 6(7) in Eq. (5.57), we have
x(®) =6 < X(w) =1 and X(0) =1
and
1

ut)= [ 8(z)dv <> md(w) + o
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5.35. Prove the frequency convolution theorem (5.59); that is,

1
X (Dx, (1) < — X (0) * X, (w)
2
By definitions (5.31) and (5.32) we have
FlaOx,O1= [7 x@O)x @) e dr
o[ 1 po . o
=f _w[g IR A% ef"’dA}xz(t)e jo! gy
1 p= ® itw—
=— [ X/ tye /@ “‘dt] di
X [ xwe
1 p= 1
= Ef_wxl(;u)xz(w A dA= X\ (@)* X, (@)
Hence,
1
x(O)x, (1) = — X (w) * X, (w)
2
5.36. Using the frequency convolution theorem (5.59), derive the modulation theorem (5.148).

From Eq. (5.144) we have
cos wyt <> wé(w — wy) + wo(w + w,)

By the frequency convolution theorem (5.59) we have
x(t) cos wyt <> ZLX(w) *[wd(w — wy) + TS (@ + wy)]
b4

1 1
—X(w— wy) +—=X(w+ w,
5 ( 0) > ( 0)

The last equality follows from Eq. (2.59).
5.37. Verify Parseval’s relation (5.63); that is,
© 1 ©
f T x(x(d= o f " X(@)X,(~w) do
From the frequency convolution theorem (5.59) we have
1 po
FlaOx01=— [~ XWXy~ 1) dA
that is,
[7 In@x@)e ™ di = L [ XWX, (@~ A)da
Setting w = 0, we get
© 1 ©
. xa@x@ di= Ef_le(A)Xz(—A)dA
By changing the dummy variable of integration, we obtain

[7 x@xdi = % [° X(@)X,(-w)do
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5.38. Prove Parseval’s identity [Eq. (5.64)] or Parseval’s theorem for the Fourier transform; that is,

® 2 1 p= 2
x(t)| dt=— X(w)| dw

f—oo' ( | 2]{ f—oo' ) |
By definition (5.31) we have

Flxx)= [T x*@e " dt

= [ I :x(t)ej‘”’dt] = X*(-w)
where * denotes the complex conjugate. Thus,
X¥ (1) < X*(—w) (5.157)
Setting x,(#) = x(¢) and x,(f) = x*(#) in Parseval’s relation (5.63), we get
[7 xtyx*@yde = Lf“’ X (@)X *(w) do

—® 2V~

or
® 2 | 2
Hl dt=— X d
JoJxof di=— [ |X@)] do
5.39. Show that Eq. (5.61a); that is,
X*(w) = X(—w)
is the necessary and sufficient condition for x() to be real.
By definition (5.31)
X()= [~ x@ye ™ at

If x(7) is real, then x*(f) = x(f) and

X*(w)= [f:ox(t)e_j‘”' dt]* =7 xxe dr
=[x di = X(~w)

Thus, X* (w) = X(— w) is the necessary condition for x(f) to be real. Next assume that X*(w) = X(— w). From the
inverse Fourier transform definition (5.32)

1 po i
xt)=—| X)) dw
0=——[ " X@)
Then
1 o - T e i
x*@O)=|—[ X)edw| =— [ X*w)e ' dw
Q) [Mf_wu } i RO
1 pe —j 1 po i
= X(—w)e " do=— X(A) eMdA = x(t
oy BR(G) X 0]
which indicates that x(¢) is real. Thus, we conclude that
X*(w) = X(—w)
is the necessary and sufficient condition for x(f) to be real.

5.40. Find the Fourier transforms of the following signals:

(@) x() =u(-1)
b)) x(@) =e“u(—-9,a>0
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5.41.

From Eq. (§.53) we have
x(—1) < X(—w)
Thus, if x(?) is real, then by Eq. (5.61a) we have
x(—1) < X(—w) = X*(w) (5.158)

(a) From Eq. (5.154)
1
u(t) <> mé(w) + —
jow

Thus, by Eq. (5.158) we obtain

1
u(=1) <> mo(w) — — (5.159)
Jjw
(b) From Eq. (5.155)
e u@t) < -
a+ jo
Thus, by Eq. (5.158) we get
at 1
eTu(=t) < - (5.160)
a— jo

Consider a real signal x(7) and let
X(w) = F[x()] = A(w) + jB(w)
and
x(1) = x, (1) + x ()
where x (#) and x (?) are the even and odd components of x(z), respectively. Show that

x(0) < A(w) (5.161a)
x,(1) <> jB(w) (5.161b)

From Egs. (1.5) and (1.6) we have
20)= X0 + 31
xo(1)= 2 x(0) ~ x(-1)
Now if x(?) is real, then by Eq. (5.158) we have

x(1) <> X(w) = A(w) + jB(w)
xX(—1) < X(-w) = X*(w) = A(w) — jB(w)

Thus, we conclude that
1 1
x, (1)< EX(w) + EX*(w) = A(w)
1 1 .
X, (1)< EX(w) - EX*(w)= JB(w)

Equations (5.161a) and (5.161b) show that the Fourier transform of a real even signal is a real function of w, and
that of a real odd signal is an imaginary function of w, respectively.
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5.42. Using Egs. (5.161a) and (5.155), find the Fourier transform of e~¢!"l (a > 0).

From Eq. (5.155) we have

—at 1 a . @
e uny < =53 J 3. >
atjo a" +ow a +w

By Eq. (1.5) the even component of e~%' u(f) is given by

| 1 1 a1
—e "u)t+—e u(—t)=—e
5 @) 5 (G )] 5

Thus, by Eq. (5.161a) we have

1 —at| 1 a
—e <>Re —|=—= 5
2 atjw) a" +w

or

2a

e—a|r|<_>
2
a” +w

2

which is the same result obtained in Prob. 5.21 [Eq. (5.138)].

5.43. Find the Fourier transform of a Gaussian pulse signal
x(t) = e a>0
By definition (5.31)
X@)= [~ e et dr (5.162)
Taking the derivative of both sides of Eq. (5.162) with respect to w, we have

dX () _

L —at? - jot
—jf te® e 1 dt
do -

Now, using the integration by parts formula

B
fﬁudv=uv —fﬁvdu
a o a
and letting
u=e and dv=te " dt
we have
. 1 _.2
du=—jwe ' dt and v=——0e @
2a
and
f te arze—jwr dt = — Le—atze—jwt —j w re e—atze—jwr dt
2a . 2aY
= —jﬂ ? gmat gt gy
2aY >
since a > 0. Thus, we get
dX(w) __ o

X(w
dw 2a @)
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Solving the above separable differential equation for X(w), we obtain

X(w) = Ae™ M4 (5.163)

where A is an arbitrary constant. To evaluate A, we proceed as follows. Setting w = 0 in Eq. (5.162) and by a
change of variable, we have

I o Iy L Y Sy LI I 1
XO=A=[" e di=2f"¢ dt—ﬁfoe dA—\/;

Substituting this value of A into Eq. (5.163), we get

X(w) = \/E g v (5.164)
a

Hence, we have

e_mz,a>0<—>\/§e_‘”2/4“ (5.165)

Note that the Fourier transform of a Gaussian pulse signal is also a Gaussian pulse in the frequency domain. Fig. 5-26
shows the relationship in Eq. (5.165).

xl:m:I

xt)

—

¥
¥

Fig. 5-26 Gaussian pulse and its Fourier transform.

Frequency Response

5.44. Using the Fourier transform, redo Prob. 2.25.

The system is described by
Y@ + 2y(0) = x(t) + X' (1)

Taking the Fourier transforms of the above equation, we get

JjoY(w) + 2Y(w) = X(w) + joX(w)

or

(jo +2) () = (1 + jo) X (o)

Hence, by Eq. (5.67) the frequency response H(w) is

Y@) _ltjo _2+jo-1_, 1

H(w)= -
@ X(w) 2+ jo 2+ jo 2+ jo
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Taking the inverse Fourier transform of H(w), the impulse response A(f) is

h(t) = 8(t) — e~ >'u(r)

Note that the procedure is identical to that of the Laplace transform method with s replaced by jw (Prob. 3.29).

5.45. Consider a continuous-time LTI system described by
% + 2y(t) = x(2) (5.166)

Using the Fourier transform, find the output y(#) to each of the following input signals:
(@) x(©) =e 'u(®

() x(0) = u(@)

(a) Taking the Fourier transforms of Eq. (5.166), we have

joY(w) + 2Y(w) = X(w)

Hence,
Hay-Y@__ 1
X(w) 2+ jo
From Eq. (5.155)
1
X(w)= -
1+ jo
and
1 1 1
Y(w)= X(w)H (w) = - — = — = -
1+ jo)2+ jow) 1+ jo 2+ jo
Therefore,

y() = (7' — e u()

(b) From Egq. (5.154)
X(w) = nd(w) + L
Jjw

Thus, by Eq. (5.66) and using the partial-fraction expansion technique, we have

1

Y(w)= X(w)H (w) = [né(w) +— !

jo|2+ jo
= wd(w) ! 1
2+ jo  jo2+ jo)
=£5(w)+li_l 1
2 2 jo 22+ jo
=lm3(w)+i—l !
2 jo| 22+ jw

where we used the fact that f(w)d(w) = f(0)6(w) [Eq. (1.25)]. Thus,

-Luy- L =La- e
YO = Zut) = e un) =21~ e u)

We observe that the Laplace transform method is easier in this case because of the Fourier transform of u(?).
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5.46. Consider the LTI system in Prob. 5.45. If the input x(?) is the periodic square waveform shown in Fig. 5-27,
find the amplitude of the first and third harmonics in the output y(?).

()

10

~ o

Fig. 5-27

Note that x() is the same x(f) shown in Fig. 5-8 [Prob. 5.5]. Thus, setting A = 10, T, = 2, and w, = 27/T, = min
Eq. (5.106), we have

x(t)=5+ 10 i _L_gjemivm
in . 2m+1
Next, from Prob. 545

1
2+ jkm

H(w)= ; — H(kwy)= H(km)=
2+ jo
Thus, by Eq. (5.74) we obtain

)= 5H(0)+ — E —+H[(2m + 1)mle/@m+hat

—

_5,10 i pJ@m+iat
2 jm Pt (2m+l)[2+](2m+l)n] (5.167)

Let

yoy="3 de
k=—o
The harmonic form of y(?) is given by [Eq. (5.15)]

Y(6)= Dy + Y Dy cos(kayt — ;)
k=1

where D, is the amplitude of the kth harmonic component of y(#). By Eqs. (5.11) and (5.16), D, and d, are related by
D, =2[d,| (5.168)

Thus, from Eq. (5.167), with m = 0, we obtain

DI=2|dl|=2 L =
Jr2+ jm)
With m = 1, we obtain
D3=2|d3|=2 L =
Jr(3)2 + j3m)
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5.47. The most widely used graphical representation of the frequency response H(w) is the Bode plot in
which the quantities 20 log,,| H(w) | and 6,(w) are plotted versus w, with w plotted on a logarithmic
scale. The quantity 20 log,,| H(w)| is referred to as the magnitude expressed in decibels (dB), denoted
by | H(w)| ;5. Sketch the Bode plots for the following frequency responses:

@ Hw)=1+22
(w) +10

1
(b) H(w)= ——
1+ jw/100
10°(1+ jo
(¢) H(w)= At jo)
(10 + jw)(100 + jo)
(@) |H(w)|,; =201og,e| H(w)|=20log,, 1+j%‘
For w < 10,
.
|H(w)|dB=2010g10 1+JE —2010g,, 1=0 as w — 0
For w > 10,

. w
| H(w)| 5 = 201log,, 1+JE —>2010g10( E) asw—0

On a log frequency scale, 20 log,,(w/10) is a straight line with a slope of 20 dB/decade (a decade is a 10-to-1
change in frequency). This straight line intersects the 0-dB axis at w = 10 [Fig. 5-28(a)]. (This value of w is
called the corner frequency.) At the corer frequency w = 10

H(10) | 45 = 20 log,o| 1 + j1| = 20 log,,V2 ~ 3 dB

The plot of | H(w)|; is sketched in Fig. 5-28(a). Next,

0, (w =tan_Iﬂ
(@) 10

Then

0 w=tan_'3—>0 asw—0
n (W) m

BH(w)=tan_'%—>% as @ —> ©

At w = 10, 6,(10) = tan~! 1 = a/4 radian (rad). The plot of 0,,(w) is sketched in Fig. 5-28(b). Note that the
dotted lines represent the straight-line approximation of the Bode plots.

1 w
b H(w =201o ——|=-201lo 1+ j—
(b) | ()|dB 210 1+jw/100‘ 210 1100‘
For w < 100,
w
H(w =—-201o 1+ j—|——201log,, 1=0 asw—0
|H(®)|,5 10 JIOO‘ 10
For w > 100,

| H(w) |dB =—201log,o

w w
l1-j—|——201lo — as @ —> @
’100‘ g"’( 100)
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40
P
30 //
20 /
2{”‘:'g'||]n|1 b £| H‘#’n!
© JH'IL'.I d
Z 10
£ E a"/
0 ettt 1I1E -
-10
-20
1 10 100 1000
w(rad/s)
@
/2
tan w/10) L
i_,...u-“"‘ T
n/4 #r#‘- 5
Lt "
z e "'"..’:':-: i
< 0 s
D
—n/4
—-7/2
1 10 100 1000
w(rad/s)
(b)

Fig. 5-28 Bode plots.
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On a log frequency scale —20 log, (w/100) is a straight line with a slope of —20 dB/decade. This straight
line intersects the 0-dB axis at the corner frequency w = 100 [Fig. 5-29(a)]. At the corner frequency w = 100

H(100)| ;5 = —20log,, V2 =~ —3dB
The plot of | H(w)|; is sketched in Fig. 5-29(a). Next,

0, (w)= —tan_li
(@) 100

Then
8, (@)=—tan ' -2 50 asw—0
(@) 100
0, (w =—tan_li—>—£ as W —> ©
n (@) 100 2

At w = 100, 6,(100) = —tan~!1 = — /4 rad. The plot of 6,,(w) is sketched in Fig. 5-29(b).

(¢) First, we rewrite H(w) in standard form as

101 + jow)
(+ jw/10)1+ jow/100)

H(w)=

Then

| H()| ;= 2010g;, 10+ 20 log, |1+ jo|

—-20 loglo

w
1+ j—|—201o,
110‘ g10

w
1+j—
J 100 ‘
Note that there are three corner frequencies, w = 1, w = 10, and w = 100. At corner frequency w = 1

H(1)|g5 = 20 +20log; /2 — 20 log; v1.01 — 20 log;, v/1.0001 ~ 23 dB

20

10

0 - .

=T
5 M,
z 0 N
I
= 200log ; My
1n|1 ”‘.IClL'.l | "\\
-20 b

N

-40 E

10 100 1000
w(rad/s)

@
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/2
n/4
e
;i o] oty ;:"_:‘:‘L:-‘
e tan "/ 100)
~n/4 B L
~]
T
" ] _---.
-n/2 s
10 100 1000
w(rad/s)

(b)
Fig. 5-29 Bode plots.

At corner frequency w = 10
H(10)| g5 = 20 + 20 log;,v101 — 20 log;o V2 — 20 log,o ¥1.01 = 37 dB
At corner frequency w = 100
H(100)| 45 = 20 + 20 log,, /10,001 — 20 log,, V101 — 20 log y /2 =~ 37 dB

The Bode amplitude plot is sketched in Fig. 5-30(a). Each term contributing to the overall amplitude is also
indicated. Next,

0, (w =tan_lou—tan_'2—tan_li
(@) 10 100
Then
0y(w)=—0-0-0=0 asw—0
T T n 4
O (w)y=>—"-——-——_=—_ as @ —>
H@) ==
and

6,(1) = tan~!(1) — tan~!(0.1) — tan~'(0.01) = 0.676 rad
6,(10) = tan~!(10) — tan™'(1) — tan~'(0.1) = 0.586 rad
6,(100) = tan~'(100) — tan~'(10) — tan~' (1) = —0.696 rad

The plot of 6,(w) is sketched in Fig. 5-30(b).
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40 +
IHtl:'}:”dH "'l" F"f .‘..f
E2atl
30 “\‘ f P
-"..:’i’ '_-4' 2u|gg1u1ﬂ _H"a \'\..
| L i
- .!' 'c' "y
20 —rl A30 N
[is) ..-"‘r
_.c r.
© Rk
z ® o \ 20109, |1+ 70|
** 10 100
*_.‘ Zﬂlbgml'l i;ml 100
0 < . . /
"‘..* 1-‘1“
_10 FJ/' = ) - *a
. -".* *af
20l0g,, |1+ 22| 1,
-20 Lt [t
1 10 100 1000
w(rad/s)
(@)
8, = tan Ta
/2 "\JI 14
/4 Lpriis -
Lot M. | 6=eite e,
=0 : iz \|'\r)
(== ‘i*‘i '-._-.
ol N “f I
—n/4 / EE N R
8, = tan" W) 10) e O
2 L
.. {' h"'h-.“h
—r/2 s ll ‘h
@, tan” "{u)100)
1 10 100 1000
w(rad/s)
(b)

Fig. 5-30 Bode plots.



CHAPTER 5 Fourier Analysis of Continuous-Time _®

5.48. Anideal (—m/2) radian (or — 90°) phase shifter (Fig. 5-31) is defined by the frequency response

e 12 w>0
H(w)= il <0 (5.169)
x(t) N Phase shifter | Y =X() N
—n/2 rad

Fig. 5-31 —a/2 rad phase shifter.

(a) Find the impulse response h(?) of this phase shifter.
(b) Find the output y(#) of this phase shifter due to an arbitrary input x(f).
(c) Find the output y(#) when x(?) = cos w,?.

(a) Since e/™2 = —jand e/*2 = j, H(w) can be rewritten as
H(w) = —j sgn(w) (5.170)
where
1 w>0
sgn(w) = 1 ©<0 (5.171)

Now from Eq. (5.153)
sgn(t) <> i
jw
and by the duality property (5.54) we have
2
= <271 sgn(—w) = —2x sgn(w)
J
or
1 .
— < —Jsgn(w) (5.172)
Tt
since sgn(w) is an odd function of w. Thus, the impulse response A(?) is given by
h(t)=@_I[H(w)]=~°f_'[—jsgn(w)]=Lt (5.173)
b1

(b) ByEq.(2.6)

A N 2
Y X(t)*nt th‘“’t—‘r

(5.174)
The signal y(7) defined by Eq. (5.174) is called the Hilbert transform of x(¥) and is usually denoted by £(7).
(c¢) From Eq. (5.144)
cos wyt < a{é(w — wy) + d(w + w)]
Then
Y(w)= X(w)H (w) = a[d(w — wy) + 8w + wy)][— j sgn(w)]
= — jm sgn(wy)d(w — wy) — jr sgn(—wy)é(w + wy)
=—jad(w— wy) + jrd(w + wy)
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5.49.

5.50.

since sgn(w,) = 1 and sgn(—w,) = —1. Thus, from Eq. (5.145) we get
y() = sin ot
Note that cos(wyt — #/2) = sin .
Consider a causal continuous-time LTI system with frequency response
H(w) = A(w) + jB(w)

Show that the impulse response A(#) of the system can be obtained in terms of A(w) or B(w) alone.

Since the system is causal, by definition
=0 t<0
Accordingly,
M—£=0 t>0
Let
h(®) = h () + h,(0)

where h () and h (7) are the even and odd components of A(?), respectively. Then from Egs. (1.5) and (1.6) we
can write

h(®) = 2h () = 2h (0 (5.175)
From Eqgs. (5.61b) and (5.61c) we have
(D)< A@w) and k() <> jB(w)
Thus, by Eq. (5.175)

h(t) = 2h () = 2F '[A(w)] t>0 (5.176a)
h(®) =2h (1) =2F '[jB(w)] t>0 (5.176b)

Equation (5.176a) and (5.176b) indicate that A(f) can be obtained in terms of A(w) or B(w) alone.
Consider a causal continuous-time LTI system with frequency response
H(w) = A(w) + jB(w)

If the impulse response /(%) of the system contains no impulses at the origin, then show that A(w) and
B(w) satisfy the following equation:

_ 1 = B(A)
A(w) = — f i dA (5.177a)
1 p= A(L)
Bw)=—— [ 222 4da
(@) ﬂf_mw_;L (5.177b)

As in Prob. 5.49, let
h@®) = h,(t) + h,(0)
Since h(f) is causal, that is, A(f) = 0 for t < 0, we have

h(t) = —h() <0
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5.51.

Also from Eq. (5.175) we have

h(®)=h@) >0

Thus, using Eq. (5.152), we can write

h(8) = h(?) sgn(t) (5.178a)
h, (&) = h(?) sgn(t) (5.178b)

Now, from Egs. (5.61b), (5.61c), and (5.153) we have
. 2
h, (1) <> A(w) h,(t) <> jB(w) sgn(f) <> —
jo
Thus, by the frequency convolution theorem (5.59) we obtain
Alw) = L — jB(@)— = B(w) v f 3(7‘)
Jjw
and
jB@)= L A@)x == jLa@)« L
2 jo b1 w
or

__1 1_ 1 = AQD)
B(w)= nA(w)*w ﬂf o Ad)»

Note that A(w) is the Hilbert transform of B(w) [Eq. (5.174) ] and that B(w) is the negative of the Hilbert transform
of A(w).

The real part of the frequency response H(w) of a causal LTI system is known to be 76(w). Find the
frequency response H(w) and the impulse function A (%) of the system.

Let
H(w) = A(w) + jB(w)

Using Eq. (5.177b), with A(w) = w6(w), we obtain

1 pe 7O(A) ® 1 1
B(w)=—— dr=— (A)——dA=——
@) nf‘ww—)u f‘°° ( )w—)» w
Hence,
.1 1
H(w)= nd(w) — j— = né(w) + —
w Jjw
and by Eq. (5.154)

h(t) = u(?)

Filtering

5.52. Consider an ideal low-pass filter with frequency response

|o|<w,

1
H(w)={0

|w|> w,
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The input to this filter is

_sinat

x()=

(a) Find the output y(?) for a < w,.
(b) Find the output y(#) for a > ..

(¢) In which case does the output suffer distortion?

(a) From Eq. (5.137) (Prob. 5.20) we have

_sinat _ 1 |ol<a
x(f)—T X(w)—l’a(w)—{o |w|>a

Then when a < ,, we have
Y(w) = X(w)H(w) = X(w)
Thus,

30 = x(r) = S04
Jt

(b) Whena > w, we have
Y(w) = X(w)H(w) = H(w)
Thus,

sin w,t

y(t) = h(t)=

(¢) Incase (a), that is, when @, > a, y(f) = x(?) and the filter does not produce any distortion. In case (b), that is,
when @, < a, y(t) = h(f) and the filter produces distortion.

5.53. Consider an ideal low-pass filter with frequency response

) |o|<4m
H@)=1g |o|> 4x

The input to this filter is the periodic square wave shown in Fig. 5-27. Find the output y(?).

Setting A = 10, T, = 2, and w, = 27/T, = min Eq. (5.107) (Prob. 5.5), we get

x(t)=5 +2 sin n:t+isin 3m+isin Sat+---
4 3 5

Since the cutoff frequency w, of the filter is 4 rad, the filter passes all harmonic components of x(#) whose angular
frequencies are less than 4 rad and rejects all harmonic components of x(#) whose angular frequencies are greater
than 4 rad. Therefore,

y) =5+ 2sin it + 2sin 3t
4 3z

5.54. Consider an ideal low-pass filter with frequency response

B |o|< o,
H@)=1, |o|> o,
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The input to this filter is
x() = e~ 2'u(r)

Find the value of w, such that this filter passes exactly one-half of the normalized energy of the input
signal x(?).

From Eq. (5.155)

X(w)=
(@) 2+ jo
Then
1. |w|<wc
Y (w)=X(w)H(w)=12+ jo
0 |w|> o,

The normalized energy of x(?) is

E =" |x)fdi=[e* ar= %

Using Parseval’s identity (5.64), the normalized energy of y(?) is

L o, dw
279~ 4 + @?

E, = f_:|y(t)|2 dt = %fij Y (@)[ do=

1 po. dw 1 ) 1 1
=— =—tan —St=—F =—
nfo 4+0® 2m 2 2% 8
from which we obtain
e —tanZ =1 and w, =2rad/s
2 4

5.55. The equivalent bandwidth of a filter with frequency response H(w) is defined by

1

_ o 2
_Wf()'mw)' dw

Weq (5.179)

where | H(w)| . denotes the maximum value of the magnitude spectrum. Consider the low-pass RC

filter shown in Fig. 5-6(a).
(a) Find its 3-dB bandwidth W.

3dB°
(b) Find its equivalent bandwidth Weq.

(a) From Eq. (5.91) the frequency response H(w) of the RC filter is given by

1 1
1+ joRC 1+ j(w/awy,)

H(w)=

where w, = 1/RC. Now

1

Ho)|= ——*
| H(w)] [+ @/ )]

The amplitude spectrum | H(w)| is plotted in Fig. 5-6(b). When w = w, = 1/RC, |H(w,)| = 1/V2. Thus,
the 3-dB bandwidth of the RC filter is given by

1
Wigg =y = RC
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(b) From Fig. 5-6(b) we see that |H(0)| = 1 is the maximum of the magnitude spectrum. Rewriting H(w) as

1 1 1

H(w)= =—
@ 1+ jwoRC RC 1/RC + jo

and using Eq. (5.179), the equivalent bandwidth of the RC filter is given by (Fig. 5-32)

_ 1 o dw _ 1 T _ 7z
“ (RC* Y0 (1/RCY +w®> (RC)* 2/RC 2RC

& |H{e)?

¥

Fig. 5-32 Filter bandwidth.

5.56. The risetime ¢, of the low-pass RC filter in Fig. 5-6(a) is defined as the time required for a unit step
response to go from 10 to 90 percent of its final value. Show that

035

f=—"=

.
f3aB

where f; o = W, /2w = 1/2aRC is the 3-dB bandwidth (in hertz) of the filter.

From the frequency response H(w) of the RC filter, the impulse response is

1 _urc
h(ty=—e u(t
@) RC ()]
Then, from Eq. (2.12) the unit step response s(Z) is found to be

t 1

e R g — (1— e "Ry uir
VRE ( yult)

s = [ h@)dr =
which is sketched in Fig. 5-33. By definition of the risetime
t=1,-1

where
st) =1 —e WRC = ()] - ¢ WRC =09

s(t,) = 1 —e™RC = 0.9 — ¢="/RC = (]

Dividing the first equation by the second equation on the right-hand side, we obtain

iz = IRC =

and

2.197 _ 035

Tfias  fias

t,=t,~t,= RCIn(9)=2.197RC =

which indicates the inverse relationship between bandwidth and risetime.
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LI
0.9 [=ossommossosnssssecesaccaa g

01 -

< t

r

-X

Fig. 5-33

5.57. Another definition of bandwidth for a signal x(7) is the 90 percent energy containment bandwidth W,
defined by

1 (Weo 2, 1 pwy 2,
ﬂf_W90|X(w)| dw—;fo | X(w)[ dw=09E, (5.180)
where E_is the normalized energy content of signal x(#). Find the W, for the following signals:

(@) x(®)=e "u(t),a>0

sin at

(b) x(t)=

(a) From Eq. (5.155)

1

x(t)= e “u(t) < X(w)= .
a+ jw

From Eq. (1.14)

E={ _ww|x(t)|2dt =f :e_z‘"dt -1

2a
Now, by Eq. (5.180)

1 Woo 2 1 ;W dw 1 -1 W90 1
- X()do== " - " tan”'| 20 |=09—
nfo | X(@[do nfo Cra’ an (a 2a

from which we get
tan”' (Wi] = 0457
a
Thus,

Wy, = atan(0457) = 6.31a rad/s
(b) From Eq. (5.137)

|w|<a
|w|>a

sin at

x(t)=

1
e X (@)= p(@) = {0
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Using Parseval’s identity (5.64), we have

1 po 2 1 po 2 1 pa a
EX=Ef_w|X(w)| dt=;f0|X(w)| dw=;f0dw=;

Then, by Eq. (5.180)
1 Woo 2 1 Woo “@0 a
— X(w)|[dw=— do=—2=09—
b1 fO | ¢ )| Ay n n

from which we get
Wy = 09a rad/s

Note that the absolute bandwidth of x(¢) is a (radians/second).

5.58. Let x(#) be a real-valued band-limited signal specified by [Fig. 5-34()]
X(w) =0 |o| > o,

Let x (?) be defined by

x,(1)= x(t)ér_, ®=x@) E 6(t — kTy) (5.181)
k=—o0
(a) Sketch x (¢) for T, < &/w,, and for T, > 7/w,,.
(b) Find and sketch the Fourier spectrum X (w) of x (#) for T, < 7/w,, and for T, > 7 /w,,.

(a) Using Eq. (1.26), we have

xX,(0)= x()87, ()= x(t) Y 8(t — kT,)
k=—o

© ©

= Y X —KT)= Y x(KT,)8(t — kT,) (5.182)

k=—o k=—o

The sampled signal x () is sketched in Fig. 5-34(c) for T, < m/w,,, and in Fig. 5-34() for T, > n/w,,.

The signal x(?) is called the ideal sampled signal, T is referred to as the sampling interval (or period), and
f, = T, is referred to as the sampling rate (or frequency).

(b) From Eq. (5.147) (Prob. 5.25) we have

87,1y < o, E Sw—ko,) o= T

k=—co s
Let
x (1) < X ()
Then, according to the frequency convolution theorem (5.59), we have
X ()= F[x(1)67, ()] = % X(w) * wskgmé(w — kwy)

= Ti > X(@)*8(w — kao,)

S k=—o00
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Using Eq. (1.26), we obtain

X, (@)= Ti > X ka,)

S k=—o0

(5.183)

which shows that X (w) consists of periodically repeated replicas of X(w) centered about kw, for all k. The
Fourier spectrum X (w) is shown in Fig. 5-34(f) for T, < #/w,, (or o, > 2w,,), and in Fig. 5-34(j) for T, > #/w,,
(or o, < 2w,,), where w, = 27/ T . It is seen that no overlap of the replicas X(w — kw,) occurs in X (w) for

, = 2w,, and that overlap of the spectral replicas is produced for w, < 2wm,,. This effect is known as aliasing.

x(t) X
—_ /N
0 t' h, 0 L ©
(@) (b)
57,00 #[or. 1)
Irrrrtet
Ts 0 Ts E‘Ts ;: g 0 w 1-7-1
() )
xsl:!] x:‘im]
£11 h . ¢ X,
T 0 T oT g wy, 0 o, g @
(€) (f)
ﬁr,“] F [&h“"
ITrftt
T, 0 T, 2T, ? 2w a0 0 i 2o u=:
(9 (h)
}(5[!] Xstm]
§ : --T . — Z I ij : :
Ts 0 Ts a7, t; 2, ms,T 1] TL'JS 200, w
0 O () Om

Fig. 5-34 Ideal sampling.
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5.59. Let x(?) be a real-valued band-limited signal specified by
X(w)=0 |@|> wy,
Show that x(7) can be expressed as

o0

sin wy, (t — kT,)
()= ) x(kT\)—H—3" 5.184
k;_w *" wy (t —kT,) ( )
where T, = n/w,,.
Let
x(1) <> X(w)
x (1) = x(06, (1) <> X (w)
From Eq. (5.183) we have
TX,@)= Y X~ ka,) (5.185)
k=—o
Then, under the following two conditions,
O X@=0|o|>w, ad @) T,=——
Wy
we see from Eq. (5.185) that
X@) =X, @) |o|<oy (5.186)
WDy
Next, taking the Fourier transform of Eq. (5.182), we have
X, @)=Y x(KT,)e s (5.187)
k=—
Substituting Eq. (5.187) into Eq. (5.186), we obtain
T e iy
X(@)=— > x(kT)e M0 o] <y (5.188)

M f=-

Taking the inverse Fourier transform of Eq. (5.188), we get

1 = .
x(t)=— X(w)e’' dw
O=-f X

1 oy joo(t— KT,
=— > X(KT,)e™ ™M) d
2wy, Y ~om X(kT,)e @

k=-o

= 3 XU [ U 4
Pt 2wy, ¥ oM

= Y X(kT,)

k=-o

sin wy, (t — kT)
Wy (t — KkT)

From Probs. 5.58 and 5.59 we conclude that a band-limited signal which has no frequency components higher
than f, hertz can be recovered completely from a set of samples taken at the rate of f (= 2f,,) samples per second.
This is known as the uniform sampling theorem for low-pass signals. We refer to T, = n/w,, = 1/2f, (0, = 27 f,,)
as the Nyquist sampling interval and f = 1/T = 2f, as the Nyquist sampling rate.
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given by [Fig. 5-35(b)]

|o|< o,

];

Show that if w, = ws/2, then for any choice of T,

y(mT) = x(mT,) m=0,x1,+2,..

i) 2 1) it
X B Hiw) A

—

5.60. Consider the system shown in Fig. 5-35(a). The frequency response H(w) of the ideal low-pass filter is

Hi)

8, (=3 8lt—kT
s k=—00
@)
Fig. 5-35
From Eq. (5.137) the impulse response A(¢) of the ideal low-pass filter is given by

sinwt _ Tyw, sin ot
T ol

h(t)=T;

From Eq. (5.182) we have

©

x, ()= x()3;, ()= x(KT,)d(t — kT,)

k=—o
By Eq. (2.6) and using Eqgs. (2.7) and (1.26), the output y(?) is given by

©

YO = x,() % h(t) = [ > x(KT,)d(t — KT,)

k=—o

* h(t)

= O X(KT)[h(t)*8(t — KT,)]
k=—
= Y x(kT)h(t — kT,)

k=—
Using Eq. (5.189), we get
- T, sinw,(t — kT,)

yO= 3 )= 0.t — kT,)

k=—
If w, = w/2,then T.w, /7 = 1 and we have

©

Y=Y x(KT,)

k=-o

sin [w, (1 — kT,)/2]
,(t — kT,)/2
Setting ¢ = mT, (m = integer) and using the fact that w T, = 2z, we get

0

ymT)= Y x(kT,)

k=—o

sin Z(m — k)
a(m— k)

L

(5.189)
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Since

sin:'t(m—k)z{0 m# k
a(m— k) 0 m=k

we have
y(mT,) = x(mT,) m=0,*x1,+2,...

which shows that without any restriction on x(?), y(mT,) = x(mT,) for any integer value of m.

Note from the sampling theorem (Probs. 5.58 and 5.59) that if w_= 2s/T  is greater than twice the highest
frequency present in x(f) and w, = /2, then y(#) = x(?). If this condition on the bandwidth of x(?) is not satisfied,
then y(#) # x(t). However, if w, = o /2, then y(mT,) = x(mT,) for any integer value of m.

SUPPLEMENTARY PROBLEMS

5.61.

5.62.

5.63.

5.64.

5.65.

5.66.

Consider a rectified sine wave signal x(f) defined by
x(t) = |Asin zt|

(a) Sketch x(7) and find its fundamental period.
(b) Find the complex exponential Fourier series of x(f).

(c) Find the trigonometric Fourier series of x(#).
Find the trigonometric Fourier series of a periodic signal x() defined by
x) =1}, —-na<t<nm and x(t + 2m) = x(b)
Using the result from Prob. 5.10, find the trigonometric Fourier series of the signal x(¢) shown in Fig. 5-36.

x(f)

A

Fig. 5-36

Derive the harmonic form Fourier series representation (5.15) from the trigonometric Fourier series representation (5.8).
Show that the mean-square value of a real periodic signal x(?) is the sum of the mean-square values of its harmonics.
Show that if

x(f) < X(w)
then

0= 220 o oy X(@

tn
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—

5.67. Using the differentiation technique, find the Fourier transform of the triangular pulse signal shown in Fig. 5-37.

5.68.

5.69.

5.70.

5.71.

5.72.

5.73.

X
A
—d V] d
Fig. 5-37
Find the inverse Fourier transform of
X(w)= _ 1
@@+ jo)"
Find the inverse Fourier transform of
X(@)=—
2-w" + j3w

Verify the frequency differentiation property (5.56); that is,

(= jnyx(r) < X@)
dw

Find the Fourier transform of each of the following signals:
(@) x(t) = cos w,tu(?)

(b)  x(2) = sin wytu(t)

(¢) x(r) = e~ cos wytu(t),a >0

(d) x(?) = e sin wytu(t),a >0

Let x() be a signal with Fourier transform X(w) given by

1 |eo|<1
X@=10  |o|>1

Consider the signal

_ d’x(t)
dr?

(0]
Find the value of

Iyl ar

Let x(#) be a real signal with the Fourier transform X(w). The analytical signal x (f) associated with x(?) is a

complex signal defined by
x, (0 = x() + jx(@)
where %(?) is the Hilbert transform of x(f).

(a) Find the Fourier transform X (w) of x_ (?).

(b) Find the analytical signal x_ (#) associated with cos @t and its Fourier transform X _ (w).
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5.74. Consider a continuous-time LTI system with frequency response H(w). Find the Fourier transform S(w) of the unit
step response s(f) of the system.

5.75. Consider the RC filter shown in Fig. 5-38. Find the frequency response H(w) of this filter and discuss the type
of filter.

0

Kt} R § ¥ifh

Fig. 5-38

5.76. Determine the 99 percent energy containment bandwidth for the signal

x(t)=
t2 + 02

5.77. The sampling theorem in the frequency domain states that if a real signal x(?) is a duration-limited signal, that is,
x®) =0 [t] >1,

then its Fourier transform X(w) can be uniquely determined from its values X(ns/1,,) at a series of equidistant
points spaced 7/f,, apart. In fact, X(w) is given by

X() = E X(E) sin(wt,, — nx)
ty Wty —nmw

n=-o

Verify the above sampling theorem in the frequency domain.

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.61. (a) X(?) is sketched in Fig. 5-39 and T, = 1.

©

24 1 jom
) x(t)=-=— e’

T LAk -1
() x(t)=ﬁ—ﬂ +cosk2m

b1 4kt -1

xlt)
A
-1 o 1 2 t

Fig. 5-39
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5.62.

5.63.

5.64.

5.65.

5.66.

5.67. Ad

5.68.

5.69.

5.70.

5.71.

5.72.

5.73.

1
k2

cos kt

.7'[2 d
x)=2+4

lsin ko ot w0=2—n
k T,

NMs

x(t)=

SR N

A
7

k

1

Hint:  Rewrite a, cos kw,t + b, sin kwt as

’2
ak+

2 k
b | =575 cos kwyt +
(a; + b))

by .

——~&—— sin kw,t
2 25172 0

(a; +b;)

and use the trigonometric formula cos(A — B) = cos A cos B + sin A sin B.
Hint: Use Parseval’s identity (5.21) for the Fourier series and Eq. (5.168).

Hint: Repeat the time-differentiation property (5.55).

sin(wd/2)|’
wd/2

Hint: Differentiate Eq. (5.155) N times with respect to (a).

tN_l

We_wu(t)

Hint: Note that
2-w+j3w=2+ (o)’ +j30=~10+jo)2 +jw

and apply the technique of partial-fraction expansion.

X)) = (e —e u(®)
Hint:  Use definition (5.31) and proceed in a manner similar to Prob. 5.28.

Hint:  Use multiplication property (5.59).
b/ 4 b4 jo

(a) X(w)==d0w—-wy)+=6w+w,)+ ———
2 v " ol + o}

z

(b) X(w)= 27

b1 w

8w —wy) — —8w+wy) + ——>—
2j (jo)* + ]

a+ jo

() X()=———F—

(a +ja))2 +w§

Wy

d) X(w)y=—>——
@ X@) (a+jw)2+w§

Hint: Use Parseval’s identity (5.64) for the Fourier transform.
1/3x

2X(w) 0>0

(a) X,(w)=2X(wu(w)= {0 <0

(b) x.(t)=e"" X, (0)=27w—wy)
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5.74. Hint: Use Eq. (2.12) and the integration property (5.57).
S(w) = 7H(0)6(w) + (1/jw) H(w)

- Jo

(1/RC) + jw

5.76. W,, = 2.3/a radians/second or f,, = 0.366/a hertz

5.75. H(w) , high-pass filter

5.77. Hint: Expand x(f) in a complex Fourier series and proceed in a manner similar to that for Prob. 5.59.



CHAPTER 6

Fourier Analysis of Discrete-Time
Signals and Systems

6.1 Introduction

In this chapter we present the Fourier analysis in the context of discrete-time signals (sequences) and systems.
The Fourier analysis plays the same fundamental role in discrete time as in continuous time. As we will see, there
are many similarities between the techniques of discrete-time Fourier analysis and their continuous-time coun-
terparts, but there are also some important differences.

6.2 Discrete Fourier Series

A. Periodic Sequences:

In Chap. 1 we defined a discrete-time signal (or sequence) x[n] to be periodic if there is a positive integer N for
which

x[n + N] = x[n] alln 6.1)

The fundamental period N, of x[n] is the smallest positive integer N for which Eq. (6.1) is satisfied.
As we saw in Sec. 1.4, the complex exponential sequence

(2m/Ng)n

x[n]=¢’ = ¢/%0n 6.2)

where Q) = 27/N,, is a periodic sequence with fundamental period N,,. As we discussed in Sec. 1.4C, one very
important distinction between the discrete-time and the continuous-time complex exponential is that the signals
e’ are distinct for distinct values of @, but the sequences e/20", which differ in frequency by a multiple of
2, are identical. That is,

ej(QO +2mk)n _ ejQOn ejann — ejQOn (63)
Let
W, [n] = /*%0" Q, =12V—” k=0,%1,%2,... (6.4)
0
Then by Eq. (6.3) we have
Woln] =Wy [n]  Wn]=Wy 0] .. W,n]=W,.[n] (65)

—
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and more generally,
‘Pk[n]=‘Pk+mN0[n] m = integer 6.6)

Thus, the sequences W,[n] are distinct only over a range of N, successive values of k.

B. Discrete Fourier Series Representation:
The discrete Fourier series representation of a periodic sequence x[n] with fundamental period N, is given by
No-1 o
x[n]= c, e/Fon Q) =— 6.7
kgo ‘ o=, (6.7)

where c, are the Fourier coefficients and are given by (Prob. 6.2)
No-1

Ck x[n]e o (6.8)

NO n=0

Because of Eq. (6.5) [or Eq. (6.6)], Egs. (6.7) and (6.8) can be rewritten as

x[n]= Ck e *<on 0= 2@ 6.9)
k={No) Ny
e = L x[n] e *on (6.10)
No - No)

where 2, _ _, _ denotes that the summation is on k as k varies over a range of N, successive integers. Setting
k = 01n Eq. (6.10), we have

c0=L ; x[n] (6.11)
o)

which indicates that ¢, equals the average value of x[n] over a period.
The Fourier coefficients c, are often referred to as the spectral coefficients of x[n].

C. Convergence of Discrete Fourier Series:
Since the discrete Fourier series is a finite series, in contrast to the continuous-time case, there are no
convergence issues with discrete Fourier series.

D. Properties of Discrete Fourier Series:

1. Periodicity of Fourier Coefficients:
From Egs. (6.5) and (6.7) [or (6.9)], we see that

c c (6.12)

k+ Ny k

which indicates that the Fourier series coefficients c, are periodic with fundamental period N,

2. Duality:
From Eq. (6.12) we see that the Fourier coefficients c, form a periodic sequence with fundamental period N,).
Thus, writing c, as c[k], Eq. (6.10) can be rewritten as

0

1 .
clk]= — x[n] e on (6.13)
n= N0>N
Letn = —min Eq. (6.13). Then

clk]= ; Lx[—m]eﬂ“’om
m=N0)N

0
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Letting kK = n and m = k in the above expression, we get

c[n]= Lx[— k] e/ <on (6.14)
k=) Vo

Comparing Eq. (6.14) with Eq. (6.9), we see that (1/N;)x [—k] are the Fourier coefficients of c[n]. If we adopt
the notation

x[n] <, = c[k] (6.15)
to denote the discrete Fourier series pair, then by Eq. (6.14) we have

cln] <25 NL x[—k] (6.16)

0

Equation (6.16) is known as the duality property of the discrete Fourier series.

3. Other Properties:
When x[n] is real, then from Eq. (6.8) or [Eq. (6.10)] and Eq. (6.12) it follows that

Cop =Cny—k = Ck (6.17)
where * denotes the complex conjugate.

Even and Odd Sequences:
When x[n] is real, let

x[n] = x,[n] + x [n]
where x [n] and x [n], are the even and odd components of x[n], respectively. Let

x[n] <D_Fs>ck

Then
x,[n] <25 Re[c, ] (6.18a)
x, [n] < jIm[c, ] (6.18b)

Thus, we see that if x[n] is real and even, then its Fourier coefficients are real, while if x[#] is real and odd, its
Fourier coefficients are imaginary.

E. Parseval’s Theorem:

If x[n] is represented by the discrete Fourier series in Eq. (6.9), then it can be shown that (Prob. 6.10)

1 2 2
— x[n]|” = c (6.19)
No "=%0>| | k=%0>| k|

Equation (6.19) is called Parseval’s identity (or Parseval’s theorem) for the discrete Fourier series.

6.3 The Fourier Transform

A. From Discrete Fourier Series to Fourier Transform:

Let x[n] be a nonperiodic sequence of finite duration. That is, for some positive integer N|,

x[n] =0 |n| >N,
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Such a sequence is shown in Fig. 6-1(a). Let x,, [n] be a periodic sequence formed by repeating x[n] with
fundamental period N, as shown in Fig. 6-1(b). If we let N, — o, we have

N})i_r{lm XN, [n]= x[n] (6.20)

The discrete Fourier series of x,, [n] is given by
o
xy, [n]= c e Q=2 (6.21)
k= N0>

where

1 »
G =— xy,[nle Jkon (6.22a)
No » No)

Since xNO[n] = x[n] for |n| = N, and also since x[n] = 0 outside this interval, Eq. (6.22a) can be rewritten as

N 1 i )
¢ =— x[n]e H@on = x[n] e <o (6.22b)
NO n=-N NO n=—o
Let us define X(Q) as
X(Q)= 2 x[n]e /" (6.23)
n=—oo

Then, from Eq. (6.22b) the Fourier coefficients c, can be expressed as

1
i =~ X (k) (6.24)
0
|
@
- N, O N, " n
@
gl
L ]
N, O N N, n

(b)

Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b) periodic sequence formed by periodic extension of x[n].
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Substituting Eq. (6.24) into Eq. (6.21), we have

xy,[nl= L Xk e/t
k=(No)""0

1 i n
or xwll=—— 3 X(kQp) e H"Q (6.25)
k=<N0>

From Eq. (6.23), X(Q) is periodic with period 277 and so is e/%". Thus, the product X(£2) e/*" will also be periodic
with period 2. As shown in Fig. 6-2, each term in the summation in Eq. (6.25) represents the area of a rectangle
of height X(kQ )e/*?°" and width Q . As N, — , Q = 2a/N, becomes infinitesimal (, — 0) and Eq. (6.25)
passes to an integral. Furthermore, since the summation in Eq. (6.25) is over N, consecutive intervals of width
QO = 2JT/N0, the total interval of integration will always have a width 2. Thus, as Ny— and in view of Eq. (6.20),
Eq. (6.25) becomes

-1 jn
xln)= 2fﬂX(Q)e dQ (6.26)

Since X(Q)e /" is periodic with period 27, the interval of integration in Eq. (6.26) can be taken as any interval
of length 2.

Xje @

X[ke2 Yo M

Fig. 6-2 Graphical interpretation of Eq. (6.25).

B. Fourier Transform Pair:

The function X(€2) defined by Eq. (6.23) is called the Fourier transform of x[n], and Eq. (6.26) defines the
inverse Fourier transform of X(€2). Symbolically they are denoted by

00

X(Q)=F{x[n]}= 2 x[n]e I (6.27)

n=—cw
x[n]=F HX Q)= % f2 (%) e aQ (6.28)
and we say that x[n] and X(€2) form a Fourier transform pair denoted by
x[n] < X(Q) (6.29)
Equations (6.27) and (6.28) are the discrete-time counterparts of Egs. (5.31) and (5.32).

C. Fourier Spectra:

The Fourier transform X(€2) of x[n] is, in general, complex and can be expressed as

X(Q) = |X(Q)|ei*@ (6.30)
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As in continuous time, the Fourier transform X(€2) of a nonperiodic sequence x[n] is the frequency-domain
specification of x[n] and is referred to as the spectrum (or Fourier spectrum) of x[n]. The quantity |X(Q)| is
called the magnitude spectrum of x[n], and ¢(€2) is called the phase spectrum of x[n]. Furthermore, if x[n] is real,
the amplitude spectrum | X(Q)| is an even function and the phase spectrum ¢ () is an odd function of Q.

D. Convergence of X(Q2):

Just as in the case of continuous time, the sufficient condition for the convergence of X(L) is that x[n] is
absolutely summable, that is,

o0

2 |x[n]|<oo (6.31)

E. Connection between the Fourier Transform and the z-Transform:

Equation (6.27) defines the Fourier transform of x[n] as

X(Q)= 2 x[n]e /<

n=—oo

(6.32)

The z-transform of x[n], as defined in Eq. (4.3), is given by

e

X(@)=Y x[nlz" (6.33)
n=—oo
Comparing Eqgs. (6.32) and (6.33), we see that if the ROC of X(z) contains the unit circle, then the Fourier trans-
form X(Q2) of x[n] equals X(z) evaluated on the unit circle, that is,

X(Q) = X(z)|Z= I (6.34)

Note that since the summation in Eq. (6.33) is denoted by X(z), then the summation in Eq. (6.32) may be
denoted as X(e/®). Thus, in the remainder of this book, both X(2) and X(e/*?) mean the same thing whenever we
connect the Fourier transform with the z-transform. Because the Fourier transform is the z-transform with z =
e/, it should not be assumed automatically that the Fourier transform of a sequence x[#] is the z-transform with
zreplaced by e/®. If x[n] is absolutely summable, that is, if x[n] satisfies condition (6.31), the Fourier transform
of x[n] can be obtained from the z-transform of x[n] with z = /¥ since the ROC of X(z) will contain the unit
circle; that is, |e/?| = 1. This is not generally true of sequences which are not absolutely summable. The
following examples illustrate the above statements.

EXAMPLE 6.1 Consider the unit impulse sequence §[n].
From Eq. (4.14) the z-transform of §[n] is

3{6[n]}=1 allg (6.35)
By definitions (6.27) and (1.45), the Fourier transform of d[#] is
F{o[nl}= Y &ln] e I =1 (6.36)

Thus, the z-transform and the Fourier transform of d[n] are the same. Note that d[#] is absolutely summable and
that the ROC of the z-transform of 8[n] contains the unit circle.

EXAMPLE 6.2 Consider the causal exponential sequence
x[n] = a"ul[n] a real

From Eq. (4.9) the z-transform of x[n] is given by

X(9)=

L e
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Thus, X(e/®) exists for |a| < 1 because the ROC of X(z) then contains the unit circle. That is,
1

X(ej9)=l_ae la|<1 (6.37)

Next, by definition (6.27) and Eq. (1.91) the Fourier transform of x[n] is

X(Q)= 2 a"u[n] e—an = 2 ane_jg" = E (ae_jg)"
n=—o n=0 “=
1 .
Tl ® |ae ’g|=|a|<1 (6.38)

Thus, comparing Eqgs. (6.37) and (6.38), we have
X(Q) = X@)|,_ e

Note that x[#n] is absolutely summable.

EXAMPLE 6.3 Consider the unit step sequence u[n].
From Eq. (4.16) the z-transform of u[n] is

, 1
3{ulnl} e |z|>1 (6.39)

The Fourier transform of u#[n] cannot be obtained from its z-transform because the ROC of the z-transform of
u[n] does not include the unit circle. Note that the unit step sequence u[n] is not absolutely summable. The
Fourier transform of u[n] is given by (Prob. 6.28)

1
1—e /¢

F{uln]} =m6(Q) + |Q|=n (6.40)

6.4 Properties of the Fourier Transform

Basic properties of the Fourier transform are presented in the following. There are many similarities to and sev-
eral differences from the continuous-time case. Many of these properties are also similar to those of the z-trans-
form when the ROC of X(z) includes the unit circle.

A. Periodicity:
X(Q + 27) = X(Q) (6.41)

As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of Q (radians) only
over the range 0 = Q < 2x or —r = Q < 7, while in the continuous-time case we have to consider values of
o (radians/second) over the entire range —© < @ < .

B. Linearity:

a,x|[n] + a,x,[n] < a,X,(Q) + a,X,(Q) (6.42)

C. Time Shifting:
x[n—nyle e /M0 X(Q) (6.43)
D. Frequency Shifting:

e x[n] = X(Q— Q) (6.44)
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E. Conjugation:
x*¥[n] < X*(—Q) (6.45)

where * denotes the complex conjugate.

F. Time Reversal:

x[—n] < X(—-Q) (6.46)

G. Time Scaling:
In Sec. 5.4D the scaling property of a continuous-time Fourier transform is expressed as [Eq. (5.52)]

x(at) e x| 2 (6.47)

|a| \a

However, in the discrete-time case, x[an] is not a sequence if a is not an integer. On the other hand, if a is an
integer, say a = 2, then x[2n] consists of only the even samples of x[n]. Thus, time scaling in discrete time takes
on a form somewhat different from Eq. (6.47).

Let m be a positive integer and define the sequence

x[n/m]=x[k] ifn=km, k = integer
Tomlrl = {0 if 1 # km (6.48)
Then we have
x(m)[n] < X(mQ) (6.49)

Equation (6.49) is the discrete-time counterpart of Eq. (6.47). It states again the inverse relationship between time
and frequency. That is, as the signal spreads in time (m > 1), its Fourier transform is compressed (Prob. 6.22).
Note that X(m€) is periodic with period 2z/m since X(Q2) is periodic with period 2.

H. Duality:
In Sec. 5 4F the duality property of a continuous-time Fourier transform is expressed as [Eq. (5.54)]
X(@®) < 2w x(—w) (6.50)

There is no discrete-time counterpart of this property. However, there is a duality between the discrete-time
Fourier transform and the continuous-time Fourier series. Let

x[n] <> X(Q)
From Egs. (6.27) and (6.41)
XQ)= 2 x[n]e /¥ (6.51)
n=—oo
X(Q + 27m) = X(Q) (6.52)
Since  is a continuous variable, letting Q = tand n = —k in Eq. (6.51), we have
X(1)= 2 x[—k]e*! (6.53)
k=—o0

Since X(#) is periodic with period T, = 27 and the fundamental frequency w, = 27/T, = 1, Eq. (6.53) indicates
that the Fourier series coefficients of X(#) will be x[—k]. This duality relationship is denoted by

X(t) s, = x[—k] (6.54)

where FS denotes the Fourier series and c, are its Fourier coefficients.
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I. Differentiation in Frequency:

. dX(R2)
o j 6.55
nx[n] < j 70 (6.55)
J. Differencing:
x[n] — x[n — 1] < (1 — e /) X(Q) (6.56)

The sequence x[n] — x[n — 1] is called the first difference sequence. Equation (6.56) is easily obtained from the
linearity property (6.42) and the time-shifting property (6.43).

K. Accumulation:

ix[k]enX(O)6(9)+l 1

wX(Q) |Q|=n (6.57)

k=—0

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the right-hand side
of Eq. (6.57) reflects the dc or average value that can result from the accumulation.

L. Convolution:
x,[n] * x,[n] < X,(Q) X,(Q) (6.58)

As in the case of the z-transform, this convolution property plays an important role in the study of discrete-time
LTI systems.

M. Multiplication:
x[n]xy[n] < % X, (Q)® X,(R2) (6.59)
where ® denotes the periodic convolution defined by [Eq. (2.70)]
X (Q)® XZ(Q)=f2ﬂX,(0) X,(Q—0)do (6.60)
The multiplication property (6.59) is the dual property of Eq. (6.58).

N. Additional Properties:
If x[n] is real, let
x[n] = x,[n] + x [n]

where x [n] and x [n] are the even and odd components of x[n], respectively. Let

x[n] < X(Q) = A(Q) + jB(Q) = | X(Q)]e/f® (6.61)
Then
X(—Q) = X*(Q) (6.62)
x,[n] < Re{X(Q)} = A(Q) (6.63a)
x [n] < jIm{X(RQ)} = jB(XQ) (6.63b)

Equation (6.62) is the necessary and sufficient condition for x[n] to be real. From Egs. (6.62) and (6.61) we have
A(—Q) = A(Q) B(—Q) = —B(Q) (6.64a)
|X(-=)| = |X(D)] H(—-Q) = —-6(Q) (6.64b)

From Egs. (6.63a), (6.63b), and (6.64a) we see that if x[n] is real and even, then X(€2) is real and even, while if
x[n] is real and odd, X(€2) is imaginary and odd.
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0. Parseval’s Relations:

o0

n=—o

: 1
3 |ximf =Ef2”|x(9)|2 dQ

n=—o

1
> xln]xn]= Efu X, (Q) X, (— Q) dQ

(6.65)

(6.66)

Equation (6.66) is known as Parseval’s identity (or Parseval’s theorem) for the discrete-time Fourier transform.
Table 6-1 contains a summary of the properties of the Fourier transform presented in this section. Some

common sequences and their Fourier transforms are given in Table 6-2.

TABLE 6-1 Properties of the Fourier Transform

PROPERTY SEQUENCE FOURIER TRANSFORM
x[n] X(Q)
x,[n] X,(92)
x,[n] X,(Q)
Periodicity x[n] X(Q+2r)=X(Q)
Linearity a,x,[n]+a,x, 1] a.X,(Q) + 0,X,(Q)

Time shifting
Frequency shifting
Conjugation

Time reversal
Time scaling

Frequency differentiation

First difference

Accumulation

Convolution

Multiplication

Real sequence

Even component

Odd component

Parseval’s theorem

x[n—ny)
¢’%" x[n]
x*[n]
x[—n]

_ [x[n/m]
x(m)[n]—{ 0

nx[n]

x[n]—x[n—1]

R

2 x[k]

k=—
x,[n]*x,[n]

x, [n]x, [n]

x[n]=x,[n]+x,
x,[n]
x,[n]

n=-w

> [xim]? =$f2n|X(Q|2 dQ

n=—o

if n=km
if n+# km
[n]

1
> x[nlx,ln]= gl BR AR ACEDE

e 10X (Q)
XQ-Q,)
X*(-Q)
X(-Q)

X(mQ)

. dX(L2)
dQ

(1—e?)X(Q)

7 X(0)6(RQ) + X(€2)

— IR

|Q|=n
X, (Q)X,(Q)

1
X QX (@)

X(Q) = A(Q) + jB(Q)
X(-Q)=X*(Q)
Re{X(Q)} = A(Q)

J Im{X(Q)} = jB(Q)
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TABLE 6-2 Common Fourier Transform Pairs

x[n] X(Q)
S[n] 1
&(n — ny) e~ /Qno
x[n]=1 2n6(Q),|Q|=n
e Qo 2m6(Q = Q) QLIQ =7
cos Qn n6(Q—-Q))+8Q+Q)LIQLIQ) ==
SinQOn —17!:[6(9—QO)—G(Q'FQO)]"Q“QOlSn
uln] T8 (Q) + ! — . |Q|<m
1—e /¢
—u[~n~1) ~rB(@) +— | Q|=n
| — ol
a"uln],|a| <1 1
1—ae /®
—a"u[—n—1],]a|>1 ! :
1—ae’®
(n+1Da"uln),|a|<1 %
(l—ae_m)
ad" ja|<1 1-d’
1—2acos Q + a?
L |n|=N, .{Q(N +1ﬂ
_ sin =
xln] 0 |n|>N] b2
sin (Q/2)
sin Wn 1 0=|1Q|=W
O<WwW<nrmn =
nn X(Q) {O w<|Ql=r
it = 2n
Y, 8ln—kN,] Q, Y 8(Q-kQ)),Q ="
k=—oo k=—oo N,

6.5 The Frequency Response of Discrete-Time LTI Systems

A. Frequency Response:

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the convolution of the input x[n]

with the impulse response A[n]; that is,

yln] = x[n] * h[n]

Applying the convolution property (6.58), we obtain

where Y(Q2), X(R2), and H(L2) are the Fourier transforms of y[n], x[n], and h[n], respectively. From Eq. (6.68)

we have

H(Q)=

Y(Q) = X(QH(RQ)

Y (Q)
X(Q)
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Relationship represented by Egs. (6.67) and (6.68) are depicted in Fig. 6-3. Let
H(Q) = |H(Q)|e/fu® (6.70)

As in the continuous-time case, the function H() is called the frequency response of the system, | H(Q)| the
magnitude response of the system, and 6,(Q) the phase response of the system.

d[n] hin] hin]
x(n] H( ) yln]=xIn] = hin}
X(©Q) Y(Q)=X(QH(Q)

Fig. 6-3 Relationships between inputs and outputs in an LTI discrete-time system.

Consider the complex exponential sequence
x[n] = e/ (6.71)
Then, setting z = ¢/*0 in Eq. (4.1), we obtain
yln]= H(e™®) /0" = H(Q,) /%" (6.72)

which indicates that the complex exponential sequence e/%" is an eigenfunction of the LTI system with
corresponding eigenvalue H(S2,), as previously observed in Chap. 2 (Sec. 2.8). Furthermore, by the linearity
property (6.42), if the input x[n] is periodic with the discrete Fourier series

x[n]= ; c, ek Q, = 2@ (6.73)
k=(Ny)

then the corresponding output y[#] is also periodic with the discrete Fourier series

yln]= 2 e H(k Q) e/ (6.74)
k={Np)

If x[n] is not periodic, then from Eqgs. (6.68) and (6.28) the corresponding output y[n] can be expressed as
1 .
— Jjn
yln] —2nf<2”>H(Q) X(Q) e dQ (6.75)

B. LTI Systems Characterized by Difference Equations:

As discussed in Sec. 2.9, many discrete-time LTI systems of practical interest are described by linear constant-
coefficient difference equations of the form

N

M
Y ayln—kl=Y bxln—kl (6.76)
k=0 k=0

with M = N. Taking the Fourier transform of both sides of Eq. (6.76) and using the linearity property (6.42) and
the time-shifting property (6.43), we have

N M
Ya e Y@=y b e Fx(Q)
k=0 k=0

or, equivalently,

b, e+
Y(Q) _

HQ)= X

6.77)

) o ke

=] Thvas
Q

=
I
o
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The result (6.77) is the same as the z-transform counterpart H(z) = Y(z)/X(z) with z = e/ [Eq. (4.44)]; that is,

HQ)=H(2)|,_ o =H(")

z=e/
C. Periodic Nature of the Frequency Response:
From Eq. (6.41) we have

H(Q) = H(Q + 2n) (6.78)

Thus, unlike the frequency response of continuous-time systems, that of all discrete-time LTI systems is periodic
with period 2. Therefore, we need observe the frequency response of a system only over the frequency range
0=Q<2mor—a=Q<m

6.6 System Response to Sampled Continuous-Time Sinusoids

A. System Responses:

We denote by y_[n], y[n], and y[n] the system responses to cos Qn, sin Qn, and /", respectively (Fig. 6-4).
Since e/%" = cos Qn + j sin Qn, it follows from Eq. (6.72) and the linearity property of the system that

yln] =y [n] + jy[n] = H(Q) e/ (6.792)
yAn] = Re{y[n]} = Re{H(Q) e/"} (6.79b)
y[n] = Im{y[n]} = Im{H(Q) e/} (6.79¢)

o/ yln) = H@)e!®"
HQ p—p

cos On y.In] = Re[H(Q)e/2"]

sin fn y,ln= Im[H(@)e’%"]

Fig. 6-4 System responses to e/2", cos Qn, and sin Qn.
When a sinusoid cos 2n is obtained by sampling a continuous-time sinusoid cos w? with sampling interval
T ,thatis,
5

cos Qn=coswt i _nr. = COswTn (6.80)

nTg
all the results developed in this section apply if we substitute T, for €:
Q= o, (6.81)

For a continuous-time sinusoid cos w' there is a unique waveform for every value of w in the range 0 to «.
Increasing w results in a sinusoid of ever-increasing frequency. On the other hand, the discrete-time sinusoid
cos Qn has a unique waveform only for values of Q in the range O to 2 because

cos[(Q + 2am)n] = cos(Qn + 2wmn) = cos Qn m = integer (6.82)
This range is further restricted by the fact that

cos(it = Q)n = cos ;rn cos Qn F sin ntn sin Qn
=(—1)"cos Qn (6.83)

Therefore,
cos( + Q)n = cos(w — Q)n (6.84)

Equation (6.84) shows that a sinusoid of frequency (& + €2) has the same waveform as one with frequency
(w — Q). Therefore, a sinusoid with any value of €2 outside the range 0 to 7 is identical to a sinusoid with € in
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the range O to m. Thus, we conclude that every discrete-time sinusoid with a frequency in the range 0 = Q < &
has a distinct waveform, and we need observe only the frequency response of a system over the frequency range
0=Q<nm

B. Sampling Rate:

Let w,, (= 2xf,,) be the highest frequency of the continuous-time sinusoid. Then from Eq. (6.81) the condition
for a sampled discrete-time sinusoid to have a unique waveform is

wMTS<Jt—>TS<wL o f£,>2f (6.85)
M

where f_ = 1/T, is the sampling rate (or frequency). Equation (6.85) indicates that to process a continuous-time
sinusoid by a discrete-time system, the sampling rate must not be less than twice the frequency (in hertz) of the
sinusoid. This result is a special case of the sampling theorem we discussed in Prob. 5.59.

6.7 Simulation

Consider a continuous-time LTI system with input x(#) and output y(f). We wish to find a discrete-time LTI sys-
tem with input x[#] and output y[n] such that

if x[n] = x(nT)) then y[n] = y(nT)) (6.86)

where T is the sampling interval.
Let H (s) and H (z) be the system functions of the continuous-time and discrete-time systems, respectively
(Fig. 6-5). Let

x(t)=e!" x[n]=x(nT,) = s (6.87)
Then from Eqgs. (3.1) and (4.1) we have
y(t)=H_ (jw)e™ ylnl=H,(e"T ) s (6.88)
Thus, the requirement y[n] = y(nT,) leads to the condition
H, (jw)e™"s = H (/") e
from which it follows that
H, (jo)=H ") (6.89)
In terms of the Fourier transform, Eq. (6.89) can be expressed as
H(w) = H, () Q=wT, (6.90)

Note that the frequency response H,(€2) of the discrete-time system is a periodic function of w (with period
27/T,), but that the frequency response H (w) of the continuous-time system is not. Therefore, Eq. (6.90) or

(f ¥it)
P H_ (5] EEEEE——
f—'" o ‘Hr_':-'.'I ':'E'NI
x(f)
Hz)
x[n] x[nTs] 3 vin)
/Ty Hd(E" .*._,e‘r..-.rs

Fig. 6-5 Digital simulation of analog systems.
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Eq. (6.89) cannot, in general, be true for every w. If the input x(#) is band-limited [Eq. (5.94)], then it is possible,
in principle, to satisfy Eq. (6.89) for every w in the frequency range (—a/T,, n/T,) (Fig. 6-6). However, from
Egs. (5.85) and (6.77), we see that H (w) is a rational function of w, whereas H ,(€2) is a rational function of
e/® (Q = T,). Therefore, Eq. (6.89) is impossible to satisfy. However, there are methods for determining a
discrete-time system so as to satisfy Eq. (6.89) with reasonable accuracy for every w in the band of the input
(Probs. 6.43 to 6.47).

H_im) H, (e Ta)
1 L - L | i 'l -
T 0 T w _&x T 0 T & w
TS TS TS TS TS TS
Fig. 6-6

6.8 The Discrete Fourier Transform

In this section we introduce the technique known as the discrete Fourier transform (DFT) for finite-length
sequences. It should be noted that the DFT should not be confused with the Fourier transform.
A. Definition:
Let x[n] be a finite-length sequence of length N, that is,

x[n] =0 outside therange0 = n=N — 1 (6.91)
The DFT of x[n], denoted as X[k], is defined by

N-1
X[k1="y x[n]Wy"  k=0,1,..,N—1 (6.92)
n=0

where W, is the Nth root of unity given by

WN = e_j(Z”/N) (6.93)
The inverse DFT (IDFT) is given by
1 N
x[nl=— ¥ X[kWy"  n=0,1..,N~1 (6.94)
N n=0
The DFT pair is denoted by
x[n] <> X[k] (6.95)

Important features of the DFT are the following:

There is a one-to-one correspondence between x[n] and X[4].
There is an extremely fast algorithm, called the fast Fourier transform (FFT) for its calculation.
The DFT is closely related to the discrete Fourier series and the Fourier transform.

The DFT is the appropriate Fourier representation for digital computer realization because it is
discrete and of finite length in both the time and frequency domains.

AW DN =

Note that the choice of N in Eq. (6.92) is not fixed. If x[»] has length N, < N, we want to assume that x[n] has
length N by simply adding (N — N,) samples with a value of 0. This addition of dummy samples is known as
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zero padding. Then the resultant x[n] is often referred to as an N-point sequence, and X[k] defined in
Eq. (6.92) is referred to as an N-point DFT. By a judicious choice of N, such as choosing it to be a power of 2,
computational efficiencies can be gained.

B. Relationship between the DFT and the Discrete Fourier Series:

Comparing Eqgs. (6.94) and (6.92) with Eqgs. (6.7) and (6.8), we see that X [£] of finite sequence x[n] can be
interpreted as the coefficients c, in the discrete Fourier series representation of its periodic extension multiplied
by the period N, and N, = N. That is,

X[k] = Nc, (6.96)

Actually, the two can be made identical by including the factor 1/N with the DFT rather than with the IDFT.

C. Relationship between the DFT and the Fourier Transform:

By definition (6.27) the Fourier transform of x[n] defined by Eq. (6.91) can be expressed as

N-1
X(Q)= 2 x[n]e /" (6.97)
n=0

Comparing Eq. (6.97) with Eq. (6.92), we see that

k2 ) (6.98)

XK1= X D)y 0y = X( N
Thus, X[k] corresponds to the sampled X(€2) at the uniformly spaced frequencies Q = k2x/N for integer k.

D. Properties of the DFT:

Because of the relationship (6.98) between the DFT and the Fourier transform, we would expect their proper-
ties to be quite similar, except that the DF T X[£] is a function of a discrete variable while the Fourier transform
X(2) is a function of a continuous variable. Note that the DFT variables » and k£ must be restricted to the range

0 = n, k < N, the DFT shifts x[n — ny] or X[k — ky] imply x[n — ny]_ ., or X[k — k], , where the modulo
notation [m]_ ,, means that

[m] gy =m +iN (6.99)
for some integer i such that

0=1[m] 4y<N (6.100)

For example, if x[n] = d[n — 3], then

xn =41 =08n—7T] 4o=0n—7+6]=0dn—1]

mod 6
The DFT shift is also known as a circular shift. Basic properties of the DFT are the following:
1. Linearity:
ax [n] + ayx, [n] <> a X [k] + a,X, [K] (6.101)
2. Time Shifting:
x[n=nylpeay < WAOX[K] Wy =e /TN (6.102)

3. Frequency Shifting:

Wy “"0 x[n] <> X[k — ko] moan (6.103)
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P

Conjugation:

X [1] < X (K

where * denotes the complex conjugate.

Time Reversal:

x[—n] < X[—k]

mod N mod N

Duality:

X[n] <> Nx[—k]

mod N

Circular Convolution:

x,[n] @ x,[n] <> X [k] X,[K]

N-1

x[n]® xy[n] = 2 x[ilxy[n—

i=0

where il mod N

The convolution sum in Eq. (6.108) is known as the circular convolution of x,[n] and x,[n].

Multiplication:

1
x[n] x,[n] < ﬁxllk] ® X,[k]

N-1

Xi[K1® X,[k]1= Y X,[i] X[k = il oan
i=1

where

Additional Properties:
When x[n] is real, let

x[n] = x [n] + x [n]
where x [n] and x [n] are the even and odd components of x[#n], respectively. Let
x[n] < X[k]

= A[k] + jBlk] = | X [k]| /0¥

Then X[—k] oy = X" [
x,[n] <> Re{X[k]} = A[K]
x [n] < jIm{X[k]} = jB [k]
From Eq. (6.110) we have
A[—k]
| XU—K1

= A[K]
= | X[k]|

B[—k]
O[—k]

—Bl[k]
—0[k]

mod N mod N

modN — mod N =

10. Parseval’s Relation:

N-1 1N 5
MED]E =~ 2 X[K|
n=0 =0

Equation (6.113) is known as Parseval’s identity (or Parseval’s theorem) for the DFT.

— e

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)
(6.111a)
(6.111b)

(6.112a)
(6.112b)

(6.113)
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Discrete Fourier Series

6.1.

6.2.

We call a set of sequences {W¥,[n]} orthogonal on an interval [N, N,] if any two signals ¥, [n] and
W, [n] in the set satisfy the condition

R ALAL {0 " (6.114)
w0 n]= _ .
"Sh, k a m=k

where * denotes the complex conjugate and a # 0. Show that the set of complex exponential sequences

W [n] = eHCn/Nin k=0,1,....N—1 (6.115)
is orthogonal on any interval of length N.

From Eq. (1.90) we note that

Nl N a=1
a"=11-a" (6.116)
,20 - oa+#1

Applying Eq. (6.116), with a = /*?*'V)_we obtain

v " N k=0,+N,*2N,...
e@aNm _ |y k(2NN ) (6.117)
’20 - ejk(Zn/N_) =0 otherwise

since e/¥27/NMN = ¢jk2m = 1 _Since each of the complex exponentials in the summation in Eq. (6.117) is periodic
with period N, Eq. (6.117) remains valid with a summation carried over any interval of length N. That is,

k@I _ N k=0,+N,*2N,... (6.118)
n ;V) 0 otherwise
Now, using Eq. (6.118), we have
) [n] l{l: [l’l] _ ejm(ZnIN)n e—jk(27r/N)n
m
2 2
_ Jm=QRIN _ N m=k (6.119)
" =%v) 0 m¥*k
where m, k < N. Equation (6.119) shows that the set {e *@*M": k = 0,1,..., N — 1} is orthogonal over any
interval of length N. Equation (6.114) is the discrete-time counterpart of Eq. (5.95) introduced in Prob. 5.1.
Using the orthogonality condition Eq. (6.119), derive Eq. (6.8) for the Fourier coefficients.
Replacing the summation variable £ by m in Eq. (6.7), we have
N-1 ‘
x[n]=Y ¢, emENOn (6.120)
m=0

Using Eq. (6.115) with N = N, Eq. (6.120) can be rewritten as

No-—1
x[n)= Y cuW,ln] (6.121)
m=0



CHAPTER 6 Fourier Analysis of Discrete-Time _®

Multiplying both sides of Eq. (6.121) by W%[n] and summing over n = 0 to (N, — 1), we obtain

No-1 No—1 [Ny-1
> xn%n)= Y (E W ,,[n]| W, [n]
n=0 n=0 \ m=0

Interchanging the order of the summation and using Eq. (6.119), we get

No-—1 No-—1 No-1
D xn%n= Y | ), W, ln]Wiln] = Noc (6.122)
n=0 m=0 n=0
Thus,
No—1 1 Mol

=— E x[n]¥,[n]=— E x[n] e~ KZm/Noin
6.3. Determine the Fourier coefficients for the periodic sequence x[n] shown in Fig. 6-7.
From Fig. 6-7 we see that x[n] is the periodic extension of {0, 1, 2, 3} with fundamental period N, = 4. Thus,
Q== and e IR0 = g2l _ a2 _

4

By Eq. (6.8) the discrete-time Fourier coefficients ¢, are

Ex l(0+1+2+3)

1 < 0 1.1
=—§: ——0 -2+ j3)=—=+j—
a=g x[n](=J) (V] J3) 515

1
~1+2-3)=—=
© ) >

M—

[n]( D=

”M"’ ||M

1 1
x[n =—0+jl1-2—j3)=———j—
[]( J O+j J3) 2 12

.h

Note that ¢, = ¢,_, = c¢* [Eq. (6.17)].

x[n]

R

N

2-1

ALl

6.4. Consider the periodic sequence x[n] shown in Fig. 6-8(a). Determine the Fourier coefficients ¢, and
sketch the magnitude spectrum |c,|.

From Fig. 6-8(a) we see that the fundamental period of x[n] is N, = 10 and Q, = 2a/N,) = =/5. By Eq. (6.8) and
using Eq. (1.90), we get

:i i — jk(z/5)n :i 1—e /"
10 = 01 jk(lt/S)

B 1 e—jk;r/Z (ejkn/Z _ e—jkﬂ’/2)
10 —jkn/lO( Jka/10 —jk;r/lO)
]. —jk(2n‘/5) Sln( kﬂ/z)

k=0,12,...,9
10 sin( ko /10)
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The magnitude spectrum |c,| is plotted in Fig. 6-8(b)

x[r)

1 ®

I

00—
012 3 4567 8 89 n

@

"
. 05 .
g . .r : ;
i '.E E e ~£
] - lI.- ; '.1,' E l: T".--'T1‘..'I Tn‘:l "
. — o & o1 41 o 1 o »
012 3 45867829 K
(b)
Fig. 6-8

6.5. Consider a sequence

x[n]= 2 6[n—4k]

k=—o

CHAPTER 6 Fourier Analysis of Discrete-Time

(@)
(b)

(@)

Sketch x[n].
Find the Fourier coefficients c, of x[n].

The sequence x[n] is sketched in Fig. 6-9(a). It is seen that x[n] is the periodic extension of the sequence

{1,0,0,0} with period N, = 4.

x[r]
1. ‘ {
*—& —8—8 —8— —8— -
—4-3-2-10 1 2 3 456 7 8 n
(@
c*i
R RN ITT?!
01 2 38 k
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(b)

From Egs. (6.7) and (6.8) and Fig. 6-9(a) we have

3 3
x[n]: E A ejk(Zn/4)n — E ¢ ejk(lt/2)n
k=0 =0

1 < _;
and == E x[n) e K@l —
n=0

x[0]= all k

=
=

since x[1] = x[2] = x[3] = 0. The Fourier coefficients of x[n] are sketched in Fig. 6-9(b).

6.6. Determine the discrete Fourier series representation for each of the following sequences:

(a) x[n]= cos%n

T . T
b) x[n]=cos—n+sin—n
®) 3 4

(c) x[n]= cos? (%n)

(@)

(b)

()]

The fundamental period of x[n] is Ny = 8, and Q) = 2x/N,) = m/4. Rather than using Eq. (6.8) to evaluate the
Fourier coefficients C,» We use Euler’s formula and get

cos Tn= L gitmtam o gmicxiomy L jaon L - jagn
2 2

2

Thus, the Fourier coefficients for x[»] are ¢, = %, C_ =C_ i, 3=6C= %, and all other ¢, = 0. Hence, the
discrete Fourier series of x[n] is
w1 jom, 1 jiom 7
x[n]=cos —n=—e”" 0" + —e’ "0 Qy=—
4 2 2 4

From Prob. 1.16(i) the fundamental period of x[#] is N, = 24, and Q, = 27x/N, = 7/12. Again by Euler’s
formula we have

x[n] — l (ej(n/3)n + e—j(:r/S)n ) + L (ej(/r/4)n _ e—j(n/4)n)
2 2j

1 1 1 1
——¢ 1490n+1_e 1390"_1_3!390"4__6!490"

2 2 2 2
Thus, ¢, = —j(%), ¢, = %, C 4= C yppa=Cp= %, C_ 3= C 3,00 =6Cy = j(%),and all other ¢, = 0. Hence,
the discrete Fourier series of x[n] is
x[n]= _jlejSQOn + L e 1 2000 +jlej2190n Q, ==~
2 2 2 2 12

From Prob. 1.16(j) the fundamental period of x[n] is N, = 8,and Q, = 2a/N, = m/4. Again by Euler’s
formula we have

2
x[n]= (lej(JrIS)n y Liamn) _ 1 jamn 11 e
2 4
= Loy Ly L -seom
4 2
Thus, Co = %, ¢ = ‘l‘, C_,=C_,g=C= ‘l‘, and all other C = 0. Hence, the discrete Fourier series of
x[n] is

=Ly Lo Lomem g =
2 4 4

&1
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6.7. Let x[n] be a real periodic sequence with fundamental period N, and Fourier coefficients
C =
k

(a) Show thata_

a,+jb, where a, and b, are both real.

=a,andb_, = —b

k k*

(b) Show that Cngi2 is real if N is even.

(c¢) Show that x[n] can also be expressed as a discrete trigonometric Fourier series of the form

(@)

(b)

()]

(Ng—1)12

x[nl=co+2 Y (acoskQon—bysinkQon) Q=

k=1

if N, is odd or

(No —2)/2

x[n]=co+(=D"ey,pp +2 2 (a, cos kQqn — by sin k Qyn)
k=1

if N, is even.

If x[n] is real, then from Eq. (6.8) we have

1 Mgt | Mg ‘ .
C_p=— E x[n] e®on =| _— E x[n]e KQon | = ¢
NO n=0 NO n=0
Thus,
c_y=a_, +jb_,=(a, +jb)* =a — jb,
and we have
a_, = a, and b_,= —b,
If N, is even, then from Eq. (6.8)
No-1 1 Mot
_ —j 12)2rINg)n _ — jmn
CNoi2 =75 x[n]e /Mo =— V) x[n]e
0 NO nzo NO nzo
1 No—1
=— (— 1" x[n]=real
NO n=0
Rewrite Eq. (6.7) as
No-1 ‘ No-1 ‘
x[n]= E ¢, e =)+ E c, efkSon
£=0 k=1

If N, is odd, then (N, — 1) is even and we can write x[n] as

(No=1y2 ‘ ‘
x[nl=c¢y + E (ck ko +Cny e’(NO_k)QO")
k=1

Now, from Eq. (6.17)

— %
Cng—k = Ck

and ej(No —k)Qon _ eJNOQO"e_JkQO" — ej2lme—jk90n — e—ijOn

CHAPTER 6 Fourier Analysis of Discrete-Time

(6.123)

(6.124)

(6.125)
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Thus,

(Ng=D/2
x[n]l=cy + E (ckejm"" + c,’ge_jkgo")
k=1
(Ng—D/2 .
=co+ E 2Re(c e 90"y
k=1
(Ng—D/2
=cyt+2 E Re(a; + jb,)(cos kQyn + jsin kQyn)
k=1
(Ng—D/2
=cyt+2 E (a, cos kQyn — b, sinkQyn)
k=1

If N, is even, we can write x[n] as

No-1
x[n]l=cy + E ¢ eteon
k=1
(Ng=2)/2
= JkQon J(No—k)Q0n J(No/2)R0n
=cyt+ E (cke +Cyy k€ +Cng e
k=1

Again from Eq. (6.17)

CNg—k = Ck and e/ No=k)on — = jkSon
and ej(N0/2)Qon — ej(N0/2)(27r/N0)n — ej;m — (_ l)n
(Ng =2)/2
Then x[n)=co+ (= D'eygp+ D 2Re(ce ")
k=1
(Ng —2)12

=cy+(=D'cy,p +2 E (a, cos kQyn — b, sin kQyn)
=

6.8. Let x,[n] and x,[n] be periodic sequences with fundamental period N, and their discrete Fourier series
given by

No -1 No -1 o

— jk Qon — jk Qon —
x[n]= 2 de’ ™o x,[n]= 2 e, e’ Q, =
£=0 £=0 0

Show that the sequence x[n] = x,[n]x,[n] is periodic with the same fundamental period N, and can be
expressed as

Ng —1 ) 27
x[n]= E Cy e]onn QO ="

k=0 Ny
where c, is given by
Ny -1
&= dueim (6.126)
m=0

Now note that
x[n + Nyl = x [n + Nylx,[n + Nj] = x,[n]x,[n] = x[n]

Thus, x[#n] is periodic with fundamental period N,,. Let

No -1

x(n]= Y ¢ %" Qy=—
kzo Ny
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No—1

1 — i 1 —
Then O =— x[n]e S = — E x,[n)x,[n] e Qo
NO n=0 NO n=0
1 No—1 [No—1 ) )
- E dme]mgon xz[n]e—jkgon
NO n=0 m=0
Ng—1 | Mg No-1
— —jlk—m)Q _
= d, A E x,[n]e /ETm80n | = E d e m
m=0 0 n=0 m=0
) 1 Neg!
since 0 =— E xz[n]e—jkﬂon
NO n=0

and the term in parentheses is equalto e, _ .

6.9. Let x,[n] and x,[n] be the two periodic signals in Prob. 6.8. Show that
1 Moot Ng-1
N 20 x,[n]x,[n]= /20 dy e, (6.127)
Equation (6.127) is known as Parseval’s relation for periodic sequences.

From Eq. (6.126) we have

1 Mo

No-1
-k
C x[n]xy[n] e F0" = E d.e_
m=0

NO n=0

Setting k = O in the above expression, we get

1 Mgt Ng-1 No -1
— E x[nlx,y[n]= E d.e_, = E dee_,
NO n=0 m=0 k=0

6.10. (a) Verify Parseval’s identity [Eq. (6.19)] for the discrete Fourier series; that is,
1 Mool , Mool )
~ 2 [l =% e
NO nZO kzo

(b) Using x[n] in Prob. 6.3, verify Parseval’s identity [Eq. (6.19)].

(a) Let
No—1
x[n]= E c el
k=0
No—1 )
and x*[n]= E dkefmo"
£=0
1 g *Qon 1! k@on |*
Then d, =— x*¥[nle /0 = — x[n]e’™ 0" [ =c* 6.128
kNogo [n] NOEO[] X (6.128)

Equation (6.128) indicates that if the Fourier coefficients of x[n] are c,, then the Fourier coefficients of x*[n]

are ¢”, . Setting x,[n] = x[n] and x,[n] = x*[n] in Eq. (6.127), we have d, = c,and e, = ¢, (or e™* = ¢,) and
we obtain
1 Mot Ny -1
— Y x[nlx*[n]= Y ccp (6.129)
NO n=0 k=0

1 No—1 ) No -1 )
and _E|x["]| = E|Ck|
NO n=0 k=0
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(b) From Fig. 6-7 and the results from Prob. 6.3, we have

No—1
D xinlf = Lo+ 422 43)= 147
n=0 4 2

CRCIER

1

NO
No—1 2
2 e = (3) +
n=0 2

and Parseval’s identity is verified.

GR

Fourier Transform
6.11. Find the Fourier transform of
x[n] = —a"u[—n — 1] a real

From Eq. (4.12) the z-transform of x[n] is given by

1
X@=—-7 |z]<|d]
l1-az

Thus, X(e/?) exists for |a| > 1 because the ROC of X(z) then contains the unit circle. Thus,

; 1
X(Q)=X(em)=m |a|>1 (6.130)

6.12. Find the Fourier transform of the rectangular pulse sequence (Fig. 6-10)
x[n] = u[n] — uln — N]

Using Eq. (1.90), the z-transform of x[n] is given by

NN
X()= = >0 6.131
¢3) 'zoz — |z] (6.131)

Thus, X(e/?) exists because the ROC of X(z) includes the unit circle. Hence,
IO mjeND2 (ejQN/2 _ ejQN/Z)

o 1-
X (/) = _
X(Q)=X(e)= P - R I Ry e

_ g iaN -2 sin(QN/2)

6.132
sin(Q/2) ¢ )

xn)

s

o1 2

09 =
Fig. 610

6.13. Verify the time-shifting property (6.43); that is,
x[n — ny) < e712MX(Q)

By definition (6.27)

Fl{xln—nyl}= i x[n—no]e_jg"

n=—o
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By the change of variable m = n — n,, we obtain

F{xln—nyl}= E x[m]e /¥mtmo)
m=—o
=e /%0 N ximle I = e IMX(Q)

m=—o

Hence,

x[n—ny) < e I X(Q)

6.14. (a) Find the Fourier transform X(€2) of the rectangular pulse sequence shown in Fig. 6-11(a).

xfn] x[n]
1
L 1®
1] 2 3
Ny o N1 n 1 2‘:’\!'1 n
@ (b)
Fig. 6-11
(b) Plot X(Q) for N, =4and N, = 8.
(a) From Fig. 6-11 we see that
x[n] = x|[n + N|]
where x [n] is shown in Fig. 6-11(b). Setting N = 2N, + 1 in Eq. (6.132), we have
. 1
sm[Q(Nl + 5)
X (@)= /M L=
sin(Q/2)
Now, from the time-shifting property (6.43) we obtain
. 1
sm[Q(Nl + —)
X(§2)=efm"X,(Q)=—2 (6.133)
sin(Q/2)
(b) Setting N = 4in Eq. (6.133), we get
in(4.5Q
x(@) - Snl452)
sin(0.5Q)

which is plotted in Fig. 6-12(a). Similarly, for N| = 8 we get

_ sin(8.5Q)
X@= sin(0.5Q)

which is plotted in Fig. 6-12(b).
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o) *{ay)

(@) (b)
Fig. 612

6.15. (@) Find the inverse Fourier transform x[n] of the rectangular pulse spectrum X(€2) defined by
[Fig. 6-13(a)]

1 |Q|=w
X(Q)=
0 W< | Q | =x
(b) Plot x[n] for W = z/4.
X[y
1
1 1 1 1 *
2n n w o w n 2n 0
(@)
xfn]
i
&l ]
4-3-2-101 2 3 4 10 n
(b)
Fig. 6-13

(a) From Eq. (6.28)

1 .» ; 1w sin Wn
=— [ X(Qe&YdQ=— Q="
xin] an—fr e an—We nn
Thus, we obtain
in Wi 1 Q=W
S s x(@)= 2] (6.134)
zn 0 w<|Q|=x

(b) The sequence x[n] is plotted in Fig. 6-13(b) for W = m/4.
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6.16. Verify the frequency-shifting property (6.44); that is,
eI x[n] e X(Q— Q)
By Eq. (6.27)
F e/ x[n]} = E /%" x[n]e I

n=—o

= Y x[n]e /O = X(Q - Q)

n=—o

Hence,
e/ x[n] > X(Q-Qp)
6.17. Find the inverse Fourier transform x[n] of
X(Q) =2m6(Q — Q) |1Q], |9, =n
From Egs. (6.28) and (1.22) we have
x[n]= %f:’ 28(Q— Q) e dQ = /%"
Thus, we have
N S 218(Q-Qy)  |Q|,|Q =7
6.18. Find the Fourier transform of
x[n] =1 alln
Setting Q) = 0 in Eq. (6.135), we get
x[n] = 1 < 2725(Q) |Q| =x

Equation (6.136) is depicted in Fig. 6-14.

xjn] X5

: [ ] & Zmb{sY)

|

- | 1
*

(6.135)

(6.136)

2-10 1 2 n a 0 a

Fig. 6-14 A constant sequence and its Fourier transform.

6.19. Find the Fourier transform of the sinusoidal sequence
x[n] = cos Qyn Q| =
From Euler’s formula we have
cos Qon = % (/00" 4 g%y
Thus, using Eq. (6.135) and the linearity property (6.42), we get

X(Q) = ald(R — Q) + 6(Q + Q)] 2], 12| =n
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(6.137)

which is illustrated in Fig. 6-15. Thus,
cos Qn <> m[6(Q — Q) + 5(Q + Q)] Q1,12 ==
xin] i)
a2+, (e -)
I
—
1 1
L] n n a2, 0 2, n

Fig. 6-15 A cosine sequence and its Fourier transform.

6.20. Verify the conjugation property (6.45); that is,
x*[n] < X*(—-Q)

From Eq. (6.27)
3 ) o ) *
F{x*[n]}= E x*[n]e_’9"=( E x[n]e’g"]

n=—o

n=-o

* *
=X Q)

n=-o

:( E x[n] e i

Hence,
x*[n] < X*(-Q)

6.21. Verify the time-scaling property (6.49); that is,
x(m)[n] < X(mQ)

x[n/m]= x[k] if n = km, k = integer
if n# km

From Eq. (6.48)
Xomy[n]= {0

Then, by Eq. (6.27)
Flxmlnly= Y xgmlnle /™

n=—o

Changing the variable n = km on the right-hand side of the above expression, we obtain

k=—o

F {xmnl} = i Xomy[km] eI = N x[k] e/ "DE = X(mQ)

k=—o

Hence,
x(m)[n] < X(mQ)
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6.22. Consider the sequence x[n] defined by
| n | =2
x[n]=
0 otherwise
(a) Sketch x[n] and its Fourier transform X(Q).
(b) Sketch the time-scaled sequence x(z)[n] and its Fourier transform X(z)(Q).

(c¢) Sketch the time-scaled sequence X3)[n] and its Fourier transform X(3)(Q).

(@) Setting N = 2 in Eq. (6.133), we have

_ 8in(2.5Q)

6.138
sin(0.5€2) ¢ )

X(Q)

The sequence x[n] and its Fourier transform X(€2) are sketched in Fig. 6-16(a).

xin] X(Q)
5
1
—
N LA, 7
0 n
(@)

¥

x W 0 NS @

XN x-:'.[m X{2Q)
1
—
0 n t
(b)

Xl X5,{Q) = X{3Q)

)
Fig. 6-16

(b) From Egs. (6.49) and (6.138) we have

sin(5Q)
sin(Q2)

Xy(Q) = X(2Q) =

The time-scaled sequence x(z)[n] and its Fourier transform X (2)(9) are sketched in Fig. 6-16(b).
(¢) Inasimilar manner we get

sin(7.5€2)

X @ =XCD =3 159

The time-scaled sequence x(3)[n] and its Fourier transform XG)(Q) are sketched in Fig. 6-16(c).
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6.23. Verify the differentiation in frequency property (6.55); that is,

.dX(Q)
mlnl =i =e

From definition (6.27)

0
xX@=Y x[nle /™
Differentiating both sides of the above expression with respect to Q and interchanging the order of differentiation
and summation, we obtain

LX(Q):%( D x[n]e_m"]:

< i —jQn
Y nl_s @™

n=—o

Multiplying both sides by j, we see that

. X —jan _ ; dX(R)
F {nx[n]} ,,:E_w"x["]e T
Hence,
B (%)
nx[n] < j 70

6.24. Verify the convolution theorem (6.58); that is,

x,[n] * x,[n] <> X,(Q) X,(Q)

By definitions (2.35) and (6.27), we have

Fxnxxnl)= Y ( > x,[k]xz[n—k]]e_jg"

n=—o\k=—0w

Changing the order of summation, we get

F{x[n]*x,[n]} = E xl[k][ E xz[n—k]e_jg")

k=—o n=-—oo

By the time-shifting property Eq. (6.43)

> xmln—kle ¥ =% x, (@)

n=—oo
Thus, we have

Flxlnlexlnl)= Y xlkle /¥ X,Q)

k=—o0

=( i x[k]e /%

k=—o

X,(Q) = X,(Q) X,(Q)

Hence,

x,[n] % x,[n] < X,(Q) X,(Q)
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6.25. Using the convolution theorem (6.58), find the inverse Fourier transform x[n] of

X(9>=—( ‘ o la|<1
1—ae™’
From Eq. (6.37) we have

n 1

au[n]<—>l_ae_jQ |a|<1

1 1 1
X(Q)= = - -

Now @ (l—ae_fg)z (l—ae_fg)(l—ae_’g)

Thus, by the convolution theorem Eq. (6.58) we get

x[n]=a"u[n]*a"u[n]= i a‘ulkla" *uln— k]

k=—o

=a" i 1=(m+1)a"uln]
=0

Hence,
(n+l)a"u[n]<—>;.2 |a|<1 (6.139)
(l - ae_’g)
6.26. Verify the multiplication property (6.59); that is,
1
xi[n]x, [n] <= — X, (Q)® X,(RQ)
2n
Let x[n] = x,[n]x,[n]. Then by definition (6.27)
X@= Y xlnlxnle ™
By Eq. (6.28)
1 A
- Jjon
xlnl=—— [, X10)¢"" a6
< 1 jon —jQn
Then X(Q)= ,,:E_w [E {, X" de] x,[n]e @

Interchanging the order of summation and integration, we get

©

E xy[n]e /@0

n=-o

1
X@=-- [,.%© de

- L[ %0 X@-0)do= L X,@® X,©@
2V 2m 2

Hence,
1
xi[nlx;[n] < P X, (Q)® X, ()

6.27. Verify the properties (6.62), (6.63a), and (6.63b); that is, if x[n] is real and
x[n] = x,[n] + x [n] < X(Q) = A(Q) + jB(Q) (6.140)
where x [n] and x [n] are the even and odd components of x[n], respectively, then
X(—Q) = X*(Q)
x [n] <> Re{X(Q)} = A(Q)
x,[n] < jIm{X(Q)} = jB(L2)
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If x[n] is real, then x*[n], = x[n], and by Eq. (6.45) we have
x*[n] <> X*(—Q)
from which we get
X(Q) = X5(-Q) or X(—Q)=X%Q)
Next, using Eq. (6.46) and Egs. (1.2) and (1.3), we have
x—nl = x[n] — x[n] < X(—Q) = X*(Q) = AQ) — jBQ) (6.141)

Adding (subtracting) Eq. (6.141) to (from) Eq. (6.140), we obtain

x[n] < A(Q) = Re{X(Q)}

x,[n] <> jB(Q) = j Im{X(Q)}

6.28. Show that

1
u[n]<—>nr5(g)+m |Q|=n (6.142)
Let
u[n] < X(Q)

Now, note that

8[n] = u[n] — uln — 1]
Taking the Fourier transform of both sides of the above expression and by Eqs. (6.36) and (6.43), we have
1=(1-e"9HXQ)
Noting that (1 — e™/?) = 0 for Q = 0, X(2) must be of the form

1

X(Q)=A6(2)+ P

| Q | =
where A is a constant. To determine A we proceed as follows. From Eq. (1.5) the even component of u[#] is given by
1 1
u,[nl= 5t 55["]
Then the odd component of u[n] is given by

1 1
u,[n]=ulnl—u,[n]=ulnl- 5 Eé[n]

1
T — _ _
and F{u,[nl}=A6(Q)+ . 7 6(Q) >
From Eq. (6.63b) the Fourier transform of an odd real sequence must be purely imaginary. Thus, we must have
A = m,and
1
u[n]<—>fu$(£2)+l_e_jQ |Q|=n

6.29. Verify the accumulation property (6.57); that is,

d 1
2 x[k]<—>nX(0)6(Q)+mX(Q) |Q|=n

k=—o
From Eq. (2.132)

n

E x[k]= x[n]*u[n]

k=—o0
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Thus, by the convolution theorem (6.58) and Eq. (6.142) we get

n

E x[k] < X(Q)[n6(9)+

k=—o

1
1—e /@

] l2|=x

=aX(0)6(Q)+ " X(Q)

T
since X(RQ)6(RQ) = X(0)6(RQ) by Eq. (1.25).
6.30. Using the accumulation property (6.57) and Eq. (1.50), find the Fourier transform of u[n].

From Eq. (1.50)

uln)= i 8[k]

k=—o0

Now, from Eq. (6.36) we have
O[n] <1
Setting x[k] = 6[k] in Eq. (6.57), we have

x[n] = 6[n] < X(2) =1 and X(0) =1

and u[n]=k=2w6[k]<—>n6(€2)+l_i_jg |Q|=n
Frequency Response
6.31. A causal discrete-time LTI system is described by
y[n]—%y[n—l]+%y[n—2]=x[n] (6.143)

where x[n] and y[n] are the input and output of the system, respectively (Prob. 4.32).
(a) Determine the frequency response H(2) of the system.

(b) Find the impulse response h[n] of the system.
(a) Taking the Fourier transform of Eq. (6.143), we obtain

Y(Q)- %e‘f" Y(Q)+ %e‘ij(Q) = X(Q)

or
3 e, 1l —ja
1-=e P +-e /Y (Q)=X(Q)
4 8
Thus,
H©Q) - Y(Q) _ 1 _ 1
X l—ée_jQ +le_j29 l—le_jQ l—le_jg
4 8 2 4
(b) Using partial-fraction expansions, we have
1 2 1

H(Q)= = -
(1—le‘f'9)(1—le‘f") - Lee 1
2 4 2 4
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Taking the inverse Fourier transform of H(C2), we obtain
h[n]= [2(%) - (%) }u[n]
which is the same result obtained in Prob. 4.32(b).
6.32. Consider a discrete-time LTI system described by
1 1
yln]— Ey[n —1]=x[n]+ Ex[n —1]

(a) Determine the frequency response H(S2) of the system.
(b) Find the impulse response h[n] of the system.

(c¢) Determine its response y[#n] to the input
T
x[n]=cos—n
2
(a) Taking the Fourier transform of Eq. (6.144), we obtain

Y(©Q)- %e‘f"Y(sz) - X@)+ %e_ng(Q)

Thus,
1 _.
1+ /®
H(Q)= @ -2
X@ |_1,je
2
1 e /%
(b H(Q)=

1
l_le—jg 2 l_le—jQ

Taking the inverse Fourier transform of H(C2), we obtain

1 n=0
1Y (1) " -
hln]=|=| uln]+=|= uln—1]= -
ERC I RS SR
(c) From Eq. (6.137)
X(Q)=n[6(9—%)+6(9+%) |Q|=x
Then
x 1+ Lo
Y(Q)=X(Q)HQ)=n|d|QR——|+6|Q+— 2
1 le_jQ
14 L 14 Ltinr
—a|—2—|& —£)+n +Z
l_le—jnIZ 2 1 ) 2
2
l—j% x l+j% x
= 1 6(Q—E)+n 1 6(Q+E)
1+j= 1-j—
12 ]2

= né(g - ﬁ) o2 | ﬂé(g + g)ejzmn-'u/z)
2

(6.144)
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Taking the inverse Fourier transform of Y(€2) and using Eq. (6.135), we get

y[n]:%ej(n/Z)ne—than_](IIZ) +le—j(n/2) 20 1r2)

= cos(ln —2tan”! l)
2 2

6.33. Consider a discrete-time LTI system with impulse response

hn]= sin(Tn / 4)

n

Find the output y[n] if the input x[n] is a periodic sequence with fundamental period N, = 5 as shown in

Fig. 6-17.
xfn]
| I I 8 ‘ ‘ ‘ 8 >
2-101 2 3 465 n
Fig. 6-17
From Eq. (6.134) we have
1 |Q|=n/4
H(Q)=
0 n/4<|Q|=nx

Since Q, = 2n/N, = 2m/5 and the filter passes only frequencies in the range |Q| = /4, only the dc term is passed
through. From Fig. 6-17 and Eq. (6.11)

1 & 3
co=— ) x[n]l=—
0 520 [n]= <
Thus, the output y[n] is given by
3
n]=— alln
yn=7

6.34. Consider the discrete-time LTI system shown in Fig. 6-18.
(a) Find the frequency response H(€2) of the system.
(b) Find the impulse response k[n] of the system.
(¢) Sketch the magnitude response |H(Q)| and the phase response 6(<2).
(d) Find the 3-dB bandwidth of the system.

(a) From Fig. 6-18 we have

y[n] = x[n] + x[n — 1] (6.145)

x[n]

T ¥ln]

) 2

v
L]

Fig. 6-18



CHAPTER 6 Fourier Analysis of Discrete-Time

Taking the Fourier transform of Eq. (6.145) and by Eq. (6.77), we have

H©Q) = Y(Q) 14 e IR = IR (IO iy
X(Q)

=2¢ /92 cos(g) |Q|==
2
(b) By the definition of A[r] [Eq. (2.30)] and Eq. (6.145) we obtain

h[n]=06[n]+6[n—1]

P 0=n=l1
or =
(n] 0 otherwise

(c¢) From Eq. (6.146)
|H(Q)|:2005(%) |Q|=a
and 6(Q)=—

which are sketched in Fig. 6-19.

[HEH)

v

N
|\)|;| rmEmE -

-7 _r o n O
(L)
= -
| 1 1 L .
14 0 T £l
fo K
2
Fig. 6-19

(d) LetQ,, be the 3-dB bandwidth of the system. Then by definition (Sec. 5.7)

| H @)= 75 | H @],

we obtain

Q
cos( ;dB)= L and Qi = z

V2 2

(6.146)

We see that the system is a discrete-time wideband low-pass finite impulse response (FIR) filter (Sec. 2.9C).
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6.35. Consider the discrete-time LTI system shown in Fig. 6-20, where a is a constantand 0 < a < 1.

x[n] ¥in]

Fig. 6-20

(a) Find the frequency response H(€2) of the system.
(b) Find the impulse response k[n] of the system.
(¢) Sketch the magnitude response |H(Q)| of the system for @ = 0.9 and a = 0.5.

(a) From Fig. 6-20 we have

y[n] — ay[n — 1] = x[n] (6.147)
Taking the Fourier transform of Eq. (6.147) and by Eq. (6.77), we have

1
HQ)= ———— al<l (6.148)
( ) l_ae—jQ | |

(b) Using Eq. (6.37), we obtain
h[n] = a"u[n]

(c) FromEq. (6.148)

1 1
1-ae/® 1-acosQ+ jasinQ

HEQ)=

and
1 1

= (6.149)
[(l — acos Q)* + (asin Q)° ]”2 (1+a* —2acos Q)2

@]

which is sketched in Fig. 6-21 fora = 09 and a = 0.5.

We see that the system is a discrete-time low-pass infinite impulse response (IIR) filter (Sec. 2.9C).

Hi)|
10

a=09

N

Fig. 6-21
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6.36. Let h, ,.[n] be the impulse response of a discrete-time low-pass filter with frequency response H, ,(92).
Show that a discrete-time filter whose impulse response h[n] is given by

hln) = (—1)" by peln] (6.150)
is a high-pass filter with the frequency response
H(Q) = H ,(Q — m) (6.151)
Since —1 = e/™, we can write
hn] = (= 1)"hy peln] = e hy p[n)] (6.152)
Taking the Fourier transform of Eq. (6.152) and using the frequency-shifting property (6.44), we obtain
H(Q) = Hj . (Q — m)

which represents the frequency response of a high-pass filter. This is illustrated in Fig. 6-22.

H, o8 H(Q) = H, o (Q—m)

1 i
4 2, 0 Q. r

p=g J
1
i
=
=
[=]
ks
-
'
o
o
P
e

Fig. 6-22 Transformation of a low-pass filter to a high-pass filter.

6.37. Show that if a discrete-time low-pass filter is described by the difference equation
N M
y[n]=— Eaky[n—k]+ Ebkx[n—k] (6.153)
k=1 k=0
then the discrete-time filter described by
N M
ynl== Y Dayln—kl+ Y (Db x[n—k] (6.154)
k=1 k=0

is a high-pass filter.
Taking the Fourier transform of Eq. (6.153), we obtain the frequency response H, () of the low-pass filter as

b e—ij

Mz

k
Hype(@)= 2D 50 (6.155)
X(Q) @
1+ E ae’
k=1
If we replace Q by (Q — =) in Eq. (6.155), then we have
M M
E bke_fk(g—ﬂ) E b (— l)k PRl
k=0 k=0
Hypr (Q) = Hy pp (Q — ) = = (6.156)

- N
1 R E N G W

1 k=1

+
M=

k
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which corresponds to the difference equation
S k & 3
yInl== 3 (- Dfa yln—kl1+ Y (- D' x[n—k]
k=1 k=0

6.38. Convert the discrete-time low-pass filter shown in Fig. 6-18 (Prob. 6.34) to a high-pass filter.

From Prob. 6.34 the discrete-time low-pass filter shown in Fig. 6-18 is described by [Eq. (6.145)]
ylnl = x(n] + xn — 1]
Using Eq. (6.154), the converted high-pass filter is described by
y[n] = x[n] — x[n — 1] (6.157)
which leads to the circuit diagram in Fig. 6-23. Taking the Fourier transform of Eq. (6.157) and by Eq. (6.77), we have
HQ)=1— ¢ /9 = ¢ 192 (o]0 _ gmi92)

= j2e %" sin% =272 sin% |@|=x (6.158)

From Eq. (6.158)

|HQ)|=2 sin(%]‘ Q==
(r—Q)/2 0<Q<m
and 6(Q)=
(—m—Q)/2 —a=Q<0

which are sketched in Fig. 6-24. We see that the system is a discrete-time high-pass FIR filter.

xjn] = ¥l

7 y

v

Fig. 6-23

Hig)

1 1
= i
2 2

BE2)

= |

Fig. 6-24
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6.39. The system function H(z) of a causal discrete-time LTI system is given by

b+7z!
-1

H(z)= (6.159)

1—az

where a is real and |a| < 1. Find the value of b so that the frequency response H() of the system
satisfies the condition

|HQ)| =1 alQ (6.160)

Such a system is called an all-pass filter.

By Eq. (6.34) the frequency response of the system is

HQ)=HQ@|,_,o =% (6.161)
Then, by Eq. (6.160)
—ja
|H@)|= % =1
which leads to
[b+ e ® = |1 — ae™/9|
or [b+ cosQ — jsinQ| = |1 — acos Q + jasin Q|
or 1+ b2+ 2bcos Q=1+ a®> — 2acos Q (6.162)
and we see that if b = —a, Eq. (6.162) holds for all Q and Eq. (6.160) is satisfied.
6.40. Let h[n] be the impulse response of an FIR filter so that
h[n] =0 n<0,n=N
Assume that a[n] is real and let the frequency response H(€2) be expressed as
H(Q) = |H(Q)|e®
(a) Find the phase response 6(€2) when h[n] satisfies the condition [Fig. 6-25(a)]
h[n] = K[N — 1 — n] (6.163)
(b) Find the phase response 6(€2) when h[n] satisfies the condition [Fig. 6-25(b)]
h[n] = —h[N — 1 — n] (6.164)
(a) Taking the Fourier transform of Eq. (6.163) and using Egs. (6.43), (6.46), and (6.62), we obtain
H(Q) = H¥(Q) e~ /N - 12
or |H(Q)| /0@ = |H(Q)| e /0@ ¢=iN ~ )2
Thus,
8(R)=—-6(R)-(N-1)Q
and 0@) =~ (N - (6.165)

which indicates that the phase response is linear.
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hir] hin]
] ‘ N odd l N even
- T T o * -9 I . T s -
0 N-1 N n 0 -1 N n
2 2
@
hin] hin]
N odd N even
— | 1 T I oo > o0 "I oo >
0 N-1 N n 0 N n
2
]
b
®) N-1
2
Fig. 6-25
(b) Similarly, taking the Fourier transform of Eq. (6.164), we get
H(Q) = —H*(Q) e~ /N - D2
or |H(Q) |0 = | H(Q) | e/ e/ g=jN = DE
Thus,
0RQ)=a—-6(Q)-(N-1)Q
and 6(Q) = %—%(N Yo (6.166)

which indicates that the phase response is also linear.

6.41. Consider a three-point moving-average discrete-time filter described by the difference equation

(@)
(b)
(©)

(@)

y[n]=§{x[n]+x[n—1]+x[n—2]} (6.167)

Find and sketch the impulse response h[n] of the filter.
Find the frequency response H(2) of the filter.
Sketch the magnitude response | H(L2)| and the phase response §(Q) of the filter.
By the definition of h[r] [Eq. (2.30)] we have
h[n]=%{6[n]+6[n—1]+6[n—2]} (6.168)

0=n=<2
or hin]=

S W=

otherwise
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HI
1
hin] I I L L
x _2rn 0 2 x 0
3 3
3

BlLx)

| x

2

@ 1 . 1 1 \ »
N Y 0 ® E x 0]
2 2 '
B Y
2
(b)
Fig. 6-26
which is sketched in Fig. 6-26(a). Note that h[r] satisfies the condition (6.163) with N = 3.
(b) Taking the Fourier transform of Eq. (6.168), we have
HQ)= %{1 +e P4 H
By Eq. (1.90), with a = ¢7/9, we get
_ i3 -j3Q, j3Q2 _ —j3Q/2
H(Q):ll e_‘ :le_. (e ‘ e_. )
31—¢ JjQ 3 e jQ/Z(ejQIZ_e 19/2)
L e snGRID) _ ) ie (6.169)
3 sin(2/2)
1 sin(3Q/2)
h H (Q)=——— .
where +(Q) 3 Sn@/2) (6.170)
(c¢) From Eq. (6.169)
1|sin(3Q/2
|H@|=| B, @] -5 | T2
3| sin(R2/2)
-Q when H,(2)>0
and 0(Q)=
-Q+x when H,(Q)<0

which are sketched in Fig. 6-26(b). We see that the system is a low-pass FIR filter with linear phase.

6.42. Consider a causal discrete-time FIR filter described by the impulse response
hln] ={2,2, -2, -2}

(a) Sketch the impulse response h[n] of the filter.
(b) Find the frequency response H(Q) of the filter.
(¢) Sketch the magnitude response | H(Q)| and the phase response 6(Q) of the filter.
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(a) The impulse response h[n] is sketched in Fig. 6-27(a). Note that si[n] satisfies the condition (6.164) with N = 4.
(b) By definition (6.27)
H@)= Y hin]le /™ =2+2¢7/% — 2672 2773
n=—o
=2(1—e )+ 2(e /2 — 7122

= 0 AV 3Ry | SN (IR U2

_—jsan|.. Q. 3Q jla2)-(30/2)]
= je (sm7+smT)—H,(Q)e 6.171)
where H,(Q)=sin E + sin E
2 2
(¢) From Eq. (6.171)
|H(Q)|=|H,(Q)|=|sin 2 4 sin| 22
2 2
3
w/2—=Q H,.(2)>0
6(Q)= 3
_H/Z_EQ H,(2)<0
which are sketched in Fig. 6-27(b). We see that the system is a bandpass FIR filter with linear phase.
HIcy)
1.54
hin ! L *
& t 1 0 = T 0
2 2
2%
(g

01

s L
R
v

raja

(@)

(b)
Fig. 6-27

Simulation

6.43. Consider the RC low-pass filter shown in Fig. 6-28(a) with RC = 1.

(a) Construct a discrete-time filter such that

haln] = he(®)],_,,p =he(nT,) (6.172)
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where h (?) is the impulse response of the RC filter, & [n] is the impulse response of the discrete-
time filter, and 7', is a positive number to be chosen as part of the design procedures.

(b) Plot the magnitude response | H (w)| of the RC filter and the magnitude response | H (wT.)| of the
discrete-time filter for 7, = 1 and T, = 0.1.

R
AV
+
x(t) —_—c y(t)
(@)
I:ﬁl i .f":-\ ].r|r.|]

(b)

Fig. 6-28 Simulation of an RC filter by the impulse invariance method.

(a) The system function H (s) of the RC filter is given by (Prob. 3.23)

Hc(s)=ﬁ (6.173)
and the impulse response £ (?) is
h(t) = e'u(® (6.174)
By Eq. (6.172) the corresponding £ [n] is given by
hy[n]=e "suln]= (e )" uln] (6.175)

Then, taking the z-transform of Eq. (6.175), the system function H (z) of the discrete-time filter is given by
1

— e_TSZ_I

H,(2)=
1
from which we obtain the difference equation describing the discrete-time filter as
yln] — e Tsy[n — 1] = x[n] (6.176)

from which the discrete-time filter that simulates the RC filter is shown in Fig. 6-28(b).
(b) By Eq.(5.40)

1
B Heol, =

1

Then |H6(w)|=—(1+w2)”2
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By Egs. (6.34) and (6.81)

1

Hy@T) = Hy @), _por, =7 —r

From Eq. (6.149)

1
| Hy(0T,)| =
‘ ' [1 +e s —2e7Ts cos(aoTS)]U2
From Tx =1,
1
| Hy(@T,)|= 172
[1 +e2-2¢7! cos(w)]
ForT = 0.1,
1
| Hy(oT))|=

172
[1 +e702 0701 cos(O.lw)]

The magnitude response | H (w)| of the RC filter and the magnitude response | H,(wT,)| of the discrete-time
filter for T, = 1 and T, = 0.1 are plotted in Fig. 6-29. Note that the plots are scaled such that the magnitudes
at w = 0 are normalized to 1.

The method utilized in this problem to construct a discrete-time system to simulate the continuous-time
system is known as the impulse-invariance method.

H (o)
HfoT )l

0.8
0.6

0.4

0.2

I feo]

¥

Fig. 6-29

6.44. By applying the impulse-invariance method, determine the frequency response H (€2) of the discrete-
time system to simulate the continuous-time LTI system with the system function

1
H (s)=———
(s+1)(s+2)
Using the partial-fraction expansion, we have
1
H. (s)=——-—
(s s+1 s+2

Thus, by Table 3-1 the impulse response of the continuous-time system is

h(t) = (e7" — e u(t) (6.177)
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Let h,[n] be the impulse response of the discrete-time system. Then, by Eq. (6.177)
h,[n] = h (nT) = (e™"Ts — e >"Ts)u[n]

and the system function of the discrete-time system is given by

1

H,(2)= g - T (6.178)
Thus, the frequency response H () of the discrete-time system is
H,(RQ)=H = 1 1
a(Q)=H,(2) |z=e19 T P R VY AR (6.179)
Note that if the system function of a continuous-time LTI system is given by
N Ak
H (s)= 6.180
RO 2. Tran (6.180)

then the impulse-invariance method yields the corresponding discrete-time system with the system function H (z)
given by

N Ak
H ()= ) —————— 6.181
d gll_eaknTSZ 1 ( )
6.45. A differentiator is a continuous-time LTT system with the system function [Eq. (3.20)]

H(s) =s (6.182)

A discrete-time LTI system is constructed by replacing s in H (s) by the following transformation
known as the bilinear transformation:

21-7"
§=— -
T, 1+z¢

(6.183)

to simulate the differentiator. Again T in Eq. (6.183) is a positive number to be chosen as part of the
design procedure.

(a) Draw adiagram for the discrete-time system.

(b) Find the frequency response H (£2) of the discrete-time system and plot its magnitude and phase
responses.

(a) Let H (2) be the system function of the discrete-time system. Then, from Eqs. (6.182) and (6.183) we have

21-7"
H,(z)=—
d() T51+Z_I

(6.184)

Writing H (z) as

21 g
Hy(2) T (1+z_' )(1 z)

s

then, from Probs. (6.35) and (6.38) the discrete-time system can be constructed as a cascade connection of
two systems as shown in Fig. 6-30(a). From Fig. 6-30(a) it is seen that we can replace two unit-delay
elements by one unit-delay element as shown in Fig. 6-30(b).

(b) By Eq. (6.184) the frequency response H (L) of the discrete-time system is given by

1— e—jQ 2 8—19/2(819/2 _ e—jQ/Z)

2
H"(Q)_T_s 1+ 2 _T—s o R (IO AT

2snQ/2 2. Q@ 2. Q .,
=j— =j—tan—=—tan—e’
T, cosQ/2 T, 2 2

s s

(6.185)

s
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x[r]

vin]

@

x[n]

(b)
Fig. 6-30 Simulation of a differentiator.

Note that when Q << 1, we have

2 Q Q
H,(Q)=j—tan—=j—= jw 6.186
d()]TS ZJTSJ ( )
If Q = T (Fig. 6-31).
itang
T, 2
/ Q
i " - w
: E;"‘r r.'.
K o n i:‘.
Fig. 6-31

6.46. Consider designing a discrete-time LTI system with system function H (z) obtained by applying the
bilinear transformation to a continuous-time LTI system with rational system function H (s). That is,

Hd(Z) = Hc(s)|s=(2/TS)(l—z_|)/(l +77h (6187)
Show that a stable, causal continuous-time system will always lead to a stable, causal discrete-time system.
Consider the bilinear transformation of Eq. (6.183)

_ 1
s=31—z_l (6.188)
Ts 1+z
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Solving Eq. (6.188) for z, we obtain
14T /2)s

= 1T, 12)s (6.189)
Setting s = jw in Eq. (6.189), we get
Y
2| = | LHie@ D | (6.190)
- jo (T, 12)
Thus, we see that the jw-axis of the s-plane is transformed into the unit circle of the z-plane. Let
7= rel® and s= 0+ jo
Then from Eq. (6.188)
_22z-1_2rd%-1
T, z+1 T, re/® +1
_2 r -1 j_ 2rsin@
T, \1+r* +2rcosQ 1+r* +2rcosQ
Hence,
o=2 o (6.191a)
_———— .191a
T, 1+r* +2rcosQ
2rsin Q
w== T (6.191b)

_T_51+r2+2rcos€2

From Eq. (6.191a) we see that if » < 1, then 0 < 0, and if r > 1, then o > 0. Consequently, the left-hand plane (LHP)
in s maps into the inside of the unit circle in the z-plane, and the right-hand plane (RHP) in s maps into the outside of
the unit circle (Fig. 6-32). Thus, we conclude that a stable, causal continuous-time system will lead to a stable, causal
discrete-time system with a bilinear transformation (see Sec. 3.6B and Sec. 4.6B). When r = 1, then o = 0 and

W=————-—=—tan— (6.192)
T, 1+cosQ T, 2

_y oT,
or Q=2tan"' L= (6.193)
From Eq. (6.193) we see that the entire range —% < @ < % is mapped only into the range —7 < Q < 7.
jo Im(z)
- i
s-plane z-plane
o Re(z)

Unit circle
12l =1

Fig. 6-32 Bilinear transformation.
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6.47. Consider the low-pass RC filter in Fig. 6-28(a). Design a low-pass discrete-time filter by the bilinear
transformation method such that its 3-dB bandwidth is 7 /4.

Using Eq. (6.192), Q, ;. = 7/4 corresponds to

2 R34 2 m 0828
tan —= ———

Wygg = —tan——=— 6.194
348 7} 2 7} 8 7} ( )
From Prob. 5.55(a), w, 5 = 1/RC. Thus, the system function H (s) of the RC filter is given by
0.828 /T,
H =3 6.195
)= 0828 /T, (6.195)

Let H (2) be the system function of the desired discrete-time filter. Applying the bilinear transformation (6.183) to
Eq. (6.195), we get

0.828/T,  0293(1+z ")

H,(2)= — — (6.196)
T 21-27 o082 1-041427
T, 1+z7' T,
from which the system in Fig. 6-33 results. The frequency response of the discrete-time filter is
0.293(1+¢ /%)
H,Q)=——""""7~ (6.197)
¢ 1-0414¢7°

AtQ =0,H(0)=1,and at Q = m/4, |H(,(7t/4)| =0.707 = 1/\/5, which is the desired response.

0.293
xin) ¥in]

47 Bl v
L

N N
T []
d
N

41

.

(=]
e

Fig. 6-33 Simulation of an RC filter by the bilinear transformation method.

6.48. Let h[n] denote the impulse response of a desired IIR filter with frequency response H(€2) and let & [n]
denote the impulse response of an FIR filter of length N with frequency response H (€2). Show that

when
N h[n] 0sn=N-1 6.198
otnl= 0 otherwise (6.198)
the mean-square error 2 defined by
1 o 2
2_ 4 —
e* = 2nf_n| HQ)-H,Q)| dQ (6.199)
is minimized.
By definition (6.27)

H@)= Y hlnle’™ and  H,@= Y h,lnle /™

n=—x n=—oo
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Let EQ)=H®Q) - H,(Q)= E (h[n]— h,[n)) e /"
n=—oo
= > eln]e /™ (6.200)
n=—o
where e[n] = h[n] — h [n]. By Parseval’s theorem (6.66) we have
1 2 - 2w 2
2_ b _ _ _
et = 2nf_ﬁ| E@Q)| do ,;_w' e[n]| an_J hln]— h,[n]|
N-1 , d , & )
= Y |hlnl=holnl [+ Y |hla][" + Y | Aln]| (6.201)
n=0 n=—oo n=N
The last two terms in Eq. (6.201) are two positive constants. Thus, £2 is minimized when
h[n] — h[n] =0 0=n=N-1
that is,
h[n] = h [n] 0=n=N-1
Note that Eq. (6.198) can be expressed as
h,[n] = h{n]w[n] (6.202)
where w[n] is known as a rectangular window function given by
0=n=N-1
wn]= "= (6.203)
0 otherwise
Discrete Fourier Transform
6.49. Find the N-point DFT of the following sequences x[n]:
(@) xln] = 8[n]
(b) x[n] = uln] — u[n — N]
(a) From definitions (6.92) and (1.45), we have
N-1
Xtkl= Y 8lnlwy' =1 k=0,1,..,N -1
n=0
Fig. 6-34 shows x[n] and its N-point DFT X[k].
xin] X1k
1 1
———————
°oe e g .
0 N-1 m 0 N-1 k
Fig. 6-34

(b) Again from definitions (6.92) and (1.44) and using Eq. (1.90), we obtain

1-wy"

N-1
Xikl= S wy" = =0  k#0
2=
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since WV = ¢ JCrMIN = g=jkan = 1,

N-1 N-1
X[01= Yy Wy=Y1=N
n=0 n=0
Fig. 6-35 shows x[n] and its N-point DFT X[X].

] XK

1111 S o

0 N1 m 0 N1
Fig. 6-35

v

6.50. Consider two sequences x[n] and h[n] of length 4 given by

x[n]=cos(%n) n=0,12,3

n
h[n]=(%) n=0,1,2,3

(a) Calculate y[n] = x[n] ® h[n] by doing the circular convolution directly.
(b) Calculate y[n] by DFT.

(a) The sequences x[n] and h[n] can be expressed as

x[n] = {1,0, 1,0} and hin) = {1,%, 5.5}

By Eq. (6.108)

3

ylnl=x[r]® h[n]= E x[i1A[n — i]moda
i=0

The sequences x[i] and A[n —i] 4, for n = 0, 1,2, 3 are plotted in Fig. 6-36(a). Thus, by Eq. (6.108) we get

n=0 y[0]=11)+ (— 1)(%)=%
n=1 y[l]=l(%]+(— 1)(?1]=§
n=2 y[2]=l(%)+(— 1)(1)=—%
n=13 y[3]=1(%)+(— 1)(%)=—§
i3]

which is plotted in Fig. 6-36(b).
(b) ByEq.(6.92)

3

X(k1= Y x(nW;" =1-W;*  k=0,1,2,3
n=0

Hik= S a1 bws Lz L k0,3
“ 4 2 4 4 4 8 4 s 1y &y
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Then by Eq. (6.107) the DFT of y[n] is

Y[k]= X[k H[Kk]=(1— W2*) 1+%W‘f +%W42k +%Wf")

ook 3,2k 30,3k 4k Sk
S+ oWh - 2w 2wk Zwik— Zw
S Ty e e T W T

Since Wik= (W}H* = 1¥and W, = W@+ Dk = Wk, we obtain

3 03« 3 3%
Y[k]l==+=Wf —=—w2* - —w k=0,1,2,3
(K] 4 gl Ty e T

Thus, by the definition of DFT [Eq. (6.92)] we get

o233 3
J 4’8 4 38

[ -
T *—
-
- —
L
w -
ra =i
o j—
Q ferr——_—
B = —‘__E

-y

Bl =] a4 Al 1] g
1 1
1 n=0 1 n=1
2 T z
e ! , e ! ,
0123 i o123 i
h[n Jin—nd-l h[n j] mod 4
1 1
1 ‘ n=2 1 N n=3
z
T * R ! I ,
0123 i o123 i
(@)
¥ln]
1F
»

3] =
—a

k

[T

(b)
Fig. 6-36
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6.51. Consider the finite-length complex exponential sequence

" 0=sp=N-1
x[n]= .
0 otherwise

(a) Find the Fourier transform X(Q) of x[n].
(b) Find the N-point DFT X[k] of x[n].

(a) From Eq. (6.27) and using Eq. (1.90), we have

® . N-1 . N-l
X(Q)= E x[n]e"g" = E /S0 o= _ E e /@
n=—o n=0 n=0

|— g J@-QN o J@-QuN2 (ej(Q—QO)N/Z _ e—j(Q—QO)NIZ)

T i@ = PR CRCE (ej(Q—QO)IZ _e—j<9—90)/2)

sin[(Q — Q) /2]

(b) Note from Eq. (6.98) that

k2n
X[k1= X @)g_ gy = X(—N )
we obtain
sin[(z—”k - QO)E
X[k]= ej[(Zfr/N)k—Qo][(N—l)/Zl 2

sin|[ 22X k-, |-
N 2

6.52. Show that if x[n] is real, then its DFT X[k] satisfies the relation
X[N — k] = X*[k]
where * denotes the complex conjugate.

From Eq. (6.92)

Nl N-1
XIN = K1= 3 x[n W ™" = 3 x{n]e/mMWbn
n=0 n=0

Now o~ JQRINYN=lon _ = j2an ,j@xiNYkn _ ,j(2x/N)kn

Hence, if x[n] is real, then x*[n] = x[n] and

N-1 N-1 *
X[N_ k]= E x[n] ej(27r/N)kn — [ E x[n] e—j(Zn/N)kn _ X*[k]
n=0 n=0
6.53. Show that
1
x[n]=DDFT{X[k]} = N[DFT{X *LKIH*
where * denotes the complex conjugate and
X[k] = DFT{x[n]}
We can write Eq. (6.94) as
_ 1 N_IX k JQr/NYkn | _ 1 N_IX* k —j(2r/N)nk ’
x[n)=— EO [kle =5 EO [kle

(6.204)

(6.205)
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Noting that the term in brackets in the last term is the DFT of X*[k], we get

x[n]=IDFT {X[k]}= %[DFT{X*[k]}]*

which shows that the same algorithm used to evaluate the DFT can be used to evaluate the IDFT.

6.54. The DFT definition in Eq. (6.92) can be expressed in a matrix operation form as

where

X = Wx (6.206)
x[0] X[0]
x[1 X[l
wo| x| X
x[N-1] X[N-1]
11 1 1
1 Wy w2 oo wy !
Wy =1 w2 Wi WRYD (6.207)
Ll WA],V—I WIS(N—I) W]\([N—l)(N—l)

The N X N matrix W, is known as the DFT matrix. Note that W, is symmetric; that is, WNT =W, where
W/ is the transpose of W,.

(a) Show that

I
wy ! = 5 W (6.208)

where W, ! is the inverse of W, and W, is the complex conjugate of W,.

(b) Find W, and W, ! explicitly.

(@)

(b)

If we assume that the inverse of W, exists, then multiplying both sides of Eq. (6.206) by W, I, we obtain
X = WN_'X (6.209)
which is just an expression for the IDFT. The IDFT as given by Eq. (6.94) can be expressed in matrix form as
x=%W,;X (6.210)

Comparing Eq. (6.210) with Eq. (6.209), we conclude that

o 1 *
WN :ﬁWN
LetW, . ., denote the entry in the (n + 1)st row and (k + 1)st column of the W, matrix. Then, from
Eq. (6.207)
Wn+| P ‘:lk _ e—j(Zn/4)nk _ e—j(:r/Z)nk _ (_j)nk (6211)
and we have
1 1 1 1 1 1 1 1
1 —j -1 LU -1 =
W, = W, =— 6.212
-1 -1 Y4l -1 -1 6212)
1 j -1 —j 1L —j -1



Q_ CHAPTER 6 Fourier Analysis of Discrete-Time

6.55. (@) Find the DFT X[k] of x[n] = {0, 1,2, 3}.
(b) Find the IDFT x[n] from X[k] obtained in part (a).

(a) Using Egs. (6.206) and (6.212), the DFT X[£] of x[n] is given by

X011 11 1 1 170 6
xpl (1o - -1 g1 |-2+02
X211 -1 o1 —1fl2 | -2

x| [t -1 —jl3] [-2-j2

(b) Using Egs. (6.209) and (6.212), the IDFT x[n] of X[£] is given by

x[0] 11 1 1 6 01 [0
| 1fr G- —jl|-2+2| 14| |1
21| 4|1 -1 1 —1|| -2 | 4|s8| |2
x[3] 1 -j -1 jll-2-j2 12| |3

6.56. Let x[n] be a sequence of finite length N such that
x[n] =0 n<0,n=N (6.213)

Let the N-point DFT X[k] of x[n] be given by [Eq. (6.92)]

N-1
XK= 3 x(nlWy" Wy =e /2" k=01, ,N-1 (6214)
n=0

Suppose N is even and let
Sfln] = x[2n] (6.215a)
gln] = x[2n + 1] (6.215b)

The sequences f[n] and g[n] represent the even-numbered and odd-numbered samples of x[n],
respectively.

(a) Show that

fInl=g[n]=0 outsideOSnSg—l (6.216)
(b) Show that the N-point DFT X[£] of x[n] can be expressed as
X N
X[k]=F[k]+ Wy G[k] k=0,1,...,?—1 (6.217a)
X [k +%} = F[k] —WN"G[k] k=0, 1,...,%—1 (6.217b)
(N/2)-1 } N
where Flkl= Y flnlWyp, k=0,1,..., 1 (6.2182)
n=0
(N/2)-1 N
Glkl= Y glnlWyp, k=0.1,...,—~1 (6.218b)
n=0

(c¢) Draw a flow graph to illustrate the evaluation of X[k] from Eqgs. (6.217a) and (6.217b) with N = 8.

(d) Assume that x[n] is complex and W;* have been precomputed. Determine the numbers of complex
multiplications required to evaluate X[k] from Eq. (6.214) and from Eqgs. (6.217a) and (6.217b) and
compare the results for N = 210 = 1024.
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(a) From Eq. (6.213)

fIn]l=x[2n]=0,n<0 and f[ﬂ]=x[N]=0

2
N
Thus fln]l=0 n<0,n2?
Similarly
N
gln]l=x[2n+1]1=0,n<0 and g[?}=x[N+l]=0
Thus, g[n]=0 n<0,n2%

(b) We rewrite Eq. (6.214) as

XK= x[mWy" + ) x[n]Wy"

neven nodd
(N/2)-1 (N/2)-1
= Y x2mIWgm™+ Y x2m+ Wy (6.219)
m=0 m=0
But W]5 — (e—j(ZIr/N))Z — e—j(4lt/N) — e—j(Z;r/N/Z) — WN/Z (6.220)

With this substitution Eq. (6.219) can be expressed as

(N/2)—-1 ‘ (N/2)—-1 ‘
X(kl= Y flmlWys +Wy Y glmlWy,
m=0 m=0
=F[k]+ W5 G[k]  k=0,1,..,N—1 (6.221)
(N72)-1 ‘ N
where F[k]= flmWy),  k=0,1,...,——1
'20 N/2 2
(N/2)—-1 ‘ N
Glk]= glnIWyy,  k=0,1,...,——1
nzo N/2 )

Note that F[k] and G[k] are the (N/2)-point DFTs of f[r] and g[n], respectively. Now
WAtV =wiwi? =—wy (6.222)
since W2 = (e JEmINNYNID) = gmim = (6.223)

Hence, Eq. (6.221) can be expressed as
X[k]=F[k]+ W G[k] k=0,1,...,
N k
X k+? = F[k]-Wy G[k] k=0,1,...,

(c¢) The flow graph illustrating the steps involved in determining X[k] by Eqs. (6.217a) and (6.217b) is shown in
Fig. 6-37.

(d) To evaluate a value of X[k] from Eq. (6.214) requires N complex multiplications. Thus, the total number of
complex multiplications based on Eq. (6.214) is N2. The number of complex multiplications in evaluating
F[k] or G[k] is (N/2). In addition, there are N multiplications involved in the evaluation of W{V"G[k]. Thus,
the total number of complex multiplications based on Eqs. (6.217a) and (6.217b) is 2(N/2)> + N = N%2 + N.
For N = 2! = 1024 the total number of complex multiplications based on Eq. (6.214) is 220 =~ 10% and is
10%/2 + 1024 = 10%/2 based on Eqgs. (6.217a) and (6.217b). So we see that the number of multiplications is
reduced approximately by a factor of 2 based on Eqs. (6.217a) and (6.217b).

The method of evaluating X[k] based on Eqs. (6.217a) and (6.217b) is known as the decimation-in-time fast

Fourier transform (FFT) algorithm. Note that since N/2 is even, using the same procedure, F[k] and G[k] can
be found by first determining the (N/4)-point DFTs of appropriately chosen sequences and combining them.
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x[0]

X2 4-point

x[4] DFT

x[&]

x[1]

x[3] ;

B W | 6]
< * = &

Gl3 We 1
7] m b 7]

=1

Fig. 6-37 Flow graph for an 8-point decimation-in-time FFT algorithm.

6.57. Consider a sequence

x[n] ={1,1, —1,

-1,

-1,1,1, -1}

Determine the DFT X[k] of x[n] using the decimation-in-time FFT algorithm.

From Figs. 6-38(a) and (b), the phase factors Vi{"‘ and Ws" are easily found as follows:

w) =1 w)=—j
0 A |
and W8 =1 Wszﬁ_]ﬁ
1 1
W =—1 W85=—$+j$

Next, from Egs. (6.215a) and (6.215b)

Wi=—-1 W}=j
2 , 3 1 1
Wg=—Jj Wg:_ﬁ_]ﬁ
. 1 o1
Wy =j Ws7=$+1$

fln] = x[2n] = {x[0], x[2], x[4], x[6]} = {1, -1,-1,1}
gln]l = x[2n + 1] = {x[11, x[3], x[5], x[7]} = {1, —1,1, -1}

Then, using Eqgs. (6.206) and (6.212), we have

(FI0]1] 1 1 1
Fi| 1 —j -1
Fl21l |1 -1 1
FI31| 1 -1
Glo]] 11 1
Gyl 1 -j -1
G2]| |1 -1 1
G| 1 j -1

and by Eqgs. (6.217a) and (6.217b) we obtain

X[0] = F[0] + W,2G[0] = O
X[11=F[1]1 + W/G[1] =2 + j2
X[2] = F[2] + W2G[2] = —j4
X[3] = F[3] + WJG[3] =2 —j2

Noting that since x[#] is real and using Eq. (6.204), X[7], X[6], and X[5] can be easily obtained by taking the

conjugates of X[1], X[2], and X[3], respectively.

17 1 0
Jll-1 [2+i2
-1||-1] | o
-ill 1] [2-72
111 11 [0
J{—1_10
—1|] 1| |4
-jll-1 [0

X[4] = F[0] — W2G[0] = O
X[5]1 = F[1]1 - W/G[1]1 =2+ j2
X[6] = F[2] — W2G[2] = j4
X[7]1 = F[3] - W3G[3] =2 —j2
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Imiz) rm(z)

n

Re(z)

n=31

(a) (b}
Fig. 6-38 Phase factors W," and W'

6.58. Let x[n] be a sequence of finite length N such that

x[n] =0 n<0,n=N

Let the N-point DFT X[k] of x[n] be given by [Eq. (6.92)]

N-—1
X[kl= Y x[mWy" Wy =e IO k=01, N~1
n=0

Suppose N is even and let

P[n]=x[n]+x[n+g] Osn<%

q[n]=(x[n]—x n+%)WIG O0sn<—

2
(a) Show that the N-point DFT X[£] of x[n] can be expressed as

X[2k]= P[k] k=0,1,...,%—1
N
X[2k+1]1=Ql[k] k=0,l,...,?—1
(N/2)—1 . N
where Plk]= [n] W k=0,1,...,——1
'20 P NI2 )
(N/2)-1 . N
Qlk]l= [R]Wa - k=0,1,...,.——1
'20 q N/2 5

(6.224)

(6.2252)

(6.225b)

(6.2262)

(6.226b)

(6.227a)

(6.227b)

(b) Draw a flow graph to illustrate the evaluation of X[k] from Eqgs. (6.226a) and (6.226b) with N = 8.

(a) We rewrite Eq. (6.224) as

(N/2)—-1

N-1
X(k1= 3 x(nWy" + Y x(nlWwy"
n=0 n=N/2

(6.228)
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(b)

Changing the variable n = m + N/2 in the second term of Eq. (6.228), we have

(N/2)-1 ‘ p— (N/2)-1 N ‘
X[k]= x[nIWy" +W x[m+— wy" (6.229)
Eo v ,,,20 2|

Noting that [Eq. (6.223)]
WN(NIZ)k — (_ l)k

Eq. (6.229) can be expressed as

(N12)-1 N
XK1=y {x[n] +(— 1) x[n +?]}WN"” (6.230)
n=0
For k even, setting k = 2r in Eq. (6.230), we have
(N12)-1 ) (N/2)-1 N
X[2r]= MW" = (W r=0,1,...,——1 (6.231)
mE=0 p N '20 p N2 2

where the relation in Eq. (6.220) has been used. Similarly, for £ odd, setting kK = 2r + 1 in Eq. (6.230), we get

(N/2)~1 R (N2)-1 N 6232)
X[2r+1]= (MW" = [nIWy" r=0,1,...,.——1 :
mE=O q N 20 q NI2 2

Equations (6.231) and (6.232) represent the (N/2)-point DFT of p[n] and g[n], respectively. Thus, Egs. (6.231)
and (6.232) can be rewritten as

X[2k]= P[k] k=0,1,...,%—1
N
X[2k+1]=Q[k] k=0,1,...,?—1
(N12)—1 ) N
where Plk]= pln]Wyr. k=0,1,...,——1
'20 N2 >
(N12)—1 ) N
Qlk]l= q[n]W, " k=0,1,...,——1
'20 N2 2

The flow graph illustrating the steps involved in determining X[k] by Eqgs. (6.227a) and (6.227b) is shown in
Fig. 6-39.

The method of evaluating X[k] based on Eqgs. (6.227a) and (6.227b) is known as the decimation-in-
[frequency fast Fourier transform (FFT) algorithm.

X[0] G .. L X[O0]

1] e Py ot [—— 2
x[2] \\\/ / PE DFT |—— X[4]
NX X A7 o -

q

x[3]

x[4] B X[1]
Xl d4-pont Xl
x[6] . DFT }—— X[5]
1 2
- all Y%
x[71] =) :1-' ~ X[7]

Fig. 6-39 Flow graph for an 8-point decimation-in-frequency FFT algorithm.
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6.59. Using the decimation-in-frequency FFT technique, redo Prob. 6.57.

6.60.

From Prob. 6.57
x[n] = {lvlw_ly_lv_lvlvlv_l}

By Eqgs. (6.225a) and (6.225b) and using the values of W;" obtained in Prob. 6.57, we have

plnl=x[n]+ x[n + %]
={1-1,0+1,(-1+1),(-1-1)}={0,2,0,2}
qln]= (x[n] —-x [n + %D W'

={A+DWY,A— D)Wy, (—1-D)wi, (— 1+ D)W}
={2,0, j2,0}
Then using Eqgs. (6.206) and (6.212), we have

PIO1] [1 1 1 11[ O 0
P (1 —j -1 G| 2| [-ja
p21l |11 -1 1 —1f] o] |0
P 1 -1 —j|-2] | e
Q017 11 1 11727 [2+j2
om| {1t —j -1 jllo]| [2-j2
o1l I -1 1 —1||j2] |2+j2
o3| [t j -1 —j|lo] |2-j2

and by Eqgs. (6.226a) and (6.226b) we get

X[0] = P[0] =0

X[1] = Q[0] = 2 + j2
X[2] = P1] = —j4
X[3]=QM]=2-j2

X[4] = P[2] = 0
X[51=QR]=2+j2
X[6] = P[3] = j4
X[M1=0B]1=2~-j2

which are the same results obtained in Prob. 6.57.

Consider a causal continuous-time band-limited signal x(#) with the Fourier transform X(w). Let

x[n] = Tx(nT) (6.233)
where T is the sampling interval in the time domain. Let
X[k] = X(k A w) (6.234)

where Aw is the sampling interval in the frequency domain known as the frequency resolution. Let T,
be the record length of x(#), and let w,, be the highest frequency of x(#). Show that x[n] and X[k] form an
N-point DFT pair if

L 20 _ N g =Tt (6.235)
T, Aw n

Since x(f) = 0 for ¢ < 0, the Fourier transform X(w) of x(¥) is given by [Eq. (5.31)]
X@)=[" x@ye ™ di=["x(t)e " dr (6.236)
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Let T, be the total recording time of x(#) required to evaluate X(w). Then the above integral can be approximated by
a finite series as

N-1
X(@)=Ar Y x(1,)e
n=0

where 7, = n Atand T| = N At. Setting @ = w, in the above expression, we have
N-1 .
X(@)=At Yy x(t,)e (6.237)
n=0

Next, since the highest frequency of x(?) is ,,, the inverse Fourier transform of X(w) is given by [Eq. (5.32)]

1 o ; 1 (23] .
xt)=—/[ X)e’ do=— X (w) e’ dw )
®) an_w (@) 2nf_wM (w) (6.238)

Dividing the frequency range —,, = w = w,, into N (even) intervals of length Aw, the above integral can be
approximated by

Ao N ‘

== S X(@)e™
2 S

where 2w, = N Aw. Setting t = ¢_in the above expression, we have

w(N/Z)—l )
Xt)="— F X(@)en (6.239)
k=—N/2

Since the highest frequency in x(?) is w,,, then from the sampling theorem (Prob. 5.59) we should sample x(¢)
so that

2
—HZZwM

s

where T is the sampling interval. Since T, = At, selecting the largest value of Az (the Nyquist interval), we have

At= L
Wy
n  aN
d Wy = — =" 6.240
an MTAC T, (6:240)
Thus, N is a suitable even integer for which
Ty _ 20y oyT
S = and N= 6.241
T, Aw n ( )
From Eq. (6.240) the frequency resolution Aw is given by
2w 2N 2m
Aop="M =" - .
N NT, T, (6.242)
Lett, = n Atand w, = k Aw. Then
T, 27 2m
t,w, =nAt)(kAw)=nk-L==""nk 6.243
20 = (nA)( ) NT, N ( )
Substituting Eq. (6.243) into Egs. (6.237) and (6.239), we get
N-1 .
X(kAw)= E Atx(nAt)e /3m/Nnk (6.244)
n=0
» N
and x(nAD=— % X(kAw)e2M (6.245)

T k==N12
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Rewrite Eq. (6.245) as

x(nar)=22
2n

(N/2)-1 —~1
Y X(kAw)/ @M 4 N X (k Aw) /OO
k=0 k=-N/2

Then from Eq. (6.244) we note that X(kAw) is periodic in k with period N. Thus, changing the variable k = m — N
in the second sum in the above expression, we get

(N/2)-1 ) N-1 .
x(nAt)= Aw E X (kAw) elCFNmk | E X (m Aw) /CF/Nmm
27| & m=N/2
Aw E X(kAw)e,(zn/N)nk (6.246)

Multiplying both sides of Eq. (6.246) by At and noting that Aw At = 2x/N, we have

N-1
x(nAt)At=i E X (kA ) /@m/Nnk (6.247)
N n=0
Now if we define
x[n] = Atx(n Af) = Tx(nT,) (6.248)
X[K] = X(k Aw) (6.249)

then Eqgs. (6.244) and (6.247) reduce to the DFT pair; that is,

N-1
XK1= 3 x[nlWy"  k=0,1,...,N-1
n=0
N-1
x[n]= E XKWy " n=0,1,...N—1

6.61. (a) Using the DFT, estimate the Fourier spectrum X(w) of the continuous-time signal

x(t) = e u(t)

Assume that the total recording time of x(#) is 7| = 10 s and the highest frequency of x(2) is
= 100 rad/s.

(b) Let X[k] be the DFT of the sampled sequence of x(#). Compare the values of X[0], X[1], and X[10]
with the values of X(0), X(Aw), and X(10Aw).

(a) From Eq. (6.241)
wy Ty _ 100(10) _

N= =318.3
1 b 1
Thus, choosing N = 320, we obtain
A —@—2—0.625&@
320 8
At—ﬂ—L—O.OMS
320 32
and Wy =W,y = e /@230
Then from Egs. (6.244), (6.249), and (1.92), we have
N-1
X[k]= E At x(n At) e /PrNInk
flam
1 1 — £32000.031)

*19
_1 E ~n(0.031),,~ j(2/320)nk
2 32 1 ¢ 0031 j2aT320)k

0.031
- [1—0.969 cos(kx /160)] + j0.969 sin(km /160) (6.250)

which is the estimate of X(k A w).
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(b) Setting k =0,k = 1,and k = 10 in Eq. (6.250), we have

0.031 _
1-0.969
0.031

X[1]=——— = 0.855¢ /%%
0.0312 + j0.019

xp10]= — 2081 _ ¢ 159,134
0.0496 — j0.189

X[0]=

From Table 5-2

x®)=eu@t) < X(w)=

jo +1
and X0)=1
X(Aw)= X(0.625)= ; =0.848¢7 /0%
1+ j0.625
X(10 A w)= X(6.25) = ; =0.158¢7/1412
1+ j6.25

Even though x(?) is not band-limited, we see that X[ k] offers a quite good approximation to X(w)
for the frequency range we specified.

SUPPLEMENTARY PROBLEMS

6.62. Find the discrete Fourier series for each of the following periodic sequences:
(a) x[n] = cos(0, 1n)
(b) x[n] = sin(0, 1xn)
(¢) x[n] = 2 cos(1.6xn) + sin(2.47n)

6.63. Find the discrete Fourier series for the sequence x[n] shown in Fig. 6-40.

Fig. 6-40

6.64. Find the trigonometric form of the discrete Fourier series for the periodic sequence x[n] shown in Fig. 6-7 in Prob. 6.3.

6.65. Find the Fourier transform of each of the following sequences:
(@) x[n] =al",|a| <1
(b)  xln] = sin(Qyn), |Q,| <=
© xn]=ul-n—1]

6.66. Find the Fourier transform of the sequence x[n] shown in Fig. 6-41.

x[n]

1 _

it

Fig. 6-41
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6.67. Find the inverse Fourier transform of each of the following Fourier transforms:
(a) X(Q) = cos(2Q)
) X(Q) =jQ

6.68. Consider the sequence y[n] given by

x[n] neven
LT nodd
Express y(€2) in terms of X(2).

6.69. Let
1 |n|=2
=10 |n|>2
(a) Find y[n] = x[n] * x[n].

(b) Find the Fourier transform Y(€2) of y[n].

6.70. Verify Parseval’s theorem [Eq. (6.66)] for the discrete-time Fourier transform, that is,

DREG]E =%f2n| X @]

n=—o

6.71. A causal discrete-time LTI system is described by

yln]— %)’[n— 1]+%)’[n— 2]=x[n]

where x[n] and y[n] are the input and output of the system, respectively.
(a) Determine the frequency response H(Q2) of the system.

(b) Find the impulse response h[n] of the system.

(¢) Find y[n] if x[n] = (12)”14 [n].

6.72. Consider a causal discrete-time LTI system with frequency response
H(Q) = Re{H(Q)} + jIm{H(Q)} = A(Q) + jB(Q)

(a) Show that the impulse response A[n] of the system can be obtained in terms of A(€2) or B(€2) alone.
(b) Find H(Q) and h[n] if
Re{H(2)} = A(R) = 1 + cos Q

6.73. Find the impulse response h[n] of the ideal discrete-time HPF with cutoff frequency Q_ (0 < Q_ < ) shown in
Fig. 6-42.

Hi)

Fig. 6-42

6.74. Show that if H, ,(z) is the system function of a discrete-time low-pass filter, then the discrete-time system whose
system function H(z) is given by H(z) = H, ,(—2) is a high-pass filter.
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6.75.

6.76.

6.77.

6.78.

6.79.

6.80.

6.81.

Consider a continuous-time LTI system with the system function

H ()= ——
(8) (s +1)?

Determine the frequency response H (€2) of the discrete-time system designed from this system based on the
impulse invariance method.

Consider a continuous-time LTI system with the system function

1
H,(s)=—
) s+1

Determine the frequency response H (£2) of the discrete-time system designed from this system based on the step
response invariance; that is,

s n] = s(nT)

where s (f) and s [n] are the step response of the continuous-time and the discrete-time systems, respectively.

Let Hp(z) be the system function of a discrete-time prototype low-pass filter. Consider a new discrete-time low-pass
filter whose system function H(z) is obtained by replacing z in Hp(z) with (z — a)/(1 — az), where a is real.

(a) Show that
H,@)|
H,(2)|

~HQ©|
=H(2)|

z=1+jo z=1+jo

z==1+jg z==1+jg

(b) Let Qpl and Q, be the specified frequencies (< ) of the prototype low-pass filter and the new low-pass filter,
respectively. Then show that

sin[(sz,,1 —9,)/2]
sin[(sz,,1 +9,)/2]

o=

Consider a discrete-time prototype low-pass filter with system function
H(2) =051 + "

(a) Find the 3-dB bandwidth of the prototype filter.

(b) Design a discrete-time low-pass filter from this prototype filter so that the 3-dB bandwidth of the new filter is
2n/3.

Determine the DFT of the sequence
x[n] = a" 0=n=N-1
Evaluate the circular convolution

y[n] = x[n] ® hn]
where x[n] = u[n] — uln — 4]
h[n] = u[n] — u[n — 3]
(a) Assuming N = 4.
(b) Assuming N = 8.

Consider the sequences x[n] and A[n] in Prob. 6.80.
(a) Find the 4-point DFT of x[#n], h[n], and y[n].
(b) Find y[n] by taking the IDFT of Y[].
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6.82. Consider a continuous-time signal x(7) that has been prefiltered by a low-pass filter with a cutoff frequency of
10 kHz. The spectrum of x(?) is estimated by use of the N-point DFT. The desired frequency resolution is 0.1 Hz.
Determine the required value of N (assuming a power of 2) and the necessary data length 7.

ANSWERS TO SUPPLEMENTARY PROBLEMS

662 (@) xlal=Z e + 2% 0~ 0.1x
1 |
(b) x[n]= Temon - 76“990", Q,=0.17
J J

(¢) x[n]=(1- jO.5)e’" +(1+ j0.5)e/*™", Q) =0.4x

8
6.63. x[n]= Y ¢, &SN Q) = 2z

k=0 ?

e =— j 2 |sin[ 2T |k + 2sin | 27 | k + 3sin | 3% |«
9 9 9 9

3 1
6.64. x[n]=E—cos%n—sinzn——cosnn

6.65. (a) X(Q)=L
. 1—2acosQ + a?
(b) X(@)=—jr[d(Q—Q))—8(Q—-Q)|RQ.|Q|=n

1
(c) X(Q)=n6(9)—W,IQISn

6.66. X(L2) = j2(sin Q + 2sin 2Q + 3 sin 3Q)

6.67. (a) x[n]= % o[n—2]+ %6[}1 +2]

-D"/n n+0

®) x[n]={0 e

6.68. Y(Q) = lZX(Q) + lZX(Q - )

5(1—|n|/5) |n|=<5
6.69. (@ ylnl=y 1n]>5

sin(2.5Q2) ’
sin(0.5€2)

(b)) Y(@)= (
6.70. Hint: Proceed in a manner similar to that for solving Prob. 5.38.

1
1- ge_jQ + le_zjQ
4 8

e
© ylnl= [(i) +n(i)n_l}u[n]
4 2

6.71. (a) H[Q]=




@

6.72.

6.73.

6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

6.80.

6.81.

6.82.

(a) Hint: Process in a manner similar to that for Prob. 5.49.
(b) H(Q) =1+ e h[n] = 6[n] + 6[n— 1]

hin]=8[n]~ sinQ_n

Hint: Use Eq. (6.156) in Prob. 6.37.
e /9

HQ)=T, e s ————,
(1—6 T e jQ)Z

where T is the sampling interval of h_(f).

Hint:  hy[n]=s,[n]—s4[n—1]

_ _Tx —je
H@)=4=¢ e

1 — e_Ts e_.lg
) Jr _
. Q e a
Hint: Sete’ P =———  and solve for c.
1—ae/

Hint: Use the result from Prob. 6.77.

T

a Q = —
( ) 3db )
1+z7!

(b) H(z)=0.634———
) 1+0.2687"

N

l—a
X[kl= 1— qe 1INk

(@ yln] ={3,3,3,3}
by yln1={1,2,3,3,2,1,0,0}

(@) [X[0], X[1], X[2], X[3]] = [4,0,0,0]
[H[0], H[1], H[2], H[3]] = 3, — j, 1,]]
(Y101, ¥11], Y121, Y13]] = [12,0,0,0]

() yln] ={3,3,3,3}

N=2%and T, = 13.1072s

CHAPTER 6 Fourier Analysis of Discrete-Time



State Space Analysis

7.1 Introduction

So far we have studied linear time-invariant systems based on their input-output relationships, which are known
as the external descriptions of the systems. In this chapter we discuss the method of state space representations
of systems, which are known as the internal descriptions of the systems. The representation of systems in this
form has many advantages:

1. It provides an insight into the behavior of the system.
2. It allows us to handle systems with multiple inputs and outputs in a unified way.
3. It can be extended to nonlinear and time-varying systems.

Since the state space representation is given in terms of matrix equations, the reader should have some famil-
iarity with matrix or linear algebra. A brief review is given in App. A.

7.2 The Concept of State

A. Definition:

The state of a system at time #, (or n,) is defined as the minimal information that is sufficient to determine the
state and the output of the system for all times ¢ = #, (or n = n,) when the input to the system is also known for
all times ¢ = ¢, (or n = n)). The variables that contain this information are called the state variables. Note that
this definition of the state of the system applies only to causal systems.

Consider a single-input single-output LTI electric network whose structure is known. Then the complete
knowledge of the input x(#) over the time interval —< to ¢ is sufficient to determine the output y(#) over the same
time interval. However, if the input x(#) is known over only the time interval ¢, to 7, then the current through the
inductors and the voltage across the capacitors at some time #, must be known in order to determine the output
¥(?) over the time interval £, to ¢. These currents and voltages constitute the “state” of the network at time #,. In
this sense, the state of the network is related to the memory of the network.

B. Selection of State Variables:

Since the state variables of a system can be interpreted as the “memory elements” of the system, for discrete-time
systems which are formed by unit-delay elements, amplifiers, and adders, we choose the outputs of the unit-delay
elements as the state variables of the system (Prob. 7.1). For continuous-time systems which are formed by integra-
tors, amplifiers, and adders, we choose the outputs of the integrators as the state variables of the system (Prob. 7.3).
For a continuous-time system containing physical energy-storing elements, the outputs of these memory elements
can be chosen to be the state variables of the system (Probs. 7.4 and 7.5). If the system is described by the differ-
ence or differential equation, the state variables can be chosen as shown in the following sections.

—
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Note that the choice of state variables of a system is not unique. There are infinitely many choices for any

given system.

7.3 State Space Representation of Discrete-Time LTI Systems

A. Systems Described by Difference Equations:

Suppose that a single-input single-output discrete-time LTI system is described by an Nth-order difference equation

yln] +ayln =11+ -+ ayyln — N] = x[n]

(7.1)

We know from previous discussion that if x[n] is given for n = 0, Eq. (7.1) requires N initial conditions y[—1],
y[—2], ...,y[—N] to uniquely determine the complete solution for n > 0. That is, N values are required to spec-

ify the state of the system at any time.
Let us define N state variables gq,[n], g,[n], ..., g\[n] as

q[n]=y[n—N]
gy[n]=y[n—(N —D]=y[n—N +1]
gyln]=yln—1]

Then from Eqs. (7.2) and (7.1) we have

q,[n + 1] = g,[n]
g,[n + 1] = gq,[n]

qyln + 11 = —ayq,[n] — ay_,q,[n] — - — a,q,[n] + x[n]

and yln] = —ayq,[n] — ay_,q,[n] — - — a, qy[n] + x[n]

In matrix form Eqgs. (7.3a) and (7.3b) can be expressed as

q[n+1] 0 1 0 - 0 ][qln] 0
galn+11|_ ? ? ! ? qzz[n] N ?x[n]
gyln+1]| |—ay —ay_; —ay, - —a||qyln] 1
q,[n]
yin=[~ay —ay, - —a] qzsln] + [1]x[n]
qnln]

Now we define an N X 1 matrix (or N-dimensional vector) q[n], which we call the state vector:

q,[n]

qin]= qZ:[n]

gnln]

(72)

(7.32)

(7.3b)

(7.42)

(7.4b)

(7.5)
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Then Eqgs. (7 .4a) and (7.4b) can be rewritten compactly as

q[n + 1] = Aq[n] + bx[n] (7.6a)
yln] = cq[n] + dx[n] (7.6b)
where
0 1 0 0 0
0 0 1 0 0
A= . b=
—ay —ay-; —ay—, T4 1
c=[—aN —ay_; —al] d=1

Equations (7.6a) and (7.6b) are called an N-dimensional state space representation (or state equations) of
the system, and the N X N matrix A is termed the system matrix. The solution of Egs. (7.6a) and (7.6b) for a given
initial state is discussed in Sec. 7.5.

B. Similarity Transformation:

As mentioned before, the choice of state variables is not unique and there are infinitely many choices of the state
variables for any given system. Let T be any N X N nonsingular matrix (App. A) and define a new state vector

v[n] = Tq[n] (X))

where q[n] is the old state vector which satisfies Egs. (7.6a) and (7.6b). Since T is nonsingular; that is, T !
exists, and we have

q[n] = T~ 'v[n] (7.8)
Now

vin + 1] = Tq[n + 1] = T(Aq[n] + bx[n])

= TAq[n] + Tbx[n] = TAT ! v[n] + Tbx[n] (7.9a)
y[n] = eq[n] + dx[n] = T~ ! v[n] + dx[n] (7.9b)
Thus, if we let

A = TAT! (7.10a)
b=Tb ¢=cT! d=d (7.10b)

then Eqgs. (7.9a) and (7.9b) become
vln + 1] = Av[n] + bx{n] (7.11a)
yln] = &v[n] + dx[n] (7.11b)

Equations (7.11a) and (7.11b) yield the same output y[n] for a given input x[n] with different state equations.
In matrix algebra, Eq. (7.10a) is known as the similarity transformation and matrices A and A are called sim-
ilar matrices (App. A).

C. Multiple-input Multiple-Output Systems:

If a discrete-time LTI system has m inputs and p outputs and N state variables, then a state space representation
of the system can be expressed as

q[n + 1] = Aq[n] + Bx[n] (7.12a)
yln] = Cqln] + Dx[n] (7.12b)



CHAPTER 7 State Space Analysis

where
qi[n] x;[n]
atnl=| 2 =2y
gyln] Xpln]
and
[an an - a (b1 by
I R o I T e
ay1  An2 ANN N xN by, by;
‘i1 G2 N dyy dy
c= Ca1 C?z N D= d.21 d.zz
e @ e |y _dp1 d,,

niln]
_ y,[n]

ypln]

by

m

bNm NXm
dlm

dZm

d

pm pXm

7.4 State Space Representation of Continuous-Time LTI Systems

A. Systems Described by Differential Equations:

Suppose that a single-input single-output continuous-time LTI system is described by an N th-order differential

equation

dVyy  d"ly

®

dtN +a

arV -

— totayy(@®)=

x(t)

(7.13)

One possible set of initial conditions is y(0), yP(0), ..., y¥~1(0), where y® () = d*y(¢)/dt*. Thus, let us define

N state variables g,(2), g,(), ..., gy (?) as

q,(t)=y(t)
7=y
av®=y""@)
Then from Eqs. (7.14) and (7.13) we have
fi.(t) = qz(t)
9:(t)=q5(1)
gn(@) = —ayq,(t) —ay_14,(1) = —aygy (1) + x(1)
and @) = q,(0)

where g,(1) = dq(t)/dt.

In matrix form Eqgs. (7.15a) and (7.15b) can be expressed as

ql(t) 0 1 0 0 ql(t) 0

] 0 0 1 -« 0

QZ:(f) | : : . : QZ:(t) N 0 (1)
qn () —ay —ay-; —ay—p - —a| [qy(®) 1

(7.14)

(7.15a)

(7.15b)

(7.16a)
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a(®)
o =]1 0“.0]%?) (7.16b)
qan (@)

Now we define an N X 1 matrix (or N-dimensional vector) q(f) which we call the state vector:

7 (1)
@)
q=| ") (7.17)
gy ()
The derivative of a matrix is obtained by taking the derivative of each element of the matrix. Thus,
4:1(?)
dq(t) _ . 4,(1)
———==q()={"". 7.18
& q() : (7.18)
gy ()
Then Egs. (7.16a) and (7.16b) can be rewritten compactly as
q(?) = Aq(?) + bx(9) (7.19a)
(1) = eq(?) (7.19b)
where
0 1 0 0 0
0 0 1 0 0
A= . b= c=[1 0 0]
—ay TAay-1 Tay-2 T aq 1

As in the discrete-time case, Egs. (7.19a) and (7.19b) are called an N-dimensional state space representa-
tion (or state equations) of the system, and the N X N matrix A is termed the system matrix. In general, state
equations of a single-input single-output continuous time LTI system are given by

q(?) = Aq(?) + bx() (7.202)

(o) = eq(?) + dx(?) (7.20b)

As in the discrete-time case, there are infinitely many choices of state variables for any given system. The solu-
tion of Eqs. (7.20a) and (7.20b) for a given initial state are discussed in Sec. 7.6.

B. Multiple-Input Multiple-Output Systems:

If a continuous-time LTI system has m inputs, p outputs, and N state variables, then a state space representation
of the system can be expressed as

q(1) = Aq() + Bx(2) (721a)
y(®) = Cq(r) + Dx(7) (7.21b)
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q:(1) x1(?) n(@)
where q(t)= QZ:(f) x(t)= xzz(f) y )= }’2:(0
an (1) X (1) 0!
and
[ayy ap - ay by by bim
a=|f 2o en) g P B
LAN1 GNn2 " ANN [y 1bv1 e Dy sem
[en e e [dyy dyy o dyy
e ] I T
[Cp1 @pa t Cpy XN _dp, dpz dpm pxm

7.5 Solutions of State Equations for Discrete-Time LTI Systems

A. Solution in the Time Domain:

Consider an N-dimensional state representation

q[n + 1] = Aq[n] + bx[n] (7.22a)
ylnl = eqln] + dx[n] (7.22b)

where A, b,c,anddare N X N,N X 1,1 X N,and 1 X 1 matrices, respectively. One method of finding q[~],
given the initial state q[0], is to solve Eq. (7.22a) iteratively. Thus,

q[1] = Aq[0] + bx[0]
q[2] = Aq[1] + bx[1] = A{Aq[0] + bx[0]} + bx[1]
= A2q[0] + Abx[0] + bx[1]

By continuing this process, we obtain

q[n]=A"q[0]+ A" 'bx[0]+--- +bx[n—1]
n—1
=A"q[0]+ Y A" "Fbx[k]  n>0 (7.23)
k=0

If the initial state is q[n ] and x[n] is defined for n = n, then, proceeding in a similar manner, we obtain

n—1
qln]=A"""q[n,]+ 2 A" "*bx[ng+ k] n>n,
k=0

(7.24)

The matrix A" is the n-fold product

A"=AA---A
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and is known as the state-transition matrix of the discrete-time system. Substituting Eq. (7.23) into Eq. (7.22b),
we obtain

n—1
yln]=cA"q[0]+ Y A" “bx[k]+dx[n]  n>0 (7.25)
k=0

The first term cA”"q[0] is the zero-input response, and the second and third terms together form the zero-state
response.

Determination of A™:

Method 1:

Method 2:

Method 3:

Let A be an N X N matrix. The characteristic equation of A is defined to be (App. A)
cM)=|AM—-A|=0 (7.26)

where | I — A| means the determinant of AI — A and 1 is the identity matrix (or unit
matrix) of Nth order. The roots of ¢(A) = 0, )»k (k=1,2,...,N), are known as the
eigenvalues of A. By the Cayley-Hamilton theorem A" can be expressed as [App. A,
Eq. (A57)]

"=bl+bA+ -+ bN_]AN“ (7.27)
When the eigenvalues 7\,( are all distinct, the coefficients by, b,, ..., by _, can be found from
the conditions
by + oA+t by_ Ay '=A0 k=1,2,..,N (7.28)

For the case of repeated eigenvalues, see Prob. 7.25.

The second method of finding A” is based on the diagonalization of a matrix A. If
eigenvalues A, of A are all distinct, then A” can be expressed as [App. A, Eq. (A.53)]

A" =P 0 A = 0 P! (7.29)

where matrix P is known as the diagonalization matrix and is given by [App. A, Eq. (A.36)]

P=[x x, xy] (7.30)
and x k=1, 2, ..., N) are the eigenvectors of A defined by
Ax, = AX, k=1,2,...,N (7.31)

The third method of finding A" is based on the spectral decomposition of a matrix A. When
all eigenvalues of A are distinct, then A can be expressed as

N
A=AE +LE, ++ 4 E, =Y LE, (7.32)
k=1
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where }\k (k=1,2,...,N) are the distinct eigenvalues of Aand E, (k = 1,2, ..., N) are
called constituent matrices, which can be evaluated as [App. A, Eq. (A.67)]

N
[Ja-2,D
m#
E, = _— (7.33)
l_[ (Ak - A’m)
m=1
m#k
Then we have
A"=AE +AE, +--+AE, (7.34)

Method 4: The fourth method of finding A” is based on the z-transform.
A" =3;‘{(zI—A)"z} (7.35)
which is derived in the following section [Eq. (7.41)].
C. The zTransform Solution:

Taking the unilateral z-transform of Eqs. (7.22a) and (7.22b) and using Eq. (4.51), we get

zQ(z) — zq(0) = AQ(z) + bX(z) (7.36a)
Y(z) = ¢Q(z) + dX(z) (7.36b)

where X(z) = 8,{x[nl}, Y(z) = 3,{y[n]}, and

0,(2)
Q@) =3, {alnl} = Q{(Z) where 0, (2) = 3, {g,[n1}
QN‘ (2)
Rearranging Eq. (7.36a), we have
@I - A)Q(2) = zq(0) + bX(z) (7.37)

Premultiplying both sides of Eq. (7.37) by (zI — A)~! yields
Q(z) = (zI — A)7!'zq(0) + (zI — A)"'bX(z) (7.38)
Hence, taking the inverse unilateral z-transform of Eq. (7.38), we get
aln] =37 {1~ A) "2} q@ + 87 {1 - 4) X0 (7.39)
Substituting Eq. (7.39) into Eq. (7.22b), we get
yln]=¢3;" {(zl - A)"z}q(O) +c3;! {(zl -A)! bX(z)} +dx[n] (7.40)
A comparison of Eq. (7.39) with Eq. (7.23) shows that

A" =3;‘{(zI—A)“z} (7.41)
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D. System Function H(z):

In Sec. 4.6 the system function H(z) of a discrete-time LTI system is defined by H(z) = Y(z)/X(z) with zero ini-
tial conditions. Thus, setting q[0] = 0 in Eq. (7.38), we have

Q@@ = (zI - A)"'bX(2) (7.42)
The substitution of Eq. (7.42) into Eq. (7.36b) yields

¥(2) = [c(zI — A)™'b + d] X(2) (7.43)
Thus,

H(z) =[c(zI-=A)"'b +d] (7.44)

E. Stability:

From Egs. (7.25) and (7.29) or (7.34) we see that if the magnitudes of all eigenvalues A, of the system matrix
A are less than unity, that is,

I ] <1 all k (7.45)

then the system is said to be asymptotically stable; that is, if, undriven, its state tends to zero from any finite initial
state q,. It can be shown that if all eigenvalues of A are distinct and satisfy the condition (7.45), then the system is
also BIBO stable.

7.6 Solutions of State Equations for Continuous-Time LTI Systems

A. Laplace Transform Method:

Consider an N-dimensional state space representation

q(H) = Aq(?) + bx(?) (7.46a)
¥o) = eq(t) + dx() (7.46b)

where A,b,c,and dare N X N,N X 1,1 X N,and 1 X 1 matrices, respectively. In the following we solve
Eqgs. (7.46a) and (7.46b) with some initial state q(0) by using the unilateral Laplace transform. Taking the uni-
lateral Laplace transform of Eqgs. (7.46a) and (7.46b) and using Eq. (3.44), we get

sQ(s) — q(0) = AQ(s) + bX(s) (7.47a)
Y(s) = cQ(s) + dX(s) (7.47b)

where X(s) = L {x(t)}, Y(s) = L{y(#)},and

0 (s)
QW) =%, {a®)} = szs) where 0, (5) = ¢, {q, ()}
Oy (s)
Rearranging Eq. (7.47a), we have
(sT = A)Q(s) = q(0) + bX(s) (748)

Premultiplying both sides of Eq. (7.48) by (sI — A)™! yields

Q(s) = (sI — A)~ ! q(0) + (sI — A)~ ' bX(s) (7.49)
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Substituting Eq. (7.49) into Eq. (7.47b), we get
Y(s) = e(sI — A)~' q(0) + [c(sT — A)~!'b + d] X(s) (7.50)

Taking the inverse Laplace transform of Eq. (7.50), we obtain the output y(¢). Note that ¢(sI — A)~!q(0) corre-
sponds to the zero-input response and that the second term corresponds to the zero-state response.

B. System Function H(s):

As in the discrete-time case, the system function H(s) of a continuous-time LTI system is defined by H(s) = Y(s)/X(s)
with zero initial conditions. Thus, setting q(0) = 0 in Eq. (7.50), we have

Y(s) = [e(sI — A)~'b + d] X(s) (7.51)
Thus,

H(s) = csI — A)"'b+d (7.52)

C. Solution in the Time Domain:

Following
2 k
M =1tar+ S+
2! k!
we define
2 k
eA'=I+At+%t2+~--+%tk+~-- (7.53)

where k! = k(k — 1) --- 2 - 1. If ¢t = 0, then Eq. (7.53) reduces to
=1 (7.54)

where 0 is an N X N zero matrix whose entries are all zeros. As in e?¢ ~ 7 = ¢%¢=9% = =47 pa! e can show that

oAl = T) = pAl p=AT = AT AI (7.55)
Setting T = ¢in Eq. (7.55), we have
eAlemAl = =AMl Al = o0 = | (7.56)
Thus,
oAl = (eAr)~! (7.57)

which indicates that e~ is the inverse of e?’,
The differentiation of Eq. (7.53) with respect to ¢ yields

2 k
I N S Y Sy v
dt 2! k!
2

=A I+At+%t2 +-e

2
T+Ar+A 2 4.
2!

A
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which implies

A A= AoA = AT (7.58)
dt

Now using the relationship [App. A, Eq. (A.70)]

i(AB)= %B +Aﬁ
dt dt dt

and Eq. (7.58), we have

dr d _ar At
— nl=|— )+ t
e ™qw)] [dte ]q( )+ e M)
=—e MAq()+e M) (7.59)
Now premultiplying both sides of Eq. (7.46a) by e~A’, we obtain
e Aq(t) = e AT Aq(t) + e A'bx(r)
or e Aq(t) — e ATAq(?) = e Abx(t) (7.60)

From Eq. (7.59) Eq. (7.60) can be rewritten as

dr —ar —At
— 1= bx(t (7.61)
dt [e « )] ¢ <)
Integrating both sides of Eq. (7.61) from O to ¢, we get

e_A'q(t)‘:) =f;e_Atbx(t) dt

or e Mg — q(0) = f;e‘“bx(r) dv
Hence e M) =q)+ [ ;e‘“bx(r) dt (7.62)
Premultiplying both sides of Eq. (7.62) by A’ and using Egs. (7.55) and (7.56), we obtain

qt)=e"q(0)+ [ ;eA('_”bx(t) dv (7.63)

If the initial state is q(#,) and we have x(?) for ¢ = 7, then

q(0)=e* gt + [ ,; Ay (1) dT (7.64)

which is obtained easily by integrating both sides of Eq. (7.61) from ¢, to ¢. The matrix function e’ is known as
the state-transition matrix of the continuous-time system. Substituting Eq. (7.63) into Eq. (7.46b), we obtain

y(t) = ce™' q(0) + f(;ceA('_’)bx(t) dt + dx(?) (7.65)

D. Evaluation of eA%:
Method 1:  As in the evaluation of A", by the Cayley-Hamilton theorem we have

A =bI+bA+ - +b, AV (7.66)
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Method 2:

Method 3:

Method 4:

Stability:

When the eigenvalues }Lk of A are all distinct, the coefficients by by ..., by can be found
from the conditions
byt bh + - +b, A =M k=1,2,..,N (1.67)

For the case of repeated eigenvalues see Prob. 7.45.

Again, as in the evaluation of A", we can also evaluate e?! based on the diagonalization of
A. If all eigenvalues }Lk of A are distinct, we have

Moo 0

A 0 M .. 0 | -

M=pl . 7 P (7.68)
0 0 Pl

where P is given by Eq. (7.30).

We could also evaluate e’ using the spectral decomposition of A, that is, find constituent
matrices E (k=1, 2, ..., N) for which

A=AE +2AE,+ - +AE

VEy (7.69)

where )»k (k=1,2,...,N) are the distinct eigenvalues of A. Then, when eigenvalues )Lk of
A are all distinct, we have

oAl = e)‘"El + e}»erz 4o+ eMﬂEN (7.70)

Using the Laplace transform, we can calculate eA’. Comparing Eqs. (7.63) and (7.49), we
see that

A= {(sl - A)“} (7.71)

From Eqgs. (7.63) and (7.68) or (7.70), we see that if all eigenvalues A, of the system matrix A have negative real
parts, that is,

Re{A} <0 all k (7.72)

then the system is said to be asymptotically stable. As in the discrete-time case, if all eigenvalues of A are distinct
and satisfy the condition (7.72), then the system is also BIBO stable.

SOLVED PROBLEMS

State Space Representation

7.1.

Consider the discrete-time LTI system shown in Fig. 7-1. Find the state space representation of the
system by choosing the outputs of unit-delay elements 1 and 2 as state variables g [n] and g,[n],
respectively.

From Fig. 7-1 we have

g,ln + 11 = g[n]
g,ln + 1] = 2q,[n] + 3q,[n] + x[n]
yInl = 2q,[n] + 3q,n] + x[n]
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(]

© S

g, 1n] g1l Galn]

gyl 1]

Fig. 7-1

In matrix form

[q,[n +1]

_ 0 17[qln] N 0 xln]
2 3||g,[n] 1

gln+1]
ylnl=[2 3] [Z'Z[[';]] +x[n] (7.73a)
or qln + 1] = Aq[n] + bxin]
ylnl = eq[n] + dx[n] (7.73b)

where

_ q,[n] B 0 1 _ 0 _ _
q[n]—[qz[n]] =1, 3] b—H e=[2 3] a=1

7.2. Redo Prob. 7.1 by choosing the outputs of unit-delay elements 2 and 1 as state variables v [n] and v,[n],
respectively, and verify the relationships in Egs. (7.10a) and (7.10b).

We redraw Fig. 7-1 with the new state variables as shown in Fig. 7-2. From Fig. 7-2 we have

v[n + 1] = 3v[n] + 2v,[n] + x[n]
vln+ 1] = v [n]
ylnl = 3v,[n] + 2v,[n] + x[n]

x[n|

¥
)

m winl

v, [n] 5 Lt vl T vln]

Fig. 7-2

In matrix form

vi[n+1]
vy[n+1]

3 27[vln] 1
= + 1 |x[n]
o of sl o)

yln=[3 2][ GRS (7.74a)
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or vin + 1] = Av[n] + i)x[n]

y[n]= &v[n] +dx{n] (7.74b)

where

v[n1=[”‘["] A=[f f)] 13:[(1)] e=[3 2] d-1

v[n]

Note that v,[n] = g,[n] and v,[n] = q,[n]. Thus, we have

01
v[n]= [1 O]q[n]=Tq[n]

Now using the results from Prob. 7.1, we have

S, [0 1770 1770 177" [0 170 17[0 1] [3 2] .
TAT ' = = = =A
1 0f)12 3|1 O 1 0f]2 3|1 O 1 0
0 17(0 1 A
Tb = =| [=b
1 0|1 0
0 1
_]_ _ _ A _ _
I ' =[2 3][1 0]—[3 2]=¢  d=1-=4d
which are the relationships in Egs. (7.10a) and (7.10b).

7.3. Consider the continuous-time LTI system shown in Fig. 7-3. Find a state space representation of the system.

x) 4,1 g, q,lf) q,{f) /L ¥t
O— g I i—0—

Fig. 7-3

We choose the outputs of integrators as the state variables g,(?), ¢,(¢), and g,(¢) as shown in Fig. 7-3. Then from
Fig. 7-3 we obtain
4,(1) = 2q,(t) — 3¢,(t) + g;(1) + x(1)
4,(1) = q,()
4,(t) = q,()
y(t) = —q,(t) + 2g,(1)
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In matrix form

2 -3 1 1
ao=[1 0 olq)+|0|x)
o 1 0 0 (1.75)

y=[-1 0 2]q()

7.4. Consider the mechanical system shown in Fig. 7-4. It consists of a block with mass m connected to a
wall by a spring. Let k, be the spring constant and k, be the viscous friction coefficient. Let the output

y(¢) be the displacement of the block and the input x(¢) be the applied force. Find a state space
representation of the system.

k, x

¥it)

Fig. 7-4 Mechanical system.

By Newton’s law we have

my(t) = —ky(t) — k,y(@) + x(t)
or my(t) + k,y (@) + k,y(t) = x(1)

The potential energy and kinetic energy of a mass are stored in its position and velocity. Thus, we select the state

variables g,(?) and g,(t) as

q,(1) = y(®)
g,(t) =y(@)
Then we have
g =q,@)
b0=--50- 240+ L0
m m m
y®)=q,@®
In matrix form
0 1 0
AaO=|_k _k[aO*|1 |x®) 276
m m m

y®)=[1 0]q()
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7.5. Consider the RLC circuit shown in Fig. 7-5. Let the output y(#) be the loop current. Find a state space
representation of the circuit.

M + Gonn
it

T v

x(t) C

N
0
|

Fig. 7-5 RLC circuit.

We choose the state variables g,(¢) = i,(¢) and g,(¢) = v (7). Then by Kirchhoff’s law we get

Lg,(t) + Rq,(t) + g,(t) = x(1)
Cq, (1) = q,(t)
y(@® = q,(®)

Rearranging and writing in matrix form, we get

1

R 1 1

| L L -

q@® P qn+ éx(t) o
c

Yy =[1 0]q®

7.6. Find a state space representation of the circuit shown in Fig. 7-6, assuming that the outputs are the

currents flowing in R, and R,.

v, () C) C vt k,(t)

Fig. 7-6

We choose the state variables q,(¢) = i,(¢) and g,(t) = v (¢). There are two voltage sources and let x,(¢) = v,(#) and
X,(0) = v,(8). Let y, (1) = i (1) and y,(#) = i,(¢). Applying Kirchhoff’s law to each loop, we obtain
Lg,(1) + R,g,(t) + g,(1) = x,()
2,() — [q,(1) — Cg,(D] R, = x,(1)
) =q,®
0 = R%Z g, — x,(0)]
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Rearranging and writing in matrix form, we get

&1 1y
ao-| o+t o
— R 0O —
C RC R,C
1 0 [0 0
yo-|, 1law+|, 1 |x
RZ R2
_[a® _[x® _[n®
where q(t)_[‘b(f)] X(t)__xz(t)] Yo [)’z(l‘)

State Equations of Discrete-Time LTI Systems Described by Difference Equations

7.7. Find state equations of a discrete-time system described by

3 1
ylnl==yln =11+ —yln —2]=x[n]
4 8
Choose the state variables g [n] and g,[n] as

q,[n] = y[n — 2]
g,[n] =yln—1]

Then from Eqgs. (7.79) and (7.80) we have

q[n+1]=g,[n]

g [n+1]= —%q,[n] + %qz[n] + x[n]

yinl= —%q.[n] " %‘h[”] + xin]

In matrix form

0 1 0
atn+11=| 1 3t || |xim
8 4
y[n]=[—% ﬂq[n]ﬂ[n]

7.8. Find state equations of a discrete-time system described by

yin] - %y[n 1] +%y[n —2]=x[n] +%x[n -1

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

Because of the existence of the term %x[n — 1 ] on the right-hand side of Eq. (7.82), the selection of y[n — 2] and
y[n — 1] as state variables will not yield the desired state equations of the system. Thus, in order to find suitable
state variables, we construct a simulation diagram of Eq. (7.82) using unit-delay elements, amplifiers, and adders.

Taking the z-transforms of both sides of Eq. (7.82) and rearranging, we obtain

3y 12 1.
Y(z)—4z Y(2) g2 Y(z)+X(z)+22 X(2)
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from which (noting that z* corresponds to k unit time delays) the simulation diagram in Fig. 7-7 can be drawn.

Choosing the outputs of unit-delay elements as state variables as shown in Fig. 7-7, we get

ylnl= q[n] + x[n]

q,[n+1]=q2[n]+%y[n]+%x[n]
= 2q 1+ gn] + 3 41
= L= Lo L

g,[n+1]= 8y[n] 8ql[n] 8)c[n]

In matrix form

3 S
qln+1]= ‘; qln]+ ‘: x[n]
P 0 _—
8
yInl=[1 0]qln]+ x[n]
xin]

w
1

o :l F T p{ r !

g,ln+1] — g,in] q,In+1] a,lnl

(7.83)

Fig. 7-7

7.9. Find state equations of a discrete-time LTI system with system function

by +bz !+ by

H(z) = =
1+az 1+azz 2

From the definition of the system function [Eq. (4.41)]

_ Y@ _by+bz by’

H(z
@ X@) l+az'+ay?

we have

A+az ' +a,27)Y @) = (b, + bz' + b,z HX(2)

Rearranging the above equation, we get

Y(2) = —a,z7'Y(2) — a,27?Y(2) + b, X(2) + bz 'X(2) + b,z"*X(2)

(7.84)
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from which the simulation diagram in Fig. 7-8 can be drawn. Choosing the outputs of unit-delay elements as state
variables as shown in Fig. 7-8, we get

yln]l= q,[n]+ byx{n]
q[n+1]1=— ayy[n]+ g,[n] + b x[n]
=—ag[n]+ g [n]+ (b, — aiby)x[n]
q,[n+1]1=— a,y[n] + byx[n]
=—ayq,[n] + (b, — a,by)x[n]

In matrix form

—aq
q[n+1]=[
—a

b, — ayby (7.85)

1
(] +
! ofo

by —aiby ]x[n]

Yn1=[1 0]qin]+boxin]

Note that in the simulation diagram in Fig. 7-8 the number of unit-delay elements is 2 (the order of the system)
and is the minimum number required. Thus, Fig. 7-8 is known as the canonical simulation of the first form and
Eq. (7.85) is known as the canonical state representation of the first form.

x[n}

yin}
9,In] i
Fig. 7-8 Canonical simulation of the first form.
7.10. Redo Prob. 7.9 by expressing H(z) as
H(z) = H\(z) H)(2)
1 -1 -2
where H ()= — — H,(z)=by +bz  +b,z
1 1+ a2 i . 2 2 (IS 2
Let
W (@) 1
H = = 7.86
O X Trar T o (7.86)
Y(2) -1 -2
H =——=—=b, +b + b, 7.87
2(2) ) o T 012 pX4 ( )
Then we have
W(z) + a,z7'W(2) + a,z7*W(2) = X(2) (7.88)

Y(z) = b,W(z) + b,z"'W(2) + b,z *W(2) (7.89)
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Rearranging Eq. (7.88), we get
W) = —a,z' W(2) — a,27 2 W(2) + X(2) (7.90)

From Egs. (7.89) and (7.90) the simulation diagram in Fig. 7-9 can be drawn. Choosing the outputs of unit-delay
elements as state variables as shown in Fig. 7-9, we have

vi[n+1]=w,[n]
vy[n+1]=—ayv[n] — av,[n] + x[n]
y[n]= byv[n]+ byv,[n] + byv,[n +1]
= (b, — byay)v|[n]+ (b, — bya,)v,[n] + byx[n]

:.‘.'(:"'__"\‘ = 1
- T vyl +1] v,ln]
]

(e

#[n

Fig. 7-9 Canonical simulation of the second form.
In matrix form

0 1 0
v[n+1]=[_a ]v[n]+ ) x[n]

2 T4
y[nl=[b, —bya, by — bya, [v[n]+ bex[n]

791)

The simulation in Fig. 7-9 is known as the canonical simulation of the second form, and Eq. (7.91) is known as the
canonical state representation of the second form.

7.11. Consider a discrete-time LTI system with system function

Z
H(z)=——— (7.92)
2z —3z+1
Find a state representation of the system.
Rewriting H(z) as
1 -
—Z
= 2 - 2
e T PR I () ST N P (193)
Z > Z > Z 2 2
Comparing Eq. (7.93) with Eq. (7.84) in Prob. 7.9, we see that
3 1 1
=-= == b=0 b=— b=0
4 2 a 2 (] 175 2
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Substituting these values into Eq. (7.85) in Prob. 7.9, we get

Tt
qln]+|2|x[n]
0 0

q[rn+1]=

y[n]=[1 0]q[n]

7.12. Consider a discrete-time LTI system with system function

Z Z

2z2 —-3z+1

1
2(z 1)[z >

Find a state representation of the system such that its system matrix A is diagonal.

First we expand H(z) in partial fractions as

Z Z Z
H@)= -
2-plz-L| o
5 2
1 1
= _l—f=H|(Z)+H2(Z)
1-2z 1-—z!
2
1 —1
where H@=— H@Q=—F—
1-2z 1- -z
2
Let Hy(=—% = 1@
1-piz X()
Then (- pz W (@)= 0, X(2)
or Y (2)= pz 'Y (2) + o, X(2)

(7.94)

(7.95)

(7.96)

from which the simulation diagram in Fig. 7-10 can be drawn. Thus, H(z) = H,(z) + H,(z) can be simulated by the
diagram in Fig. 7-11 obtained by parallel connection of two systems. Choosing the outputs of unit-delay elements

as state variables as shown in Fig. 7-11, we have

q,[n+1]1= gq|[n]+ x[n]

g[n+1]= %qz[n] — x[n]
ylnl=qn+11+ q,[n+1]= gq|[n] + %qz[n]

In matrix form

1 0 i
q[n+1]= 0 %q[n]+ _l]x[n]

1

yinl= [1 E]q["]

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles of H(z).

797
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n[n]'
Fig. 7-10
(%)
| TI
/].ﬂ 1 Ll f
L \l'r q,ln] i q,[n+1] yin)

—0
2

= | z -
N gl g,ln+1]

Fig. 7-11

7.13. Sketch a block diagram of a discrete-time system with the state representation

0 1 0
qln+1]=11 2 q[n]+ i x[n]
2 3
yln1=[3 —2]qln] (7.98)

We rewrite Eq. (7.98) as
qiln+11= gy[n]
Dl +11= 2,1+ 2 quln] + xln]
y[n]=3q,[n] - 2g,[n] (7.99)

from which we can draw the block diagram in Fig. 7-12.

¥inl

7

5 lI oo
gqln] | g,ln+1] I///

i
L

qalr+1]

¢

<l
g

<
N

Fig. 7-12




CHAPTER 7 State Space Analysis —&&»

State Equations of Continuous-Time LTI Systems Described by Differential Equations

7.14.

7.15.

Find state equations of a continuous-time LTI system described by

¥(@ + 3y(0) + 2y(0) = x(1) (7.100)
Choose the state variables as
q,® = y@®
g,(n = y() (7.101)

Then from Egs. (7.100) and (7.101) we have

4,0 = g,(1)
4,0 = —2q,(t) — 3,0 + x(1)
y0) = q,(0

In matrix form
4(t) o1 (t)+0 ®
= X
TO= ., 3|17

y®)=[1 0]q@ (7.102)

Find state equations of a continuous-time LTI system described by
J(2) + 3y(2) + 2y(2) = 4x(2) + x(2) (7.103)

Because of the existence of the term 4 x(f) on the right-hand side of Eq. (7.103), the selection of y(#) and y(¢) as
state variables will not yield the desired state equations of the system. Thus, in order to find suitable state variables,
we construct a simulation diagram of Eq. (7.103) using integrators, amplifiers, and adders. Taking the Laplace
transforms of both sides of Eq. (7.103), we obtain

$2Y(s) + 3sY(s) + 2Y(s) = 4sX(s) + X(s)
Dividing both sides of the above expression by s? and rearranging, we get
Y(s) = —3s7'Y(s) — 2572 ¥(s) + 4571 X(s) + 572 X(s)

from which (noting that s~ corresponds to integration of & times) the simulation diagram in Fig. 7-13 can be
drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-13, we get

q,(t) = =3q,(t) + g,(1) + 4x(0)
q,(1) = —2q,(t) + x()
Y@ = q,(®

In matrix form

-3 1
+

-2 0

4
) x(t)

"l(t)=[

yo=[1 0]q® (7.104)
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r

D T (s T2
gty L= q.it) q,it) L=l q,t)

/N

Fig. 7-13
7.16. Find state equations of a continuous-time LTI system with system function

3 2
=b0S +bls +bzs+b3 (7105)

H(s) .
Szt as” +a,s +a,

From the definition of the system function [Eq.(3.37)]

Y(s) _ bys’ +bys® + bys + by
X(s) $P+ a,s2 +a,s +a,

H(s)=

we have
(87 + a8 + ays + a)¥(s) = (bys® + bs? + b,s + by)X(s)
Dividing both sides of the above expression by s> and rearranging, we get
Y(s)=—ays 'Y (5) — ays 2Y (5) — ass Y (s)
+ by X (s) + bys ™' X(s) + bys 2 X(s) + bys X (s)

from which (noting that s~* corresponds to integration of k times) the simulation diagram in Fig. 7-14 can be
drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-14, we get

y(t)= g, (t) + byx(t)
G@)=—ay(t)+ q(t) + byx(t)
=—a1q, () + g, (t) + (b, — a\by)x(t)
G (1) =—ay )+ q;(t) + byx(t)
= —a,q,(t) + g3(t) + (b, — ayby)x(t)
G3(t)=—azy(t) + b3x(t)
= — a3, (1) + (b; — azby )x(t)

In matrix form

-—a 10 b, —ayb,
q@t)=1{—a, 0 1(q@)+|b,—ayby|x()
—a; 0 0 by — azb,

Yy =[1 0 0]q()+bex() (7.106)
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As in the discrete-time case, the simulation of H(s) shown in Fig. 7-14 is known as the canonical simulation of the
first form, and Eq. (7.106) is known as the canonical state representation of the first form.

x(t)

vit)
q,it) 3
Fig. 7-14 Canonical simulation of the first form.
7.17. Redo Prob. 7.16 by expressing H(s) as
H(s)=H,(s)H,(s)
1
where H(s)= 3 3
s tais” taystay
Hy(s)=bys” +bys® +bys + b,
Let
W(s 1
()= X((s)): S+as’+as+a
v ! R (7.107)
H,(s)= (S? = bys® +bys® + bys + by

W(s)
Then we have

(s3 + als2 +a,s + az)W(s)= X(s)
Y(s)= (bys® + bys* + bys + by )W (s)

Rearranging the above equations, we get

W (s) = — a,s*W (s) — aysW (s) — asW (s) + X(s)
Y (5) = bos W (s) + bys> W (s) + bysW (s) + bW (s)

from which, noting the relation shown in Fig. 7-15, the simulation diagram in Fig. 7-16 can be drawn. Choosing the
outputs of integrators as state variables as shown in Fig. 7-16, we have

V(D)= (0)
v, (1) = v,()
V3() = — azv(t) — ayv, (1) — av;(t) + x (1)
V() = by (1) + byv, (1) + by, (1) + byvs(2)
= (b — azby v, (t) + (by — ayby)v, (1)
+ (b = ayby)v3(t) + by x(t) (7.108)
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by b,
A A
x(f) () Wwit) ={I|_ wit) i wit) =|T| wir)
: T vy it) vylt) | ¥,i D vl win  vin
4

O (2
Fig. 7-16 Canonical simulation of the second form.

In matrix form

0 1 0 0
v(it)=| O 0 1 1)+ 0| x(
V(1) v(t) x(t) (7.109)
—a; —a, —a 1

YO =[by—azhy by —aby by —aby |v(E)+bex(?)

As in the discrete-time case, the simulation of H(s) shown in Fig. 7-16 is known as the canonical simulation of the
second form, and Eq. (7.109) is known as the canonical state representation of the second form.

7.18. Consider a continuous-time LTI system with system function

3s+7
H(s)= (7.110)
(s+D(s+2)(s+5)
Find a state representation of the system.
Rewrite H(s) as
3s+7 3s+7
H(s)= : == 3 (7.111)
(+D)(s+2)(s+5) s +8s°+17s+10
Comparing Eq. (7.111) with Eq. (7.105) in Prob. 7.16, we see that
a =8 a,=17 a, =10 by=b=0 b,=3 by=1
Substituting these values into Eq. (7.106) in Prob. 7.16, we get
-8 10 0
q@)=1{—-17 0 1|q@®)+{3|x(
q@® q® ® (7.112)
-10 0 O 7

y0=[1 0 0]q@)



CHAPTER 7 State Space Analysis —&&»

7.19. Consider a continuous-time LTI system with system function

3s+7
H(s)= 5 (7.113)
(s+D(s+2)(s+5)
Find a state representation of the system such that its system matrix A is diagonal.
First we expand H(s) in partial fractions as
r 2
H(s)= 3s+7 :L_L_ 3
(s+D(s+2)(s+5) s+1 s+2 s+5
=H,(s) + H,(s)+ H5(s)
1 2
1 3 3
h H|($)=—— H,(s)=— Hy(s)=—
whete 1) s+1 2(9) s+2 3(5) s+5
a Y. ()
Let H, (s)=—&—=-"+&—~ (7.114)
k s—pe X(8)
Then (s = Y (8)= o X(s)
or Y, (s)= pks_'Yk(s)+aks_lX(s)

from which the simulation diagram in Fig. 7-17 can be drawn. Thus, H(s) = H,(s) + H,(s) + H,(s) can be
simulated by the diagram in Fig. 7-18 obtained by parallel connection of three systems. Choosing the outputs of
integrators as state variables as shown in Fig. 7-18, we get

q)=—q @)+ x@)

(1) = — 24,(1) %x(t)

d5(5) = — 5q3(1) %x(r)

y()=q, () + q,(#) + q5(t)
In matrix form

1

-1 0 0 )
am=| 0 -2 0la0+|-3|x®
0 0 -5 5 (7.115)
3

yo=[1 1 1]q@

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the pol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>