
--w.--

Problem 

• ..1. 

I 

-------Second Edition 
571 fully solved problems 
• Clear, concise explanations of all signals and systems concepts 

• Information on transform techniques for the analysis of LTI systems, 

the LaPlace transform and its application to continuous-time and 

discrete-time LTI systems, and Fourier analysis of signals and systems 

USE WITH THESE COURSES 

Basic Circuit Analysis • Electrical Circuits • Electrical Engineering and Circuit 

Analysis • Introduction to Circuit Analysis • AC and DC Circuits 

Hwei Hsu, Ph.D. 



Signals and Systems 

---------------Second Edition 

Hwei P. Hsu, Ph.D. 

Schaum's Outline Series 

New York Chicago San Francisco Lisbon London Madrid 
Mexico City Milan New Delhi San Juan Seoul 

Singapore Sydney Toronto 



HWEI P. HSU received his B.S. from National Taiwan University and M.S. and Ph.D. from Case Institute of Technology. He has published several books, 
including Schaum's Outline of Analog and his M.S. Digital Communications, and Probability, Random Variables, and Random Processes. 

The McGraw·H11/ Companies 

Copyright© 2011, 1995 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no 
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written 
permission of the publisher. 

ISBN: 978-0-07-163473-1 

MHID: 0-07-163473-8 

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163472-4, 
MHID: 0-07-163472-X. 

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in 
an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this 
book, they have been printed with initial caps. 

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact 
a representative please e-mail us at bulksales@mcgraw-hill.com. 

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that neither 
the author nor the publisher is engaged in rendering legal, accounting, securities trading, or other professional services. If legal advice or other expert assistance 
is required, the services of a competent professional person should be sought. 

-From a Declaration of Principles Jointly Adopted by a Committee of the 
American Bar Association and a Committee of Publishers and Associations 

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Schaum's and related trade dress are trademarks or registered trademarks of The McGraw-Hill 
Companies and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of 
their respective owners. The McGraw-Hill Companies is not associated with any product or vendor mentioned in this book. 

TERMS OF USE 

This is a copyrighted work and The McGraw-Hill Companies, Inc. ("McGrawHill") and its licensors reserve all rights in and to the work. Use of this work is 
subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, 
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or 
any part of it without McGraw-Hill's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly 
prohibited. Your right to use the work may be terminated if you fail to comply with these terms. 

THE WORK IS PROVIDED "AS IS." McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE 
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION 
THAT CAN BEACCESSEDTHROUGHTHE WORK VIAHYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be 
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, 
in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no 
circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the 
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation ofliability shall apply to any claim or 
cause whatsoever whether such claim or cause arises in contract, tort or otherwise. 



Preface to The Second Edition 

The purpose of this book, like its previous edition, is to provide the concepts and theory of signals and systems 
needed in almost all electrical engineering fields and in many other engineering and science disciplines as well. 

In the previous edition the book focused strictly on deterministic signals and systems. This new edition 
expands the contents of the first edition by adding two chapters dealing with random signals and the response 
of linear systems to random inputs. The background material on probability needed for these two chapters is 
included in Appendix B. 

I wish to express my appreciation to Ms. Kimberly Eaton and Mr. Charles Wall of the McGraw-Hill Schaum 
Series for inviting me to revise the book. 

HWEIP.Hsu 
Shannondell at Valley Forge, Audubon, Pennsylvania 



Preface to The First Edition 

The concepts and theory of signals and systems are needed in almost all electrical engineering fields and in 
many other engineering and scientific disciplines as well. They form the foundation for further studies in areas 
such as communication, signal processing, and control systems. 

This book is intended to be used as a supplement to all textbooks on signals and systems or for self-study. 
It may also be used as a textbook in its own right. Each topic is introduced in a chapter with numerous solved 
problems. The solved problems constitute an integral part of the text. 

Chapter 1 introduces the mathematical description and representation of both continuous-time and discrete­
time signals and systems. Chapter 2 develops the fundamental input-output relationship for linear time-invariant 
(LTI) systems and explains the unit impulse response of the system and convolution operation. Chapters 3 and 4 
explore the transform techniques for the analysis ofLTI systems. The Laplace transform and its application to con­
tinuous-time LTI systems are considered in Chapter 3. Chapter 4 deals with the z-transform and its application to 
discrete-time LTI systems. The Fourier analysis of signals and systems is treated in Chapters 5 and 6. Chapter 5 
considers the Fourier analysis of continuous-time signals and systems, while Chapter 6 deals with discrete-time 
signals and systems. The final chapter, Chapter 7, presents the state space or state variable concept and analysis for 
both discrete-time and continuous-time systems. In addition, background material on matrix analysis needed for 
Chapter 7 is included in Appendix A. 

I am grateful to Professor Gordon Silverman of Manhattan College for his assistance, comments, and careful 
review of the manuscript. I also wish to thank the staff of the McGraw-Hill Schaum Series, especially John Aliano 
for his helpful comments and suggestions and Maureen Walker for her great care in preparing this book. Last, I am 
indebted to my wife, Daisy, whose understanding and constant support were necessary factors in the completion 
of this work. 

HWEIP.Hsu 
Montville, New Jersey 



To the Student 

To understand the material in this text, the reader is assumed to have a basic knowledge of calculus, along with 
some knowledge of differential equations and the first circuit course in electrical engineering. 

This text covers both continuous-time and discrete-time signals and systems. If the course you are taking cov­
ers only continuous-time signals and systems, you may study parts of Chapters 1 and 2 covering the continuous­
time case, Chapters 3 and 5, and the second part of Chapter 7. If the course you are taking covers only discrete-time 
signals and systems, you may study parts of Chapters 1 and 2 covering the discrete-time case, Chapters 4 and 6, 
and the first part of Chapter 7. 

To really master a subject, a continuous interplay between skills and knowledge must take place. By study­
ing and reviewing many solved problems and seeing how each problem is approached and how it is solved, you 
can learn the skills of solving problems easily and increase your store of necessary knowledge. Then, to test and 
reinforce your learned skills, it is imperative that you work out the supplementary problems (hints and answers 
are provided). I would like to emphasize that there is no short cut to learning except by "doing." 
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Signals and Systems 

1.1 Introduction 

The concept and theory of signals and systems are needed in almost all electrical engineering fields and in many 
other engineering and scientific disciplines as well. In this chapter we introduce the mathematical description 
and representation of signals and systems and their classifications. We also define several important basic sig­
nals essential to our studies. 

1.2 Signals and Classification of Signals 

A signal is a function representing a physical quantity or variable, and typically it contains information about 
the behavior or nature of the phenomenon. For instance, in an RC circuit the signal may represent the voltage 
across the capacitor or the current flowing in the resistor. Mathematically, a signal is represented as a function 
of an independent variable t. Usually t represents time. Thus, a signal is denoted by x(t). 

A. Continuous-Time and Discrete-Time Signals: 

A signal x(t) is a continuous-time signal if tis a continuous variable. If tis a discrete variable-that is, x(t) is 
defined at discrete times-then x(t) is a discrete-time signal. Since a discrete-time signal is defined at discrete 
times, a discrete-time signal is often identified as a sequence of numbers, denoted by {xn} or x[n], where 
n = integer. Illustrations of a continuous-time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-1. 

0 

(a) 

x(t) x[n] 

2 

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

(b) 

Fig. 1-1 Graphical representation of (a) continuous-time and (b} discrete-time signals. 

n 

A discrete-time signal x[n] may represent a phenomenon for which the independent variable is inherently 
discrete. For instance, the daily closing stock market average is by its nature a signal that evolves at discrete 
points in time (that is, at the close of each day). On the other hand a discrete-time signal x[n] may be obtained 
by sampling a continuous-time signal x(t) such as 
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or in a shorter form as 

x[O],x[l], ... ,x[n], ... 

or 

where we understand that 

xn = x[n] = x(t) 

and xn's are called samples and the time interval between them is called the sampling interval. When the sampling 
intervals are equal (uniform sampling), then 

xn = x[n] = x(nT8 ) 

where the constant T, is the sampling interval. 
A discrete-time signal x[n] can be defined in two ways: 

1. We can specify a rule for calculating the nth value of the sequence. For example, 

n:=::O 

n<O 

or 

2. We can also explicitly list the values of the sequence. For example, the sequence shown in 
Fig. 1-l(b) can be written as 

or 

{xn} = { ... , 0, 0, 1, 2, 2, 1, 0, 1, 0, 2, 0, 0, ... } 

t 
{xn} = {1, 2, 2, 1, 0, 1, 0, 2} 

t 

We use the arrow to denote the n = 0 term. We shall use the convention that if no arrow is indicated, 
then the first term corresponds ton= 0 and all the values of the sequence are zero for n < 0. 

The sum and product of two sequences are defined as follows: 

{en}= {an}+ {bn} - en =an+ bn 

{en}= {an }{bn} -en= an bn 

B. Analog and Digital Signals: 

a= constant 

If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where a may be -oo and 
b may be +oo, then the continuous-time signal x(t) is called an analog signal. If a discrete-time signal x[n] can 
take on only a finite number of distinct values, then we call this signal a digital signal. 

C. Real and Complex Signals: 

A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal if its value is a com­
plex number. A general complex signal x(t) is a function of the form 

(1.1) 
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where x1(t) and xz(t) are real signals andj = \/="1. 
Note that in Eq. ( 1.1) t represents either a continuous or a discrete variable. 

D. Deterministic and Random Signals: 

Deterministic signals are those signals whose values are completely specified for any given time. Thus, a 
deterministic signal can be modeled by a known function of time t. Random signals are those signals that 
take random values at any given time and must be characterized statistically. Random signals will be dis­
cussed in Chaps. 8 and 9. 

E. Even and Odd Signals: 

A signal x(t) or x[n] is referred to as an even signal if 

x(-t) = x(t) 

x[ -n] = x[n] 

A signal x(t) or x[n] is referred to as an odd signal if 

x(-t) = -x(t) 

x[-n] = -x[n] 

Examples of even and odd signals are shown in Fig. 1-2. 

x(t) 

0 

(a) 

x(t) 

(c) 

x[n] 

- 4 - 3 - 2 - 1 0 1 2 3 4 

(b) 

x[n] 

- 3 - 2 - 1 

- 4 1 2 3 4 

(d) 

Fig. 1-2 Examples of even signals (a and b) and odd signals (c and d). 

(1.2) 

(1.3) 

n 

n 

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even and one of which is 
odd. That is, 

x(t) = xe(t) + x0 (t) 

x[n] = xeln] + x0 [n] 
(1.4) 
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Where 
1 

xe(t) = - {x(t) + x(- t)} 
2 
1 

xeln] = -{x[n] + x[-n]} 
2 

1 
x0 (t) = - {x(t)- x(- t)} 

2 
1 

x0 [n] = -{x[n]- x[- n]} 
2 

even part of x(t) 
(1.5) 

even part of x[n] 

odd part of x(t) 

(1.6) 

odd part of x[n] 

Note that the product of two even signals or of two odd signals is an even signal and that the product of an 
even signal and an odd signal is an odd signal (Prob. 1.7). 

F. Periodic and Nonperiodic Signals: 

A continuous-time signal x(t) is said to be periodic with period T if there is a positive nonzero value of T 
for which 

x(t + T) = x(t) all t (1.7) 

An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or Fig. 1-3(a) it follows that 

x(t + mT) = x(t) (1.8) 

for all t and any integer m. The fundamental period T0 of x(t) is the smallest positive value of T for which 
Eq. (1.7) holds. Note that this definition does not work for a constant signal x(t) (known as a de signal). For 
a constant signal x(t) the fundamental period is undefined since x(t) is periodic for any choice of T (and so there 
is no smallest positive value). Any continuous-time signal which is not periodic is called a nonperiodic 
(or aperiodic) signal. 

- 2T 

- 2N 

- T 

- N 

0 

(a) 

x(t) 

x[n] 

0 

(b) 

T 

N 

Fig. 1-3 Examples of periodic signals. 

2T 

2N n 
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Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal) x[n] is periodic with 
period N if there is a positive integer N for which 

x[n + N] = x[n] all n (1.9) 

An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it follows that 

x[n + mN] = x[n] (1.10) 

for all n and any integer m. The fundamental periodN0 of x[n] is the smallest positive integer Nforwhich Eq. (1.9) 
holds. Any sequence which is not periodic is called a nonperiodic (or aperiodic) sequence. 

Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may not be 
periodic (Probs. 1.12 and 1.13). Note also that the sum of two continuous-time periodic signals may not be 
periodic but that the sum of two periodic sequences is always periodic (Probs. 1.14 and 1.15). 

G. Energy and Power Signals: 

Consider v(t) to be the voltage across a resistor R producing a current i(t). The instantaneous power p(t) per ohm 
is defined as 

( ) v(t)i(t) .2 ( ) pt =---=z t 
R 

Total energy E and average power P on a per-ohm basis are 

E = J~0/(t) dt joules 

. 1 JT/2 2 P = lim - i (t) dt watts 
T-->oo T -T/2 

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is defined as 

E = f ~J x(t) 12 dt 

The normalized average power P of x(t) is defined as 

. 1 JT/2 2 P= hm - lx(t)I dt 
T-->oo T -T/2 

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is defined as 

00 

E= :L lx[n]l2 

n=-oo 

The normalized average power P of x[n] is defined as 
N 

P= lim - 1 - :L lx[n112 

N-->oo 2N + 1 n=-N 

Based on definitions (1.14) to (1.17), the following classes of signals are defined: 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

1. x(t) (or x[n]) is said to be an energy signal (or sequence) ifand only ifO < E < oo, and so P = 0. 

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if O < P < oo, thus implying 
that E = oo. 

3. Signals that satisfy neither property are referred to as neither energy signals nor power signals. 

Note that a periodic signal is a power signal if its energy content per period is finite, and then the average 
power of this signal need only be calculated over a period (Prob. 1.18). 
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1.3 Basic Continuous-Time Signals 

A. The Unit Step Function: 

The unit step function u(t), also known as the Heaviside unit function, is defined as 

u(t) = {~ t> 0 

t<O 
(1.18) 

which is shown in Fig. 1-4(a). Note that it is discontinuous at t = 0 and that the value at t = 0 is undefined. 
Similarly, the shifted unit step function u(t - t0) is defined as 

which is shown in Fig. 1-4(b) 

u(t) 

0 

(a) 

{
1 t > t0 

u(t-t0 )= 0 t < t0 

u(t - t0) 

O t0 

(b) 

Fig. 1-4 (a) Unit step function; (b) shifted unit step function . 

B. The Unit Impulse Function: 

(1.19) 

The unit impulse function o(t), also known as the Dirac delta function, plays a central role in system analysis. 
Traditionally, o(t) is often defined as the limit of a suitably chosen conventional function having unity area over 
an infinitesimal time interval as shown in Fig. 1-5 and possesses the following properties: 

{
O t*O 

o(t)= oo t=O 

f ~, o(t ) dt = 1 

1 
E 

E-+Q 

I I 

Fig. 1-5 
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But an ordinary function which is everywhere 0 except at a single point must have the integral 0 (in the Riemann 
integral sense). Thus, o(t) cannot be an ordinary function and mathematically it is defined by 

J:00 <f>(t)o(t) dt = </J(O) 

where <f>(t) is any regular function continuous at t = 0. 
An alternative definition of o(t) is given by 

l</>(0) I: <t>(t)o(t) dt = o 
undefined 

a < O< b 

a < b < 0 or 0 < a < b 

a =O or b =O 

(1.20) 

(1.21) 

Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an ordinary Riemann 
integral. In this sense, o(t) is often called a generalized function and </>(t) is known as a testing function. 
A different class of testing functions will define a different generalized function (Prob. 1.24). Similarly, the 
delayed delta function o(t - to) is defined by 

(1.22) 

where </>(t) is any regular function continuous at t = to- For convenience, o(t) and o(t - t0) are depicted graphically 
as shown in Fig. 1-6. 

0 

(a) 

8(t) 8(t - t0) 

O t0 

(b) 

Fig. 1-6 (a) Unit impulse function ; (b) shifted unit impulse function . 

Some additional properties of o(t) are 

if x(t) is continuous at t = 0. 

if x(t) is continuous at t = t0 . 

1 
o(at) = ~o(t) 

o(- t) = o(t) 

x(t)o(t) = x(O)o(t) 

Using Eqs. (1.22) and (1.24), any continuous-time signal x(t) can be expressed as 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 
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Generallzed Derivatives: 
If g(t) is a generalized function, its nth generalized derivative g<n>(t) = dng(t)ldtn is defined by the following relation: 

(l.28) 

where <f>(t) is a testing function which can be differentiated an arbitrary number of times and vanishes outside 
some fixed interval and <J><n>(t) is the nth derivative of <f>(t). Thus, by Eqs. (1.28) and (1.20) the derivative of '5(t) 
can be defined as 

f~00 </>(t)'5'(t) dt = - </>'(O) (l.29) 

where <f>(t) is a testing function which is continuous at t = 0 and vanishes outside some fixed interval and 
<f>'(O) = d<f>(t)ldtl r~o· Using Eq. (1.28), the derivative of u(t) can be shown to be '5(t) (Prob. 1.28); that is, 

i:( ) _ '( ) _ du(t) u t -u t ---
dt 

(l.30) 

Then the unit step function u(t) can be expressed as 

(l.31) 

Note that the unit step function u(t) is discontinuous at t = O; therefore, the derivative of u(t) as shown in 
Eq. (1.30) is not the derivative of a function in the ordinary sense and should be considered a generalized deriv­
ative in the sense of a generalized function. From Eq. ( 1.31) we see that u ( t) is undefined at t = 0 and 

u(t) = {~ t>O 

t<O 

by Eq. (1.21) with <f>(t) = 1. This result is consistent with the definition (1.18) of u(t). 
Note that the properties (or identities) expressed by Eqs. (1.23) to (1.26) and Eq. (1.30) can not be verified 

by using the conventional approach of '5(t) as shown in Fig. 1-5. 

C. Complex Exponential Signals: 

The Complex exponential signal 

x(t) = ejroot (l.32) 

is an important example of a complex signal. Using Euler's formula, this signal can be defined as 

x(t) = ejroot =cos w0t + j sin w0 t (l.33) 

Thus, x(t) is a complex signal whose real part is cos Wat and imaginary part is sin Wat. An important property of 
the complex exponential signalx(t) in Eq. (1.32) is that it is periodic. The fundamental period T0 of x(t) is given 
by (Prob. 1.9) 

Note that x(t) is periodic for any value of%· 

General Complex Exponentlal Slgnals: 

2:rr 
To=-

wo 

Lets = a+ jw be a complex number. We define x(t) as 

x(t) = e•t = e<a+jw)t = eat(cos wt+ j sin wt) 

(l.34) 

(1.35) 

Then signal x(t) in Eq. (1.35) is known as a general complex exponential signal whose real part eat cos wt and imag­
inary part eat sin wt are exponentially increasing (a> 0) or decreasing (a< 0) sinusoidal signals (Fig. 1-7). 
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x(t) ,' 

(a) 

x(t) 

,' 
(b) 

Fig. 1-7 (a) Exponentially increasing sinusoidal signal; (b) exponentially decreasing sinusoidal signal. 

Real Exponentlal Slgnals: 
Note that ifs = a(a real number), then Eq. (1.35) reduces to a real exponential signal 

x(t) = eat (1.36) 

As illustrated in Fig. 1-8, if a> 0, then x(t) is a growing exponential; and if a< 0, then x(t) is a decaying 
exponential. 

D. Sinusoidal Signals: 

A continuous-time sinusoidal signal can be expressed as 

x(t) =A cos(«>ot + 8) (1.37) 

where A is the amplitude (real),% is the radian frequency in radians per second, and(} is the phase angle in 
radians. The sinusoidal signal x(t) is shown in Fig. 1-9, and it is periodic with fundamental period 

2n 
To=-

Wo 

The reciprocal of the fundamental period T0 is called the fundamental frequency f0 : 

1 
fo = - hertz (Hz) 

To 

(1.38) 

(1.39) 
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(a) 

(b) 

Fig. 1-8 Continuous-time real exponential signals. (a) a> O; (b) a< 0. 

x(t) 

Fig. 1-9 Continuous-time sinusoidal signal. 

From Eqs. (1.38) and (1.39) we have 

% = 21tf0 (1.40) 

which is called the fundamental angular frequency. Using Euler's formula, the sinusoidal signal in Eq. (1.37) 
can be expressed as 

A cos( uv + 8) = A Re{ eJ<w.i1 +el} (1.41) 

where "Re" denotes "real part of." We also use the notation "Im" to denote "imaginary part of." Then 

A lm{ej<w01 + 8 >} =A sin(u>of+8) (1.42) 
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1.4 Basic Discrete-Time Signals 

A. The Unit Step Sequence: 

The unit step sequence u[n] is defined as 

u[n] = {~ n2::0 

n<O 
(1.43) 

which is shown in Fig. 1-lO(a). Note that the value of u[n] at n = 0 is defined [unlike the continuous-time step 
function u(t) at t = O] and equals unity. Similarly, the shifted unit step sequence u[n - k] is defined as 

u[n-k]={~ 
which is shown in Fig. 1-lO(b). 

u[n] 

- 2 - 1 0 1 2 3 n 

(a) 

n2::k 

n<k 

u[n - k] 

- 2 - 1 0 1 k 

(b) 

Fig. 1-10 (a) Unit step sequence; (b) shifted unit step sequence. 

B. The Unit Impulse Sequence: 

The unit impulse (or unit sample) sequence o[n] is defined as 

o[n] = {~ 

(1.44) 

n 

(1.45) 

which is shown in Fig. 1-ll(a). Similarly, the shifted unit impulse (or sample) sequence o[n - k] is defined as 

o[n-k]={~ 

which is shown in Fig. 1-ll(b). 

8[n] 

-2-1 0 1 2 3 n 

(a) 

n=k 

n=l=k 

8[n - k] 

-2-1 0 1 k 

(b) 

Fig. 1-11 (a) Unit impulse (sample) sequence ; (b) shifted unit impulse sequence. 

( 1.46) 

n 
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Unlike the continuous-time unit impulse function b(t), b[n] is defined without mathematical complication 
or difficulty. From definitions (1.45) and (1.46) it is readily seen that 

x[n] b[n] = x[O] b[n] (l.47) 

x[n] b[n - k] = x[k] b[n - k] (l.48) 

which are the discrete-time counterparts ofEqs. (l.25) and (l.26), respectively. From definitions (l.43) to (l.46), 
b[n] and u[n] are related by 

b[n] = u[n] - u[n - 1] 

n oo 

u[n] = :L i5[k] = :L b[n - k] 
k=-oo k=O 

which are the discrete-time counterparts ofEqs. (l.30) and (l.31), respectively. 
Using definition (1.46), any sequence x[n] can be expressed as 

00 

x[n] = :L x[k]b[n - k] 
k=-00 

which corresponds to Eq. (l.27) in the continuous-time signal case. 

C. Complex Exponential Sequences: 

The complex exponential sequence is of the form 

Again, using Euler's formula, x[n] can be expressed as 

Thus, x[n] is a complex sequence whose real part is cos Q0n and imaginary part is sin Q0n. 

Periodicity or e/C,n: 

(l.49) 

(l.50) 

(l.51) 

(l.52) 

(l.53) 

In order for eja,n to be periodic with period N (> 0), Q0 must satisfy the following condition (Prob. 1.11): 

Qo =m 
2n N 

m = positive integer (l.54) 

Thus, the sequence ejrJ,n is not periodic for any value of Q 0 . It is periodic only if Q 0 /2Jr is a rational number. 
Note that this property is quite different from the property that the continuous-time signal ejroot is periodic 
for any value of%· Thus, if Q 0 satisfies the periodicity condition in Eq. (1.54), Q 0 * 0, and N and m have no 
factors in common, then the fundamental period of the sequence x[n] in Eq. (1.52) is N0 given by 

N0 =m(~:) (l.55) 

Another very important distinction between the discrete-time and continuous-time complex exponentials is 
that the signals ejroot are all distinct for distinct values of% but that this is not the case for the signals eja,n. 

Consider the complex exponential sequence with frequency (Q0 + 2nk), where k is an integer: 

(1.56) 

since ej2 ntn = 1. From Eq. (1.56) we see that the complex exponential sequence at frequency Q0 is the same as 
that at frequencies (Q0 ± 2n), (Q0 ± 4n), and so on. Therefore, in dealing with discrete-time exponentials, we 
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need only consider an interval of length 2Jrin which to choose Q0 . Usually, we will use the interval 0 :5 Q0 < 2Jr 

or the interval - Jr :5 Q0 < Jr. 

General Complex Exponentlal Sequences: 
The most general complex exponential sequence is often defined as 

x[n] =can (1.57) 

where C and a. are, in general, complex numbers. Note that Eq. (1.52) is the special case of Eq. (1.57) with C = 1 
and a= ej 0 0. 

Real Exponentlal Sequences: 
If C and a in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four distinct cases can be identified: 
a > 1, 0 < a < 1, - 1 < a < 0, and a < - 1. These four real exponential sequences are shown in Fig. 1-12. Note 
that if a= 1, x[n] is a constant sequence, whereas if a= -1, x[n] alternates in value between + C and -C. 

n 
(a) 

n 
(b) 

n 

(c) 

n 

(d ) 

Fig. 1-12 Real exponential sequences. (a) a > 1; (b) 1 > a > O; (c) 0 > a > - 1 ; (d) a < - 1. 
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D. Sinusoidal Sequences: 

A sinusoidal sequence can be expressed as 

x[n] =A cos(Q0 n + fJ) (1.58) 

If n is dimensionless, then both Q0 and fJ have units of radians. Two examples of sinusoidal sequences are shown 
in Fig. 1-13. As before, the sinusoidal sequence in Eq. ( 1.58) can be expressed as 

(1.59) 

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same observations 
[Eqs. (1.54) and (1.56)] also hold for sinusoidal sequences. For instance, the sequence in Fig. 1-13(a) is periodic 
with fundamental period 12, but the sequence in Fig. 1-13(b) is not periodic. 

x[n] = cos 6 n 

0 I 0 
0 II II 0 0 0 

It I~ u 11 II 

- 6 6 - - - - -- - 3 9 -
- 12 - 9 - 3 0 12 n 

1t 0 0 0 

u It 0 u 
II 11 

(a) 

x[n] = cos{%) 

- 9 - 6 6 9 

- 12 0 3 12 n 

(b) 

Fig. 1-13 Sinusoidal sequences. (a) x[n] = cos(.irn/6) ; (b) x[n] = cos(n/2) . 

1.5 Systems and Classification of Systems 

A. System Representation: 

A system is a mathematical model of a physical process that relates the input (or excitation) signal to the output 
(or response) signal. 

Let x and y be the input and output signals, respectively, of a system. Then the system is viewed as a trans­
formation (or mapping) of x into y. This transformation is represented by the mathematical notation 

y = Tx (1.60) 
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where Tis the operator representing some well-defined rule by which xis transformed into y. Relationship ( 1.60) 
is depicted as shown in Fig. 1-14(a). Multiple input and/or output signals are possible, as shown in Fig. 1-14(b). 
We will restrict our attention for the most part in this text to the single-input, single-output case. 

~1 
X1 

:1 
Y1 : x System y 

T • System 

xn Ym 

(a) (b) 

Fig. 1-14 System with single or multiple input and output signals. 

B. Deterministic and Stochastic Systems: 

If the input and output signals x and y are deterministic signals, then the system is called a deterministic system. 
If the input and output signals x and y are random signals, then the system is called a stochastic system. 

C. Continuous-Time and Discrete-Time Systems: 

If the input and output signals x and y are continuous-time signals, then the system is called a continuous-time 
system [Fig. 1-15(a)]. If the input and output signals are discrete-time signals or sequences, then the system is 
called a discrete-time system [Fig. 1-15(b)]. 

_x_(_t)--1•.il S~ y(t) 
x[n] ·I .... -S-ys-;e_m_:_Y_[n_J_•• 

(a) (b) 

Fig. 1-15 (a) Continuous-time system; (b) discrete-time system. 

Note that in a continuous-time system the input x(t) and output y(t) are often expressed by a differential equation 
(see Prob. 1.32) and in a discrete-time system the input x[n] and output y[n] are often expressed by a difference 
equation (see Prob. 1.37). 

D. Systems with Memory and without Memory 

A system is said to be memoryless if the output at any time depends on only the input at that same time. 
Otherwise, the system is said to have memory.An example of a memoryless system is a resistor R with the input 
x(t) taken as the current and the voltage taken as the output y(t). The input-output relationship (Ohm's law) of 
a resistor is 

y(t) = Rx(t) (l.61) 

An example of a system with memory is a capacitor C with the current as the input x(t) and the voltage as the 
output y(t); then 

1 ft y(t)=- x(r)dr c -oo 
(1.62) 

A second example of a system with memory is a discrete-time system whose input and output sequences are 
related by 

n 

y[n] = ~ x[k] (1.63) 
k=-00 
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E. Causal and Noncausal Systems: 

A system is called causal if its output at the present time depends on only the present and/or past values of the 
input. Thus, in a causal system, it is not possible to obtain an output before an input is applied to the system. 
A system is called noncausal (or anticipative) if its output at the present time depends on future values of the 
input. Example of noncausal systems are 

y(t) = x(t + 1) 

y[n] = x[-n] 

Note that all memoryless systems are causal, but not vice versa. 

F. Linear Systems and Nonlinear Systems: 

(l.64) 

(l.65) 

If the operator Tin Eq. (1.60) satisfies the following two conditions, then Tis called a linear operator and the 
system represented by a linear operator T is called a linear system: 

1. Additivity: 
Given that Tx1 = y1 and Tx2 = y2, then 

(l.66) 

for any signals x1 and x2• 

2. Homogeneity (or Sea/Ing): 

T{ax} = ay (l.67) 

for any signals x and any scalar a. 
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a nonlinear system. Eqs. (1.66) 

and (1.67) can be combined into a single condition as 

(l.68) 

where a 1 and a 2 are arbitrary scalars. Eq. (1.68) is known as the superposition property. Examples of linear 
systems are the resistor [Eq. (1.61)] and the capacitor [Eq. (1.62)]. Examples of nonlinear systems are 

y = x2 

y = cosx 

(l.69) 

(l.70) 

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.67)] of linear systems is that a zero 
input yields a zero output. This follows readily by setting a = 0 in Eq. ( 1.67). This is another important prop­
erty of linear systems. 

G. Time-Invariant and Time-Varying Systems: 

A system is called time-invariant if a time shift (delay or advance) in the input signal causes the same time shift 
in the output signal. Thus, for a continuous-time system, the system is time-invariant if 

T{x(t - i;)} = y(t - i;) (1.71) 

for any real value of'!:'. For a discrete-time system, the system is time-invariant (or shift-invariant) if 

T{x[n - k]} = y[n - k] (1.72) 

for any integer k. A system which does not satisfy Eq. (1.71) (continuous-time system) or Eq. (1.72) (discrete-time 
system) is called a time-varying system. To check a system for time-invariance, we can compare the shifted 
output with the output produced by the shifted input (Probs. 1.33 to 1.39). 
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H. Linear Time-Invariant Systems: 

If the system is linear and also time-invariant, then it is called a linear time-invariant (LTI) system. 

I. Stable Systems: 

A system is bounded-input! bounded-output (BIBO) stable if for any bounded input x defined by 

(1.73) 

the corresponding output y is also bounded defined by 

(1.74) 

where k1 and k 2 are finite real constants.An unstable system is one in which not all bounded inputs lead to bounded 
output. For example, consider the system where outputy[n] is given by y[n] = (n + l)u[n], and inputx[n] = u[n] 
is the unit step sequence. In this case the input u[n] = 1, but the output y[n] increases without bound as n increases. 

J. Feedback Systems: 

A special class of systems of great importance consists of systems having feedback. In a feedback system, the 
output signal is fed back and added to the input to the system as shown in Fig. 1-16. 

y(t) 
System 

Fig. 1-16 Feedback system. 

SOLVED PROBLEMS 

Slgnals and Classltlcatlon of Slgnals 

1.1. A continuous-time signal x( t) is shown in Fig. 1-17. Sketch and label each of the following signals. 

(a) x(t- 2); (b) x(2t); (c) x(t/2); (d) x(-t) 

(a) x(t - 2) is sketched in Fig . l-18(a). 

(b) x(2t) is sketched in Fig. l-18(b). 

(c) x(t/2) is sketched in Fig. l-18(c). 

(d) x( - t)issketchedinFig. l-18(d). 

x(t) 

3 

-2-1 0 1 2 3 4 5 

Fig. 1-17 
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x(t - 2) x(2t) 

3 3 

- 1 0 1 2 3 4 5 6 7 - 2 - 1 0 1 2 3 

(a) (b) 

x(t/2) x( - t) 

3 3 

- 1 0 1 2 3 4 5 6 7 8 9 - 5 - 4- 3- 2 - 1 0 1 2 

(c) (d) 

Fig. 1-18 

1.2. A discrete-time signal x[n] is shown in Fig. 1-19. Sketch and label each of the following signals. 

(a) x[n - 2]; (b) x[2n]; (c) x[-n]; (d) x[-n + 2] 

(a) x[n - 2] is sketched in Fig . 1-20(a). 

(b) x[2n] is sketched in Fig. 1-20(b). 

(c) x[ - n] is sketched in Fig. 1-20(c). 

(d) x[ - n + 2] is sketched in Fig . 1-20(d). 

3 

x[n-2] 

01234567 

(a) 

x[n] 

3 

- 1 O 1 2 3 4 5 n 

Fig. 1-19 

n 

x[2n] 

3 

-1 0 1 2 3 

(b) 

n 
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x[- n] 

3 

- 5 - 4 - 3- 2 - 1 0 1 

(c) 

n 

Fig. 1-20 

1.3. Given the continuous-time signal specified by 

{1-1 t I 
x(t) = 

0 

-l:5t:5l 

otherwise 

x[- n+ 2] 

3 

-3-2 - 1 0 1 2 

(d) 
n 

determine the resultant discrete-time sequence obtained by uniform sampling of x(t) with a sampling 
interval of (a) 0.25 s, (b) 0.5 s, and (c) 1.0 s. 

It is easier to take the graphical approach for this problem. The signalx(t) is plotted in Fig . 1-21(a). Figs. 1-2l(b) to (d) 

give plots of the resultant sampled sequences obtained for the three specified sampling intervals. 

(a) T, = 0.25 s. From Fig. 1-2l(b) we obtain 

x[n] = { .. ., 0, 0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25, 0, . . . } 

t 

(b) T, = 0 .5 s. From Fig . 1-21(c) we obtain 

x[n] = { . . . , 0, 0.5, 1, 0.5, 0, ... } 

t 

(c) T, = 1 s. From Fig . 1-2l(d) we obtain 

x(t) 

x[n] = { .. ., 0, 1, 0, ... } = c5[n] 

t 

x[n] = x(n/4) 

- 1 0 
(a) 

- 4 - 3 - 2 - 1 0 1 2 3 4 
(b) 

- 2 - 1 0 
(c) 

x[n] = x(n/2) 

2 n - 1 

Fig. 1-21 

0 
(d) 

x[n] =x(n) 

n 

n 



CHAPTER 1 Signals and Systems 

1.4. Using the discrete-time signals x 1[n] and x2[n] shown in Fig. 1-22, represent each of the following 
signals by a graph and by a sequence of numbers. 

(a) y1[n] = x 1[n] + x2 [n]; (b) y2[n] = 2x1[n]; (c) y3[n] = x1[n]x2 [n] 

x1[n] 

3 

- 2 - 1 0 1 2 3 4 5 6 7 n - 3 

Fig. 1-22 

(a) y 1[n] is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain 

y1[n] = { .. . , 0, - 2, - 2, 3, 4, 3, - 2, 0, 2, 2, 0, .. . } 

t 

(b) y2[n] is sketched in Fig . 1-23(b). From Fig. 1-23(b) we obtain 

y2[n] = { .. . , 0, 2, 4, 6, 0, 0, 4, 4, 0, . . . } 

t 
(c) y3[n] is sketched in Fig . 1-23(c) . From Fig . 1-23(c) we obtain 

y1[n] = x1[n] + x2[n] 

y3[n] = { . . . , 0, 2, 4, 0, ... } 

t 

6 

4 4 

2 2 

- 2 - 1 3 

3 

1 2 4 5 6 7 n - 2 - 1 0 1 2 3 4 5 6 7 

- 2 

(a) (b) 

4 

2 

- 2 - 1 0 1 2 3 4 5 6 7 n 

(c) 

Fig. 1-23 

n 

n 
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1.5. Sketch and label the even and odd components of the signals shown in Fig. 1-24. 

Using Eqs . (1.5) and (1.6), the even and odd components of the signals shown in Fig . 1-24 are sketched in Fig. 1-25. 

4 

4 

- 5 

x(t) 

0 1 

0 

x[n] 

1 

4 

4 

2 

2 3 4 5 

(a) 

2 3 4 5 6 

(c) 

xe(t) 

0 5 

0 

x(t) 

4 

0 

(b) 

x [n] 

4 

2 

n - 1 0 1 2 3 4 5 n 

(d) 

Fig. 1-24 

x0 (t) 

4 

(a) 

4 

(b) 
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4 

2 

- 5 - 4 - 3 - 2 - 1 

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 n 

(c) 

4 

- 4 - 3 - 2 - 1 

- 4 - 3 - 2 - 1 0 1 2 3 4 n 

(d) 

Fig. 1-25 

1.6. Find the even and odd components of x(t) = ei1• 

Let x,(t) and x0 (t) be the even and odd components of ei', respectively. 

ei' = x,(t) + x.(t) 

From Eqs. (1.5) and (1.6) and using Euler's formula, we obtain 

1 . . 
x (t) = -(e11 +e- Jl) = cost 

e 2 

x (t) = .!..(e11 - e- 11 ) = 1·sint 
0 2 

4 

2 

2 3 4 5 n 

- 2 

x0 [n] 

4 

2 

2 3 4 n 

- 2 

1. 7. Show that the product of two even signals or of two odd signals is an even signal and that the product of 
an even and an odd signal is an odd signal. 

Let x(t) = x1(t)xz(t). If x1(t) and xz(t) are both even, then 

and x(t) is even. If x1(t) and xz(t) are both odd, then 

and x(t) is even. If x1(t) is even and xz(t) is odd, then 

and x(t) is odd. Note that in the above proof, variable t represents either a continuous or a discrete variable. 
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1.8. Show that 

(a) If x(t) and x[n] are even, then 

I a x(t) dt = 2 ra x(t) dt 
-a Jo 

(l .75a) 

k k 

,L x[n] = x[O] + 2 ,L x[n] (l.75b) 
n=-k n=I 

(b) If x(t) and x[n] are odd, then 

x(O) = 0 and x[O] = 0 (l.76) 

k 

J~a x(t) dt = 0 and ,L x[n] = 0 (l.77) 
n=-k 

(a) We can write 

fa x(t) dt =fa x(t) dt +I: x(t) dt 

Letting t = - A in the first integral on the right-hand side, we get 

I
0 x(t)dt= J0 x(-A.)(-dA.)= r0 x(-A.)dA. 
-a a Jo 

Since x(t) is even, that is, x(-A) = x(A), we have 

Hence, 
I a x(t) dt = ra x(t) dt + ra x(t) dt = 2 ra x(t) dt 

-a J 0 J 0 J 0 

Similarly, 

k -I k 

~ x[n]= ~ x[n]+x[O] + ~x[n] 
n=-k n=-k n=I 

Letting n = - m in the first term on the right-hand side, we get 

-1 k 

~ x[n] = ~ x[-m] 
n=-k m=I 

Since x[n] is even, that is, x[-m] = x[m], we have 

k k k 

~x[-m]= ~x[m]= ~x[n] 
m=I m=I n=I 

Hence, 

k k k k 

~ x[n]= ~x[n]+x[O]+ ~x[n]=x[0]+2 ~x[n] 
n=-k n=I n=I n=I 

(b) Since x(t) and x[n] are odd, that is, x (-t) = -x(t) and x[ -n] = -x[n], we have 

x(-0) = - x(O) and x[ -0] = - x[O] 
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Hence, 

Similarly, 

x(-0) = x(O) = - x(O) => x(O) = 0 

x[ -0] = x[O] = - x[O] => x[O] = 0 

I a x(t)dt=f0 x(t)dt+ rax(t)dt= rax(-A,)dA,+ rax(t)dt 
-a -a J 0 J 0 J 0 

=- J:x(A,)d},,+ J:x(t)dt=- J:x(t)dt+ J:x(t)dt= 0 

and 
k -1 k k k 

~ x[n]= ~ x[n]+x[O]+ ~x[n]= ~ x[-m]+x[O]+ ~x[n] 
n=-k n=-k n=I m=I n=I 

k k k k 

=-~ x[m]+x[O]+ ~x[n]=- ~x[n]+x[O]+ ~x[n] 
m=I n=I n=I n=I 

=x[O]=O 

in view ofEq. (l.76). 

1.9. Show that the complex exponential signal 

x(t) = ejw,t 

is periodic and that its fundamental period is 2:rc/ wo-

By Eq. (1.7), x(t) will be periodic if 

Since 

we must have 

If%= 0, then x(t) = 1, which is periodic for any value of T. If% i= 0, Eq. (l.78) holds if 

or 
2:rc 

T=m-
wo 

m = positive integer 

Thus, the fundamental period T0 , the smallest positive T, of x(t) is given by 2:rc/%· 

1.10. Show that the sinusoidal signal 

x(t) = cos(w0 t + 8) 

is periodic and that its fundamental period is 2:rclw0 • 

The sinusoidal signal x(t) will be periodic if 

COS[%(t + T) + 8] = cos(%t + 8) 

(1.78) 
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We note that 

COS[Wo(t + T) + O] = cos[ov + e + %T] = cos(ov + 0) 

if 

or 
2n 

T=m-
wo 

Thus, the fundamental period T0 of x(t) is given by 2n/%· 

1.11. Show that the complex exponential sequence 

x [n] = ejOon 

is periodic only if Q 0 /2Ttis a rational number. 

By Eq. (1.9), x[n] will be periodic if 

or 

Equation (1.79) holds only if 

m = positive integer 

0.Jf= m2n m = positive integer 

or 
Qo m . al b - = - = ration num ers 
2n N 

Thus, x[n] is periodic only if Q0 /2n is a rational number. 

1.12. Let x(t) be the complex exponential signal 

(1.79) 

(l.80) 

with radian frequency% and fundamental period T0 = 2Ttl<flo. Consider the discrete-time sequence x[n] 

obtained by uniform sampling of x(t) with sampling interval T,. That is, 

x[n] = x(nT,) = ejmonTs 

Find the condition on the value of T. so that x[n] is periodic. 

If x[n] is periodic with fundamental period N0 , then 

Thus, we must have 

m = positive integer 

or 

T, m "alb -=-=ration num er 
To No 

(1.81) 



CHAPTER 1 Signals and Systems 

Thus, x[n] is periodic if the ratio T,IT0 of the sampling interval and the fundamental period of x(t) is a rational 
number. 

Note that the above condition is also true for sinusoidal signals x(t) = cos(o1af + (}). 

1.13. Consider the sinusoidal signal 

x(t) = cos 15t 

(a) Find the value of sampling interval T, such that x[n] = x(nT,) is a periodic sequence. 

(b) Find the fundamental period of x[n] = x(nT,) if T, = 0.1.ir seconds. 

(a) The fundamental period of x(t) is T0 = 2.ir/% = 2.ir/15. By Eq. (l.81),x[n] = x(nT,) is periodic if 

T,=~=.!!!... 
T0 2.ir/15 N0 

where m and N0 are positive integers. Thus, the required value of T, is given by 

m m 2n 
T,=-T0 =--

N0 N 0 15 

(b) Substituting T, = O.ln = n/10 in Eq. (1.82), we have 

T, = n/10 =~=~ 
T0 2.ir/15 20 4 

Thus, x[n] = x(nT,) is periodic. By Eq. (l.82) 

T0 4 
N0 =m-=m-

T5 3 

(l.82) 

(1.83) 

The smallest positive integer N0 is obtained with m = 3. Thus, the fundamental period of x[n] = x(O.lnn) 
isN0 = 4. 

1.14. Let x1(t) and x2(t) be periodic signals with fundamental periods T1 and T2, respectively. Under what 
conditions is the sum x(t) = x 1(t) + x2(t) periodic, and what is the fundamental period of x(t) if it is 
periodic? 

Since x 1(t) and xz(t) are periodic with fundamental periods T1 and T2, respectively, we have 

Thus, 

x1(t) = x1(t + T1) = x1(t + mT1) 

x2(t) = xz<t + T2) = xz<t + kT2) 

m = positive integer 

k = positive integer 

In order for x(t) to be periodic with period T, one needs 

Thus, we must have 

or 

T, k . al b - = - = ration num er 
T2 m 

(1.84) 

(1.85) 



CHAPTER 1 Signals and Systems 

In other words, the sum of two periodic signals is periodic only if the ratio of their respective periods can be 

expressed as a rational number. Then the fundamental period is the least common multiple of T1 and T2, and it is 

given by Eq. (1.84) if the integers m and k are relative prime. If the ratio T/T2 is an irrational number, then the 
signals x1(t) and x2(t) do not have a common period and x(t) cannot be periodic. 

1.15. Let x1[n] and x2[n] be periodic sequences with fundamental periods N1 and N2, respectively. Under what 
conditions is the sum x[n] = x 1[n] + x2[n] periodic, and what is the fundamental period of x[n] if it is 
periodic? 

Since x 1[n] and x2[n] are periodic with fundamental periods N1 and N2, respectively, we have 

Thus, 

x1[n] = x1[n + N1] = x1[n + mN1] 

x2[n] = x2[n + N2] = x2[n + kN2] 

In order for x[n] to be periodic with period N, one needs 

Thus, we must have 

m = positive integer 

k = positive integer 

(l.86) 

Since we can always find integers m and k to satisfy Eq. ( 1.86), it follows that the sum of two periodic sequences is 

also periodic and its fundamental period is the least common multiple of N1 and N2• 

1.16. Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its 
fundamental period. 

(a) x(t) = cos(t + ~) ( ) . 2Jl (b) x t =sm-t 
3 

(c) () Jl .Jl (d) x(t) = cos t + sin .J2 t x t = cos - t + sm - t 
3 4 

(e) x(t) = sin2 t (f) x(t) = ej[(,./2)1-11 

x[n] = ej(Hl4)n 1 
(g) (h) x[n] = cos-n 

4 

(i) [] Jl .Jl (j) x[n] = cos2 !!_n x n = cos-n + sm-n 
3 4 8 

(a) X(t) = cos(t +~)=cos( OJof + ~ )--+ Wo = 1 

x(t) is periodic with fundamental period T0 = 2n I w0 = 2n. 

. 2n 2n 
(b) x(t)=sm-t--+w0 =-

3 3 
x(t) is periodic with fundamental period T0 = 2n I OJo = 3. 

(c) x(t) = cos~t + sin~t = x1 (t) + x2 (t) 
3 4 

where x1(t) = cos(n/3)t = cos w/ is periodic with T1 = 2n/w1 = 6 and xp) = sin(n/4)t = sin Wl is periodic 

with T2 = 2n/w2 = 8. Since T1 /T2 = ~ = % is a rational number, x(t) is periodic with fundamental period 

T0 = 4T1 = 3T2 = 24. 
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(d) x(t) =cost+ sin [it= x1(t) + xz(t) 

where x1(t) =cost= cos w1t is periodic with T1 = 2n/w1 = 2nand x2(t) = sin flt= sin w2t is periodic 
with T2 = 2n/w2 = fl n. Since T1 /T2 = fl is an irrational number, x(t) is nonperiodic. 

(e) Using the trigonometric identity sin2 (} = to - cos 2(}), we can write 

x(t) = sin2 t = .!. - .!.cos 2t = x1 (t) + x2 (t) 
2 2 

where x1 (t) = t is a de signal with an arbitrary period and xz(t) = - t cos 2t = - t cos w2t is periodic with 
T2 = 2n/w2 = n. Thus, x(t) is periodic with fundamental period T0 = n. 

(f) x(t) = ej[(ir/2)1-11 = e-jej(Jr/2)1 = e-jejw,1--+ wo = ~ 

x(t) is periodic with fundamental period T0 = 2n/w0 = 4. 

(g) x[n] = ej(Jrl4)n = ejRon--+ Qo = ~ 

Since Q0 /2n = t is a rational number, x[n] is periodic, and by Eq. (1.55) the fundamental period is N0 = 8. 

(h) x[n] = cos tn = cos Q0n--+ Q0 = t 
Since Q0 /2n = 1/8n is not a rational number, x[n] is nonperiodic. 

(i) x[n] = cos j-n + sin ~n = x 1[n] + x2[n] 

where 
1r 1r 

x1[n] = cos-n =cos Q 1n--+ Q1 = -
3 3 

x2 [n] = sin~n =cos Q 2n--+ Q2 = ~ 
4 4 

Since Q/2n = t (= rational number),x1[n] is periodic with fundamental period N1 = 6, and since Qz12n = t 
(=rational number),x2[n] is periodic with fundamental periodN2 = 8. Thus, from the result of Prob. 1.15,x[n] 

is periodic and its fundamental period is given by the least common multiple of 6 and 8, that is, N0 = 24. 

(j) Using the trigonometric identity cos2 (} = to + cos 2(}), we can write 

2:n: 1 1 :n: 
x[n] =cos -n = - +-cos -n = x 1[n] + x 2 [n] 

8 2 2 4 

where x1[n] = t = t<l)" is periodic with fundamental period N1 = 1 and x2[n] = t cos(n/4)n = t cos 
Q2n--+ Q2 = n/4. Since Q2 /2n = t (=rational number), x2[n] is periodic with fundamental period N2 = 8. 
Thus, x[n] is periodic with fundamental period N0 = 8 (the least common multiple of N1 and N2). 

1.17. Show that if x(t + T) = x(t), then 

JP x(t) dt = J13+T x(t) dt 
a a+T 

(l.87) 

fT fa+T J 0 x(t) dt = a x(t) dt (l.88) 

for any real a, {3, and a. 

If x(t + T) = x(t), then letting t = r - T, we have 

x(r- T + T) = x(r) = x(r - T) 

and 

I
fi Ifi+T Ifi+T Ifi+T x(t) dt = x(r - T) dr = x( r) dr = x(t) dt 

a a+T a+T a+T 
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Next, the right-hand side of Eq. (l.88) can be written as 

I a+T Io ra+T 
a x(t)dt= ax(t)dt+ Jo x(t)dt 

By Eq. (l.87) we have 

I o x(t) dt = IT x(t) dt 
a a+T 

Thus, 

I a+T IT ia+T x(t) dt = x(t) dt + x(t) dt 
a a+T 0 

i a+T IT iT = x(t) dt + x(t) dt = x(t) dt 
0 a+T 0 

1.18. Show that if x(t) is periodic with fundamental period T0 , then the normalized average power P of x(t) 
defined by Eq. (1.15) is the same as the average power of x(t) over any interval of length T0 , that is, 

1 rTo I 12 P=- Ji x(t) dt 
To o 

(l.89) 

By Eq. (l.15) 

. 1 IT/2 2 P= hm - lx(t)I dt 
T-oo T -T/2 

Allowing the limit to be taken in a manner such that Tis an integral multiple of the fundamental period, 

T = kT0 , the total normalized energy content of x(t) over an interval of length Tis k times the normalized energy 

content over one period. Then 

. [ 1 rTo I 12 ] 1 rTo I 12 P= hm -k J, x(t) dt =-J, x(t) dt 
k-oo kTo o To o 

1.19. The following equalities are used on many occasions in this text. Prove their validity. 

N-1 r-aN 
(a) ,Lan= 1-a 

n=O N 

"' 
(b) ,Lan =-1-

1-a n=O 

00 k 
(c) ,Lan=~ 

1-a n=k 

00 

(d) ,L n a 
n=O na = (1- a)2 

(a) Let 

Then 

a;tl 

a=l 

lal<l 

lal<l 

lal<l 

N-1 

S ~ n 1 2 N-1 
=~a= +a+a +···+a 

n=O 

N-1 

aS = a }: an = a+ a 2 + a 3 + · · · + aN 
n=O 

(1.90) 

(l.91) 

(l.92) 

(l.93) 

(1.94) 

(1.95) 
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Subtracting Eq. (l.95) from Eq. (l.94), we obtain 

(1 - a) S = 1 - aN 

Hence if a * 1, we have 
N-1 N 

S= ~an=l-a 
n=O 1-a 

(l.96) 

If a= 1, then by Eq. (l.94) 
N-1 

~an =l+l+l+···+l=N 
n=O 

(b) For I a I< 1, lim aN = 0. Then by Eq. (l.96) we obtain 
N-oo 

"' n . N-I n . 1- aN 
~a= hm ~a= hm --=--

n=O N-oo n=O N-oo 1-a 1-a 

(c) Using Eq. (l.91), we obtain 

"' ~an= ak + ak+I + ak+2 + ... 

n=k 
"' k 

k(l 2 ) k ~ n a =a +a+a +···=a ~a =--
n=O 1-a 

( d) Taking the derivative of both sides of Eq. ( 1.91) with respect to a, we have 

d (f nl d ( 1 ) 1 
da n=O a = da 1- a = (1- a)2 

and 

Hence, 
1 "' n 1 
~ ~ na = (1 - a)2 

n=O 
or ~ n a 

~ na = (l-a)2 
n=O 

1.20. Determine whether the following signals are energy signals, power signals, or neither. 

(a) x(t) = e-01u(t), a> 0 (b) x(t) =A cos(aV + (}) 
(c) x(t) = tu(t) (d) x[n] = (-0.5)nu[n] 

(e) x[n] = u[n] (f) x[n] = 2ej 3n 

(a) E=f"' lx(t)l2 dt= r"' e-2at dt=J__<oo 
-oo Jo 2a 

Thus, x(t) is an energy signal. 

(b) The sinusoidal signal x(t) is periodic with T0 = 2:n:/%. Then by the result from Prob. 1.18, the average power 

of x(t) is 

p = _!_ iTo[x(t)]2 dt = Wo i2nlwo AZ cos2(aJo! + 8)dt 
To o 2:n: o 

A2w 2nlwo 1 A2 
= __ o r -[l + cos(20Jot + W)]dt =-< oo 

2:n: Jo 2 2 

Thus, x(t) is a power signal. Note that periodic signals are, in general, power signals. 
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(c) JT/2 2 JT/2 2 (T /2)3 
E = Jim lx(t)I dt = Jim t dt = Jim --= oo 

T-oo - T/2 T-oo 0 T- oo 3 

. 1 JT/2 2 . 1 JT/2 2 . 1 (T /2)3 
P = hm - lx(t)I dt = hm - t dt = hm ---= oo 

T- oo T - T/2 T-oo T 0 T-oo T 3 

Thus, x(t) is neither an energy signal nor a power signal. 

(d) By definition (1.16) and using Eq. (1.91), we obtain 

00 2 00 n 1 4 
E = _L lx[nJI = _L 0.25 =--= -<oo 

n =- oo n =O 1 - 0.25 3 

Thus, x[n] is an energy signal. 

(e) By definition (1.17) 
N 

P = Jim _1 _ ~ lx[nll2 
N-oo 2N + 1 L., 

n =-N 

N 

= Jim _l_ ~ 12 = Jim - 1-(N + 1) = .!_< oo 
N - oo 2N + 1 L., N -oo 2N + 1 2 

n =O 

Thus, x[n] is a power signal. 

(f) Since lx[n] I = I 2ei 3n I = 2 I eJ 3n I= 2, 
N N 

P = Jim _1 _ ~ lx[nJl2 = Jim _1 _ ~ 22 
N -oo 2N + 1 L., N - oo 2N + 1 L., 

n =-N n =-N 

= Jim _l_ 4(2N + 1) = 4 < oo 
N-oo 2N +1 

Thus, x[n] is a power signal. 

Basic Slgnals 

1.21. Show that 

u(-t)={~ 

Let -r = - t. Then by definition ( 1.18) 

u(- t) = u(-r) = {~ 

t>O 

t<O 

-r>O 

-r<O 

Since T > 0 and T < 0 imply, respectively, that t < 0 and t > 0, we obtain 

u(- t) = {~ 
which is shown in Fig . 1-26. 

u(-t) 

0 

Fig. 1-26 

t>O 

t<O 

(1.97) 
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1.22. A continuous-time signal x( t) is shown in Fig. 1-27. Sketch and label each of the following signals. 

(a) x(t)u(l - t); (b) x(t)[u(t) -u(t- l)]; (c) x(t)o(t- ~) 

x(t) 

- 1 0 

Fig. 1-27 

(a) By definition (1.19) 

u(l - t) = {~ 

and x(t)u(l - t) is sketched in Fig. 1-28(a). 

(b) By definitions (1.18) and (1.19) 

u(t) - u(t - 1) = {~ 

andx(t)[u(t) - u(t - 1)] is sketched in Fig. 1-28(b). 

(c) By Eq. (1.26) 

which is sketched in Fig . 1-28(c). 

x(t)u(1 - t) 

- 1 0 

(a) 

2 

t < 1 

t > 1 

O < t~l 

otherwise 

x(t)8(t - 3/2) 

2 

0 2 

(c) 

Fig. 1-28 

x(t) [u(t) - u(t - 1)] 

0 

(b) 

1.23. A discrete-time signal x[n] is shown in Fig. 1-29. Sketch and label each of the following signals. 

(a) x[n]u[l - n]; (b)x[n]{u[n + 2] - u[n]}; (c)x[n]O[ n - 1] 
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x[n] 

3 

- 4 - 3 - 2 - 1 O 1 2 3 4 5 n 

Fig. 1-29 

(a) By definition (1.44) 

u[l - n] = {~ 

and x[n]u[l - n] is sketched in Fig. l-30(a). 

(b) By definitions (1.43) and (1.44) 

u[n + 2] - u[n] = {~ 

andx[n]{u[n + 2] - u[n]} is sketched in Fig. l-30(b). 

(c) By definition (1.48) 

n~l 

n>l 

- 2~n<O 

otherwise 

x[n]b[n - 1] = x[l]b[n - 1] = b[n - 1] = {~ 

which is sketched in Fig. l-30(c). 

x[n]u[1 - n] 

3 

- 4 - 3 - 2 - 1 0 1 2 3 

(a) 

n 

x[n]S[n - 1] 

3 

n = l 

w;t 1 

3 

x[n] {u[n +2]- u[n]) 

- 3 - 2 - 1 0 1 2 3 

(b) 

- 2 - 1 O 1 2 3 4 n 

(c) 

Fig. 1-30 

1.24. The unit step function u(t) can be defined as a generalized function by the following relation: 

J~00 <P(t)u(t) dt = J: <P(t) dt 

u(t) = {~ 
t<O 

n 

(1.98) 
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Rewriting Eq. (l.98) as 

J~oo i/J(t)u(t) dt = J~oo i/J(t)u(t) dt + J: i/J(t)u(t) dt = J: i/J(t) dt 

we obtain 

f 00 i/J(t)u(t) dt = J: l/J(t)[l - u(t)] dt 

This can be true only if 

f 00 i/J(t)u(t) dt = 0 and J; l/J(t)[l - u(t)] dt = 0 

These conditions imply that 

i/J(t)u(t) = 0, t < 0 and l/J(t)[l - u(t)] = 0, t > 0 

Since l/J(t) is arbitrary, we have 

u(t) = 0, t < 0 and 1- u(t) = 0, t > 0 

that is, 

1.25. Verify Eqs. (1.23) and (1.24); that is, 

1 
(a) '5(at)=~'5(t); (b) '5(-t)='5(t) 

u(t)= {~ t>O 

t<O 

The proof will be based on the following equivalence property: 

Let g1(t) and gif) be generalized functions. Then the equivalence property states that g 1(t) = gz(t) if and 
only if 

for all suitably defined testing functions i/J(t). 

(a) With a change of variable, at= T, and hence t = -r/a, dt = (lla) d-r, we obtain the following equations: 

If a> 0, 

J~ i/J(t)()(at) dt = .!..J~ l/J(~)(j(-r) d-r = .!..ip(~)I = - 1 l/J(O) oo a 00 a a a lal 
-r=O 

If a< 0, 

i/J(t)()(at) dt = - ip - ()(-r) d-r = - - ip - ()(-r) d-r J oo 1 J-oo ( T ) 1 Joo ( T ) 
- 00 a 00 a a -oo a 

= - .!..ip(~)I = _1 l/J(O) 
a a -r=O I al 

Thus, for any a 

Joo 1 
_ 00 ijJ(t)()(at) dt = ~l/J(O) 

(l.99) 
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Now, using Eq. (1.20) for </J(O), we obtain 

J oo 1 1 Joo 
_ 00 </J(t)()(at) dt = ~</J(O) = ~ _ 00 </J(t)()(t) dt 

Joo 1 
= -00 </J(t)~(j(t) dt 

for any </J(t). Then, by the equivalence property (1.99), we obtain 

1 
()(at)= ~(j(t) 

(b) Setting a= -1 in the above equation, we obtain 

which shows that ()(t) is an even function. 

1.26. (a) Verify Eq. (1.26): 

if x(t) is continuous at t = t0 . 

(b) Verify Eq. (l.25): 

if x(t) is continuous at t = 0. 

x(t) b(t) = x(O) b(t) 

(a) If x(t) is continuous at t = t0 , then by definition (1.22) we have 

J~00 </J(t)[x(t)(j(t - t0 )] dt = J~)</J(t)x(t)]()(t - t0 ) dt = </J(t0 )x(t0 ) 

= x(to) J~00 </J(t)()(t- t0 ) dt 

= J~00 </J(t)[x(to)(j(t-to)l dt 

for all </J(t) which are continuous at t = t0• Hence, by the equivalence property (l.99) we conclude that 

(b) Setting t0 = 0 in the above expression, we obtain 

1.27. Show that 

(a) tb(t) = 0 

(b) sin tb(t) = 0 

(c) cos tb(t - ;r) = -b(t - ;r) 

Using Eqs. (1.25) and (1.26), we obtain 

(a) t()(t) = (0) ()(t) = 0 

(b) sin t()(t) = (sin 0) ()(t) = (0) ()(t) = 0 

x(t)()(t) = x(O)()(t) 

(c) cos t()(t - :n:) = (cos :n:) ()(t - :n:) = (- l)(j(t - :n:) = -(j(t - :n:) 
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1.28. Verify Eq. ( 1.30): 

From Eq. (1.28) we have 

du(t) 
<5(t) = u'(t) = --

dt 

J~00 i/J(t)u'(t) dt = - J~00 ijJ'(t)u(t) dt (l.100) 

where l/J(t) is a testing function which is continuous at t = 0 and vanishes outside some fixed interval. Thus, ijJ'(t) 

exists and is integrable over 0 < t < oo and ijJ(oo) = 0. Then using Eq. (l.98) or definition (l.18), we have 

J~00 i/J(t)u'(t) dt = - J: i/J'(t) dt = - l/J(t)I~ = - [ijJ(oo)- l/J(O)] 

= l/J(O) = J~00 i/J(t)6(t) dt 

Since l/J(t) is arbitrary and by equivalence property (1.99), we conclude that 

6(t) = u'(t) = du(t) 
dt 

1.29. Show that the following properties hold for the derivative of <5(t): 

(a) J:00 </J(t)i5'(t) dt = - </J'(O) 

(b) ti5'(t) = -<5 (t) 

where </J'(O) = d</J(t) I 
dt t=O 

(a) Using Eqs. (1.28) and (1.20), we have 

J~00 i/J(t)6'(t) dt = - J~00 ijJ'(t)6(t) dt = - l/J'(O) 

(b) Using Eqs. (1.101) and (1.20), we have 

Joo Joo d 
_ 00 i/J(t) [t()'(t)] dt = _)ti/J(t)]()'(t) dt = - dt [ti/J(t)] lr=O 

= - [i/J(t) + tl/J'(t)Jl1=0 = - l/J(O) 

= - J~oo i/J(t)6(t) dt = J:oo l/J(t)[-6(t)] dt 

Thus, by the equivalence property (1.99) we conclude that 

1.30. Evaluate the following integrals: 

(a) f 1(3t2 +1)<5(t)dt 

(b) J,2 (3t2 + 1)<5(t) dt 

(c) J:oo (t2 +cos m)i5(t -1) dt 

(d) J:
00 

e -t <5(2t - 2) dt 

(e) J:
00 

e -t <5'(t) dt 

t6'(t) = -(j(t) 

(l.101) 

(1.102) 
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(a) By Eq. (l.21), with a = -1 and b = 1, we have 

f I (3t2 + l)c5(t) dt = (3t2 + l)lt=O = 1 

(b) By Eq. (1.21), with a = 1 and b = 2, we have 

(c) By Eq. (l.22) 

f,2 (3t2 + l)c5(t) dt = 0 

I~"' (t2 +cos nt)c5(t - 1) dt = (t2 +cos :rrt) It=! 
=l+cos:rr=l-1=0 

(d) Using Eqs. (1.22) and (1.23), we have 

J~00 e-t c5(2t - 2) dt = J~00 e-1 c5[2(t - l)] dt 

= J"' e-1 __!_c5(t -1) dt = .!.e-11 

-oo 121 2 t=I 2e 

(e) By Eq. (l.29) 

I "' e- 1c5'(t)dt=-.!!._(e- 1 )1 =e-tl =l 
-oo dt t=O t=O 

1.31. Find and sketch the first derivatives of the following signals: 

(a) x(t) = u(t) - u(t - a), a> 0 

(b) x(t) = t[u(t) - u(t - a)], a > 0 

(c) x(t) = sgn t = { 1 
-1 

t>O 

t<O 

(a) Using Eq. (l.30), we have 

u'(t) = c5(t) 

Then 

and u'(t - a) = c5(t - a) 

x'(t) = u'(t) - u'(t - a) = c5(t) - c5(t - a) 

Signals x(t) and x'(t) are sketched in Fig. l-3l(a). 

(b) Using the rule for differentiation of the product of two functions and the result from part (a), we have 

x'(t) = [u(t) - u(t - a)] + t[c5(t) - c5(t - a)] 

But by Eqs. (l.25) and (l.26) 

tc5(t) = (O)c5(t) = 0 and tc5(t - a) = ac5(t - a) 

Thus, 
x'(t) = u(t) - u(t - a) - ac5 (t - a) 

Signals x(t) and x'(t) are sketched in Fig. l-3l(b). 

(c) x(t) = sgn t can be rewritten as 

x(t) = sgn t = u(t) - u(-t) 

Then using Eq. (1.30), we obtain 

x'(t) = u'(t) - u'(-t) = c5(t)- [-c5(t)] = 2c5(t) 

Signals x(t) and x'(t) are sketched in Fig. 1-3 l(c). 
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x(t) 

0 a 

x' (t) 

8(t) 

a 

0 

- 8 (t - a) 

(a) 

a 

x(t) 

0 a 

x' (t) 

O a 

- a8 (t - a) 

(b) 

Fig. 1-31 

Systems and Classltlcatlon of Systems 

x(t) 

0 

--------l - 1 

x' (t) t 2'(t) 

0 

(c) 

1.32. Consider the RC circuit shown in Fig. 1-32. Find the relationship between the inputx(t) and the output y(t) 

(a) If x(t) = v,(t) and y(t) = v/t). 

(b) If x(t) = v,(t) and y(t) = i(t). 

R 

~ 
+T 

v.(t) c vc(t) 

-1 
Fig. 1-32 RC circuit. 

(a) Applying Kirchhoff's voltage law to the RC circuit in Fig . 1-32, we obtain 

v.(t) = Ri(t) + v/ t) 

The current i(t) and voltage v/ t) are related by 

i(t) = C dvc<t) 
dt 

Letting v.(t) = x (t) and vp) = y (t) and substituting Eq. (1 .04) into Eq. (1.103), we obtain 

or 

RC dy(t) + y(t) = x(t) 
dt 

dy (t) 1 1 
-- + -y(t) = - x(t) 

dt RC RC 

(1.103) 

(1.104) 

(1.105) 
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Thus, the input-output relationship of the RC circuit is described by a first-order linear differential equation 

with constant coefficients. 

(b) Integrating Eq. (1.104), we have 

1 J' . vc<t) = - 1(r)dr c - co 

Substituting Eq. (1.106) into Eq. (1.103) and letting v.(t) = x(t) and i(t) = y(t), we obtain 

1 J' Ry(t)+- y(r)dr = x(t) c - co 

or 
1 J' 1 y(t)+- y(r)dr = -x(t) 

RC - co R 

Differentiating both sides of the above equation with respect tot, we obtain 

dy(t) + _l_y(t) = _!_ dx(t) 
dt RC R dt 

Thus, the input-output relationship is described by another first-order linear differential equation with 

constant coefficients. 

1.33. Consider the capacitor shown in Fig. 1-33. Let input x(t) = i(t) and output y(t) = v/t). 

(a) Find the input-output relationship. 

(1.106) 

(1.107) 

(b) Determine whether the system is (i) memoryless, (iz) causal, (iiz) linear, (iv) time-invariant, or (v) stable. 

i(t) 

Fig. 1-33 

(a) Assume the capacitance C is constant. The output voltage y(t) across the capacitor and the input current x(t) 

are related by [Eq. (1.106)] 

1 J' y(t) = T{x(t)} = - x(r)dr c -co 
(1.108) 

(b) (i) From Eq. (1.108) it is seen that the output y(t) depends on the past and the present values of the input. 

Thus, the system is not memoryless. 

(ii) Since the output y(t) does not depend on the future values of the input, the system is causal. 

(iii) Let x(t) = a 1x1(t) + a 2x2(t). Then 

y(t) = T {x(t)} = _!_J 1 [a1x1 (r) + a 2x2(r)] dr c - co 

= a 1 [z f co x1(r)dr] + a 2 [z f co x2(r)dr] 

= a 1y1 (t) + a 2Yz(t) 

Thus, the superposition property (1.68) is satisfied and the system is linear. 
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(iv) Let y1(t) be the output produced by the shifted input current x 1(t) = x(t - t0). 

Then 

1 f' y1(t) = T{x(t - t0 )} = - x(r - t0 )dr c -00 

1 fr -to = - x(J..)d.?.. = y(t - t0 ) c -00 

Hence , the system is time-invariant. 

(1.109) 

where r(t) = tu(t) is known as the unit ramp function (Fig. 1-34). Since y(t) grows linearly in time 
without bound, the system is not BIBO stable . 

r(t) = tu(t) 

0 

Fig. 1-34 Unit ramp function . 

1.34. Consider the system shown in Fig. 1-35. Determine whether it is (a) memoryless, (b) causal, (c) linear, 
(d) time-invariant, or (e) stable. 

Multiplier 
x(t) y(f) = X(f) COS WC f 

Fig. 1-35 

(a) From Fig. 1-35 we have 

y(t) = T{x(t)} = x(t) cos wet 

Since the value of the output y(t) depends on only the present values of the input x(t), the system is memoryless. 

(b) Since the output y(t) does not depend on the future values of the input x(t), the system is causal. 

(c) Let x(t) = a 1x(t) + a 2x(t). Then 

y(t) = T{x(t)} = [a1x1(t) + a 2x2 (t)] cos wet 

= a 1x1(t) cos wet+ a 2x2(t) cos wet 

= a 1y1 (t) + a 2Yz(t) 

Thus, the superposition property (1.68) is satisfied and the system is linear. 
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(d) Lety1(t) be the output produced by the shifted inputx1(t) = x(t- t0 ). Then 

But 

Hence, the system is not time-invariant. 

(e) Since I cos ro/ I ~ 1, we have 

ly(t) I = lx(t) cos wet I ~ lx(t) I 

Thus, if the input x(t) is bounded, then the output y(t) is also bounded and the system is BIBO stable. 

1.35. A system has the input-output relation given by 

y = T{x} = x2 

Show that this system is nonlinear. 

Thus, the system is nonlinear. 

T{x1 + x2 } = (x1 + x2)2 = xf + x~ + 2x1x2 

=t-T{xi} + T{x2 } = xf + x~ 

(l.110) 

1.36. The discrete-time system shown in Fig. 1-36 is known as the unit delay element. Determine whether the 
system is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable. 

___ ___,.~ Unit . "' x[n] I ly[n] =x[n-1] .. 

. delay 

Fig. 1-36 Unit delay element 

(a) The system input-output relation is given by 

y[n] = T{x[n]} = x[n - 1] 

Since the output value at n depends on the input values at n - 1, the system is not memoryless. 

(b) Since the output does not depend on the future input values, the system is causal. 

(c) Letx[n] = a 1x 1[n] + a 2x2[n]. Then 

y[n] = T{a1x1[n] + a zX2[n]} = a1x1[n - 1] + azX2[n - 1] 

= a1Y1[n]+a2Yz[n] 

Thus, the superposition property (1.68) is satisfied and the system is linear. 

(d) Let y1[n] be the response to x1[n] = x[n - n0]. Then 

y1[n] = T{x1[n]} = x1[n - l] = x[n - 1 - n0] 

and 

Hence, the system is time-invariant. 

(e) Since 

ly[n] I = lx[n - lJ I ~ k if lx[n] I ~ kfor all n 

the system is BIBO stable. 

(l.111) 
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1.37. Find the input-output relation of the feedback system shown in Fig. 1-37. 

+ 
x[n] Unit 

delay 

Fig. 1-37 

y[n] 

From Fig. 1-37 the input to the unit delay element is x[n] - y[n]. Thus , the output y[n] of the unit delay element is 
[Eq. (1.111)] 

y[n] = x[ n - 1] - y[n - 1] 

Rearranging, we obtain 

y[n] + y[n - 1] = x[n - 1] 

Thus, the input-output relation of the system is described by a first-order difference equation with constant 

coefficients. 

1.38. A system has the input-output relation given by 

y[n] = T{x[n]} = nx[n] 

(1.112) 

(1.113) 

Determine whether the system is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable. 

(a) Since the output value at n depends on only the input value at n, the system is memoryless. 

(b) Since the output does not depend on the future input values, the system is causal. 

(c) Letx[n] = a 1x1[n] + a 2x2[n]. Then 

y[n] = T{x[n]} = n{a1x 1[n] + a 2x2[n]} 

= a 1nx1[n] + a 2nx2[n] = a 1y1[n] + a 2y2[n] 

Thus, the superposition property (1.68) is satisfied and the system is linear. 

(d) Lety 1[n] be the response tox1[n] = x[n - n0]. Then 

But 

y 1[n] = T{x[n - n0]} = nx[n - n0] 

y[n - n0 ] = (n - n0) x[n - n0 ] # y 1[n] 

Hence , the system is not time-invariant. 

(e) Letx[n] = u[n]. Then y[n] = nu[n]. Thus , the bounded unit step sequence produces an output sequence that 
grows without bound (Fig. 1-38) and the system is not BIBO stable . 

x[n] = u[n] y[n] = nu[n] 

4 

2 

- 2 - 1 0 1 2 3 4 n - 2 - 1 0 1 2 3 4 n 

Fig. 1-38 
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1.39. A system has the input-output relation given by 

y[n] = T{x[n]} = x[k0n] 

where k0 is a positive integer. Is the system time-invariant? 

Lety 1[n] be the response tox1[n] = x[n - n0]. Then 

But 

y1[n] = T{x1[n]} = x1[k0n] = x[k0n - n0] 

y[n - n0] = x[ k0(n - n0)] =fa y 1[n] 

(1.114) 

Hence , the system is not time-invariant unless k0 = 1. Note that the system described by Eq. (1.114) is called a 
compressor. It creates the output sequence by selecting every k0th sample of the input sequence. Thus , it is obvious 

that this system is time-varying. 

1.40. Consider the system whose input-output relation is given by the linear equation 

y=ax+b (1.115) 

where x and y are the input and output of the system, respectively, and a and bare constants. Is this 
system linear? 

If b =fa 0, then the system is not linear because x = 0 implies y = b =fa 0. If b = 0 , then the system is linear. 

1.41. The system represented by Tin Fig. 1-39 is known to be time-invariant. When the inputs to the system 
are x 1[n], x2[n], and x3 [n], the outputs of the system are y 1[n], y2[n], and y3[n] as shown. Determine 
whether the system is linear. 

y, [n] 

2 2 

- 2 - 1 0 1 2 3 4 n - 2 - 1 0 1 2 3 4 n 

---+0--+ 2 

- 2 - 1 0 2 3 4 n - 2 - 1 0 1 2 3 4 n 

x3(nj Y3[n] 

3 

2 ---+0--+ 
- 2 - 1 0 1 2 3 4 n - 2 - 1 0 1 2 3 4 n 

Fig. 1-39 
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From Fig. 1-39 it is seen that 

Thus, if Tis linear, then 

which is shown in Fig. 1-40. From Figs. 1-39 and 1-40 we see that 

Hence , the system is not linear. 

2 2 2 

+ 
- 2 - 1 0 1 2 3 4 n - 2 - 1 0 1 2 3 4 n - 2 - 1 0 1 2 3 4 n 

Fig. 1-40 

1.42. Give an example of a system that satisfies the condition of additivity ( 1.66) but not the condition of 
homogeneity (1.67). 

Consider a discrete-time system represented by an operator T such that 

y[n] = T{x[n]} = x*[n] (1 .116) 

where x*[n] is the complex conjugate of x[n] . Then 

Next, if a is any arbitrary complex-valued constant, then 

T{ax[n]} = {ax[n]} * = a*x* [n] = a*y[n] =fa ay[n] 

Thus, the system is additive but not homogeneous. 

1.43. (a) Show that the causality for a continuous-time linear system is equivalent to the following statement: 
For any time t0 and any input x(t) with x(t) = 0 fort :5 t0 , the output y(t) is zero fort :5 t0 . 

(b) Find a nonlinear system that is causal but does not satisfy this condition. 

(c) Find a nonlinear system that satisfies this condition but is not causal. 

(a) Since the system is linear, if x(t) = 0 for all t, then y(t) = 0 for all t. Thus, if the system is causal, then 
x(t) = 0 fort,;:; t0 implies that y(t) = 0 fort,;:; t0 • This is the necessary condition. That this condition is 
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also sufficient is shown as follows: let x1(t) and x2(t) be two inputs of the system and let y 1(t) and y2(t) be 

the corresponding outputs. If x1(t) = x2(t) fort~ t0, or x(t) = x1(t) - xz(t) = 0 fort~ t0 , theny1(t)= yz(t) 

fort~ t0 , ory(t) = y 1(t) - yz(t) = 0 fort~ t0 • 

(b) Consider the system with the input-output relation 

y(t) = x(t) + 1 

This system is nonlinear (Prob. 1.40) and causal since the value of y (t) depends on only the present value of 

x(t). But with x(t) = 0 fort~ t0 , y(t) = 1 fort~ t0• 

(c) Consider the system with the input-output relation 

y (t) = x(t)x(t + 1) 

It is obvious that this system is nonlinear (see Prob. 1.35) and noncausal since the value of y(t) at time t depends 

on the value of x(t + 1) of the input at time t + 1. Yet x(t) = 0 fort~ t0 implies that y(t) = 0 fort~ t0• 

1.44. Let T represent a continuous-time LTI system. Then show that 

where s is a complex variable and/... is a complex constant. 

Let y(t) be the output of the system with input x(t) = est. Then 

T{est} = y(t) 

Since the system is time-invariant, we have 

for arbitrary real t0• Since the system is linear, we have 

Hence, 

Setting t = 0, we obtain 

T{e'(I+ to>} = T{est esto} = estoT{est} = estoy(t) 

y(t + t0) = est'Y(t) 

Since t0 is arbitrary, by changing t0 tot, we can rewrite Eq. (l.118) as 

or 

where/... = y(O). 

y(t) = y(O) est= /...est 

T{est} = A est 

1.45. Let T represent a discrete-time LTI system. Then show that 

where z is a complex variable and/... is a complex constant. 

(l.117) 

(l.118) 

(1.119) 
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Lety[n] be the output of the system with inputx[n] = z" . Then 

T{z"} = y[n] 

Since the system is time-invariant, we have 

for arbitrary integer n0 • Since the system is linear, we have 

Hence , 

Setting n = 0 , we obtain 

T{z" +"0 } = T{z"z"0} = z"•T{z"} = z"•y[n] 

y[n + n0 ] = z"0y[n] 

y[n0] = y[O]z" 0 

Since n0 is arbitrary, by changing n0 ton , we can rewrite Eq. (1.120) as 

or 

where /... = y[O]. 

y[n] = y[O]z" = /... z" 

T{z"} = /... z" 

In mathematical language, a function x( ·) satisfying the equation 

T{x(-)} = f...x(-) 

(1.120) 

(1.121) 

is called an eigenfunction (or characteristic function) of the operator T , and the constant /... is called the eigenvalue 
(or characteristic value) corresponding to the eigenfunction x(-). Thus , Eqs. (1 .117) and (1.119) indicate that the 

complex exponential functions are eigenfunctions of any LTI system. 

SUPPLEMENTARY PROBLEMS 

1.46. Express the signals shown in Fig . 1-41 in terms of unit step functions. 

x(t) 

x(t) 3 

2 

- 1 0 2 3 - 1 0 2 3 4 

(a) (b) 

Fig. 1-41 
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1.47. Express the sequences shown in Fig. 1-42 in terms of unit step sequences. 

x[n] 

- 4 - 3- 2 - 1 

- 2 - 1 0 1 2 N n 

01 • 4 • I I 

(a) (b) 

x[n] 

- 4 - 3- 2 - 1 O 1 2 3 4 5 n 

(c) 

Fig. 1-42 

1.48. Determine the even and odd components of the following signals: 

(a) x(t) = u(t) 

(b) x(t) = sin(roor+:) 

(c) x[n] = ej(!Jon+rr/2) 

(d) x[n] = o[n] 

x[n] 

>- 1 

-
2 3 

~ - 1 

1.49. Let x(t) be an arbitrary signal with even and odd parts denoted by x,(t) and x.(t), respectively. Show that 

1.50. Let x[n] be an arbitrary sequence with even and odd parts denoted by x,[n] and xJn], respectively. Show that 

"' ,L x;[n] + 
n=-oo n=-oo n=-oo 

1.51. Determine whether or not each of the following signals is periodic. If a signal is periodic , determine its 

fundamental period. 

(a) x(t) = cos ( 2t + : ) 

(b) x(t) = cos2 t 

(c) x(t) = (cos2nt)u(t) 

(d) x(t) = ej"1 

(e) x[n] = ej[(n/4 )- ;rJ 

n 
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(f) x[n]=cos(n;
2

) 

(g) x[n] =cos (; )cos ( n: ) 
(h) x[n]=cos( n: )+sin( ~n )-2cos( n;) 

1.52. Show that if x[n] is periodic with period N, then 

n n+N N n0+N 

(a) }: x[k] = }: x[k]; (b) }: x[k] = }: x[k] 
k=no k=n0 +N k=O k=no 

1.53. (a) What is lJ(2t)? 

(b) What is lJ[2n]? 

1.54. Show that 

(j'(-t) = - (j'(t) 

1.55. Evaluate the following integrals: 

(a) f 00 (cos-r)u(-r) d-r 

(c) J~00 (cos t)u(t - l)lJ(t) dt 

(b) f 00 (cos-r)lJ(-r)d-r 

(d) r2"' t sin!..lJ(n - t) dt 
Jo 2 

1.56. Consider a continuous-time system with the input-output relation 

1 It+T/2 y(t)=T{x(t)}=- x(-r)d-r 
T t-T/2 

Determine whether this system is (a) linear, (b) time-invariant, (c) causal. 

1.57. Consider a continuous-time system with the input-output relation 
co 

y(t) = T {x(t)} = }: x(t)lJ(t - kT,) 
k=-00 

Determine whether this system is (a) linear, (b) time-invariant. 

1.58. Consider a discrete-time system with the input-output relation 

y[n] = T{x[n]} = x2 [n] 

Determine whether this system is (a) linear, (b) time-invariant. 

1.59. Give an example of a system that satisfies the condition of homogeneity ( 1.67) but not the condition of 
additivity (1.66). 

1.60 Give an example of a linear time-varying system such that with a periodic input the corresponding output is not 
periodic. 

1.61. A system is called invertible if we can determine its input signal x uniquely by observing its output signal y. This is 
illustrated in Fig. 1-43. Determine if each of the following systems is invertible. If the system is invertible, give the 
inverse system. 
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__ x_-1~.il Systom 1---y--1~.il Inverse 
. system 

(a) y(t) = 2x(t) 

(b) y(t)=x2 (t) 

(c) y(t)= f
00

x(-r)d-r 

n 

(d) y[n] = ~ x[k] 
k=-00 

(e) y[n] = nx[n] 

Fig. 1-43 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

1.46. (a) x(t) =f[u(t) - u(t - 2)] 

(b) x(t) = u(t + 1) + 2u(t) - u(t - 1) -u(t - 2) - u(t - 3) 

1.47. (a) x[n] = u[n] -u[n - (N + 1)] 

(b) x[n] = -u[-n - 1] 

(c) x[n] = u[n + 2] -u[n - 4] 

1 1 
1.48. (a) x.(t)= 2,x0 (t)=zsgnt 

(b) x.(t)= Jzcosw0t,x0 (t)= Jzsinw0t 

(c) x.[n] = j cos Q 0n, x0 [n] = - sin Q 0n 

(d) x.[n] = c5[n], x0 [n] = 0 

1.49. Hint: Use the results from Prob. 1.7 and Eq. (1.77). 

1.50. Hint: Use the results from Prob. 1.7 and Eq. (l.77). 

1.51. (a) Periodic, period= n 

(c) Nonperiodic 

(e) Nonperiodic 

(g) Nonperiodic 

1.52. Hint: See Prob. 1.17. 

1.53. (a) c5(2t) = ~ c5(t) 

(b) c5[2n] = c5[n] 

1.54. Hint: Use Eqs. (1.101) and (1.99). 

(b) Periodic, period= n 

(d) Periodic, period = 2 

(f) Periodic, period = 8 

(h) Periodic, period= 16 

1.55. (a) sin t 

(b) 1 fort> 0 and 0 fort< O; not defined fort= 0 

(c) 0 

(d) n 

x 
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1.56. (a) Linear; (b) Time-invariant; (c) Noncausal 

1.57. (a) Linear; (b) Time-varying 

1.58. (a) Nonlinear; (b) Time-invariant 

1.59. Consider the system described by 

[ 
b ]112 

y(t)= T{x(t)} = fa [x(T)]2 d-r 

1.60 y[n] = T{x[n]} = nx[n] 

1.61. (a) Invertible; x(t) = .!..y(t) 
2 

(b) Not invertible 

(c) Invertible; x(t) = d~~) 

(d) Invertible; x[n] = y[n]- y[n -1] 

(e) Not invertible 



Linear Time-Invariant Systems 

2.1 Introduction 

Two most important attributes of systems are linearity and time-invariance. In this chapter we develop the fun­
damental input-output relationship for systems having these attributes. It will be shown that the input-output rela­
tionship for LTI systems is described in terms of a convolution operation. The importance of the convolution 
operation in LTI systems stems from the fact that knowledge of the response of an LTI system to the unit impulse 
input allows us to find its output to any input signals. Specifying the input-output relationships for LTI systems 
by differential and difference equations will also be discussed. 

2.2 Response of a Continuous-Time LTI System and the Convolution Integral 

A. Impulse Response: 

The impulse response h(t) of a continuous-time LTI system (represented by T) is defined to be the response of 
the system when the input is o(t), that is, 

h(t) = T { o(t)} 

B. Response to an Arbitrary Input: 

From Eq. ( 1.27) the input x( t) can be expressed as 

Since the system is linear, the response y(t) of the system to an arbitrary input x(t) can be expressed as 

y(t) = T{x(t)} = T{f ~00 x('r)o(t-T) dT} 

= f~00 x(T)T{O(t-T)} dT 

Since the system is time-invariant, we have 

h(t - T) = T{o(t - T)} 

Substituting Eq. (2.4) into Eq. (2.3), we obtain 

y(t) = f~00 X(T)h(t-T) dT 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Equation (2.5) indicates that a continuous-time LTI system is completely characterized by its impulse response h(t). ··-
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C. Convolution Integral: 

Equation (2.5) defines the convolution of two continuous-time signals x(t) and h(t) denoted by 

y(t) = x(t) * h(t) = J~00 x(r)h(t - r) dr (2.6) 

Equation (2.6) is commonly called the convolution integral. Thus, we have the fundamental result that the out­
put of any continuous-time LTI system is the convolution of the input x(t) with the impulse response h(t) of the 
system. Fig. 2-1 illustrates the definition of the impulse response h(t) and the relationship ofEq. (2.6). 

S(t) 

x(t) 

h(t) LTI 
system 

.____ __ ____. y(t) = x(t) • h(t) 

Fig. 2-1 Continuous-time LTI system. 

D. Properties of the Convolution Integral: 

The convolution integral has the following properties. 

1. Commutative: 

x(t) * h(t) = h(t) * x(t) 

2. Associative: 

3. Distributive: 

E. Convolution Integral Operation: 

Applying the commutative property (2.7) of convolution to Eq. (2.6), we obtain 

y(t) = h(t) * x(t) = J~00 h(r)x(t - r) dr 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

which may at times be easier to evaluate than Eq. (2 .6). From Eq. (2 .6) we observe that the convolution integral 
operation involves the following four steps: 

1. The impulse response h(r) is time-reversed (that is, reflected about the origin) to obtain h(-r) and 
then shifted by tto form h(t - r) = h[ -(r - t)], which is a function of rwith parameter t. 

2. The signal x(r) and h(t - r) are multiplied together for all values of rwith tfixed at some value. 

3. The product x(r)h(t - r) is integrated over all rto produce a single output value y(t). 

4. Steps 1 to 3 are repeated as t varies over -oo to oo to produce the entire output y(t). 

Examples of the above convolution integral operation are given in Probs. 2.4 to 2.6. 

F. Step Response: 

The step response s(t) of a continuous-time LTI system (represented by T) is defined to be the response of the 
system when the input is u(t); that is, 

s(t) = T{u(t)} (2.11) 
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In many applications, the step response s(t) is also a useful characterization of the system. The step response s(t) 
can be easily determined by Eq. (2.10); that is, 

s(t)=h(t)*u(t)= I~00 h(r)u(t-r)dr= {_
00
h(r)dr (2.12) 

Thus, the step response s(t) can be obtained by integrating the impulse response h(t). Differentiating Eq. (2.12) 
with respect to t, we get 

h( ) - '( )_ ds(t) t -s t ---
dt 

Thus, the impulse response h(t) can be determined by differentiating the step response s(t). 

2.3 Properties of Continuous-Time LTI Systems 

A. Systems with or without Memory: 

(2.13) 

Since the output y(t) of a memoryless system depends on only the present input x(t), then, if the system is also 
linear and time-invariant, this relationship can only be of the form 

y(t) = Kx(t) (2.14) 

where K is a (gain) constant. Thus, the corresponding impulse response h(t) is simply 

h(t) = KfJ(t) (2.15) 

Therefore, if h(t0 ) * 0 for t0 * 0, then continuous-time LTI system has memory. 

B. Causality: 

As discussed in Sec. l.5D, a causal system does not respond to an input event until that event actually occurs. 
Therefore, for a causal continuous-time LTI system, we have 

h(t) = 0 t< 0 (2.16) 

Applying the causality condition (2.16) to Eq. (2.10), the output of a causal continuous-time LTI system is 
expressed as 

y(t) =Io"' h(r)x(t - r) dr (2.17) 

Alternatively, applying the causality condition (2.16) to Eq. (2.6), we have 

y(t) = {_
00 

x(r)h(t - r) dr (2.18) 

Equation (2.18) shows that the only values of the input x(t) used to evaluate the output y(t) are those for r :5 t. 
Based on the causality condition (2.16), any signal x(t) is called causal if 

x(t) = 0 t< 0 (2.19a) 

and is called anticausal if 

x(t) = 0 t> 0 (2.19b) 

Then, from Eqs. (2.17), (2.18), and (2.19a), when the input x(t) is causal, the outputy(t) of a causal continuous­
time LTI system is given by 

t t 
y(t) =Io h(r)x(t - r) dr =Io x(r)h (t - r) dr (2.20) 
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C. Stability: 

The BIBO (bounded-input/bounded-output) stability of an LTI system (Sec. l .5H) is readily ascertained from 
its impulse response. It can be shown (Prob. 2.13) that a continuous-time LTI system is BIBO stable if its impulse 
response is absolutely integrable; that is, 

(2.21) 

2.4 Eigenfunctions of Continuous-Time LTI Systems 

In Chap. 1(Prob.1.44) we saw that the eigenfunctions of continuous-time LTI systems represented by Tare the 
complex exponentials e'1, withs a complex variable. That is, 

where). is the eigenvalue of T associated with e'1• Setting x(t) = e'1 in Eq. (2.10), we have 

where 

y(t) = T{e'1 } = J~00 h(r) e•(t--r) dr = [J~00 h(r) e-s-r dr] e'1 

= H(s) e'1 = J..e'1 

(2.22) 

(2.23) 

(2.24) 

Thus, the eigenvalue of a continuous-time LTI system associated with the eigenfunction e'1 is given by H(s), 
which is a complex constant whose value is determined by the value of s via Eq. (2.24). Note from Eq. (2.23) 
that y(O) = H(s) (see Prob. 1.44). 

The above results underlie the definitions of the Laplace transform and Fourier transform, which will be dis­
cussed in Chaps. 3 and 5. 

2.5 Systems Described by Differential Equations 

A. Linear Constant-Coefficient Differential Equations: 

A general Nth-order linear constant-coefficient differential equation is given by 

N k ) M k ) ~ d y(t = ~ b d x(t 
L.J ak k L.J k k 

k=O dt k=O dt 
(2.25) 

where coefficients ak and bk are real constants. The order N refers to the highest derivative of y(t) in 
Eq. (2.25). Such differential equations play a central role in describing the input-output relationships of a 
wide variety of electrical, mechanical, chemical, and biological systems. For instance, in the RC circuit con­
sidered in Prob. 1.32, the input x(t) = v.(t) and the output y(t) = vp) are related by a first-order constant­
coefficient differential equation [Eq. ( 1.105)] 

dy(t) 1 1 --+ -y(t) = -x(t) 
dt RC RC 

The general solution of Eq. (2.25) for a particular input x(t) is given by 

(2.26) 

where y/t) is a particular solution satisfying Eq. (2.25) and yh(t) is a homogeneous solution (or complementary 
solution) satisfying the homogeneous differential equation 

~ a dkyh(t) = 0 
L.J k k 

k=O dt 
(2.27) 
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The exact form of yh(t) is determined by N auxiliary conditions. Note that Eq. (2.25) does not completely spec­
ify the output y(t) in terms of the input x(t) unless auxiliary conditions are specified. In general, a set of auxil­
iary conditions are the values of 

at some point in time. 

B. Linearity: 

The system specified by Eq. (2.25) will be linear only if all of the auxiliary conditions are zero (see Prob. 2.21). 
If the auxiliary conditions are not zero, then the response y(t) of a system can be expressed as 

(2.28) 

where Yzi(t), called the zero-input response, is the response to auxiliary conditions, and Yz/t), called the zero-state 
response, is the response of a linear system with zero auxiliary conditions. This is illustrated in Fig. 2-2. 

Note that yJt) =fo yh(t) and Yz.(!) =fo y/t) and that in general yJt) contains yh(t) and Yzs(t) contains both yh(t) 
and y/t) (see Prob. 2.20). 

C. Causality: 

x(t) Linear 
system 

y(t) 
~---.< I ~---+ 

+ 
+ 

Fig. 2-2 Zero-state and zero-input responses. 

In order for the linear system described by Eq. (2.25) to be causal we must assume the condition of initial rest 
(or an initially relaxed condition). That is, if x(t) = 0 fort ::5 t0 , then assume y(t) = 0 fort ::5 t0 (see Prob. 1.43). 
Thus, the response fort> t0 can be calculated from Eq. (2.25) with the initial conditions 

where 

Clearly, at initial rest Yzi(t) = 0. 

D. Time-Invariance: 

For a linear causal system, initial rest also implies time-invariance (Prob. 2.22). 

E. Impulse Response: 

The impulse response h(t) of the continuous-time LTI system described by Eq. (2 .25) satisfies the differential 
equation 

(2.29) 
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with the initial rest condition. Examples of finding impulse responses are given in Probs. 2.23 to 2.25. In later 
chapters, we will find the impulse response by using transform techniques. 

2.6 Response of a Discrete-Time LTI System and Convolution Sum 

A. Impulse Response: 

The impulse response (or unit sample response) h[n] ofa discrete-time LTI system (represented by T) is defined 
to be the response of the system when the input is '5[n]; that is, 

h[n] = T{b[n]} (2.30) 

B. Response to an Arbitrary Input: 

From Eq. ( 1.51) the input x[ n] can be expressed as 

00 

x[n] = ,L x[k] (j[n - k] (2.31) 
k=-00 

Since the system is linear, the response y[n] of the system to an arbitrary input x[n] can be expressed as 

00 

= ,L x[k]T {'5[n - k]} (2.32) 
k=-00 

Since the system is time-invariant, we have 

h[n - k] = T{(j [n - k]} (2.33) 

Substituting Eq. (2.33) into Eq. (2.32), we obtain 

00 

y[n] = ,L x [k]h[n - k] (2.34) 
k=-00 

Equation (2.34) indicates that a discrete-time LTI system is completely characterized by its impulse response h[n]. 

C. Convolution Sum: 

Equation (2.34) defines the convolution of two sequences x[n] and h[n] denoted by 

00 

y[n] = x[n] * h[n] = ,L x[k]h[n - k] (2.35) 
k=-00 

Equation (2.35) is commonly called the convolution sum. Thus, again, we have the fundamental result that the 
output of any discrete-time LTI system is the convolution of the input x[n] with the impulse response h[n] of the 
system. 

Fig. 2-3 illustrates the definition of the impulse response h[n] and the relationship ofEq. (2.35). 

l>[n] ... 
x[n] 

h[n] ... LTI 
system 
~--~ y[n] = x[n] • h[n] 

Fig. 2-3 Discrete-time LTI system. 
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D. Properties of the Convolution Sum: 

The following properties of the convolution sum are analogous to the convolution integral properties shown 
in Sec. 2.3. 

1. Commutative: 

x[n] * h[n] = h[n ] * x[n] (2.36) 

2. Associative: 

(2.37) 

3. Distributive: 

(2.38) 

E. Convolution Sum Operation: 

Again, applying the commutative property (2.36) of the convolution sum to Eq. (2.35), we obtain 

00 

y[n] = h[n] * x[n] = ,L h [k]x[n - k] (2.39) 
k=-00 

which may at times be easier to evaluate than Eq. (2.35). Similar to the continuous-time case, the convolution 
sum [Eq. (2.35)] operation involves the following four steps: 

1. The impulse response h[k] is time-reversed (that is, reflected about the origin) to obtain h[ -k] and 
then shifted by n to form h[n - k] = h[-(k - n)], which is a function of k with parameter n. 

2. Two sequences x[k] and h[n - k] are multiplied together for all values of k with n fixed at some 
value. 

3. The product x [k] h [n - k] is summed over all k to produce a single output sample y[n]. 

4. Steps 1 to 3 are repeated as n varies over -oo to oo to produce the entire output y[n]. 

Examples of the above convolution sum operation are given in Probs. 2.28 and 2.30. 

F. Step Response: 

The step response s[n] of a discrete-time LTI system with the impulse response h[n] is readily obtained from 
Eq. (2.39) as 

oo n 

s[n]=h[n]*u[n]= ,L h[k]u[n-k]= ,L h[k] (2.40) 
k=-00 k=-00 

From Eq. (2.40) we have 

h[n] = s[n] - s[n - 1] (2.41) 

Equations (2.40) and (2.41) are the discrete-time counterparts ofEqs. (2.12) and (2.13), respectively. 

2. 7 Properties of Discrete-Time LTI Systems 

A. Systems with or without Memory: 

Since the output y[n] of a memoryless system depends on only the present input x[n], then, ifthe system is also 
linear and time-invariant, this relationship can only be of the form 

y[n] = Kx[n] (2.42) 
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where K is a (gain) constant. Thus, the corresponding impulse response is simply 

h[n] = K()[n] (2.43) 

Therefore, if h[n0 ] =/= 0 for n0 =/= 0, the discrete-time LTI system has memory. 

B. Causality: 

Similar to the continuous-time case, the causality condition for a discrete-time LTI system is 

h[n] = 0 n<O (2.44) 

Applying the causality condition (2.44) to Eq. (2.39), the output of a causal discrete-time LTI system is 
expressed as 

00 

y[n] = ,L h[k]x[n - k] 
k=O 

Alternatively, applying the causality condition (2.44) to Eq. (2.35), we have 

n 

y[n] = ,L x[k]h[n - k] 
k=-00 

(2.45) 

(2.46) 

Equation (2.46) shows that the only values of the input x[n] used to evaluate the output y[n] are those fork :5 n. 

As in the continuous-time case, we say that any sequence x[n] is called causal if 

x[n] = 0 n<O (2.47a) 

and is called anticausal if 

x[n] = 0 n 2=0 (2.47b) 

Then, when the input x[n] is causal, the output y[n] of a causal discrete-time LTI system is given by 

n n 

y[n] = ,L h[k]x[n - k] = ,L x[k]h[n - k] (2.48) 
k=O k=O 

C. Stability: 

It can be shown (Prob. 2.37) that a discrete-time LTI system is BIBO stable if its impulse response is absolutely 
summable; that is, 

00 

_L I h[k] I< oo 
(2.49) 

k=-00 

2.8 Eigenfunctions of Discrete-Time LTI Systems 

In Chap. 1 (Prob. 1.45) we saw that the eigenfunctions of discrete-time LTI systems represented by Tare the 
complex exponentials<!', with z a complex variable. That is, 

(2.50) 
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where/... is the eigenvalue of T associated with zn. Setting x[n] = zn in Eq. (2.39), we have 

where 

y[n] ~ T (z"} ~ .~. h[k] ,•-• ~ [ .~. h[k] z -•] z" 

= H(z) Zn = }.,zn 

00 

)..=H(z)= ,L h[k]z-k 
k=-00 

(2.51) 

(2.52) 

Thus, the eigenvalue of a discrete-time LTI system associated with the eigenfunction zn is given by H(z), 

which is a complex constant whose value is determined by the value of z via Eq. (2.52). Note from Eq. (2.51) 
that y[O] = H(z) (see Prob. 1.45). 

The above results underlie the definitions of the z-transform and discrete-time Fourier transform, which 
will be discussed in Chaps. 4 and 6. 

2.9 Systems Described by Difference Equations 

The role of differential equations in describing continuous-time systems is played by difference equations for 
discrete-time systems. 

A. Linear Constant-Coefficient Difference Equations: 

The discrete-time counterpart of the general differential equation (2 .25) is the Nth-order linear constant-coefficient 
difference equation given by 

N M 

,L aky[n - k] = ,L bkx[n - k] (2.53) 
k=O k=O 

where coefficients ak and bk are real constants. The order N refers to the largest delay of y[ n] in Eq. (2 .53). An exam­
ple of the class of linear constant-coefficient difference equations is given in Chap. 1 (Prob. 1.37). Analogous to the 
continuous-time case, the solution ofEq. (2.53) and all properties of systems, such as linearity, causality, and time­
invariance, can be developed following an approach that directly parallels the discussion for differential equations. 
Again we emphasize that the system described by Eq. (2.53) will be causal and LTI if the system is initially at rest. 

B. Recursive Formulation: 

An alternate and simpler approach is available for the solution ofEq. (2.53). Rearranging Eq. (2.53) in the form 

1 { M N } y[n]=;- _Lbkx[n-k]-,Laky[n-k] 
0 k=O k=I 

(2.54) 

we obtain a formula to compute the output at time n in terms of the present input and the previous values of 
the input and output. From Eq. (2.54) we see that the need for auxiliary conditions is obvious and that to calculate 
y[n] starting at n = n0 , we must be given the values of y[n0 - 1],y[n0 - 2], ... ,y[n0 - N] as well as the inputx[n] 

for n <::: n0 - M. The general form ofEq. (2.54) is called a recursive equation, since it specifies a recursive proce­
dure for determining the output in terms of the input and previous outputs. In the special case when N = 0, from 
Eq. (2.53) we have 

y[n] = _!_ { f bkx[n - k]} 
ao k=O 

(2.55) 

which is a nonrecursive equation, since previous output values are not required to compute the present output. 
Thus, in this case, auxiliary conditions are not needed to determine y[n]. 
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C. Impulse Response: 

Unlike the continuous-time case, the impulse response h[n] of a discrete-time LTI system described by Eq. (2.53) 
or, equivalently, by Eq. (2.54) can be determined easily as 

For the system described by Eq. (2.55) the impulse response h[n] is given by 

0:5n:5M 

otherwise 

(2.56) 

(2.57) 

Note that the impulse response for this system has finite terms; that is, it is nonzero for only a finite time dura­
tion. Because of this property, the system specified by Eq. (2.55) is known as a.finite impulse response (FIR) 
system. On the other hand, a system whose impulse response is nonzero for an infinite time duration is said to 
be an infinite impulse response (IIR) system. Examples of finding impulse responses are given in Probs. 2.44 
and 2.45. In Chap. 4, we will find the impulse response by using transform techniques. 

SOLVED PROBLEMS 

Responses or a Continuous-Time LTI System and Convolutlon 

2.1. Verify Eqs. (2.7) and (2.8); that is, 

(a) x(t) * h(t) = h(t) * x(t) 

(b) {x(t) * h1(t)} * h2(t) = x(t) * {h1(t) * h2(t)} 

(a) By definition (2.6) 

x(t) * h(t) = {., x(-r)h(t - -r) d-r 

By changing the variable t - -r = )., we have 

x(t) * h(t) = {., x(t - ).)h().) d). = {., h().)x(t - ).) d). = h(t) * x(t) 

and {x(t) * h1 (t)} * hz(t) = Jl(t) * hz(t) ={.,ft (a)hz(t - a) da 

= {., [f., x(-r)h1 (a - -r) d-r) hz (t - a) da 

Substituting A. = a - -rand interchanging the order of integration, we have 

Now, since 
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we have 

Thus, {x(t) * h1 (t)} *hi (t) = f 00 x('r)f2 (t - T) d-r 

= x(t) * f 2 (t) = x(t) * {h1(t) * hi(t)} 

2.2. Show that 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

x(t) * b(t) = x(t) 

x(t) * b(t - tr) = x(t - t0) 

x(t) * u(t) = .(_
00 

x(T) d-r 

1-10 
x(t) * u(t - t0 ) = J_

00 
x(-r) d-r 

By definition (2.6) and Eq. (l.22) we have 

x(t) * .:5(t) = J:00 x(T) .:5(t - T) d-r = x(T) 1-r=t = x(t) 

By Eqs. (2.7) and (1.22) we have 

x(t) * .:5(t - t0) = .:5(t - t0) * x(t) = J:
00 

.:5(-r - t0 )x(t - -r) d-r 

=x(t--r)I _ =x(t-t0 ) 
T-fo 

(c) By Eqs. (2.6) and (1.19) we have 

since u(t - T) = {~ 

(X) t 

x(t) * u(t) = J_ 00 x(-r)u(t - T) d-r = J_ 00 x(T) d-r 

T<t 

T>t 

(d) In a similar manner, we have 

oo 1-10 
x(t)*u(t-t0 )= J_

00
x(-r)u(t--r-t0 )d-r= J_

00 
x(-r)d-r 

since u(t - -r - t0 ) = {~ T< t-to 

T > t-to 

2.3. Let y(t) = x(t) * h(t). Then show that 

By Eq. (2.6) we have 

y(t) = x(t) * h(t) = f 00 x(-r)h(t - -r) d-r 

and 

Let -r - t1 =A.. Then T =A.+ t1 and Eq. (2.63b) becomes 

.,. 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63a) 

(2.63b) 

(2.63c) 
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Comparing Eqs. (2.63a) and (2 .63c), we see that replacing tin Eq. (2 .63a) by t - t1 - t2, we obtain Eq. (2 .63c) . 
Thus, we conclude that 

2.4. The input x(t) and the impulse response h(t) of a continuous time LTI system are given by 

x(t) = u(t) 

(a) Compute the output y(t) by Eq. (2.6). 

(b) Compute the output y(t) by Eq. (2.10). 

(a) By Eq. (2 .6) 

h(t) = e - at u(t), a > 0 

y(t) = x(t) * h(t ) = f 00 x(r)h(t - r) dr 

Functions x( r) and h(t - r) are shown in Fig . 2-4(a) fort < 0 and t > 0 . From Fig. 2-4(a) we see that 
fort < 0 , x(T) and h(t - r) do not overlap, while fort > 0 , they overlap from T = 0 to T = t. Hence, for 
t < O,y(t) = 0. For t> 0 , we have 

t t 
y(t ) = J o e- a(t- r ) dr = e- atJo ear dr 

= e - at_!_ (eat _ I) = _!_(I _ e - at) 
a a 

x(i:) h(i:) 

0 0 

h(t - i:) x(t - i:) 

t < 0 t < 0 
- - - - 1 --------- 1 

0 0 

h(t - i:) x(t - i:) 

0 0 

(a) (b) 

Fig. 2-4 



CHAPTER 2 Linear Time-Invariant Systems 

Thus, we can write the output y(t) as 

(b) By Eq. (2.10) 

y(t) = _!_(1- e-at)u(t) 
a 

y(t) = h(t) * x(t) = f 00 h('r:)x(t - -r:) d-r: 

.,. 
(2.64) 

Functions h(T) and x(t - T) are shown in Fig. 2-4(b) fort< 0 and t > 0. Again from Fig. 2-4(b) we see 
that fort< 0, h( T) and x(t - T) do not overlap, while fort> 0, they overlap from T = 0 to T = t. Hence, 

fort< 0, y(t) = 0. Fort> 0, we have 

Thus, we can write the output y(t) as 

(2.65) 

which is the same as Eq. (2.64). 

2.5. Compute the output y(t) for a continuous-time LTI system whose impulse response h(t) and the input 
x(t) are given by 

h (t) = e -at u(t) x(t) = ea1u(- t) a> 0 

ByEq. (2.6) 

y(t) = x(t) * h(t) = f 00 x(-r:)h(t - T) d-r: 

Functions x(T) and h(t - T) are shown in Fig. 2-5 (a) fort< 0 and t > 0. From Fig. 2-5 (a) we see that for 
t< O,x(-r:) and h(t- -r:)overlapfrom-r:= -oo to -r:= t, while fort> 0, they overlap from -r:= -oo to -r:= O.Hence, 

fort< 0, we have 

y(t)=Jt eaT e-a(t-T)d-r:=e-atJ1 e2aTd-r:=-1-eat 
- 00 - 00 2a 

Fort> 0, we have 

Combining Eqs. (2.66a) and (2.66b), we can write y(t) as 

which is shown in Fig. 2-5(b). 

y(t) = _l_e-altl 
2a 

a>O 

(2.66a) 

(2.66b) 

(2.67) 
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x(i:) 

0 

h(t - i;) 

t < 0 
- - - - 1 

0 

h(t - i;) 

0 

(a) 

t > 0 

y(t) 

0 

(b) 

Fig. 2-5 

2.6. Evaluate y(t) = x(t) * h(t), where x(t) and h(t) are shown in Fig. 2-6, (a) by an analytical technique, and 
(b) by a graphical method. 

x(t) 

0 2 3 

Fig. 2-6 

(a) We first express x(t) and h(t) in functional form: 

x(t) = u(t) - u(t - 3) h(t) = u(t) - u(t - 2) 

Then, by Eq. (2 .6) we have 

y(t) = x(t) * h(t) = {
00 

x('r)h(t - r) dr 

= { )u(r) - u(r - 3)] [u(t - r) - u(t - r - 2)] dr 

= {
00 

u(r)u(t - r) dr - {
00 

u(r)u(t - 2 - r) dr 

h(t) 

0 

- {
00 
u(r - 3)u(t - r)dr + {

00 
u(r - 3)u(t - 2 - r)dr 

2 
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u(r)u(t - r) = {~ O< r < t,t > O 

Since 
otherwise 

u(r)u(t - 2 - r) = {~ O< r < t - 2,t> 2 

otherwise 

u(r - 3)u(t - r) = {~ 3 < r < t, t> 3 

otherwise 

u(r - 3)u(t - 2 - r) = {~ 3 < T < t - 2, t > 5 

otherwise 

we can express y(t) as 

y(t) = (I~ dr )u<r) - (J~ -2 dr )u<r - 2) 

-(I: dr )u(t - 3) + (J;-2 dr )u(t - 5) 

= tu(t) - (t - 2)u(t - 2) - (t - 3)u(t - 3) + (t - 5)u(t - 5) 

which is plotted in Fig. 2-7. 

y(t) 
,----~ 

2 
/ tu(t) 

,----~ 
/ (t - 5)u(t - 5) 

0 2 ',,, 3 ',,, 4 5 6 

- 1 ',, ',, (t - 3)u(t - 3) 

( '', '',,) 
(t - 2)u(t- 2) ',,, ',,, 

Fig. 2-7 

(b) Functions h(r) , x(r) and h(t - r) , x(r)h(t - r) for different values oft are sketched in Fig. 2-8. From 
Fig. 2-8 we see that x(r) and h(t - r) do not overlap fort < 0 and t > 5, and hence , y(t) = 0 fort < 0 
and t > 5. For the other intervals , x( r) and h(t - r) overlap. Thus , computing the area under the 
rectangular pulses for these intervals , we obtain 

which is plotted in Fig. 2-9. 

0 t<O 

y(t) = 2 

5 - t 

0 

O<t:s; 2 

2.7. Let h(t) be the triangular pulse shown in Fig. 2-lO(a) and let x(t) be the unit impulse train [Fig. 2-lO(b)] 
expressed as 

00 

x(t) = or(t) = 2 o(t - nT) (2.68) 
n=- oo 

Determine and sketch y(t) = h(t) * x(t) for the following values of T: (a) T = 3, (b) T = 2, (c) T = 1.5. 
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1 lh(•J 

• 

r•I 
• - 1 0 2 3 4 T - 1 0 2 3 4 T 

l:(HJ t < 0 1 l *Jh(l-•J t < 0 

I I • • t-2 - 1 t 0 2 3 4 T -1 0 2 3 4 T 

t - 2 

1:(HJ 0 < t < 2 I *Jh(hJ 0 < t < 2 

I • 
1 I 

• - 2 - 1 t 0 t 2 3 4 T - 1 0 t 2 3 4 T 

t - 2 

lh(hJ 
2 < t < 3 l'(•Jh(hJ 2 < t < 3 

1 I 
• 

1 I I 

- 2 - 1 0 t 2 t 3 4 5 T - 1 0 t 1 2 t 3 4 T 

t - 2 t - 2 

th(hJ 
3 < t < 5 1 t '(•Jh(hJ 3 < t < 5 

1 I 
I • I I I • - 2 - 1 0 t 2 3 t 4 5 6 T - 1 0 1 t 2 3 4 T 

t - 2 t - 2 

1 th(hJ x(i:)h(t - i:) 

5 < t 5 <t 

I I • - 2 - 1 0 2 3 t 4 5 t 6 T - 1 0 2 3 4 T 

t - 2 

Fig. 2-8 

y(t) 

2 

- 1 0 2 3 4 5 6 

Fig. 2-9 
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h(t) 

- 1 0 - 2T - T 0 T 2T 

(a) (b) 

Fig. 2-10 

Using Eqs. (2.59) and (2 .9), we obtain 

y(t) = h(t) * oT(t) = h(t) * ["~"' o(t - nT)] 

"' "' 
= _L h(t) * o(t - nT) = _L h(t - nT) (2.69) 

n =-oo n =-oo 

(a) For T = 3, Eq. (2.69) becomes 

"' 
y(t) = .L h(t - 3n) 

n=-oo 

which is sketched in Fig. 2-11 (a). 

(b) For T = 2, Eq. (2.69) becomes 

"' 
y(t) = .L h(t - 2n) 

n=-oo 

which is sketched in Fig . 2-ll(b). 

(c) For T = 1.5 , Eq. (2 .69) becomes 

"' 
y(t) = .L h(t - 1. 5n) 

n=-oo 

which is sketched in Fig. 2-ll(c). Note that when T < 2, the triangular pulses are no longer separated and 
they overlap. 

2.8. If x1(t) and x2(t) are both periodic signals with a common period T0 , the convolution of x1(t) and xz(t) 
does not converge. In this case, we define the periodic convolution of x 1(t) and x2(t) as 

(a) Show thatf(t) is periodic with period T0 . 

(b) Show that 

for any a. 

(2.70) 

(2.71) 

(c) Compute and sketch the periodic convolution of the square-wave signal x(t) shown in Fig. 2-12 
with itself. 
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- 7 - 6 - 5 - 4 - 3 - 2 - 1 

- 7 - 6 - 5 - 4 - 3 - 2 - 1 

- 7 - 6 - 5 - 4 - 3 - 2 - 1 

A 

y(t) 

0 

(a) 

y(t) 

0 

(b) 

y(t) 

0 

(c) 

Fig. 2-11 

x(t) 

Fig. 2-12 

(a) Since xz(t) is periodic with period T0 , we have 

2 

2 

2 

xp + T0 - r) = x2 (t - r) 

Then from Eq. (2.70) we have 

3 

3 

3 

To 
f(t+T0 ) = Io x1(r)x2 (t+T0 - r)dr 

To =Io x1(r)x2 (t - r)dr = f(t) 

Thus,f(t) is periodic with period T0 • 

T= 3 

4 5 6 7 

T= 2 

4 5 6 7 

T= 1.5 

4 5 6 7 
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(b) Since both x/r) and xz('r) are periodic with the same period T0, x1('r)x2 (t - r) is also periodic with period T0 • 

Then using property (1.88) (Prob. 1.17), we obtain 

for an arbitrary a. 

(c) We evaluate the periodic convolution graphically. Signals x(r), x(t - r) , and x(r)x(t - r) are sketched in 
Fig. 2-13(a), from which we obtain 

and f(t +To) = f(t) 

which is plotted in Fig. 2-13(b). 

x(i:) x(i:) 

A A 

- To To 0 To To i; - To To 0 To To i; 

2 2 2 2 

x(t - i:) To 
x(t - i:): 

A 
0<1 < 2 

' ' 

0 t To i; 0 ' To t To i; ' 
' ' 
' 2 ' 2 ' ' ' ' ' 

x(i:)x(t - i:) To x(i:)x(t - i:) 
0<1 < 2 ' 

A2 A2 ' 

(a) 

f(t) 

-2T0 -To To 0 To To 2T0 

2 2 
(b) 

Fig. 2-13 
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Properties of Continuous-Time LTI Systems 

2.9. The signals in Figs. 2-14(a) and (b) are the input x(t) and the output y(t), respectively, of a certain 
continuous-time LTI system. Sketch the output to the following inputs: (a) x(t - 2); (b) ~ x(t). 

(a) Since the system is time-invariant, the output will be y(t - 2), which is sketched in Fig. 2-14(c) . 

(b) Since the system is linear, the output will be 4y(t) , which is sketched in Fig. 2-14(d). 

x(t) 

- 1 0 

(a) 

y(t - 2) 

2 

- 1 0 2 3 4 

(c) 

- 1 0 

5 - 1 0 

Fig. 2-14 

y(t) 

(b) 

.!_ y(t) 
2 

(d) 

2.10. Consider a continuous-time LTI system whose step response is given by 

s(t) = e- 1 u(t) 

2 

2 

3 

3 

Determine and sketch the output of this system to the input x(t) shown in Fig. 2-15(a). 

From Fig. 2-1 S(a) the input x(t) can be expressed as 

x(t) = u(t - 1) - u(t - 3) 

Since the system is linear and time-invariant, the output y(t) is given by 

y(t) = s(t - 1) - s(t - 3) 

= e·<r - IJ u(t - 1) - e· <r - 3> u(t - 3) 

which is sketched in Fig . 2-15(b) . 

y(t) 

0 2 3 4 0 

-1 - -- - - - -- - ---- - --

Fig. 2-15 
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2.11. Consider a continuous-time LTI system described by (see Prob. 1.56) 

1 t+T/2 
y(t) = T {x(t)} = - f x(r) dr 

T Jr - T/2 

(a) Find and sketch the impulse response h(t) of the system. 

(b) Is this system causal? 

(a) Equation (2.72) can be rewritten as 

1 t+T/2 1 t - T/2 
y(t) = -J x('r) dr - -J x(r) dr T -oo T -oo 

Using Eqs. (2.61) and (2 .9), Eq. (2 .73) can be expressed as 

y(t) = f-x(f)*u(t+ ~) - f-x(f)*u(t - ~) 

= x(f)*f-[u(t+ ~) - u(t - ~)] = x(f)*h(t) 
Thus , we obtain 

- Tl2 < t~T/2 

otherwise 

which is sketched in Fig. 2-16. 

(b) From Fig. 2-16 or Eq. (2.75) we see that h(t) -:/= 0 fort < 0. Hence, the system is not causal. 

- T/2 0 

h(t) 

1 
T 

Fig. 2-16 

T/2 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

2.12. Let y(t) be the output of a continuous-time LTI system with input x(t). Find the output of the system if 
the input is x'(t), where x'(t) is the first derivative of x(t). 

From Eq. (2.10) 

y(t) = h(t) * x(t) = f 00 h(r)x(t - r) dr 

Differentiating both sides of the above convolution integral with respect tot, we obtain 

y'(t) = !!.._[J00 h(r)x(t - r)dr) = J 00 !!.._[h(r)x(t - r)dr] 
dt -oo -oo dt 

= f 00 h(r)x'(t - r) dr = h(t) * x'(t) (2.76) 

which indicates that y'(t) is the output of the system when the input is x'(t). 

2.13. Verify the BIBO stability condition [Eq. (2.21)] for continuous-time LTI systems. 

Assume that the input x(t) of a continuous-time LTI system is bounded, that is, 

all t (2.77) 
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Then, using Eq. (2.10), we have 

I y(t) I= If 00 h(r)x(t - T) dr I~ { J h(r)x(t - T) I dT 

= f J h(r) II x(t - T) I dr ~ k1{ J h(r) I dr 

since I x(t - T) I ~ k1 from Eq. (2.77). Therefore, if the impulse response is absolutely integrable, that is, 

then I y (t) I ~ k1 K = k2 and the system is BIBO stable. 

2.14. The system shown in Fig. 2-l 7(a) is formed by connecting two systems in cascade. The impulse 
responses of the systems are given by h1(t) and h2(t), respectively, and 

(a) Find the impulse response h(t) of the overall system shown in Fig. 2-l 7(b). 

(b) Determine if the overall system is BIBO stable. 

x(t) 

•I w(t) •I y(t) 
h1(t) h2(t) .. 

(a) 

x(t) y(t) 

•I h(t) .. 
(b) 

Fig. 2-17 

(a) Let w(t) be the output of the first system. By Eq. (2.6) 

w(t) = x(t) * h1(t) 

Then we have 

y(t) = w(t) * h2(t) = [x(t) * h1(t)] * hz(t) 

But by the associativity property of convolution (2.8), Eq. (2.79) can be rewritten as 

y(t) = x(t) * [h1(t) * h2(t)] = x(t) * h(t) 

Therefore, the impulse response of the overall system is given by 

h(t) = h/t) * h2(t) 

Thus, with the given h/t) and h2(t), we have 

h(t) = J:
00 

h1 (r)hz (t - T) dr = J:
00 

e -2Tu(r) 2e -(t-T)u(t - r) dr 

= 2e-1(
00 

e-Tu(r)u(t-r)dr = 2e-t [J;e-T dr ]u(t) 

= 2(e-t - e-21 )u(t) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 
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(b) Using the above h(t), we have 

J~00 I h(-r)I d-r = 2 J: (e-T - e-2T)d-r = 2[J: e-T d-r- J: e-2T d-r] 

= 2( 1- ~) = 1<00 

Thus, the system is BIBO stable. 

Eigenfunctions of Continuous-Time LTI Systems 

2.15. Consider a continuous-time LTI system with the input-output relation given by 

t 
y(t) = J_

00 
e -(t-i-) x(r) dr (2.82) 

(a) Find the impulse response h(t) of this system. 

(b) Show that the complex exponential function e'1 is an eigenfunction of the system. 

(c) Find the eigenvalue of the system corresponding to e'1 by using the impulse response h(t) obtained 
in part (a). 

(a) From Eq. (2.82), definition (2.1), and Eq. (1.21) we get 

Thus, h(t) = e-tu(t) 

(b) Let x(t) = est. Then 

1 
= --est = Aest ifRes>-1 

s+l 

Thus, by definition (2.22) est is the eigenfunction of the system and the associated eigenvalue is 

1 
A=­

s+l 

(c) Using Eqs. (2.24) and (2.83), the eigenvalue associated with est is given by 

= r"' e-(s+l)T dT=-1-
JO s+ 1 

ifRes>-1 

which is the same as Eq. (2.85). 

2.16. Consider the continuous-time LTI system described by 

1 t+T/2 y(t) = - x(r) dr 
T t-T/2 

(a) Find the eigenvalue of the system corresponding to the eigenfunction e•t. 

(b) Repeat part (a) by using the impulse function h(t) of the system. 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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(a) Substituting x('r) = e'T in Eq. (2.86), we obtain 

1 t+T/2 
y(f) = -f, eST dT 

T t-T/2 

= _!__(esT/2 _ e-sT/2) e•t =;.., e•t 
sT 

Thus, the eigenvalue of the system corresponding to e'1 is 

(b) From Eq. (2.75) in Prob. 2.11 we have 

-Tl2<t:5,Tf2 

otherwise 

Using Eq. (2.24), the eigenvalue H(s) corresponding to e'1 is given by 

oo 1 T/2 1 
H(s)=J h(-r)e-s-r:d-r=-J e-s-r:d-r=-(esT/2_e-sT/2) 

-oo T -T/2 sT 

which is the same as Eq. (2.87). 

(2.87) 

2.17. Consider a stable continuous-time LTI system with impulse response h(t) that is real and even. Show 
that cos wt and sin wt are eigenfunctions of this system with the same real eigenvalue. 

By setting s = jw in Eqs. (2.23) and (2.24), we see that ejwt is an eigenfunction of a continuous-time LTI system 
and the corresponding eigenvalue is 

Since the system is stable, that is, 

foe lh(-r)ld-r< 00 

then {jh(-r)e-j=id-r= fjh(-r)lle-j=id-r= fjh(-r)ld-r<oo 

since le-j"'TI = 1. Thus, H(jw) converges for any w. Using Euler's formula, we have 

H(jw)= J:
00

h(-r)e-j= d-r= J:
00

h(-r)(cosw-r- jsinw-r)dT 

= J:
00

h(-r)cosw-rd-r- jJ:00 h(-r)sinwTdT 

Since cos w-ris an even function of rand sin w-ris an odd function of T, and if h(t) is real and even, then h(-r) 
cos WT is even and h(-r) sin w-ris odd. Then by Eqs. (l.75a) and (1.77), Eq. (2.89) becomes 

H(jw) = 2 J0
00 h(-r)cos WT d-r 

(2.88) 

(2.89) 

(2.90) 

Since cos WT is an even function of w, changing w to - win Eq. (2.90) and changingj to - j in Eq. (2.89), we have 

H(- jw) = H(jw)* = 2J; h(-r)cos(-WT) d-r 

= 2 J0
00 h(-r)cos WT d-r = H(jw) (2.91) 
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Thus, we see that the eigenvalue H(jw) corresponding to the eigenfunction eJwr is real. Let the system be 
represented by T. Then by Eqs. (2 .23) , (2 .24) , and (2 .91) we have 

T{eJwt} = H(jw) eJwt 

T{e-Jwt} = H( - jw) e - Jwt = H(jw) e -Jwt 

Now, since Tis linear, we get 

and 

T{coswt} = T -(e;wt +e- ;wt) = -T{e;wr}+-T{e- ;wr} {
1 . . } 1 . 1 . 

2 2 2 

= H(jw )H(ejwt + e- jwt)} = H(jw) cos wt 

T{sin wt} = T { 2
1/ejwr - e- jwt)} = 2

1j T {e jwt} - 2
1j T {e- jwt } 

= H(jw ){ 2
1/ejwr - e- }wt)} = H(jw) sin wt 

(2.92a) 

(2 .92b) 

(2.93a) 

(2.93b) 

Thus, from Eqs. (2 .93a) and (2.93b) we see that cos wt and sin wt are the eigenfunctions of the system with the 
same real eigenvalue H(jw) given by Eq. (2 .88) or (2.90). 

Systems Described by Dltterentlal Equations 

2.18. The continuous-time system shown in Fig. 2-18 consists of one integrator and one scalar multiplier. 
Write a differential equation that relates the output y(t) and the input x(t). 

+ 

x(t) 

I 
y(t) 

Fig. 2-18 

Let the input of the integrator shown in Fig. 2-18 be denoted by e(t). Then the input-output relation of the integrator 
is given by 

t 
y (t) = J_

00 
e(r) dr 

Differentiating both sides of Eq. (2 .94) with respect tot, we obtain 

dy(t) = e(t) 
dt 

Next, from Fig . 2-18 the input e(t) to the integrator is given by 

e(t) = x(t) - ay(t) 

Substituting Eq. (2.96) into Eq. (2.95), we get 

or 

dy(t) = x(t) - ay (t) 
dt 

dy(t) --+ ay(t) = x(t) 
dt 

which is the required first-order linear differential equation. 

(2 .94) 

(2 .95) 

(2 .96) 

(2 .97) 
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2.19. The continuous-time system shown in Fig. 2-19 consists of two integrators and two scalar multipliers. 
Write a differential equation that relates the output y(t) and the input x(t). 

x(t) 

w(t) f 
y(t) 

f 

Fig. 2-19 

Let e(t) and w(t) be the input and the output of the first integrator in Fig. 2-19, respectively. Using Eq. (2 .95), the 

input to the first integrator is given by 

dw(t) 
e(t) = -- = - a1w(t) - a2y(t) + x(t) 

dt 

Since w(t) is the input to the second integrator in Fig . 2-19 , we have 

w(t) = dy(t) 
dt 

Substituting Eq. (2 .99) into Eq. (2.98), we get 

d 2y(t) dy(t) 
--2- = - a1 -- - a2y(t) + x(t) 

dt dt 

or 
d 2y(t) dy(t) 
--2- + a1 --+ a2y(t) = x(t) 

dt dt 

which is the required second-order linear differential equation . 

(2 .98) 

(2 .99) 

(2.100) 

Note that , in general, the order of a continuous-time LTI system consisting of the interconnection of integrators 

and scalar multipliers is equal to the number of integrators in the system. 

2.20. Consider a continuous-time system whose input x(t) and output y(t) are related by 

where a is a constant. 

dy(t) --+ ay(t) = x(t) 
dt 

(a) Find y(t) with the auxiliary condition y(O) = y0 and 

x(t) = Ke- b1 u(t) 

(b) Express y(t) in terms of the zero-input and zero-state responses. 

(a) Let 

(2.101) 

(2.102) 

where y/t) is the particular solution satisfying Eq. (2.101) and y h(t) is the homogeneous solution which satisfies 

dyh(t) ( ) 0 --+ayh t = 
dt 

(2.103) 
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Assume that 

t>O 

Substituting Eq. (2.104) into Eq. (2.101), we obtain 

from which we obtain A = K/(a - b), and 

y (t) = __!__e-bt 
P a-b 

t>O 

To obtain y h(t), we assume 

Substituting this into Eq. (2.103) gives 

sBe•t + aBe•t = (s + a) Be•t = 0 

from which we have s = - a and 

Combining y/t) and yh(t), we get 

y(t)= Be-at +__!__e-bt 
a-b 

t>O 

From Eq. (2.106) and the auxiliary condition y(O) = y0 , we obtain 

Thus, Eq. (2.106) becomes 

K 
B=yo--­

a-b 

( ) ( K ) -at K -bt y t = y0 --- e +--e 
a-b a-b 

t>O 

Fort< 0, we havex(t) = 0, and Eq. (2.101) becomes Eq. (2.103). Hence, 

y(t) = Be-at t < 0 

From the auxiliary condition y(O) = y0 we obtain 

t<O 

(2.104) 

(2.105) 

(2.106) 

(2.107) 

(2.108) 

(b) Combining Eqs. (2.107) and (2.108),y(t) can be expressed in terms ofy,i(t) (zero-input response) andyzs(t) 
(zero-state response) as 

where 

y(t)= Yoe-at +__!___(e-bt -e-at)u(t) 
a-b 

= Yzi (t) + Yis (t) (2.109) 

(2.1 lOa) 

(2.1 lOb) 
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2.21. Consider the system in Prob. 2.20. 

(a) Show that the system is not linear if y(O) = y0 i= 0. 

( b) Show that the system is linear if y(O) = 0. 

(a) Recall that a linear system has the property that zero input produces zero output (Sec. l .5E). However, if we 
let K = 0 in Eq. (2.102), we have x(t) = 0, but from Eq. (2.109) we see that 

Thus, this system is nonlinear if y(O) = y0 =/= 0. 

(b) If y(O) = 0, the system is linear. This is shown as follows. Let x1(t) and xz(t) be two input signals, and let y1(t) 

and yz(t) be the corresponding outputs. That is, 

with the auxiliary conditions 

Consider 

dyi(t) +ay,(t)=xi(t) 
dt 

(2.111) 

(2.112) 

(2.113) 

where a 1 and a 2 are any complex numbers. Multiplying Eq. (2.111) by a 1 and Eq. (2.112) by~ and adding, 
we see that 

satisfies the differential equation 

and also, from Eq. (2.113), 

dy(t) + ay(t) = x(t) 
dt 

Therefore, y(t) is the output corresponding to x(t), and thus the system is linear. 

2.22. Consider the system in Prob. 2.20. Show that the initial rest condition y(O) = 0 also implies that the 
system is time-invariant. 

Let y1(t) be the response to an input x1(t) and 

t,;;; 0 (2.114) 

Then dyi (t) + ay (t) = x (t) 
dt I I (2.115) 

and (2.116) 

Now, let yz(t) be the response to the shifted input xz(t) = x1(t - r). From Eq. (2.114) we have 

(2.117) 
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Then y z< t) must satisfy 

and 

Now, from Eq. (2.115) we have 

If we let yz(t) = y1(t - -r), then by Eq. (2.116) we have 

Thus, Eqs. (2.118) and (2.119) are satisfied and we conclude that the system is time-invariant. 

2.23 Consider the system in Prob. 2.20. Find the impulse response h(t) of the system. 

The impulse response h(t) should satisfy the differential equation 

dh(t) --+ ah(t) = <5(t) 
dt 

The homogeneous solution hh(t) to Eq. (2.120) satisfies 

To obtain hh(t), we assume 

Substituting this into Eq. (2.121) gives 

see'' + ace'' = (s + a) ce'1 = 0 

from which we have s = -a and 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

(2.122) 

We predict that the particular solution h/t) is zero since h/t) cannot contain <5(t). Otherwise, h(t) would have a 
derivative of <5(t) that is not part of the right-hand side of Eq. (2.120). Thus, 

h(t) = ce-at u(t) 

To find the constant c, substituting Eq. (2.123) into Eq. (2.120), we obtain 

or 

~[ce-atu(t)] + ace-atu(t) = <5(t) 
dt 

- ace-atu(t) + ce-at du(t) + ace-a1u(t) = <5(t) 
dt 

Using Eqs. (1.25) and (1.30), the above equation becomes 

ce -at du(t) = ce -at b(t) = cb(t) = <5(t) 
dt 

so that c = 1. Thus, the impulse response is given by 

h(t) = e-at u(t) 

(2.123) 

(2.124) 
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2.24 Consider the system in Prob. 2.20 with y(O) = 0. 

(a) Find the step response s(t) of the system without using the impulse response h(t). 

(b) Find the step response s(t) with the impulse response h(t) obtained in Prob. 2.23. 

(c) Find the impulse response h(t) from s(t). 

(a) In Prob. 2.20 

x(t) = Ke-b1u(t) 

Setting K = 1, b = 0, we obtain x(t) = u(t) and then y(t) = s(t). Thus, setting K = 1, b = 0, and y(O) = y0 = 0 
in Eq. (2.109), we obtain the step response 

s(t) = _!_(1- e-at)u(t) 
a 

(b) Using Eqs. (2.12) and (2.124) in Prob. 2.23, the step response s(t) is given by 

t t 

s(t) =I-co h(-r)dr =I-co e-""u(-r)dT 

= [lco e -ar d-r] u(t) = ~(l - e -at)u(t) 

which is the same as Eq. (2.125). 

(c) Using Eqs. (2.13) and (2.125), the impulse response h(t) is given by 

h(t) = s'(t) = .!!._ [!(1- e -at)u (t)] 
dt a 

= e-atu(t)+ _!_(1- e-at)u'(t) 
a 

Using Eqs. (l.25) and (l.30), we have 

1 -at 1 -at 1 -(1- e )u'(t) = -(1- e )b(t) = -(1- l)b(t) = 0 
a a a 

Thus, h(t) = e -atu(t) 

which is the same as Eq. (1.124). 

2.25. Consider the system described by 

y'(t) + 2y(t) = x(t) + x'(t) 

Find the impulse response h(t) of the system. 

The impulse response h(t) should satisfy the differential equation 

h'(t) + 2h(t) = <5(t) + (j'(t) 

The homogeneous solution hh(t) to Eq. (2.127) is [see Prob. 2.23 and Eq. (2.122)] 

Assuming the particular solution hpU) of the form 

(2.125) 

(2.126) 

(2.127) 
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the general solution is 

The delta function t5(t) must be present so that h'(t) contributes t5'(t) to the left-hand side of Eq. (1.127). 
Substituting Eq. (2.128) into Eq. (2.127), we obtain 

- 2c1e-21 u(t) + c1 e-21 u'(t) + c2i5'(t) + 2c1e-21 u(t) + 2c2 t5(t) 

= t5(t) + t5'(t) 

Again, using Eqs. (1.25) and (1.30), we have 

Equating coefficients of t5(t) and t5'(t), we obtain 

c 1 + 2c2 = 1 c2 = 1 

from which we have c1 = -1 and c2 = 1. Substituting these values in Eq. (2.128), we obtain 

h(t) = -e-21 u(t) + t5(t) 

Responses or a Discrete-Time LTI System and Convolutlon 

2.26 Verify Eqs. (2.36) and (2.37); that is, 

(a) x[n] * h[n] = h[n] * x[n] 

(b) {x[n] * h 1[n]} * h2[n] = x[n] * {h1[n] * h2[n]} 

(a) By definition (2.35) 

00 

x[n] * h[n] = ~ x[k]h[n - k] 
k=-00 

By changing the variable n - k = m, we have 

00 00 

x[n]*h[n] = ~ x[n- m]h[m] = ~ h[m]x[n- m] = h[n]*x[n] 
m=-oo m=-oo 

00 

fi[n] = ~ x[k]h1[n - k] 
k=-00 

00 

and {x[n]*h 1[n]}*h 2 [n] = fi[n]*h 2 [n] = ~ fi[m]h 2 [n - m] 
m=-oo 

Substituting r = m - k and interchanging the order of summation, we have 

(2.128) 

(2.129) 
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Now, since 

00 

f 2[n] = ~ h1[r]h 2[n - r] 
r=-oo 

we have 

00 

f2[n - k] = ~ h1[r]h2[n - k- r] 
r=-oo 

00 

Thus, {x[n]*h1[n]}*h 2[n]= ~ x[k]f2[n-k] 
k=-00 

2.27. Show that 

(a) x[n] * b[n] = x[n] 

(b) x[n] * b[n - n0] = x[n - n0] 

00 

(c) x[n]*u[n] = ,L x[k] 
k=-00 

n-n0 

(d) x[n]*u[n-n0 ]= ,L x[k] 
k=-00 

(a) By Eq. (2.35) and property (1.46) of ()[n - k] we have 

00 

x[n] *Mn]= ~ x[k]()[n - k] = x[n] 
k=-00 

(b) Similarly, we have 

00 

x[n]*(j[n-n0 ]= ~ x[k]()[n-k-n0 ]=x[n-n0 ] 

k=-00 

(c) By Eq. (2.35) and definition (1.44) of u[n - k] we have 

oo n 

x[n]*u[n]= ~ x[k]u[n-k]= ~ x[k] 
k=-00 k=-00 

(d) In a similar manner, we have 

oo n-no 

x[n]*u[n-n 0 ]= ~ x[k]u[n-k-n0 ]= ~ x[k] 
k=-00 k=-00 

2.28 The input x[n] and the impulse response h[n] of a discrete-time LTI system are given by 

x[n] = u[n] h[n] = an u[n] 

(a) Compute the output y[n] by Eq. (2.35). 

(b) Compute the output y[n] by Eq. (2.39). 

(a) By Eq. (2.35) we have 

00 

O<a<l 

y[n]=x[n]*h[n]= ~ x[k]h[n-k] 
k=-oo 

(2.130) 

(2.131) 

(2.132) 

(2.133) 
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• 

Sequences x[k] and h[n - k] are shown in Fig. 2-20(a) for n < 0 and n > 0 . From Fig. 2-20(a) we see that 
for n < 0 , x[k] and h[n - k] do not overlap, while for n ;:o: 0 , they overlap from k = 0 to k = n. Hence , for 
n < 0 , y[n] = 0 . For n ;:o: 0 , we have 

x[k] 

- 2 - 1 0 1 2 3 

'' TI I. 
r o-k] 

• n 0 

• 

,r[o-k] 
, TI J 

0 n 

(a) 

n 
y[n] = _L an - k 

k =O 

k 

n <O 

k 

n >O 

• • k 

Fig. 2-20 

y[n] 

1- a 

- 2 - 1 0 1 2 3 4 

(b) 

Changing the variable of summation k tom = n - k and using Eq. (1 .90) , we have 

O n l - an+I 
y[n] = _Lam = _Lam = --

m =n m =O l - a 

Thus , we can write the output y[n] as 

y[n] = u[n] ( 1 a"+I) 
1- a 

n 

(2.134) 

which is sketched in Fig. 2-20(b). 

(b) By Eq. (2.39) 

"' 
y[n] = h[n] u[n] = _L h[k]x[n - k] 

k =- oo 

Sequences h[k] and x[n - k] are shown in Fig. 2-21 for n < 0 and n > 0. Again from Fig. 2-21 we see that 
for n < 0, h[k] and x[n - k] do not overlap, while for n ;:o: 0, they overlap from k = 0 to k = n. Hence, for 
n < 0, y[n] = 0. For n ;:o: 0, we have 

n k l - an + I 
y[n] = _La = ---

k =O 1- a 

Thus, we obtain the same result as shown in Eq. (2.134). 
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, I h[k] 

.. I r 1 , , , 
0 1 2 3 

I I I I I. f H J 

2.29 Compute y[n] = x[n] * h[n], where 

(a) x[n] = a"u[n], h[n] = J3"u[n] 

n O 

- 1 O n 

Fig. 2-21 

(b) x[n] = a"u[n], h[n] = a - n u[-n], 0 < a< 1 

(a) From Eq. (2.35) we have 

"' "' 

k 

n <O 

k 

n >O 

k 

y[n] = _L x[k]h[n - k] = _L aku[k]/3" - ku[n - k] 

since 

we have 

Using Eq. (1 .90), we obtain 

or 

k =-00 k=-00 

"' 
= _L ak /3" - ku[k]u[n - k] 

k =-00 

u[k]u[n - k] = {~ O:s;k:s;n 

otherwise 

n n ( )k y[n] = _L ak 13n -k = /3" _L ~ 
k =O k =O {3 

!P" l - (aip)"' "i"l a i= /3 
y[n] = I - (a I /3) 

/3"(n + l)u[n] a = /3 

1-1-(/3"+1 - a" +')u[n] a i= /3 
y[n] = {3 - a 

/3"(n + l)u[n] a = /3 

n;:o:O 

(2.135a) 

(2.135b) 
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(b) 

"' "' 
y[n] = ,L x[k]h[n - k] = ,L aku[k]a- <n - k)u[ - (n - k)] 

k=- 00 k=- 00 

"' 
= ,L a - "a 2ku[k]u[k - n] 

k =- 00 

For n ~ 0, we have 

u[k]u[k - n] = {~ O~k 

otherwise 

Thus, using Eq. (1.91), we have 

For n ;:=o 0, we have 

Thus, using Eq. (1.92), we have 

u[k]u[k - n] = {~ n~k 

otherwise 

oo 2n n 
[ l - n ~ ( 2)k - n a a y n = a L., a = a --2 = --2 

k =n 1- a 1- a 

Combining Eqs. (2.136a) and (2.136b), we obtain 

which is sketched in Fig. 2-22. 

alnl 
y[n] = --

1- a2 

y[n] 

all n 

- 2 - 1 0 1 2 3 

Fig. 2-22 

n~O 

n 

(2.136a) 

(2.136b) 

(2.137) 

2.30. Evaluate y[n] = x[n] * h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an analytical technique, 
and ( b) by a graphical method. 

• • 

t h[n] 

•• 
1 I I •• -1 0 1 2 3 n -1 0 1 2 n 

Fig. 2-23 
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(a) Note that x[n] and h[n] can be expressed as 

x[n] = <'>[n] + <'>[n - 1] + <'>[n - 2] + <'>[n - 3] 

h[n] = <'>[n] + <'>[n - 1] + <'>[n - 2] 

Now, using Eqs. (2.38), (2.130), and (2.131), we have 

Thus, 

x[n] * h[n] = x[n] * {<'>[n] + <'>[n - 1] + <'>[n - 2]} 

= x[n] * <'>[n] + x[n] * <'>[n -1] + x[n] * <'>[n - 2] 

= x[n] + x[n - 1] + x [n - 2] 

y[n] = <'>[n] + <'>[n - 1] + <'>[n - 2] + <'>[n - 3] 

+ <'>[n - 1] + <'>[n - 2] + <'>[n - 3] + <'>[n - 4] 

+ <'>[n - 2] + <'>[n - 3] + <'>[n - 4] + <'>[n - 5] 

or y[n] = <'>[n] + 2<5[n - 1] + 3<5 [n - 2] + 3<5[n - 3] + 2<5[n - 4] + <'>[n - 5] 

or y[n] = {l,2,3,3,2,1} 

(b) Sequences h[k], x[k] and h[n - k], x[k] h[n - k] for different values of n are sketched in Fig. 2-24. 

From Fig. 2-24 we see that x[k] and h[n - k] do not overlap for n < 0 and n > 5, and hence, y[n] = 0 for 

n < 0 and n > 5. For 0 ~ n ~ 5, x[k] and h[n - k] overlap. Thus, summing x[k]h[n - k] for 0 ~ n ~ 5, 
we obtain 

y[O] = 1 y[l] = 2 y[2] = 3 y[3] = 3 y[4] = 2 y[5] = 1 

or 

y[n] = {l,2,3,3,2, 1} 

which is plotted in Fig. 2-25. 

2.31. If x 1[n] and x2[n] are both periodic sequences with common period N, the convolution of x 1[n] and x2[n] 

does not converge. In this case, we define the periodic convolution of x1[n] and x2[n] as 

N-1 

f[n] = x1[n]®x2 [n] = ,L x1[k]x2 [n - k] 
k=O 

Show that f[n] is periodic with period N. 

Since x2[n] is periodic with period N, we have 

x2[(n - k) + N] = x2 [n - k] 

Then from Eq. (2.138) we have 

N-1 N-1 

f[n + N] = '}: x1[k]x2 [n + N - k] = '}: x1[k]x2 [(n - k) + N] 
k=O k=O 

N-1 

= '}: x1[k]x2 [(n - k)] = f[n] 
k=O 

Thus, f[n] is periodic with period N. 

(2.138) 
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t h[k] 

• 
1 _I I ••••• • 

t x[k] 

•
1 _I I I ••• • - 1 0 1 2 3 4 k - 1 0 1 2 3 4 k 

r~ - ·1 n<O 
l x~]h~-k] 

.III • ••••••• • • • •••••• - 4 - 3 - 2- 1 0 1 2 3 4 k - 1 0 1 2 3 4 k 

r~ - ·1 n =O .C:":: .. .II_ ••••••• • • - 3 - 2- 1 0 1 2 3 4 k - 1 0 1 2 3 4 k 

r~ - ·1 n = 1 

r[k]h[n-k] 

• I_I •••••• • • I ••••• • 
- 2- 1 0 1 2 3 4 k - 1 0 1 2 3 4 k 

r~-·1 n =2 
t x[k]h[n - k] 

• _II ••••• • • II •••• • 
- 1 0 1 2 3 4 k - 1 0 1 2 3 4 k 

r~ - ·1 n = 3 
rk]h[n - k] 

• _III •••• • • III ••• • - 1 0 1 2 3 4 5 k - 1 0 1 2 3 4 5 k 

r~ - ·1 n =4 
rk]h[n-k] 

._.III ••• • • • II ••• • 
- 1 0 1 2 3 4 5 6 k - 1 0 1 2 3 4 5 k 

r~ - ·1 n =5 
rk]h[n - k] 

._ •• III •• • • •• I ••• • 
- 1 0 1 2 3 4 5 6 k - 1 0 1 2 3 4 5 k 

r~ - ·1 n>5 
l x[k]h[n - k] 

. ... III. • • • •••••• - 1 0 1 2 3 4 5 6 7 k - 1 0 1 2 3 4 5 k 

Fig. 2-24 

y[n] 

3 

2 

-1 0 1 2 3 4 5 6 n 

Fig. 2-25 
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2.32. The step response s[n] of a discrete-time LTI system is given by 

s[n] = anu[n] O<a<l 

Find the impulse response h[n] of the system. 

From Eq. (2.41) the impulse response h[nJ is given by 

h[nJ = s[nJ - s[n - lJ = a"u[nJ - a" - 1u[n - lJ 

= {c'l[nJ + a"u[n - 1]} - a• - 1u[n - lJ 

= c'l[nJ - (1 - a)a" - 1u[n - lJ 

Properties of Discrete-Time LTI Systems 

2.33. Show that if the input x[n] to a discrete-time LTI system is periodic with period N, then the output y[n] 
is also periodic with period N. 

Let h[nJ be the impulse response of the system. Then by Eq. (2.39) we have 

"' 
y[nJ = ~ h[kJx[n - kJ 

k =-00 

Let n = m + N. Then 

"' "' 
y[m +NJ = ~ h[kJx[m + N - kJ = ~ h[kJx[(m - k) +NJ 

k =-00 k =- 00 

Since x[nJ is periodic with period N , we have 

x[(m - k) +NJ = x[m - kJ 

"' Thus, y[m +NJ = ~ h[kJx[m - kJ = y[mJ 
k =-00 

which indicates that the output y[nJ is periodic with period N. 

2.34. The impulse response h[n] of a discrete-time LTI system is shown in Fig. 2-26(a). Determine and 
sketch the output y[n] of this system to the input x[n] shown in Fig. 2-26(b) without using the 
convolution technique. 

From Fig. 2-26(b) we can express x[nJ as 

x[nJ = c'l[n - 2J - c'l[n - 4J 

h[n] x[n] 

4 5 3 4 

0 1 2 3 6 n 0 1 2 5 

-1 -1 

(a) (b) 

Fig. 2-26 

n 
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Since the system is linear and time-invariant and by the definition of the impulse response, we see that the output 

y[n] is given by 

y[n] = h[n - 2] - h[n - 4] 

which is sketched in Fig. 2-27. 

h[n - 2] 

6 7 y[n] = h[n - 2] - h[n - 4] 

0 1 2 3 4 5 8 n 

- 1 

6 7 

h[n - 4] 0 1 2 3 4 5 8 9 n 

- 1 

8 9 
- 2 

0 1 2 3 4 5 6 7 n 

- 1 

Fig. 2-27 

2.35. A discrete-time system is causal if for every choice of n0 the value of the output sequence y[n] at n = n0 

depends on only the values of the input sequence x[n] for n ::5 n0 (see Sec. 1.50). From this definition 
derive the causality condition (2.44) for a discrete-time LTI system; that is, 

h[n] = 0 n<O 

From Eq. (2.39) we have 

"' 
y [n] = ,L h[k]x[n - k] 

k =-00 

- I "' 

= ,L h[k]x[n - k] + ,L h[k]x[n - k] (2.139) 
k =-oo k =O 

Note that the first summation represents a weighted sum of future values of x[n]. Thus , if the system is causal, then 

- I 

,L h[k]x[n - k] = 0 
k =-00 

This can be true only if 

h[n] = 0 n < 0 

Now if h[n] = 0 for n < 0, then Eq. (2.139) becomes 

"' 
y[n] = ,L h[k]x[n - k] 

k =O 

which indicates that the value of the output y[n] depends on only the past and the present input values. 
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2.36. Consider a discrete-time LTI system whose input x[n] and output y[n] are related by 

n 

y[n] = ,L 2k-n x[k + 1] 
k=-00 

Is the system causal? 

By definition (2.30) and Eq. (l.48) the impulse response h[n] of the system is given by 

n n n 
h[n]= ~ 2k-n(j[k+l]= ~ 2-(n+l)(j[k+l]=r<n+l) ~ (j[k+l] 

k=-00 k=-00 k=-00 

By changing the variable k + 1 = m and by Eq. (l.50), we obtain 

n+I 
h[n] = r<n+I) ~ (j[m] = 2-<n+l)u[n + l] 

m=-oo 

From Eq. (2.140) we have h[-1] = u[O] = 1 * 0. Thus, the system is not causal. 

2.37. Verify the BIBO stability condition [Eq. (2.49)] for discrete-time LTI systems. 

Assume that the input x[n] of a discrete-time LTI system is bounded, that is, 

all n 

Then, using Eq. (2.35), we have 

I y[n] I= I k~., h[k]x[n - k] I~ k~., I h[k] I lx[n - k] I~ k1 k~., I h [k] I 

Since lx[n - k] I ~ k1 from Eq. (2.141). Therefore, if the impulse response is absolutely summable, that is, 

., 
~ lh[k]l=K<oo 

k=-00 

we have 

and the system is BIBO stable. 

2.38. Consider a discrete-time LTI system with impulse response h[n] given by 

h[n] = anu[n] 

(a) Is this system causal? 

(b) Is this system BIBO stable? 

(a) Since h[n] = 0 for n < 0, the system is causal. 

(b) Using Eq. (1.91) (Prob. 1.19), we have 

lal<l 

Therefore, the system is BIBO stable if lal < 1 and unstable if lal ~ 1. 

(2.140) 

(2.141) 
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Systems Described by Difference Equations 

2.39. The discrete-time system shown in Fig. 2-28 consists of one unit delay element and one scalar 
multiplier. Write a difference equation that relates the output y[ n] and the input x[ n]. 

x[n] y[n] 

+ 

Unit 
y[n _ 11 delay 

Fig. 2-28 

In Fig. 2-28 the output of the unit delay element is y[n - 1]. Thus, from Fig. 2-28 we see that 

or 

y[n] = ay[n - 1] + x[n] 

y[n] - ay[n - 1] = x[n] 

which is the required first-order linear difference equation. 

2.40. The discrete-time system shown in Fig. 2-29 consists of two unit delay elements and two scalar 
multipliers. Write a difference equation that relates the output y[n] and the input x[n]. 

x[n] 

+ 

y[n - 2] 

Unit 
delay 

+ 

y[n - 1] 

Fig. 2-29 

Unit 
delay 

y[n] 

(2 .142) 

(2.143) 

In Fig. 2-29 the output of the first (from the right) unit delay element is y[n - 1] and the output of the second (from 
the right) unit delay element is y[n - 2] . Thus, from Fig . 2-29 we see that 

or 

y[n] = a1y[n - 1] + a2y[n - 2] + x[n] 

y[n] - a1y[n - 1] - a2y[n - 2] = x[n] 

which is the required second-order linear difference equation. 

(2 .144) 

(2.145) 

Note that , in general, the order of a discrete-time LTI system consisting of the interconnection of unit delay 

elements and scalar multipliers is equal to the number of unit delay elements in the system. 

2.41. Consider the discrete-time system in Fig. 2-30. Write a difference equation that relates the output y[n] 

and the inputx[n]. 

x[n] 

+ 

q[n] 

q[n - 1] 

Fig. 2-30 

y[n] 

+ 
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Let the input to the unit delay element be q[n]. Then from Fig. 2-30 we see that 

q[n] = 2q[n - 1] + x [n] 

y[n] = q[n] + 3q[n - 1] 

Solving Eqs. (2.146a) and (2.146b) for q[n] and q[n - 1] in terms of x[n] and y[n], we obtain 

2 3 
q[n] = Sy[n] + 5x[n] 

1 1 
q[n -1] = Sy[n] - 5x[n] 

Changing n to (n - 1) in Eq. (2.147a), we have 

2 3 
q[n -1] = -y[n -1] +-x[n -1] 

5 5 

Thus, equating Eq. (2.147b) and Eq. (2.147c), we have 

1 1 2 3 
-y[n]- -x[n] = -y[n -1] +-x[n -1] 
5 5 5 5 

Multiplying both sides of the above equation by 5 and rearranging terms, we obtain 

y[n] - 2y[n - 1] = x[n] + 3x [n - 1] 

which is the required difference equation. 

2.42. Consider a discrete-time system whose input x[n] and output y[n] are related by 

y[n] - ay[n - 1] = x[n] 

where a is a constant. Find y[n] with the auxiliary condition y[ -1] = y _ 1 and 

x[n] = Kbnu[n] 

Let y[n] = Yp[n] + yh [n] 

(2.146a) 

(2.146b) 

(2.147a) 

(2.147b) 

(2.147c) 

(2.148) 

(2.149) 

(2.150) 

where yP[n] is the particular solution satisfying Eq. (2.149) and yh[n] is the homogeneous solution which satisfies 

y[n] - ay[n - 1] = 0 

Assume that 

Yin]= Abn 

Substituting Eq. (2.152) into Eq. (2.149), we obtain 

from which we obtain A = Kbl(b - a), and 

To obtain yh[n], we assume 

Substituting this into Eq. (2.151) gives 

n~O 

n~O 

Bz" - aBz" - 1 = (z - a) Bz" - 1 = O 

(2.151) 

(2.152) 

(2.153) 
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from which we have z = a and 

Combining yP[n] and yh[n], we get 

y[n] =Ban + __!__bn+l 
b-a 

(2.154) 

n;:::O (2.155) 

In order to determine Bin Eq. (2.155) we need the value ofy[O]. Setting n = 0 in Eqs. (2.149) and (2.150), we have 

or 

y[O] - ay[-1] = y[O] - ay_ 1 = x[O] = K 

y[O] = K + ay_ 1 

Setting n = 0 in Eq. (2.155), we obtain 

b 
y[O]=B+K-­

b-a 

Therefore, equating Eqs. (2.156) and (2.157), we have 

from which we obtain 

Hence, Eq. (2.155) becomes 

b 
K+ay_ 1 =B+K-­

b-a 

a 
B=ay_ 1-K-­

b-a 

bn+l _ an+I 
y[n] = y_1an+l + K---­

b - a 

For n < 0, we havex[n] = 0, and Eq. (2.149) becomes Eq. (2.151). Hence, 

y[n] =Ba" 

From the auxiliary condition y[ - 1] = y _ 1, we have 

y[-1] = Y-1 =Ba-I 

from which we obtain B = y _ 1a. Thus, 

n<O 

Combining Eqs. (2.158) and (2.160), y [n] can be expressed as 

bn+I _ an+l 
y[n] = y_ 1an+I + K u[n] 

b-a 

(2.156) 

(2.157) 

(2.158) 

(2.159) 

(2.160) 

(2.161) 

Note that as in the continuous-time case (Probs. 2.21 and 2.22), the system described by Eq. (2.149) is not linear 
if y[ -1] i= 0. The system is causal and time-invariant if it is initially at rest; that is, y[ -1] = 0. Note also that 

Eq. (2.149) can be solved recursively (see Prob. 2.43). 

2.43. Consider the discrete-time system in Prob. 2.42. Find the output y[n] when x[n] = K()[n] and 
y[-1] = y_ 1 =a. 

We can solve Eq. (2.149) for successive values of y[n] for n;::,, 0 as follows: rearrange Eq. (2.149) as 

y[n] = ay[n - l] + x[n] (2.162) 



«Ji* CHAPTER 2 Linear Time-Invariant Systems 

Then 

y[O] = ay[-1] + x[O] = aa + K 

y[l] = ay[O] + x[l] = a(aa + K) 

y[2] = ay[l] + x[2] = a2(aa + K) 

y[n] = ay[n - 1] + x[n] = a"(aa + K) = a•+ 1 a+ a"K 

Similarly, we can also determine y[n] for n < 0 by rearranging Eq. (2.149) as 

Then 

1 
y[n -1] = -{y[n]- x[n]} 

a 

y[-l]=a 

y[-2] = .!.{y[-1]-x[-1]} =.!.a= a-1a 
a a 
1 -2 y[- 3] = -{y[- 2]- x[- 2]} =a a 
a 

y[-n] = .!.{y[- n+ 1]- x[- n + 1]} = a-n+la 
a 

Combining Eqs. (2.163) and (2.165), we obtain 

y[n] = a•+ 1 a + Ka"u[n] 

2.44. Consider the discrete-time system in Prob. 2.43 for an initially at rest condition. 

(a) Find in impulse response h[n] of the system. 

(b) Find the step response s[n] of the system. 

(c) Find the impulse response h[n] from the result of part (b). 

(a) Setting K = 1 and y[-1] = a= 0 in Eq. (2.166), we obtain 

h[n] = a"u[n] 

(b) SettingK= l,b= l,andy[-1] =y_ 1 =OinEq.(2.161),weobtain 

s[n] = u[n] ( 1 a•+l) 
1-a 

(c) From Eqs. (2.41) and (2.168) the impulse response h[n] is given by 

h[n] = s[n]- s[n -1] = u[n]- -- u[n -1] (1 a•+l) (1 a") 
1-a 1-a 

Whenn = 0, 

( 1- a) h[O] = -- u[O] = 1 
1-a 

Whenn ~ 1, 

h[n] = - 1-[l-an+l -(1-an)] = a"(l- a)= a" 
1-a 1-a 

Thus, h[n] = anu[n] 

which is the same as Eq. (2.167). 

(2.163) 

(2.164) 

(2.165) 

(2.166) 

(2.167) 

(2.168) 
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2.45. Find the impulse response h[n] for each of the causal LTI discrete-time systems satisfying the following 
difference equations and indicate whether each system is a FIR or an IIR system. 

(a) y[n] = x[n] - 2.x[n - 2] + x[n - 3] 

(b) y[n] + 2y[n - 1] = x[n] + x[n - 1] 

(c) y[n] - ~y[n - 2] = 2.x[n] - x[n - 2] 

(a) By definition (2.56) 

h[n] = <'>[n] - 2<5[n - 2] + <'> [n - 3] 

or 

h[n] = {1,0, - 2,1} 

Since h[n] has only four terms, the system is a FIR system. 

(b) h[n] = -2h[n - 1] + <'>[n] + <'>[n - 1] 

Since the system is causal, h[ -1] = 0. Then 

Hence, 

h[O]= - 2h[-1] + ()[O] + <'>[-1] = ()[O] = 1 

h[l] = -2h[O]+<'>[l]+<'>[O]= -2+ 1 = -1 

h[2]= - 2h[l] + ()[2] + <'>[1] = - 2 (-1) = 2 

h[3] = - 2h[2] + ()[3] + ()[2] = - 2 (2) = - 22 

h[n]= - 2h[n -1] + ()[n] + <'>[n -1] = (- l)n2n-l 

h[n] = <'>[n] + (- It2n- 1u[n -1] 

Since h[n] has infinite terms, the system is an IIR system. 

1 
(c) h[n] = -h[n - 2] + 2<5[n]- ()[n - 2] 

2 
Since the system is causal, h[- 2] = h[-1] = 0. Then 

Hence, 

h[O] = _!_h[- 2] + 2()[0]-()[- 2] = 2<'>[0] = 2 
2 

h[l] = .!..h[- 1] + 2()[1]- ()[-1] = 0 
2 

h[2] = _!_h[O] + 2()[2]- <5[0] = _!_(2) = -1=0 
2 2 

h[3] = .!..h[l] + 2()[3] - ()[1] = 0 
2 

h[n] = 2<'>[n] 

Since h[n] has only one term, the system is a FIR system. 

SUPPLEMENTARY PROBLEMS 

2.46. Compute the convolution y(t) = x(t) * h(t) of the following pair of signals: 

x(t)= {~ -a<to5,a {1 -a<to5,a 
(a) ' h(t) = 

otherwise otherwise 0 

(b) x(t)= {~ ' h(t) = 
O<t'5,T {1 
otherwise 0 

0 < t '5, 2T 

otherwise 

(c) x(t) = u(t - 1), h(t) = e- 31u(t) 
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2.47. Compute the convolution sum y[n] = x[n] * h[n] of the following pairs of sequences: 

(a) x[n] = u[n], h[n] = 2"u[ - n] 

(b) x[n] = u[n] - u[n - N], h[n] = a"u[n], 0 <a< 1 

(c) x[n] = ( ~ )"u[n], h[n] = o[n] - ~ o[n - 1] 

2.48. Show that if y(t) = x(t) * h(t), then 

y'(t) = x'(t) * h(t) = x(t) * h'(t) 

2.49. Show that 

x(t) * o'(t) = x'(t) 

2.50. Lety[n] = x[n] * h[n]. Then show that 

2.51. Show that 

for an arbitrary starting point n0 . 

n0 +N - l 

x1[n]®x2[n] = ,L x1[k]x2[n - k] 
k =no 

2.52. The step response s(t) of a continuous-time LTI system is given by 

s(t) = [cos f.Oot]u(t) 

Find the impulse response h(t) of the system. 

2.53. The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse responses of the 
systems are given by 

and 

x(t) 

Fig. 2-31 

(a) Find the impulse response h(t) of the overall system. 

(b) Is the overall system stable? 

+ 
y(t) 

+ 
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2.54. Consider an integrator whose input x(t) and output y(t) are related by 

I 
y(t) = J_

00
x(r)dr 

(a) Find the impulse response h(t) of the integrator. 

(b) ls the integrator stable? 

2.55. Consider a discrete-time LTI system with impulse response h[n] given by 

h[n] = o[n - 1] 

ls this system memoryless? 

2.56. The impulse response of a discrete-time LTI system is given by 

h[n] = ( + r u[n] 

Let y[n] be the output of the system with the input 

x[n] = 2o[n] + o[n - 3] 

Findy[l] andy[4]. 

2.57. Consider a discrete-time LTI system with impulse response h[n] given by 

(a) ls the system causal? 

(b) ls the system stable? 

h[n] = ( - ~ r u[n - 1] 

«i* 

2.58. Consider the RLC circuit shown in Fig. 2-32. Find the differential equation relating the output current y(t) and the 
input voltage x(t). 

R L 

+ 

x(t) c 

Fig. 2-32 

2.59. Consider the RL circuit shown in Fig. 2-33. 

(a) Find the differential equation relating the output voltage y(t) across Rand the the input voltage x(t). 

(b) Find the impulse response h(t) of the circuit. 

(c) Find the step response s(t) of the circuit. 
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L 

+ 

+ 

x(t) R y(t) 
x(t) I 

---~ h(t) 

Fig. 2-33 

2.60. Consider the system in Prob. 2.20. Find the outputy(t) if x(t) = e- "'u(t) andy(O) = 0. 

2.61. ls the system described by the differential equation 

linear? 

dy(t) + Sy(t) + 2 = x(t) 
dt 

2.62. Write the input-output equation for the system shown in Fig. 2-34. 

x[n] 

+ 

Fig. 2-34 

2.63. Consider a discrete-time LTI system with impulse response 

h[n] = {~ 

Find the input-output relationship of the system. 

n = 0, 1 

otherwise 

+ 

2.64. Consider a discrete-time system whose input x[n] and output y[n] are related by 

1 
y[n] - -y[n - 1] = x[n] 

2 

with y[ - 1] = 0. Find the output y[n] for the following inputs: 

(a) x[n] = ( ~ r u[n]; 

(b) x[n] = (-k r u[n] 

y[n] 

y(t) 

2.65. Consider the system in Prob. 2.42. Find the eigenfunction and the corresponding eigenvalue of the system. 
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ANSWERS TO SUPPLEMENTARY PROBLEMS 

2.46. (a) y(t) ={~a - It I 

0 

_!_t2 
2 

(b) y(t)= .!..r2 

2 

t<O 

O<t~T 

T<t~2T 

- _!_t2 + 2T - ~ T 2 2T < t ~ 3T 
2 2 

0 3T<t 

(c) _!_(1-e- 3<t-l»u(t-l) 
3 

{
21-n 

2.47. (a) y[n] = 2 

(b) y[n]= 

0 

1- an+I 

1-a 

an-N+I( 1-aN) 
1-a 

(c) y[n] = c5[n] 

n<O 

N-l<n 

2.48. Hint: Differentiate Eqs. (2.6) and (2.10) with respect tot. 

2.49. Hint: Use the result from Prob. 2.48 and Eq. (2.58). 

2.50. Hint: See Prob. 2.3. 

2.51. Hint: See Probs. 2.31and2.8. 

2.52. h(t) = c5(t) - %[sin Wat]u(t) 

2.53. (a) h(t) = (e- 21 + 2e- 1) u(t) 

(b) Yes 

2.54. (a) h(t) = u(t) 

(b) No 

2.55. No, the system has memory. 

2.56. y[l] = 1 andy[4] = ~ 

2.57. (a) Yes; (b) Yes 

2.58. d2y(t) + !!.. dy(t) + _l_y(t) = .!.. dx(t) 
dt2 L dt LC L dt 



2.59. (a) 
dy(t) R R 
--+-y(t)=-x(t) 

dt L L 

(b) h(t) = !!..e-(RIL)tu(t) 
L 

(c) s(t) = [1- e-<RtL)t]u(t) 

2.60. te-•1u(t) 

2.61. No, it is nonlinear. 

2.62. 2y[n] - y[n - 1] = 4x[n] + 2x[n - 1] 

2.63. y[n] = x[n] + x[n - 1] 

2.64. (a) y[n]=6[(~r+' -( ~r+']u[n] 

(b) y[n]=(n+l)( ~r u[n] 

2.65. Zn, A= _z_ 
z-a 

CHAPTER 2 Linear Time-Invariant Systems 



Laplace Transform and 
Continuous-Time LTI Systems 

3.1 Introduction 

A basic result from Chap. 2 is that the response of an LTI system is given by convolution of the input and the 
impulse response of the system. In this chapter and the following one we present an alternative representation 
for signals and LTI systems. In this chapter, the Laplace transform is introduced to represent continuous-time 
signals in the s-domain (s is a complex variable), and the concept of the system function for a continuous-time 
LTI system is described. Many useful insights into the properties of continuous-time LTI systems, as well as 
the study of many problems involving LTI systems, can be provided by application of the Laplace transform 
technique. 

3.2 The Laplace Transform 

In Sec. 2.4 we saw that for a continuous-time LTI system with impulse response h(t), the output y(t) of the 
system to the complex exponential input of the form e'1 is 

y(t) = T{e'1} = H(s)e'1 (3.1) 

where (3.2) 

A. Definition: 

The function H(s) in Eq. (3.2) is referred to as the Laplace transform of h(t). For a general continuous-time 
signal x(t), the Laplace transform X(s) is defined as 

Joo t 
X(s)= _

00
x(t)e- s dt (3.3) 

The variables is generally complex-valued and is expressed as 

s = a+ jw (3.4) 

The Laplace transform defined in Eq. (3.3) is often called the bilateral (or two-sided) Laplace transform in 
contrast to the unilateral (or one-sided) Laplace transform, which is defined as 

(3.5) 

..... 
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where o- = lim, ~ 0(0 - e). Clearly the bilateral and unilateral transforms are equivalent only if 
x(t) = 0 fort< 0. The unilateral Laplace transform is discussed in Sec. 3.8. We will omit the word "bilateral" 
except where it is needed to avoid ambiguity. 

Equation (3.3) is sometimes considered an operator that transforms a signal x(t) into a function X(s) 
symbolically represented by 

X(s) = :£ {x(t)} (3.6) 

and the signal x(t) and its Laplace transform X(s) are said to form a Laplace transform pair denoted as 

x(t) ~ X(s) (3.7) 

B. The Region of Convergence: 

The range of values of the complex variables s for which the Laplace transform converges is called the region of 
convergence (ROC). To illustrate the Laplace transform and the associated ROC, let us consider some examples. 

EXAMPLE 3.1 Consider the signal 

a real (3.8) 

Then by Eq. (3.3) the Laplace transform of x(t) is 

X(s)=f00 e - 01 u(t)e- s1dt= f 00 e- (s +a> 1dt 
- co Jo+ 

= - _l_e- (s +a)t I"' = _1_ 
s +a 0+ s +a 

Re(s) >-a (3.9) 

because lim1 ~ 00 e- <s + a)r = 0 only if Re(s + a) > 0 or Re(s) > -a. 
Thus, the ROC for this example is specified in Eq. (3 .9) as Re(s) > -a and is displayed in the complex plane 

as shown in Fig. 3-1 by the shaded area to the right of the line Re(s) = -a. In Laplace transform applications, 
the complex plane is commonly referred to as the s-plane. The horizontal and vertical axes are sometimes referred 
to as the a-axis and the jw -axis, respectively. 

jm jm 

s-plane 

a > O a < O 

- a a - a a 

• • 
(a) (b) 

Fig. 3-1 ROC for Example 3 .1. 
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EXAMPLE 3.2 Consider the signal 

x(t) = -e- a1u( - t) 

Its Laplace transform X(s) is given by (Prob. 3.1) 

a real 

1 
X(s)=--

s+a 
Re(s) < -a 

..... 
(3.10) 

(3 .11) 

Thus, the ROC for this example is specified in Eq. (3.11) as Re(s) < -a and is displayed in the complex plane 
as shown in Fig. 3-2 by the shaded area to the left of the line Re(s) = -a. Comparing Eqs. (3.9) and (3.11), we see 
that the algebraic expressions for X(s) for these two different signals are identical except for the ROCs. Therefore, in 
order for the Laplace transform to be unique for each signal x(t), the ROC must be specified as part of the transform. 

jw jw 

a > O a < O 

0 0 

• 
(a) (b) 

Fig. 3-2 ROC for Example 3 .2. 

C. Poles and Zeros of X(s): 

Usually, X(s) will be a rational function ins; that is, 

m m - 1 a0s + a1s + · · · + a a0 (s - z1 )- • • (s - z ) X(s)= m =- m 
b0sn +b1sn - l +···+bn bo (s- P1>-··(s- Pn) 

(3.12) 

The coefficients ak and bk are real constants, and m and n are positive integers. The X(s) is called a proper rational 
function if n > m, and an improper rational function if n ::5 m. The roots of the numerator polynomial, zk' are called 
the zeros of X(s) because X(s) = 0 for those values of s. Similarly, the roots of the denominator polynomial,pk, are 
called the poles of X(s) because X(s) is infinite for those values of s. Therefore, the poles of X(s) lie outside the ROC 
since X(s) does not converge at the poles, by definition. The zeros, on the other hand, may lie inside or outside the 
ROC. Except for a scale factor a0 /b0 , X(s) can be completely specified by its zeros and poles. Thus, a very compact 
representation of X(s) in the s-plane is to show the locations of poles and zeros in addition to the ROC. 

Traditionally, an " x" is used to indicate each pole location and an "o" is used to indicate each zero. This is 
illustrated in Fig. 3-3 for X(s) given by 

X(s)= 2s+4 = 2 s+2 
s2 + 4s + 3 (s + l)(s + 3) 

Re(s) > -1 

Note that X(s) has one zero at s = -2 and two poles at s = -1 ands = -3 with scale factor 2. 
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jro 

- 3 - 2 cr 

Fig. 3-3 s-plane representation of X(s) = (2s + 4)/(s 2 + 4s + 3). 

D. Properties of the ROC: 

As we saw in Examples 3.1and3.2, the ROC of X(s) depends on the nature of x(t). The properties of the ROC 
are summarized below. We assume that X(s) is a rational function of s. 

Property 1: The ROC does not contain any poles. 

Property 2: If x(t) is afinite-duration signal, that is,x(t) = 0 except in a finite interval t 1 ::5 t ::5 t2 

(-oo < t 1 and t2 < oo), then the ROC is the entires-plane except possibly s = 0 ors = oo. 

Property 3: If x(t) is a right-sided signal, that is, x(t) = 0 fort< t 1 < oo, then the ROC is of the form 

Re(s) > amax 

where a max equals the maximum real part of any of the poles of X(s). Thus, the ROC is a half­
plane to the right of the vertical line Re(s) = a max in the s-plane and thus to the right of all of 
the poles of X(s). 

Property 4: If x(t) is a left-sided signal, that is, x(t) = 0 fort> t2 > -oo, then the ROC is of the form 

Re(s) < amin 

where a min equals the minimum real part of any of the poles of X(s). Thus, the ROC is a half­
plane to the left of the vertical line Re(s) = a min in the s-plane and thus to the left of all of the 
poles of X(s). 

Property 5: If x(t) is a two-sided signal, that is, x(t) is an infinite-duration signal that is neither right­
sided nor left-sided, then the ROC is of the form 

where a 1 and a2 are the real parts of the two poles of X(s). Thus, the ROC is a vertical strip 
in the s-plane between the vertical lines Re(s) = a 1 and Re(s) = a2 . 

Note that Property l follows immediately from the definition of poles; that is, X(s) is infinite at a pole. For 
verification of the other properties see Probs. 3 .2 to 3 .7. 
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3.3 Laplace Transforms of Some Common Signals 

A. Unit Impulse Function C>(t): 

Using Eqs. (3.3) and (l.20), we obtain 

IE [<5(t)] = J~00 <5(t)e -st dt = 1 alls (3.13) 

B. Unit Step Function u( t): 

IE [u(t)] = f 00 u(t)e -st dt = r: e -st dt 
-oo Jo 

Re(s)> 0 (3.14) 

where o+ = lim,--> 0(0 + E). 

C. Laplace Transform Pairs for Common Signals: 

The Laplace transforms of some common signals are tabulated in Table 3-1. Instead of having to reevaluate the 
transform of a given signal, we can simply refer to such a table and read out the desired transform. 

TABLE 3-1 Some Laplace Transforms Pairs 

x(t) X(s) ROC 

l>(t) 1 Alls 

u(t) 1 Re(s) > 0 -s 

-u(-t) 1 Re(s) < 0 -s 

tu(t) 
1 

Re(s) > 0 s2 

k! 
Re(s) > 0 tk u(t) sk+I 

1 
Re(s) > - Re(a) e-at u(t) 

s+a 

1 
Re(s) < - Re(a) -e-01 u(-t) s+a 

1 
Re(s) > - Re(a) te-01 u(t) 

(s + a)2 

1 
Re(s) < - Re(a) -te-01u(-t) 

(s + a)2 

cos ffiotu(t) 
s 

-- Re(s) > 0 
s2 + ro6 

sin ro0tu( t) 
ffio 

Re(s) > 0 
s2 + ro6 
s+a 

e-at cos ro0tu(t) 
(s + a)2 + ro6 Re(s) > - Re(a) 

e-at sin ro0tu(t) 
ffio 

Re(s) > - Re(a) 
(s + a)2 + ro6 
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3.4 Properties of the Laplace Transform 

Basic properties of the Laplace transform are presented in the following. Verification of these properties is given 
in Probs. 3.8 to 3.16. 

A. Linearity: 

If 

Then 

x 1(t) - X1(s) 

x2(t) - Xz(s) 

a1x1(t) + a2xz(t) - a1X1(s) + a2X2(s) 

ROC = R1 

ROC = R2 

R' :::> R1 n R2 (3.15) 

The set notation A :::> B means that set A contains set B, while A n B denotes the intersection of sets A and B, 
that is, the set containing all elements in both A and B. Thus, Eq. (3 .15) indicates that the ROC of the resultant 
Laplace transform is at least as large as the region in common between R1 and R2• Usually we have simply 
R' = R1 n R2 • This is illustrated in Fig. 3-4. 

B. Time Shifting: 

If 

then 

x(t) - X(s) 

x(t- t0 )-e- sto X(s) 

jro 

ROC=R 

R'=R 

cr 

Equation (3.16) indicates that the ROCs before and after the time-shift operation are the same. 

C. Shifting in the s-Domain: 

If 

then 

x(t) - X(s) 

esot x(t) ++ X(s - s0 ) 

ROC=R 

R' = R + Re(s0 ) 

(3.16) 

(3.17) 
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Equation (3.17) indicates that the ROC associated with X(s-s0) is that of X(s) shifted by Re(s0). This is 
illustrated in Fig. 3-5. 

jw jw 

a 0 0 

(a) (b) 

Fig. 3-5 Effect on the ROC of shifting in the s-domain . (a) ROC of X(s); (b) ROC of X(s - s0 ) . 

D. Time Scaling: 

If 

x(t) ++ X(s) ROC = R 

then x(at) ++ _l x(.!_) R' = aR 
lal a 

(3.18) 

Equation (3 .18) indicates that scaling the time variable t by the factor a causes an inverse scaling of the variable 
s by lla as well as an amplitude scaling of X (sla) by 1/ I a I· The corresponding effect on the ROC is illustrated 
in Fig. 3-6. 

jw jw 

a cr aa ap cr 

R' 

Fig. 3-6 Effect on the ROC of time scaling. (a) ROC of X(s) ; (b) ROC of X(s/ a). 
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E. Time Reversal: 

If 

then 

x(t) - X(s) 

x(-t) - X(-s) 

ROC=R 

R' = -R (3.19) 

Thus, time reversal of x(t) produces a reversal of both the a- andjw-axes in the s-plane. Equation (3.19) is 
readily obtained by setting a = -1 in Eq. (3.18). 

F. Differentiation in the Time Domain: 

If 

then 

x(t) - X(s) 

dx(t) - sX(s) 
dt 

ROC=R 

R' ::> R (3.20) 

Equation (3 .20) shows that the effect of differentiation in the time domain is multiplication of the corresponding 
Laplace transform bys. The associated ROC is unchanged unless there is a pole-zero cancellation at s = 0. 

G. Differentiation in the s-Domain: 

If 

x(t) - X(s) ROC=R 

then _ tx(t)- dX(s) R'=R (3.21) 
ds 

H. Integration in the Time Domain: 

If 

x(t) - X(s) ROC=R 

then f~oo 
1 

R' =Rn {Re(s)> O} (3.22) x('r:)dr - -X(s) 
s 

Equation (3.22) shows that the Laplace transform operation corresponding to time-domain integration is multi­
plication by 1/s, and this is expected since integration is the inverse operation of differentiation. The form of R' 
follows from the possible introduction of an additional pole at s = 0 by the multiplication by 1/ s. 

I. Convolution: 

If 

then 

x1(t) - X 1(s) 

xz(t) - Xz(s) 

x1(t) *X2(t) - X1(s)X 2(s) 

ROC = R1 

ROC = R2 

R' ::> R1 n R2 (3.23) 

This convolution property plays a central role in the analysis and design of continuous-time LTI systems. 
Table 3-2 summarizes the properties of the Laplace transform presented in this section. 
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TABLE 3-2 Properties of the Laplace Transform 

PROPERTY 

Linearity 

Time shifting 

Shifting in s 

Time scaling 

Time reversal 

Differentiation in t 

Differentiation in s 

Integration 

Convolution 

SIGNAL 

x(t) 

X1(t) 

Xz(t) 

a1X1 (t) + az xz(t) 

x(t-t0 ) 

e•ot x(t) 

x(at) 

x(-t) 

dx(t) 

dt 

-tx(t) 

I 

L,,x<•)d• 

x1 (t) * x2(t) 

3.5 The Inverse Laplace Transform 

TRANSFORM 

X(s) 

X1(s) 

X2(s) 

a1 X1(s) + a2X2(s) 

e-•to X(s) 

X(s-s0 ) 

1 
~X(a) 

X(-s) 

sX(s) 

dX(s) 

ds 

1 
-X(s) 
s 

X1(s) X2(s) 

ROC 

R 

RI 

Rz 

R' :::> R1 n R2 

R'=R 

R'=R+Re(s0) 

R'=aR 

R'=-R 

R':::>R 

R'=R 

R':::>Rn{Re(s) > O} 

R':::>R1nR2 

Inversion of the Laplace transform to find the signal x(t) from its Laplace transform X(s) is called the inverse 
Laplace transform, symbolically denoted as 

(3.24) 

A. Inversion Formula: 

There is a procedure that is applicable to all classes of transform functions that involves the evaluation of a line 
integral in complex s-plane; that is, 

1 Jc+ joo st x(t) = -. . X(s)e ds 
2Jrj c-100 

(3.25) 

In this integral, the real c is to be selected such that if the ROC of X(s) is a1 < Re(s) < a2, then a1 < c < a2 • 

The evaluation of this inverse Laplace transform integral requires understanding of complex variable theory. 

B. Use of Tables of Laplace Transform Pairs: 

In the second method for the inversion of X(s), we attempt to express X(s) as a sum 

(3.26) 

where X1(s), ... , Xn(s) are functions with known inverse transforms x1(t), ... , xn(t). From the linearity property 
(3 .15) it follows that 

(3.27) 
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C. Partial-Fraction Expansion: 

If X(s) is a rational function, that is, of the form 

(3.28) 

a simple technique based on partial-fraction expansion can be used for the inversion of X(s). 

(a) When X(s) is a proper rational function, that is, when m < n: 

1. Slmple Pole Case: 
If all poles of X(s), that is, all zeros of D(s), are simple (or distinct), then X(s) can be written as 

X(s) = _c_1 - + ... + ---5..._ (3.29) 
s- P1 s- Pn 

where coefficients ck are given by 

(3.30) 

2. Multlple Pole Case: 
If D(s) has multiple roots, that is, if it contains factors of the form (s - p)', we say that P; is the multiple pole 
of X(s) with multiplicity r. Then the expansion of X(s) will consist of terms of the form 

~+ Az +···+ A., 
s-pi (s-pj (s-pi)' 

(3.31) 

where (3.32) 

(b) When X(s) is an improper rational function, that is, when m ~ n: 

If m ~ n, by long division we can write X(s) in the form 

X(s) = N(s) = Q(s) + R(s) 
D(s) D(s) 

(3.33) 

where N(s) and D(s) are the numerator and denominator polynomials ins, respectively, of X(s), the 
quotient Q(s) is a polynomial ins with degree m - n, and the remainder R(s) is a polynomial ins 
with degree strictly less than n. The inverse Laplace transform of X(s) can then be computed by 
determining the inverse Laplace transform of Q(s) and the inverse Laplace transform of R(s)ID(s). 
Since R(s)ID (s) is proper, the inverse Laplace transform of R(s)ID(s) can be computed by first 
expanding into partial fractions as given above. The inverse Laplace transform of Q(s) can be 
computed by using the transform pair 

k=l,2,3, ... (3.34) 

3.6 The System Function 

A. The System Function: 

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system equals the convolution of the input 
x(t) with the impulse response h(t); that is, 

y(t) = x(t) * h(t) (3.35) 
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Applying the convolution property (3.23), we obtain 

Y(s) = X(s)H(s) (3.36) 

where Y(s), X(s), and H(s) are the Laplace transforms of y(t), x(t), and h(t), respectively. Equation (3.36) can be 
expressed as 

H(s)= Y(s) 
X(s) 

(3.37) 

The Laplace transform H(s) of h(t) is referred to as the system function (or the transfer function) of the system. 
By Eq. (3.37), the system function H(s) can also be defined as the ratio of the Laplace transforms of the output 
y(t) and the input x(t). The system function H(s) completely characterizes the system because the impulse response 
h( t) completely characterizes the system. Fig. 3-7 illustrates the relationship of Eqs. (3 .35) and (3 .36). 

~ h(t) 
x(t) y(t)=x(t) • h(t) 

! ! ! 
X(s) Y(s)=X(s)H(s) 

~ H(s) 

Fig. 3-7 Impulse response and system function. 

B. Characterization of LTI Systems: 

Many properties of continuous-time LTI systems can be closely associated with the characteristics of H(s) in the 
s-plane and in particular with the pole locations and the ROC. 

1. Causallty: 
For a causal continuous-time LTI system, we have 

h(t) = 0 t < 0 

Since h(t) is a right-sided signal, the corresponding requirement on H(s) is that the ROC of H(s) must be of 
the form 

Re(s) > amax 

That is, the ROC is the region in the s-plane to the right of all of the system poles. Similarly, if the system is 
anticausal, then 

h(t) = 0 t > 0 

and h(t) is left-sided. Thus, the ROC of H(s) must be of the form 

Re(s) < amin 

That is, the ROC is the region in the s-plane to the left of all of the system poles. 

2. Stablllty: 
In Sec. 2.3 we stated that a continuous-time LTI system is BIBO stable if and only if [Eq. (2.21)] 

The corresponding requirement on H(s) is that the ROC of H(s) contains the jw-axis (that is, s = jw) 
(Prob. 3.26). 
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3. Causal and Stable Systems: 
If the system is both causal and stable, then all the poles of H(s) must lie in the left half of the s-plane; that is, 
they all have negative real parts because the ROC is of the form Re(s) > a max' and since the jw axis is included 
in the ROC, we must have amax < 0. 

C. System Function for LTI Systems Described by Unear Constant-Coefficient 
Differential Equations: 

In Sec. 2.5 we considered a continuous-time LTI system for which input x(t) and output y(t) satisfy the general 
linear constant-coefficient differential equation of the form 

N k M k ,L ak d y~t) = ,L bk d x~t) 
k=O dt k=O dt 

(3.38) 

Applying the Laplace transform and using the differentiation property (3 .20) of the Laplace transform, we obtain 

N M 
,L ak skY(s) = ,L bk sk X(s) 
k=O k=O 

N M 

or Y(s) ,L ak sk = X(s) ,L bk sk (3.39) 
k=O k=O 

Thus, 

(3.40) 

Hence,H(s) is always rational. Note that the ROC of H(s) is not specified by Eq. (3.40) but must be inferred with 
additional requirements on the system such as the causality or the stability. 

D. Systems Interconnection: 

For two LTI systems [with h1(t) and hz(t), respectively] in cascade [Fig. 3-8(a)], the overall impulse response 
h(t) is given by [Eq. (2.81), Prob. 2.14] 

Thus, the corresponding system functions are related by the product 

(3.41) 

This relationship is illustrated in Fig. 3-8(b). 

x(t) 

•I •I 
y(t) x(t) 

•I 
y(t) 

h1(t) h2(t) • h(t) • 
h(t)=h1(t) * h2(t) 

(a) 

X(s) 

•I •I 
Y(s) X(s) 

•I 
Y(s) 

H1(s) H2(s) • H(s) • 
H(s)=H1(s)H2(s) 

(b) 

Fig. 3-8 Two systems in cascade. (a) Time-domain representation; (b) s-domain representation. 
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Similarly, the impulse response of a parallel combination of two LTI systems [Fig. 3-9(a)] is given by 

(Prob. 2.53) 

Thus, 

(3.42) 

This relationship is illustrated in Fig. 3-9(b). 

x(t) y(t) ~x-(t)~··~I -h-(t_l~--y-(t)---1 •• 

(a) 

X(s) Y(s) 
X(s) • ~I _H_(s_l~--Y:-(s_) -t•• 

(b) 

Fig. 3-9 Two systems in parallel. (a) Time-domain representation ; (b) s-domain representation . 

3. 7 The Unilateral Laplace Transform 

A. Definitions: 

The unilateral (or one-sided) Laplace transform X1(s) of a signal x(t) is defined as [Eq. (3.5)] 

(3.43) 

The lower limit of integration is chosen to be o- (rather than 0 or o+) to permit x(t) to include o(t) or its 
derivatives. Thus, we note immediately that the integration from o- too+ is zero except when there is an 
impulse function or its derivative at the origin. The unilateral Laplace transform ignores x(t) fort< 0. Since 
x(t) in Eq. (3.43) is a right-sided signal, the ROC of X/s) is always of the form Re(s) > amax ' that is, a right 
half-plane in the s-plane. 

B. Basic Properties: 

Most of the properties of the unilateral Laplace transform are the same as for the bilateral transform. The 
unilateral Laplace transform is useful for calculating the response of a causal system to a causal input when the 
system is described by a linear constant-coefficient differential equation with nonzero initial conditions. The basic 
properties of the unilateral Laplace transform that are useful in this application are the time-differentiation 
and time-integration properties which are different from those of the bilateral transform. They are presented 
in the following. 
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1. Differentiation In the Time Domain: 

provided that lim1 --+ 00 x(t)e-•1 = 0. Repeated application of this property yields 

where 

2 

d x~t)-s2X1 (s)-sx(O-)-x'(O-) 
dt 

dn x(t) - Sn X (s)- sn-lx(O-)- sn-2x'(O-)- ... -x<n-1)(0-) 
dtn I 

2. Integration In the Time Domain: 

t 1 
Jo- x('r:)d• - -;X1 (s) 

t 1 1 o-f _oo x(•)d• - -Xi(s) +- J_ 00 X(7:)d7: 
s s 

C. System Function: 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

Note that with the unilateral Laplace transform, the system function H(s) = Y(s)IX(s) is defined under the 
condition that the LTI system is relaxed, that is, all initial conditions are zero. 

D. Transform Circuits: 

The solution for signals in an electric circuit can be found without writing integrodifferential equations if the 
circuit operations and signals are represented with their Laplace transform equivalents. [In this subsection the 
Laplace transform means the unilateral Laplace transform and we drop the subscript I in X1(s).] We refer to a 
circuit produced from these equivalents as a transform circuit. In order to use this technique, we require the 
Laplace transform models for individual circuit elements. These models are developed in the following discus­
sion and are shown in Fig. 3-10. Applications of this transform model technique to electric circuits problems 
are illustrated in Probs. 3.40 to 3.42. 

1. Slgnal Sources: 

v(t) - V(s) i(t) - l(s) 

where v(t) and i(t) are the voltage and current source signals, respectively. 

2. Resistance R: 

3. Inductance L: 

v(t) = Ri(t) - V(s) = Rl(s) 

v(t) = L di(t) - V(s) = sLI(s)- Li (0-) 
dt 

The second model of the inductance Lin Fig. 3-10 is obtained by rewriting Eq. (3.50) as 

i(t)- l(s) = __!__ V(s) + .!.i(O-) 
sL s 

(3.49) 

(3.50) 

(3.51) 
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4. Capacitance C: 

i(t) = C dv(t) - /(s) = sCV(s)- Cv(O- ) 
dt 

(3.52) 

The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as 

Circuit element 

Voltage source 

Current source 

Resistance 

Inductance 

Capacitance 

1 1 o-v(t) - V (s) = - / (s) + - v( ) 
sC s 

Representation 

t-Domain 

v(t) 

i(t) 

v(t) 

i(t) L 

~ 

i(t) 
0 ~ 

+ 

v(t) 

c 
111---~o 

v(t) 

(3.53) 

s-Domain 

V(s) 

/(s) 

/(s) R 

~ 
V(s) 

Li(O-) 

~ 
~VYVY~ 

/(s) 

+ 

/(s) 

/(s) 
0 ~ 

+ 

V(s) 

sL 

V(s) 

sC 

V(s) 

1 v(o-) 
- s 

i~ 
V(s) 

Fig. 3-10 Representation of Laplace transform circuit-element models. 
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SOLVED PROBLEMS 

Laplace Transform 

3.1. Find the Laplace transform of 

(a) x(t) = -e-a1u(-t) 

(b) x(t) = ~1u(-t) 

(a) From Eq. (3.3) 

Thus, we obtain 

(b) Similarly, 

- 1 -(s+a)t Io-- --e 
s +a -~ 

1 
Re(s) <-a 

s+a 

-at ( ) 1 -e u -t ++--
s+a 

Re(s) <-a 

00 o-
X(s) = J_

00
ea1u(-t)e- 81dt= J_

00
e-<•-a)tdt 

=--1-e-<•-a)tlo-=---

s- a -~ s- a 
Re(s) <a 

Thus, we obtain 

1 
ea1u(- t) ++ - -- Re(s) <a 

s - a 

3.2. A finite-duration signal x(t) is defined as 

{
=/= 0 t1 ::5 t ::5 t2 

x(t) __ 0 
otherwise 

(3.54) 

(3.55) 

where t1 and t2 are finite values. Show that if X(s) converges for at least one value of s, then the ROC of 
X(s) is the entire s-plane. 

Assume that X(s) converges at s = a0; then by Eq. (3 .3) 

Let Re(s) = a 1 > a0 • Then 

J~Jx(t)e-<a1+jru)t ldt= J~2lx(t)le-a1t dt 

= J21x(t)1e-aote-<a1-ao)t dt 

Since (a1 - a0 ) > 0, e -(a, - aJ' is a decaying exponential. Then over the interval where x(t) =/= 0, the maximum 
value of this exponential is e -(a, - 0 ol\ and we can write 

(3.56) 

Thus, X(s) converges for Re(s) = a 1 > a0 • By a similar argument, if a 1 < a0 , then 

(3.57) 

and again X(s) converges for Re(s) = a 1 < a0• Thus, the ROC of X(s) includes the entires-plane. 
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3.3. Let 

x(t) = ~ { 
-at Q$.t$.T 

otherwise 

Find the Laplace transform of x(t). 

By Eq. (3.3) 

T T 
X(s) =Io e-at e-st dt =Io e-(s+a)t dt 

= - _1 _ e -(s+a)t IT = _1 _ [1 - e -(s+a)T] 
s+a 0 s+a 

•••• 

(3.58) 

Since x(t) is a finite-duration signal, the ROC of X(s) is the entires-plane. Note that from Eq. (3.58) it appears that 
X(s) does not converge at s = -a. But this is not the case. Settings= -a in the integral in Eq. (3.58), we have 

T T 
X(-a)= Io e-(a+a)tdt= Io dt=T 

The same result can be obtained by applying L'Hospital's rule to Eq. (3.58). 

3.4. Show that if x(t) is a right-sided signal and X(s) converges for some value of s, then the ROC of X(s) is 
of the form 

Re(s) > amax 

where amax equals the maximum real part of any of the poles of X(s). 

Consider a right-sided signal x(t) so that 

x(t) = 0 t < t1 

and X(s) converges for Re(s) = a0• Then 

I X(s) I~ {.,I x(t)e-•1 ldt ={.,I x(t) le- 001 dt 

= r 00 1x(t)le-001dt<oo 
J11 

Let Re(s) = a1 > a0 • Then 

r'°1x(t)1e-a1t dt = r'°1 x(t) ie-aot e-(a1 -ao)t dt 
J~ J~ 

< e-(a1-ao)t1 r'°1x(t)le-aotdt<00 
J11 

Thus, X(s) converges for Re(s) = a1 and the ROC of X(s) is of the form Re(s) > a0 • Since the ROC of X(s) cannot 
include any poles of X(s), we conclude that it is of the form 

Re(s) > amax 

where a max equals the maximum real part of any of the poles of X(s). 

3.5. Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the following 
signals x(t): 

(a) x(t) = e- 21u(t) + e- 31u(t) 

(b) x(t) = e- 31u(t) + e21u(-t) 

(c) x(t) = e21u(t) + e-31u(-t) 
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(a) From Table 3-1 

e- 21u(t) ++ _l_ 
s+2 

Re(s) > - 2 

e- 31u(t) ++ _l_ 
s+3 

Re(s) > - 3 

We see that the ROCs in Eqs. (3.59) and (3.60) overlap, and thus, 

2(s + ~) 
1 1 2 

X(s) = --+ -- = -,-----,....,.----.,... 
s+2 s+3 (s+2)(s+3) 

Re(s) > - 2 

(3.59) 

(3.60) 

(3.61) 

From Eq. (3 .61) we see that X(s) has one zero at s = -% and two poles at s = - 2 ands = - 3 and that the 
ROC is Re(s) > - 2, as sketched in Fig. 3-ll(a). 

(b) From Table 3-1 

e- 31u(t) ++ _l_ 
s+3 

21 1 e u(- t)++ - --
s - 2 

Re(s)> - 3 

Re(s)<2 

We see that the ROCs in Eqs. (3.62) and (3.63) overlap, and thus, 

1 l - 5 
X(s) = -- - --=---­

s + 3 s - 2 (s - 2)(s + 3) 
- 3< Re(s)< 2 

From Eq. (3 .64) we see that X(s) has no zeros and two poles at s = 2 ands = - 3 and that the ROC is 
- 3 < Re(s) < 2, as sketched in Fig. 3-ll(b). 

(3.62) 

(3.63) 

(3.64) 

(c) From Table 3-1 

- 3 

21 1 e u(t)++--
s - 2 

Re(s) > 2 (3.65) 

- 31 ) 1 e u(- t ++ - --
s+3 

Re(s) < - 3 (3.66) 

We see that the ROCs in Eqs. (3.65) and (3.66) do not overlap and that there is no common ROC; thus , x(t) 
has no transform X(s). 

jw jw 

~ 
' 

0 0 

(a) (b) 

Fig. 3-11 
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3.6. Let 

x(t) = e- 0 11 1 

Find X(s) and sketch the zero-pole plot and the ROC for a> 0 and a< 0. 

The signal x(t) is sketched in Figs. 3-12 (a) and (b) for both a> 0 and a< 0. Since x(t) is a two-sided signal, we 

can express it as 

x(t) = e- 0 'u(t) + e 0 ' u(- t) 

Note that x(t) is continuous at t = 0 and x(O - ) = x(O) = x(O+) = 1. From Table 3-1 

e- atu(t) ++ _l_ 
s+a 

at 1 e u(- t)++ - --
s - a 

Re(s)> - a 

Re(s)<a 

If a> 0, we see that the ROCs in Eqs. (3.68) and (3.69) overlap, and thus, 

l l - 2a 
X(s) = s+a - s - a = s2 - a2 

- a<Re(s)<a 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

From Eq. (3.70) we see thatX(s) has no zeros and two poles at s = a ands = - a and that the ROC is - a< Re(s) <a, 
as sketched in Fig. 3-12( c). If a < 0, we see that the ROCs in Eqs. (3 .68) and (3 .69) do not overlap and that there is no 
common ROC; thus, x(t) has no transform X(s). 

x(t) = e - a111 x(t) = e - altl 

a > O 

0 0 

(a) (b) 

jw 

(c) 

Fig. 3-12 
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Properties of the Laplace Transform 

3.7. Verify the time-shifting property (3.16); that is, 

R' =R 

By definition (3.3) 

By the change of variables -r = t - t0 we obtain 

2' {x(t - t0 )} = J:
00 

x(-r)e-s(r+to)d-r 

= e-•to J:"' x(-r)e-sr d-r = e-•tox(s) 

with the same ROC as for X(s) itself. Hence, 

-st 
x(t - t0) ++ e 0 X(s) R' = R 

where Rand R' are the ROCs before and after the time-shift operation. 

3.8. Verify the time-scaling property (3.18); that is, 

x(at) ..... - 1 x(.!_) 
lal a 

R'=aR 

By definition (3.3) 

By the change of variables -r = at with a > 0, we have 

2' {x(at)} = .!.J~ x(-r)e-(sla)r d-r = .!.x(.!_) 
a "' a a 

R'=aR 

Note that because of the scaling s/a in the transform, the ROC of X (sla) is aR. With a < 0, we have 

2' {x(at)} = .!. r-(X) x(-r)e -(s/a)r d-r 
aJ"' 

- - 1 J"' ( ) -(s/a)rd - - 1 x( s ) - - x -re -r- - -
a -oo a a 

R'=aR 

Thus, combining the two results for a> 0 and a< 0, we can write these relationships as 

x(at)++-1 x(.!_) 
lal a 

R'=aR 

3.9. Find the Laplace transform and the associated ROC for each of the following signals: 

(a) x(t) = b(t - t0 ) 

(b) x(t) = u(t - t0 ) 

(c) x(t) = e- 21 [u(t) - u(t - 5)] 
00 

(d) x(t) = ~ b(t - kT) 
k=O 

(e) x(t) = b(at + b), a, b real constants 
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(a) Using Eqs. (3.13) and (3.16), we obtain 

(b) Using Eqs. (3.14) and (3.16), we obtain 

(c) Rewriting x(t) as 

e-•to 
u(t-t0)++-­

s 

alls 

Re(s)> 0 

x(t) = e-21 [u(t) - u (t - 5)] = e-21u(t) - e-21u(t - 5) 

= e-21u(t) - e-10e-2<1 - 5lu(t - 5) 

Then, from Table 3-1 and using Eq. (3.16), we obtain 

X( ) - 1 -10 -5s 1 _ 1 (l -5(s+2)) s ----e e ----- -e 
s+2 s+2 s+2 

Re(s) >-2 

(d) Using Eqs. (3.71) and (l.99), we obtain 

X(s) = ~ e-skT = ~ (e-sT)k = 1-sT 
k=O k=O 1- e 

Re(s)> 0 

(e) Let 

f(t) = '5(at) 

Then from Eqs. (3.13) and (3.18) we have 

1 
f(t) = '5(at) ++ F(s) = ~ alls 

Now x(t)=i5(at+b)=i5[a(t+: )]=t(t+:) 
Using Eqs. (3.16) and (3.74), we obtain 

1 X(s) = e•bla F(s) = -e•bla 
lal 

alls 

3.10. Verify the time differentiation property (3.20); that is, 

dx(t) - sX(s) R'~R 
dt 

From Eq. (3.24) the inverse Laplace transform is given by 

1 c+ joo 
x(t) = -. r . X(s)e' 1 ds 

2n1Jc-100 

Differentiating both sides of the above expression with respect to t, we obtain 

dx(t) _ 1 .r.c+ joo X( ) Sid ---- s s e s 
dt 2nj c- joo 

•••• 
(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

Comparing Eq. (3.77) with Eq. (3.76), we conclude that dx(t)/dt is the inverse Laplace transform of sX(s). Thus, 

dx(t) ++ sX(s) 
dt 

R' :JR 

Note that the associated ROC is unchanged unless a pole-zero cancellation exists at s = 0. 
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3.11. Verify the differentiation ins property (3.21); that is, 

From definition (3.3) 

-tx(t) - dX(s) 
ds 

R'=R 

Differentiating both sides of the above expression with respect to s, we have 

dX(s) oo oo --=J (-t)x(t)e-' 1dt=J [-tx(t)]e-' 1dt 
ds -oo -oo 

Thus, we conclude that 

-tx(t),.... dX(s) 
ds 

R'=R 

3.12. Verify the integration property (3.22); that is, 

t 1 J_ 00 x(r)dr - :;X(s) R'=Rn{Re(s)>O} 

Let 

t 
f(t) = J_

00 
x(r)dr ++ F(s) 

Then x(t)= df(t) 
dt 

Applying the differentiation property (3.20), we obtain 

Thus, 
1 

F(s)=-X(s) 
s 

X(s) = sF(s) 

R' =Rn {Re(s)> O} 

The form of the ROC R' follows from the possible introduction of an additional pole at s = 0 by the multiplying by 1/ s. 

3.13. Using the various Laplace transform properties, derive the Laplace transforms of the following signals 
from the Laplace transform of u(t). 

(a) 

(c) 

(e) 

(g) 

(a) 

b(t) (b) 

tu(t) (d) 

te-a1u(t) (f) 

e-at cos avu(t) 

From Eq. (3.14) we have 

From Eq. (1.30) we have 

(j'(t) 

e-atu(t) 

cos %tu (t) 

1 
u(t) ++ - forRe(s)> 0 

s 

t5(t) = du(t) 
dt 

Thus, using the time-differentiation property (3.20), we obtain 

1 
t5(t)++s-=1 alls 

s 
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(b) Again applying the time-differentiation property (3.20) to the result from part (a), we obtain 

(j'(t) ..... s alls 

(c) Using the differentiation ins property (3.21), we obtain 

tu(t) ..... - .!!._ (_!_) = _!_ 
ds s s2 

Re(s) > 0 

( d) Using the shifting in the s-domain property (3 .17), we have 

e-atu(t),.... _1_ 
s+a 

Re(s) >-a 

(e) From the result from part (c) and using the differentiation ins property (3.21), we obtain 

te-atu(t),.... - .!!._(_1 _) = _1_ 
ds s +a (s + a)2 

Re(s) >-a 

if) From Euler's formula we can write 

Using the linearity property (3.15) and the shifting in the s-domain property (3.17), we obtain 

1 1 1 1 s 
cos w0 tu(t),.... - ---+---- = ---

2 s - jw0 2 s + jw0 s2 + w~ 
Re(s) > 0 

(g) Applying the shifting in the s-domain property (3.17) to the result from part if), we obtain 

_ s+a 
e at cos w0 tu(t) ++ 2 2 

(s+a) +w0 

Re(s) >-a 

3.14. Verify the convolution property (3.23); that is, 

Let 

Then, by definition (3.3) 

Y(s) = { 00 [{
00 

x1 ('r)x2(t - T) dT] e-'1dt 

= (00 X1(T) [foo Xz(t-T)e-•1 dt ]d• 

•••• 
(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

Noting that the bracketed term in the last expression is the Laplace transform of the shifted signal x2(t - T), by 
Eq. (3.16) we have 

Y(s)= J~00 x1 (r)e-•TX2(s)dr 

= [ J~00 x1 (r)e-•Tdr ]x2 (s) = X1 (s) X2 (s) 

with an ROC that contains the intersection of the ROC of X1(s) and X2(s). If a zero of one transform cancels a pole 
of the other, the ROC of Y(s) may be larger. Thus, we conclude that 
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3.15 Using the convolution property (3.23), verify Eq. (3.22); that is, 

t 1 J_ 00 x(r)dr - :;X(s) R'=Rn{Re(s)>O} 

We can write [Eq. (2.60), Prob. 2.2] 

From Eq. (3.14) 

t J_
00 
x(r) dr = x(t) * u(t) 

1 
u(t) ++ -

s 
Re(s)> 0 

and thus, from the convolution property (3.23) we obtain 

1 
x(t) *u(t) ++ -X(s) 

s 

(3.83) 

with the ROC that includes the intersection of the ROC of X(s) and the ROC of the Laplace transform of u(t). Thus, 

{_ 00 x(r)dr ++ ~ X(s) R'=Rn{Re(s)>O} 

Inverse Laplace Transform 

3.16. Find the inverse Laplace transform of the following X(s): 

1 
(a) X(s)=-,Re(s) > -1 

s+l 

1 
(b) X(s)=-,Re(s) < -1 

s+l 

s 
(c) X(s)=-2--,Re(s)>O 

s +4 

s+l 
(d) X(s)= 2 ,Re(s) > -1 

(s + 1) + 4 

(a) From Table 3-1 we obtain 

(b) From Table 3-1 we obtain 

(c) From Table 3-1 we obtain 

(d) From Table 3-1 we obtain 

x(t) = -e-1u( - t) 

x(t) = cos 2tu(t) 

s(t) = e-1 cos 2tu(t) 

3.17. Find the inverse Laplace transform of the following X(s): 

2s+4 
(a) X(s)= 2 ,Re(s) > -1 

s + 4s + 3 

2s+4 
(b) X(s) = 2 , Re(s) < -3 

s + 4s + 3 

2s+4 
(c) X(s)= 2 ,-3<Re(s) < -1 

s +4s+ 3 
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Expanding by partial fractions, we have 

X(s)= 2s+4 = 2 s+2 =~+~ 
s2 + 4s + 3 (s + l)(s + 3) s + 1 s + 3 

Using Eq. (3.30), we obtain 

Hence, 

c1 =(s+l)X(s)I =2-- =1 s+2 I 
s=-1 s+3 

s=-1 

s+2 I c2 =(s+3)X(s)I =2-- =1 
s=-3 s+l 

s=-3 

1 1 
X(s)=-+-­

s+l s+3 

(a) The ROC of X(s) is Re(s) > -1. Thus, x(t) is a right-sided signal and from Table 3-1 we obtain 

(b) The ROC of X(s) is Re(s) < -3. Thus, x(t) is a left-sided signal and from Table 3-1 we obtain 

•••• 

(c) The ROC of X(s) is -3 < Re(s) < -1. Thus, x(t) is a double-sided signal and from Table 3-1 we obtain 

3.18. Find the inverse Laplace transform of 

X(s)= 5s+13 
s(s2 + 4s + 13) 

Re(s) > 0 

We can write 

s2 + 4s + 13 = (s + 2)2 + 9 = (s + 2 - j3) (s + 2 + f3) 

Then 

X(s)= 5s+l3 
s(s2 + 4s + 13) 

5s +13 
s(s + 2 - j3)(s + 2 + j3) 

=~+ C2 + C3 

s s-(-2+ j3) s-(-2- j3) 

where 

5s + 13 I c1 =sX(s)I = =1 
s=O s2 + 4s + 13 

s=O 

c2 = (s + 2 - 1"3)X(s) I = Ss + 13 I = - !(1+1") 
s=-2 + j3 ( + 2 + "3) 2 

S S J s=-2+ j3 

c3 =(s+2+ j3)X(s)l __ 2 _ .3 = Ss+l3. I =-!(1-j) 
•- J s(s + 2 - 13) . 2 

s=-2- J3 

Thus, 

X(s)=,.!:._!(l+j) 1 _ _!.(1-j) 1 
s 2 s-(-2+j3) 2 s-(-2-j3) 

The ROC of X(s) is Re(s) > 0. Thus, x(t) is a right-sided signal and from Table 3-1 we obtain 

x(t) = u(t)- !(1 + j)e<-2 + j 3>1u(t)- !(1- j)e <-2- j 3>1u(t) 
2 2 
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Inserting the identity 

e<-2 ± j3)t = e-2te±i31 = e-21(cos 3t ± j sin 3t) 

into the above expression, after simple computations we obtain 

Alternate Solution: 

We can write X(s) as 

x(t) = u(t) - e-21 (cos 3t - sin 3t) u(t) 

= [1 - e-21(cos 3t - sin 3t)] u(t) 

X(s)= 5s+l3 =:!.+ c2s+c3 

s(s2 + 4s + 13) s s2 + 4s + 13 

As before, by Eq. (3.30) we obtain 

5s + 13 I c1 =sX(s)I = =1 
s=O s2 + 4s + 13 

s=O 

Then we have 

C2S + C3 5s + 13 -s + 1 

s2 + 4s + 13 s(s2 + 4s + 13) s s2 + 4s + 13 

Thus, 

Then from Table 3-1 we obtain 

1 s-1 s+2-3 
X(s) = -:;- s2 +4s+13 s (s + 2)2 + 9 

1 s +2 3 
=-- +--~~ 

s (s + 2)2 + 32 (s + 2)2 + 32 

x(t) = u(t) - e-21 cos 3tu(t) + e-21 sin 3tu(t) 

= [1 - e-21(cos 3t - sin 3t)]u(t) 

3.19. Find the inverse Laplace transform of 

( ) s2 + 2s + 5 
Xs =------

(s + 3)(s + 5)2 
Re(s) > - 3 

We see that X(s) has one simple pole at s = - 3 and one multiple pole at s = - 5 with multiplicity 2. Then by 
Eqs. (3.29) and (3.31) we have 

C1 A 1 A.2 X(s)=--+--+---
s+3 s+5 (s+5)2 

By Eqs. (3.30) and (3.32) we have 

s2 + 2s+5 I c1 =(s+3)X(s)I _ 3 = 2 =2 
s-- (s + 5) s=-3 

A. =(s+5)2X(s)I =s2+2s+51 =-10 
2 s=-5 S + 3 

s=-5 

A.1 = !!.._ [<s + 5)2 X(s)) I = !!.._ [ s2 + 2s + 5] I 
ds s=-5 ds s + 3 

s=-5 

= s2 + 6s + 11 = _ 1 
(s + 3)2 s=-5 

(3.84) 
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Hence, 

2 1 10 
X(s)=------­

s + 3 s + 5 (s + 5)2 

The ROC of X(s) is Re(s) > - 3. Thus, x(t) is a right-sided signal and from Table 3-1 we obtain 

x(t) = 2e- 31u(t) - e-51u(t) - 10te-51u(t) 

= [2e-31 - e-51 - lOte-51 ] u(t) 

•&• 

Note that there is a simpler way of finding A.1 without resorting to differentiation. This is shown as follows: First 
find c1 and A.2 according to the regular procedure. Then substituting the values of c1 and A.2 into Eq. (3.84), we 
obtain 

s2 + 2s + 5 2 A.1 10 
-----= --+------
(s + 3)(s + 5)2 s + 3 s + 5 (s + 5)2 

Setting s = 0 on both sides of the above expression, we have 

5_2 A. 1 10 ---+---
75 3 5 25 

from which we obtain A.1 = - 1. 

3.20. Find the inverse Laplace transform of the following X(s): 

2s +1 
(a) X(s) = --, Re(s) > - 2 

s+2 

s2 + 6s + 7 
(b) X(s)= 2 , Re(s) > -1 

s + 3s +2 

s3 + 2s2 + 6 
(c) X(s) = 2 , Re(s) > 0 

s + 3s 

(a) X(s)= 2s + 1=2(s+2)- 3 = 2 __ 3_ 
s+2 s+2 s+2 

Since the ROC of X(s) is Re(s) > -2, x(t) is a right-sided signal and from Table 3-1 we obtain 

x(t) = 2.:5(t) - 3e-21u(t) 

(b) Performing long division, we have 

Let 

where 

Hence, 

2 
X(s) = s + 6s + 7 = 1 + 3s + 5 = 1 + 3s + 5 

s2 + 3s + 2 s2 + 3s + 2 (s + l)(s + 2) 

X ( ) _ 3s + 5 _ c1 c2 
IS - ---+-­

(s + l)(s + 2) s + 1 s + 2 

3s+ 51 c1 =(s+l)X1(s)l __ 1 =-- =2 
•- s+ 2 

s=-1 

3s+ 51 c2 =(s+2)X1(s)l __ 2 =-- =1 
s- s + 1 

2 1 
X(s)=l+--+-­

s+l s+2 

s=-2 
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The ROC of X(s) is Re(s) > -1. Thus, x(t) is a right-sided signal and from Table 3-1 we obtain 

x(t) = .:5(t) + (2e-1 + e-21 )u(t) 

(c) Proceeding similarly, we obtain 

Let 

where 

Hence, 

X(s) = s3 + 2s2 + 6 _ s _ 1 + 3s + 6 
s2 +3s s(s+3) 

X ( ) _ 3s + 6 _ Cl C2 
IS------+--

s(s + 3) s s + 3 

c1 =sX1 (s)I =-- =2 3s+6 I 
s=O s+ 3 

s=O 

3s+6 I c2 = (s + 3)X1 (s) ls=- 3 = -- = 1 
S s=-3 

2 1 
X(s)= s-1 +-+-­

s s + 3 

The ROC of X(s) is Re(s) > 0. Thus, x(t) is a right-sided signal and from Table 3-1 and Eq. (3.78) we obtain 

x(t) = .:5'(t) - .:5(t) + (2 + e- 31)u(t) 

Note that all X(s) in this problem are improper fractions and that x(t) contains .:5(t) or its derivatives. 

3.21. Find the inverse Laplace transform of 

We see that X(s) is a sum 

where 

X(s) = 2 + 2se -2s + 4e -4s 

s 2 + 4s + 3 
Re(s) > -1 

2 
x, (s) = -s~2 _+_4_s_+_3 

2s 
X2 (s) = -s2_+_4_s +-3 

4 
X3(s) = -s2_+_4_s +-3 

If 

then by the linearity property (3 .15) and the time-shifting property (3 .16) we obtain 

Next, using partial-fraction expansions and from Table 3-1, we obtain 

1 1 -t -3t X1(s)=-----++x1(t)=(e -e )u(t) 
s+l s+3 

-1 3 -I -3t X2(s)=--+--++x2(t)=(-e +3e )u(t) 
s+l s+3 

2 2 -I -3t X3(s) = -- - -- ++ x3(t) = 2(e - e )u(t) 
s+l s+3 

(3.85) 
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Thus, by Eq. (3.85) we have 

x(t) = (e-t-e- 31 )u(t) + [- e-<t- 2> + 3e-3<t- 2>]u(t - 2) 

+ 2[e-<t- 4) - e-3(t- 4>]u(t - 4) 

3.22. Using the differentiation ins property (3.21), find the inverse Laplace transform of 

We have 

and from Eq. (3.9) we have 

1 
X(s)= 2 

(s +a) 

e-atu(t)++-1-
s+a 

Re(s) >-a 

Re(s) >-a 

Thus, using the differentiation ins property (3.21), we obtain 

x(t) = te-•tu(t) 

System Function 

•• 

3.23 Find the system function H(s) and the impulse response h(t) of the RC circuit in Fig. 1-32 (Prob. 1.32). 

(a) Let 

x(t) = v,(t) y(t) = vc<t) 

In this case, the RC circuit is described by [Eq. (1.105)] 

dy(t) 1 1 --+ -y(t) = -x(t) 
dt RC RC 

Taking the Laplace transform of the above equation, we obtain 

1 1 
sY(s)+ RCY(s)= RCX(s) 

or (s +-1-)Y(s) = - 1-X(s) 
RC RC 

Hence, by Eq. (3.37) the system function H(s) is 

H(s)= Y(s) = l/RC 
X(s) s+l!RC RC s+l!RC 

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse response h(t) is 

(b) Let 

h(t) = .~r' {H(s)} = - 1-e-tJRcu(t) 
RC 

x(t) = v,(t) y(t) = i(t) 

In this case, the RC circuit is described by [Eq. (1.107)] 

dy(t) + _l_y(t) = _!_ dx(t) 
dt RC R dt 
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Taking the Laplace transform of the above equation, we have 

1 1 
sY(s) + -Y(s) = -sX(s) 

RC R 

or (s + - 1-)Y(s) = 2-sX(s) 
RC R 

Hence, the system function H(s) is 

s H(s) = Y(s) = s IR 
X(s) s+l/RC R s+l!RC 

In this case, the system function H(s) is an improper fraction and can be rewritten as 

H(s)=_!_ s+l/RC-1/RC =_!_ __ 1_ 1 
R s + l /RC R R2C s + l /RC 

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse response h(t) is 

h(t) = .:e-1 {H(s)} = _!_6(t)-+e-tlRCu(t) 
R RC 

Note that we obtained different system functions depending on the different sets of input and output. 

3.24. Using the Laplace transform, redo Prob. 2.5. 

From Prob. 2.5 we have 

h(t) = e-a1u(t) x(t) = ea1u(-t) a>O 

Using Table 3-1, we have 

1 
H(s)=-­

s+a 
Re(s) >-a 

Thus, 

1 
X(s)=--­

s-a 
Re(s) <a 

1 
Y(s) = X(s)H(s) = - - 82 _ a 2 (s +a)(s-a) 

and from Table 3-1 (or Prob. 3.6) the output is 

which is the same as Eq. (2.67). 

y(t) = _l_e-altl 
2a 

-a<Re(s)<a 

3.25. The output y(t) of a continuous-time LTI system is found to be 2e-31u(t) when the input x(t) is u(t). 

(a) Find the impulse response h(t) of the system. 

(b) Find the output y(t) when the input x(t) is e-1u(t). 

(a) x(t) = u(t),y(t) = 2e-31u(t) 

Taking the Laplace transforms of x(t) and y(t), we obtain 

1 
X(s)=­

s 
2 

Y(s)=­
s+3 

Re(s) > 0 

Re(s) > -3 
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Hence, the system function H(s) is 

H(s) = Y(s) = ~ 
X(s) s + 3 

Re(s) > -3 

Rewriting H(s) as 

H(s)=~= 2(s+3)-6 = 2 __ 6_ 
s+3 s+3 s+3 

Re(s)>-3 

and taking the inverse Laplace transform of H(s), we have 

h(t) = 2.:5(t) - 6e- 31u(t) 

•&• 

Note that h(t) is equal to the derivative of 2e-31u (t), which is the step response s(t) of the system [see Eq. (2.13)]. 

(b) 
-t 1 x(t) = e u(t) ++ --

s + 1 
Re(s) > -1 

Thus, 

2s 
Y(s) = X(s) H(s) = ---­

(s + l)(s + 3) 

Using partial-fraction expansions, we get 

1 3 
Y(s)=--+-­

s+l s+3 

Taking the inverse Laplace transform of Y(s), we obtain 

Re(s) > -1 

y(t) = (-e-1 + 3e-31) u(t) 

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system function H(s) 
must contain the imaginary axis; that is, s = jw. 

A continuous-time LTI system is BIBO stable if and only if its impulse response h(t) is absolutely integrable, that is 

[Eq. (2.21)], 

By Eq. (3.3) 

Let s = jw. Then 

Therefore, we see that if the system is stable, then H(s) converges for s = jw. That is, for a stable continuous-time 

LTI system, the ROC of H(s) must contain the imaginary axis s = jw. 

3.27 Using the Laplace transfer, redo Prob. 2.14 

(a) Using Eqs. (3.36) and (3.41), we have 

Y(s) = X(s)H1(s)H2(s) = X(s)H(s) 

where H(s) = H 1(s)H2(s) is the system function of the overall system. Now from Table 3-1 we have 

h1(t)=e- 2tu(t)++H1(s)=-1- Re(s) > -2 
s+2 

-t 2 hz(t)=2e u(t)++H2(s)=-- Re(s) > -1 
s+l 
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Hence, 

2 2 2 
H(s)= H 1(s)H2(s)= =-----

(s + l)(s + 2) s + 1 s + 2 
Re(s)>-1 

Taking the inverse Laplace transfer of H(s), we get 

h(t) = 2(e-1 - e- 21 )u (t) 

(b) Since the ROC of H(s), Re(s) > -1, contains thejw-axis, the overall system is stable. 

3.28. Using the Laplace transform, redo Prob. 2.23. 

The system is described by 

dy(t) + ay(t) = x(t) 
dt 

Taking the Laplace transform of the above equation, we obtain 

sY(s) + aY(s) = X(s) or (s + a)Y(s) = X(s) 

Hence, the system function H(s) is 

H(s)= Y(s) =-1-
X(s) s+a 

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse response h(t) is 

h(t) = e-at u(t) 

which is the same as Eq. (2.124). 

3.29. Using the Laplace transform, redo Prob. 2.25. 

The system is described by 

y'(t) + 2y(t) = x(t) + x'(t) 

Taking the Laplace transform of the above equation, we get 

or 

Hence, the system function H(s) is 

sY(s) + 2Y(s) = X(s) + sX(s) 

(s + 2)Y(s) = (s + l)X(s) 

H(s)= Y(s) = s+l = s+2-1 =l--1_ 
X(s) s + 2 s + 2 s + 2 

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse response h(t) is 

h(t) = b(t) - e- 21u(t) 

3.30. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by 

y"(t) + y'(t) - 2y(t) = x(t) 

(a) Find the system function H(s). 

(3.86) 

(b) Determine the impulse response h(t) for each of the following three cases: (i) the system is causal, 
(ii) the system is stable, (iii) the system is neither causal nor stable. 

(a) Taking the Laplace transform of Eq. (3.86), we have 

or 

s2Y(s) + sY(s) - 2Y(s) = X(s) 

(s 2 + s - 2)Y(s) = X(s) 
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Hence, the system function H(s) is 

H(s) = Y(s) = ---
X(s) s2 + s - 2 (s + 2)(s - 1) 

(b) Using partial-fraction expansions, we get 

1 1 1 1 1 
H(s) = -- ---+---

(s + 2)(s - 2) 3 s + 2 3 s - 1 

(i) If the system is causal, then h(t) is causal (that is, a right-sided signal) and the ROC of H(s) is Re(s) > 1. 

Then from Table 3-1 we get 

h(t) = _ .!_ (e- 21 - e')u(t) 
3 

(ii) If the system is stable, then the ROC of H(s) must contain the jw-axis. Consequently the ROC of H(s) is 

- 2 < Re(s) < 1. Thus, h (t) is two-sided and from Table 3-1 we get 

h(t) = _ .!_ e- 2'u(t) - .!..er u(- t) 
3 3 

(iii) If the system is neither causal nor stable, then the ROC of H(s) is Re(s) < - 2. Then h(t) is noncausal 

(that is, a left-sided signal) and from Table 3-1 we get 

1 - 2r 1 r h(t) = -e u(- t) - -e u(- t) 
3 3 

3.31. The feedback interconnection of two causal subsystems with system functions F(s) and G(s) is depicted 
in Fig. 3-13. Find the overall system function H(s) for this feedback system. 

Let 

Then, 

Since 

we have 

x(t) y(t) 
F(s) 

+ 

r(t) 

G(s) 

Fig. 3-13 Feedback system. 

x(t) ++ X(s) y(t) ++ Y (s) 

Y(s) = E(s)F(s) 

R(s) = Y(s)G(s) 

r(t) ++ R(s) 

e(t) = x(t) + r(t) 

E(s) = X(s) + R(s) 

e(t) ++ E(s) 

Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we obtain 

or 

Thus, the overall system function is 

Y(s) = [X(s) + Y(s)G(s)] F(s) 

[l - F(s)G(s)] Y(s) = F(s)X(s) 

H(s) = Y(s) = F(s) 
X(s) 1 - F(s)G(s) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 
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Unllateral Laplace Transform 

3.32. Verify Eqs. (3.44) and (3.45); that is, 

(a) dx(t) - sX1 (s)-x(O-) 
dt 
2 

(b) d xy) - s 2X1 (s)- sx(O-)- x'(O-) 
dt 

(a) Using Eq. (3.43) and integrating by parts, we obtain 

Thus, we have 

.:£ {dx(t)}= r"'_ dx(t) e-stdt 
I dt Jo dt 

= x(t)e-•1 1:- + s J0"'_ x(t)e-st dt 

=-x(O-)+sX1 (s) Re(s)>O 

dx(t) -
-- ++ sX1(s)- x(O ) 

dt 

(b) Applying the above property to signal x'(t) = dx(t)ldt, we obtain 

d 2x(t) = .!!.._ dx(t) ++ s[sX (s)- x(O-)]- x'(O-) 
dt2 dt dt I 

= s2X1(s)- sx(O-)- x'(O-) 

Note that Eq. (3 .46) can be obtained by continued application of the above procedure. 

3.33. Verify Eqs. (3.47) and (3.48); that is, 

t 1 
(a) J0_x(-r)d•--;X1 (s) 

1 1 o-
(b) f._ 00 x(-r)dT - -; X1 (s) + -;J_ 00 x(T)dT 

t 
g(t) = J0_ x(r)d-r (a) Let 

Then dg(t) = x(t) and 
dt 

Now if 

then by Eq. (3.44) 

Thus, 

or 
t 1 r _x(r)dr ++ -X1 (s) 

Jo s 

(b) We can write 
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Note that the first term on the right-hand side is a constant. Thus, taking the unilateral Laplace transform of 
the above equation and using Eq. (3.47), we get 

t 1 1 o-
I-00 x(-r)d-r ++ -;X1 (s)+-; J_ 00 x(-r)d-r 

3.34. (a) Show that the bilateral Laplace transform of x(t) can be computed from two unilateral Laplace 
transforms. 

(b) Using the result obtained in part (a), find the bilateral Laplace transform of e-2111. 

(a) The bilateral Laplace transform of x(t) defined in Eq. (3.3) can be expressed as 

(b) 

00 o- 00 

X(s)= J_ 00 x(t)e-' 1dt= J_ 00 x(t)e-'1dt+ J 0_x(t)e-'1dt 

= r00 x(-t)e81 dt + r00 x(t)e -st dt 
Jo- Jo-

Now Re(s)> a+ 

Next, let 

Re(s)>a-

Then J;x(-t)e'1dt = J;x(-t)e-(-s)tdt = X-/ (-s) 

Thus, substituting Eqs. (3.92) and (3.94) into Eq. (3.91), we obtain 

Re(s)< a-

X(s) = X1(s) + X[ (-s) a+ < Re(s) < a-

x(t) = e-2111 

(1) x(t) = e-21 fort> 0, which gives 

Re(s) > -2 

(2) x(t) = e21 fort< 0. Then x(- t) = e-21 fort> 0, which gives 

UJ - 1 ..,, J{x(-t)} = X 1 (s)= --
s + 2 

Re(s)>-2 

Thus, 

- 1 1 
X1 (-s)=--=---

-s+2 s-2 
Re(s)< 2 

(3) According to Eq. (3.95), we have 

- 1 1 
X(s) = X1(s) + X1 (-s) = -- - -­

s + 2 s-2 

4 
-2 < Re(s)< 2 

which is equal to Eq. (3.70), with a = 2, in Prob. 3.6. 

3.35. Show that 

(a) x(O+) = lim sX1 (s) 
s-+ oo 

(b) lim x(t) = lim sX1 (s) 
f-+00 s-+Q 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

Equation (3.97) is called the initial value theorem, while Eq. (3.98) is called the.final value theorem for 
the unilateral Laplace transform. 



•• CHAPTER 3 Laplace Transform and Continuous-Time LTI Systems 

(a) Using Eq. (3.44), we have 

Thus, 

and 

- fx. dx(t) -st 
sX1(s)-x(O )= Jo-Tte dt 

J;o+ dx(t) -std J;"' dx(t) -std 
= --e t+ --e t 

o- dt o+ dt 

= x(t) Io+ + r"' dx(t) e-st dt 
o- Jo+ dt 

= x(O+)- x(O-)+ r"' dx(t) e-stdt 
Jo+ dt 

sX1(s)=x(O+)= J:+ ~;t)e-stdt 
lim sX1(s) = x(O+) + lim f"'+ dx(t) e-stdt 
s-oo s-ooJ 0 dt 

=x(O+)+ f"'+ dx(t)(lime-st)dt=x(O+) 
J 0 dt s-oo 

since lim. _ 00 e-st = 0. 

(b) Again using Eq. (3.44), we have 

lim[sX1 (s)-x(O-)]=lim f"'_ dx(t)e-stdt 
s-o s-oJo dt 

- -- 1me t -i"' dx(t)(l" -st)d 
o- dt s-o 

= r"'_ dx(t) dt = x(t)l"'-
J o dt 0 

= limx(t)-x(O-) 
t-oo 

Since lim [sX1(s)- x(O-)] = lim [sX1(s)]- x(O-) 
s-o s-o 

we conclude that 

lim x(t) = lim sX1(s) 
t-oo s-O 

3.36. The unilateral Laplace transform is sometimes defined as 

with o+ as the lower limit. (This definition is sometimes referred to as the o+ definition.) 

(a) Show that 

( b) Show that 

1 
.P + {u(t)} = -

s 
.P + {b(t)} = 0 

Re(s) > 0 

(a) Let x(t) have unilateral Laplace transform x;(s). Using Eq. (3.99) and integrating by parts, we obtain 

f£ {dx(t)}= r"' dx(t) e-stdt 
+ dt Jo+ dt 

= x(t)e-•t1;+ + sJ0:x(t)e-stdt 

= - x(O+) + sX7 (s) Re(s) > 0 

(3.99) 

(3.100) 

(3.101) 

(3.102) 
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Thus, we have 

(b) By definition (3.99) 

From Eq. (1.30) we have 

b(t) = du(t) 
dt 

Re(s)> 0 

Taking the o+ unilateral Laplace transform of Eq. (3.103) and using Eq. (3.100), we obtain 

1 + 
2'+{<5(t)} = s--u(O )= 1-1= 0 

s 

This is consistent with Eq. (l.21); that is, 

Note that taking the o- unilateral Laplace transform of Eq. (3.103) and using Eq. (3.44), we obtain 

UJ 1 -..z._{<5(t)} = s--u(O )= 1-0= 1 
s 

Appllcatlon of Unllateral Laplace Transform 

3.37. Using the unilateral Laplace transform, redo Prob. 2.20. 

The system is described by 

with y(O) = y0 and x(t) = Ke-bt u(t). 

Assume that y(O) = y(O-). Let 

Then from Eq. (3.44) 

From Table 3-1 we have 

y'(t) + ay(t) = x(t) 

K 
x(t) ++ X1 (s) = --

s + b 
Re(s)>-b 

Taking the unilateral Laplace transform of Eq. (3.104), we obtain 

or 

Thus, 

K 
(s + a)Y1(s) = y0 +-­

s + b 

Y1(s) = _l:'Q_ + K 
s +a (s + a)(s + b) 

•&• 

(3.103) 

(3.104) 
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Using partial-fraction expansions, we obtain 

_ Yo K ( 1 1 ) Y1(s)---+-- -----
s+a a-b s+b s+a 

Taking the inverse Laplace transform of Y1(s), we obtain 

y(t)= [Yoe-at +~(e-bt -e-at)]u(t) 
a-b 

which is the same as Eq. (2.107). Noting that y(O+) = y(O) = y(O-) = y0 , we write y(t) as 

y(t) =Yoe-at+ ~(e-bt - e-at) t;::,, 0 
a-b 

3.38. Solve the second-order linear differential equation 

y"(t) + Sy'(t) + 6y(t) = x(t) 

with the initial conditions y(O) = 2, y'(O) = 1, and x(t) = e-1u(t). 

Assumethaty(O) = y(O-)andy'(O) = y'(O-).Let 

y(t),.... Y/s) 

Then from Eqs. (3.44) and (3.45) 

From Table 3-1 we have 

y'(t) ++ sY/s) - y(O-) = sY/s) - 2 

y"(t) ++ s2Y1(s) - sy(O-) - y'(O-) = s2Y1(s) - 2s - 1 

1 
x(t) ++ X1(s) = --

s + 1 

Taking the unilateral Laplace transform of Eq. (3.105), we obtain 

or 

Thus, 

[s2Y1(s)- 2s -1] + 5[sY1(s)- 2] + 6Y1(s) = - 1-
s + 1 

1 2s2 +13s+12 
(s 2 + 5s + 6)Y1(s) = -- + 2s + 11 = -----

s + 1 s+l 

2 
Yi(s) = 2s + 13s + 12 

(s + l)(s2 + 5s + 6) 

2s2 +13s + 12 
(s + l)(s + 2)(s + 3) 

Using partial-fraction expansions, we obtain 

1 1 1 9 1 
Y1(s)=---+6------

2 s+l s+2 2 s+3 

Taking the inverse Laplace transform of Y1(s), we have 

y(t)=( ~ e-1 +6e-zt - ~ e- 31 )u(t) 

Notice that y(O+) = 2 = y(O) and y'(O+) = 1 = y'(O); and we can write y(t) as 

(3.105) 
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3.39. Consider the RC circuit shown in Fig. 3-14(a). The switch is closed at t = 0. Assume that there is an 

initial voltage on the capacitor and v/0- ) = v0 . 

(a) Find the current i(t). 

(b) Find the voltage across the capacitor vc(t). 

R i(t) 

+T 
v.{t) c vc(t) 

-1 

(a) (b) 

Fig. 3-14 RC circuit. 

(a) With the switching action, the circuit shown in Fig. 3-14(a) can be represented by the circuit shown in 
Fig. 3-14(b) with v,(t) = Vu(t). When the current i(t) is the output and the input is v,(t), the differential 
equation governing the circuit is 

Ri(t)+_!_Jr i(r)dr = vs(t) c - 0) 

Taking the unilateral Laplace transform of Eq. (3.106) and using Eq. (3.48), we obtain 

where 

Now 

and 

1 [ 1 1 o- ] v R/(s)+- -/(s)+-J i(T)dr = -
C s s - 00 s 

/(s) = .PJ{i(t)} 

1 t 
vc(t) = -J i(T)dr c - 0) 

1 o-
vc(O- ) = -J i(T)dr = v0 c - 0) 

Hence, Eq. (3.107) reduces to 

R+- l(s)+- = -( 1 ) Vo V 
Cs s s 

Solving for /(s), we obtain 

V - v 1 V - v /(s) = __ o = __ o __ _ 
s R + 1 I Cs R s + 1/ RC 

Taking the inverse Laplace transform of /(s), we get 

V - v i(t) = __ o e- 11Rcu(t) 
R 

(b) When vp) is the output and the input is v,(t), the differential equation governing the circuit is 

dvc(t) 1 1 
--+-v (t) = -v (t) 

dt RC c RC s 

Taking the unilateral Laplace transform of Eq. (3.108) and using Eq. (3.44), we obtain 

- 1 1 V 
sV(s) - v (0 )+-V(s) =--

c c RC c RC s 

or ( 1 ) 1 V s+-- V(s) = --+v0 
RC c RC s 

(3.106) 

(3.107) 

(3.108) 
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Solving for V/s), we have 

V 1 Vo V(s) = - +-~-
c RC s(s + l /RC) s + l /RC 

_ v( 1 1 ) v0 
- -; - s + l /RC + s + l /RC 

Taking the inverse Laplace transform of Vc(s), we obtain 

3.40. Using the transform network technique, redo Prob. 3.39. 

(a) Using Fig. 3-10, the transform network corresponding to Fig. 3-14 is constructed as shown in Fig. 3-15. 

R /(s) 

+ Cs T 
v 

Vc(s) -
s 

VO 

1-s 

Fig. 3-15 Transform circuit. 

Writing the voltage law for the loop, we get 

R+- l(s)+- = -( 1 ) Vo V 
Cs s s 

Solving for /(s), we have 

V - v 1 
/(s) = __ o ---

V - v0 ___ _ 

s R +I !Cs R s + 1/ RC 

Taking the inverse Laplace transform of /(s), we obtain 

V - v 
i(t) = --o e- rtRcu(t) 

R 

(b) From Fig. 3.15 we have 

1 Vo 
Vc(s) = -/(s)+-

Cs s 

Substituting /(s) obtained in part (a) into the above equation , we get 

V ( ) _ V - v0 1 v0 
cs -~ s(s+llRC) +--_;-

_ ( 1 1 ) Vo - (V - v0 ) - - + -
s s +II RC s 

-v( 1 1 ) Vo 
- -; - s + II RC + s + II RC 

Taking the inverse Laplace transform of V/s), we have 

v/t) = V(I - e - r!RC)u(t) + v0e - t1Rcu(t) 
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3.41. In the circuit in Fig. 3-16(a) the switch is in the closed position for a long time before it is opened at 
t = 0. Find the inductor current i(t) for t :::: 0. 

When the switch is in the closed position for a long time, the capacitor voltage is charged to 10 V and there is no 
current flowing in the capacitor. The inductor behaves as a short circuit, and the inductor current is ~ = 2 A. 

Thus, when the switch is open, we have i(O - ) = 2 and v/0- ) = 10; the input voltage is 10 V, and therefore it can 
be represented as lOu(t). Next, using Fig . 3-10, we construct the transform circuit as shown in Fig. 3-16(b). 

i(t) 

+ 
10 v 

..!.H 
2 

SQ 

(a) 

1 
20F 

t = O 

/(s) 

+ 
10 -2Q 
s 

Fig. 3-16 

From Fig. 3-16(b) the loop equation can be written as 

or 

Hence , 

1 20 10 10 
- s/(s) - 1+2/(s)+-/(s)+- = -
2 s s s 

( 1 20) 2s+2+-_;- /(s) = l 

1 2s 
/(s) = 1 2 

- s+2+20/s s +4s+40 
2 

2 6 

(b) 

= 2(s + 2) - 4 _ 2 (s + 2) 

(s + 2)2 + 62 (s + 2)2 + 62 3 (s + 2)2 + 62 

Taking the inverse Laplace transform of /(s) , we obtain 

i(t) = e- 2'( 2cos6t - ~ sin6t)u(t) 

20 10 - -
s s 

+ + 

2 

Note that i(O+) = 2 = i(O- ); that is, there is no discontinuity in the inductor current before and after the switch is 
opened. Thus, we have 

i(t) = e- 2'(2cos6t - ~sin6t) f;:o:O 
3 

3.42. Consider the circuit shown in Fig. 3-17(a). The two switches are closed simultaneously at t = 0. The 
voltages on capacitors C1 and C2 before the switches are closed are 1 and 2 V, respectively. 

(a) Find the currents i 1(t) and i2(t). 

(b) Find the voltages across the capacitors at t = o+. 

(a) From the given initial conditions, we have 

and 
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Thus, using Fig . 3-10, we construct a transform circuit as shown in Fig . 3-17(b). From 

~ 
+ 

C1= 1 F 

2fl 

C2 = 1 F 

5 
s 

+ 

s s 
L___'" Ve (s)=----..J 
~1+1 

(a) 

Fig. 3-17 

Fig. 3-17(b) the loop equations can be written directly as 

(2 + __!_)/1(s) - 2/2 (s) = i 
s s 

Solving for / 1(s) and /z(s) yields 

1 3 
s+l s+4+4 3 1 

I,(s) = --1 = 1 = 1+4--1 
s+ - s+ - s+ -

4 4 4 
1 3 s -- s+ ---

l2(s) = --2 = 4 4 = 1 - ~-1-
s+_!_ s+_!_ 4 s+_!_ 

4 4 4 

Taking the inverse Laplace transforms of / 1(s) and /2(s), we get 

(b) From Fig. 3-17(b) we have 

i1(t) = o(t)+~e- '14u(t) 
4 

i2 (t) = o(t) - ~e - r14u(t) 
4 

1 1 
Ve (s) = -/1(s)+-

1 s s 

1 2 
Ve (s) = -/2 (s)+-

2 s s 

Substituting / 1(s) and /z(s) obtained in part (a) into the above expressions, we get 

1 s + 1 1 
Ve (s) = ---+-

1 s 1 s 
s+ -

4 
1 

1 s- 2 2 
Ve2(s) = -;--1 +-; 

s+ -
4 

2~ 

(b) 
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Then, using the initial value theorem (3.97), we have 

+ . . s+l 
Ve (0 )= hm sVc (s)= hm--1 +1=1+1=2V 

1 s-oo 1 s-oo s + -
4 
1 

s--
Vc (O+)= limsVc (s)= lim ---f+2=1+2=3V 

2 s-oo 2 s-oo s + -
4 

Note that v c (O+) =/= v c (O-) and v c (O+) =/= v c (O-). This is due to the existence of a capacitor loop in the 
I I 2 2 

circuit resulting in a sudden change in voltage across the capacitors. This step change in voltages will result in 
impulses in i 1(t) and i 2(t). Circuits having a capacitor loop or an inductor star connection are known as 
degenerative circuits. 

SUPPLEMENTARY PROBLEMS 

3.43. Find the Laplace transform of the following x(t): 

(a) x(t) = sin u1afu(t) 

(b) x(t) = cos(oV + l/J) u(t) 

(c) x(t) = e-•1u(t) - e"1u(-t) 

(d) x(t) = 1 

(e) x(t) = sgn t 

3.44. Find the Laplace transform of x(t) given by 

x(t)= {~ t1 ~ t ~ tz 

otherwise 

3.45. Show that if x(t) is a left-sided signal and X(s) converges for some value of s, then the ROC of X(s) is of the form 

Re(s) < amin 

where a min equals the minimum real part of any of the poles of X(s). 

3.46. Verify Eq. (3.21); that is, 

dX(s) 
-tx(t)--­

ds 

3.47. Show the following properties for the Laplace transform: 

R'=R 

(a) If x(t) is even, then X(-s) = X(s); that is, X(s) is also even. 

(b) If x(t) is odd, then X(-s) = -X(s); that is, X(s) is also odd. 

(c) If x(t) is odd, then there is a zero in X(s) at s = 0. 

3.48. Find the Laplace transform of 

x(t) = (e -t cos2t - 5e -zt)u(t) + .!.e21u(-t) 
2 
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3.49. Find the inverse Laplace transform of the following X(s): 

1 
(a) X(s) = 2 ,Re(s) > - 1 

s(s + 1) 

1 
(b) X(s) = 2 , - l<Re(s)<O 

s(s + 1) 

1 
(c) X(s) = 2 ,Re(s) < - 1 

s(s + 1) 

s +1 
(d)X(s) = 2 ,Re(s)> - 2 

s + 4s + 13 

s 
(e) X(s) = 2 2 ,Re(s)>O 

(s + 4) 

s 
(/) X(s) = 3 2 , Re(s) > - 2 

s +2s +9s+18 

3.50. Using the Laplace transform, redo Prob. 2.46. 

3.51. Using the Laplace transform, show that 

(a) x(t) * o(t) = x(t) 

(b) x(t) * o'(t) = x'(t) 

3.52. Using the Laplace transform, redo Prob. 2.54. 

3.53. Find the output y (t) of the continuous-time LTI system with 

for the each of the following inputs: 

(a) x(t) = e- 'u(t) 

(b) x(t) = e- 'u( - t) 

h(t) = e- 21u(t) 

3.54. The step response of an continuous-time LTI system is given by (1 - e - ') u(t). For a certain unknown input x(t), 

the output y(t) is observed to be (2 - 3e_, + e- 3')u(t). Find the input x(t). 

3.55. Determine the overall system function H(s) for the system shown in Fig. 3-18. 

x(t) y(t) 

+ s + 1 + s + 2 

+ + 

s 

s 

Fig. 3-18 

3.56. If x(t) is a periodic function with fundamental period T, find the unilateral Laplace transform of x(t). 

3.57. Find the unilateral Laplace transforms of the periodic signals shown in Fig. 3-19. 
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x(t ) 

- 1 0 

x(t) 

- 1 0 

---- -1 

2 

(a) 

2 

(b) 

Fig. 3-19 

3.58. Using the unilateral Laplace transform, find the solution of 

3 

3 

y"(t) - y'(t) - 6y(t) = e' 

with the initial conditions y(O) = 1 and y'(O) = 0 fort;;:: 0. 

4 

4 

5 

5 

3.59. Using the unilateral Laplace transform, solve the following simultaneous differential equations: 

with x(O) = 0 and y(O) = 1 fort;;:: 0. 

y'(t) + y(t) + x'(t) + x(t) = 1 

y'(t) - y(t) - 2.x(t) = 0 

3.60. Using the unilateral Laplace transform, solve the following integral equations: 

I 

(a) y(t) = 1 +a J0 y(r) dr, t;;:: 0 

(b) y(t) = e'[l+ J~e-ry(r)dr] , t;:o:O 

3.61. Consider the RC circuit in Fig. 3-20. The switch is closed at t = 0. The capacitor voltage before the switch closing 
is v0 . Find the capacitor voltage fort;;:: 0. 

R 

Fig. 3-20 RC circuit. 
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3.62. Consider the RC circuit in Fig. 3-21. The switch is closed at t = 0. Before the switch closing, the capacitor C1 is 
charged to v0 V and the capacitor C2 is not charged. 

Fig. 3-21 RC circuit. 

(a) Assuming C1 = C2 = C, find the current i(t) fort~ 0. 

(b) Find the total energy E dissipated by the resistor R, and show that Eis independent of Rand is equal to half of 
the initial energy stored in cl. 

(c) Assume that R = 0 and C1 = C2 = C. Find the current i(t) fort~ 0 and voltages v c (O+) and v c (O+). 
1 2 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

3.43. (a) X(s)=~,Re(s)>O 
s +w0 

(b) X(s)= scos~-w~sinl/J,Re(s)>O 
s +w0 

2s 
(c) If a> 0, X(s) = - 2--2 , -a< Re(s) < a. If a< 0, X(s) does not exist since X(s) does not have an ROC. 

s -a 

(d) Hint: x(t) = u(t) + u(-t) 

X(s) does not exist since X(s) does not have an ROC. 

(e) Hint: x(t) = u(t) - u(-t) 

X(s) does not exist since X(s) does not have an ROC. 

3.44. X(s) = .!. [e-•11 - e-•tz ], alls 
s 

3.45. Hint: Proceed in a manner similar to Prob. 3.4. 

3.46. Hint: Differentiate both sides of Eq. (3 .3) with respect to s. 

3.47. Hint: 

(a) Use Eqs. (1.2) and (3.17). 

(b) Use Eqs. (1.3) and (3.17). 

(c) Use the result from part (b) and Eq. (1.83a). 

s+l 5 1 1 
3.48. X(s)= -------,-l<Re(s)<2 

(s + 1)2 + 4 s + 2 2 s - 2 
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3.49. (a) x(t) = (1 - e -t - te -t)u (t) 

(b) x(t) = - u(- t)- (1 + t)e -tu(t) 

(c) x(t)=(-l+e-1 +te-1)u(-t) 

(d) x(t) = e -2t (cos 3t - ~ sin 3t )u (t) 

(e) x(t) = .!..tsin2tu(t) 
4 

(/) x(t)=(-3...e- 21 +3....cos3t+2-sin3t)u(t) 
13 13 13 

3.50. Hint: Use Eq. (3.21) and Table 3-1. 

3.51. Hint: 

(a) Use Eq. (3.21) and Table 3-1. 

(b) Use Eqs. (3.18) and (3.21) and Table 3-1. 

3.52. Hint: 

(a) Find the system function H(s) by Eq. (3.32) and take the inverse Laplace transform of H(s). 

(b) Find the ROC of H(s) and show that it does not contain thejw-axis. 

3.53. (a) y(t) = (e- 1 - e-21) u(t) 

(b) y(t) = e-1u(- t) + e-21u(t) 

3.54. x(t) = 2(1 - e-31)u(t) 

3.55. Hint: Use the result from Prob. 3.31 to simplify the block diagram. 

2 
H (s) = -s3~+-3s~2~+-s---2 

1 T 
3.56. X(s)= l-e-sT J0_x(t)e-'1dt,Re(s)>O 

1 
3.57. (a) , Re(s) > O; 

s(l+e-') 

1- e-s 
(b) ,Re(s)>O 

s(l + e-') 

3 58 Y(t) = _ .!_e1+3.e-21 + .!_e31 t ~ 0 . . 6 3 2 , 

3.59. x(t) = e-1 - l,y(t) = 2 - e-1, t ~ 0 

3.60. (a) y(t) = e"1, t ~ O; 

3.62. (a) i(t) = (v0 I R)e- 211Rc, t ~ O 

1 2 
(b) E= 4v0 C 

(b) y(t) = e21, t ~ 0 

(c) i(t)=~v0C<'l(t), Vq (0+)= v0 12=/= Vc1 (0-)= v0 , Vc2 (0+)= v0 12=/= Vc2 (0-)= 0 



The z-Transform and 
Discrete-Time LTI Systems 

4.1 Introduction 

In Chap. 3 we introduced the Laplace transform. In this chapter we present the z-transform, which is the 
discrete-time counterpart of the Laplace transform. The z-transform is introduced to represent discrete-time 
signals (or sequences) in the z-domain (z is a complex variable), and the concept of the system function for 
a discrete-time LTI system will be described. The Laplace transform converts integrodifferential equations into 
algebraic equations. In a similar manner, the z-transform converts difference equations into algebraic equa­
tions, thereby simplifying the analysis of discrete-time systems. 

The properties of the z-transform closely parallel those of the Laplace transform. However, we will see 
some important distinctions between the z-transform and the Laplace transform. 

4.2 The z-Transform 

In Sec. 2.8 we saw that for a discrete-time LTI system with impulse response h[n], the output y[n] of the system 
to the complex exponential input of the form zn is 

(4.1) 

where 

H(z)= L h[n]z- n (4.2) 
n=- oo 

A. Definition: 

The function H(z) in Eq. (4.2) is referred to as the z-transform of h[n]. For a general discrete-time signal x[n], 

the z-transform X(z) is defined as 

00 

X(z) = L x[n]z- n (4.3) 
n =- oo 

The variable z is generally complex-valued and is expressed in polar form as 

(4.4) 

•• 
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where r is the magnitude of z and Q is the angle of z. The z-transform defined in Eq. ( 4.3) is often called the bilat­
eral (or two-sided) z-transform in contrast to the unilateral (or one-sided) z-transform, which is defined as 

00 

X1(z)= ,L x[n]z-n (4.5) 
n=O 

Clearly the bilateral and unilateral z-transforms are equivalent only if x[n] = 0 for n < 0. The unilateral 
z-transform is discussed in Sec. 4.8. We will omit the word "bilateral" except where it is needed to avoid 
ambiguity. 

As in the case of the Laplace transform, Eq. (4.3) is sometimes considered an operator that transforms a 
sequence x[n] into a function X(z), symbolically represented by 

X(z) = ,B{x[n]} (4.6) 

The x[n] and X(z) are said to form a z-transform pair denoted as 

x[n] - X(z) (4.7) 

B. The Region of Convergence: 

As in the case of the Laplace transform, the range of values of the complex variable z for which the z-transform 
converges is called the region of convergence. To illustrate the z-transform and the associated ROC let us con­
sider some examples. 

EXAMPLE 4.1 Consider the sequence 

a real 

Then by Eq. (4.3) the z-transform of x[n] is 

00 00 

X(z)= ,L anu[n]z-n = ,L (az-1t 
n=-oo n=O 

For the convergence of X(z) we require that 

Thus, the ROC is the range of values of z for which I az- 1 I < 1 or, equivalently, I z I > I a 1- Then 

) ~ ( -l)n 1 X(z = L.J az = _1 
n=O 1-az 

Alternatively, by multiplying the numerator and denominator of Eq. (4.9) by z, we may write X(z) as 

z 
X(z)=-­

z-a 

(4.8) 

(4.9) 

(4.10) 

Both forms of X(z) in Eqs. (4.9) and (4.10) are useful depending upon the application. From Eq. (4.10) we 
see that X(z) is a rational function of z. Consequently,just as with rational Laplace transforms, it can be char­
acterized by its zeros (the roots of the numerator polynomial) and its poles (the roots of the denominator 
polynomial). From Eq. (4.10) we see that there is one zero at z = 0 and one pole at z = a. The ROC and the 
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pole-zero plot for this example are shown in Fig. 4-1. In z-transform applications, the complex plane is com­
monly referred to as the z-plane. 

Re(z) 
Unit circ le 

Re(z) 

z-plane 

lm(z) lm(z) 

0 <a< 1 a> 1 

Re(z) Re(z) 

lm(z) lm(z) 

- 1<a<O a< - 1 

Fig. 4-1 ROC of the form lzl > lal . 

EXAMPLE 4.2 Consider the sequence 

x[n] = -anu[-n-1] (4.11) 

Its z-transform X(z) is given by (Prob. 4.1) 

1 
X(z)= - 1 lzl<lal 

1-az 
(4.12) 

Again, as before, X(z) may be written as 

X(z)=-2- lzl<lal 
z-a 

(4.13) 
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Thus, the ROC and the pole-zero plot for this example are shown in Fig. 4-2. Comparing Eqs. (4.9) and 
(4.12) [or Eqs. (4.10) and (4.13)], we see that the algebraic expressions of X(z) for two different sequences 
are identical except for the ROCs. Thus, as in the Laplace transform, specification of the z-transform requires 
both the algebraic expression and the ROC. 

lm(z) lm(z) 

Re(z) a Re(z) 

0<a<1 a>1 

lm(z) lm(z) 

- 1 Re(z) a Re(z) 

- 1 <a<O a< - 1 

Fig. 4-2 ROC of the form lzl < lal . 

C. Properties of the ROC: 

As we saw in Examples 4.1and4.2, the ROC of X(z) depends on the nature of x[n]. The properties of the ROC 
are summarized below. We assume that X(z) is a rational function of z. 

Property 1: The ROC does not contain any poles. 
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Property 2: If x[n] is a finite sequence (that is, x[n] = 0 except in a finite interval N1 :5 n :5 N2,where N1 

and N2 are finite) and X(z) converges for some value of z, then the ROC is the entire z-plane 
except possibly z = 0 or z = oo. 

Property 3: If x[n] is a right-sided sequence (that is, x[n] = 0 for n < N1 < oo) and X(z) converges for 
some value of z, then the ROC is of the form 

or 00 > lzl > rmax 

where r max equals the largest magnitude of any of the poles of X(z). Thus, the ROC is the 
exterior of the circle I z I = r max in the z-plane with the possible exception of z = oo. 

Property 4: If x[n] is a left-sided sequence (that is, x[n] = 0 for n > N2 > -oo) and X(z) converges for 
some value of z, then the ROC is of the form 

lzl < r. mm or 0 < lzl < r. mm 

where r min is the smallest magnitude of any of the poles of X(z). Thus, the ROC is the inte­
rior of the circle I z I = r min in the z-plane with the possible exception of z = 0. 

Property 5: If x[n] is a two-sided sequence (that is, x[n] is an infinite-duration sequence that is 
neither right-sided nor left-sided) and X(z) converges for some value of z, then the 
ROC is of the form 

where r1 and r 2 are the magnitudes of the two poles of X(z). Thus, the ROC is an annular 
ring in the z-plane between the circles I z I = r1 and I z I = r2 not containing any poles. 

Note that Property 1 follows immediately from the definition of poles; that is, X(z) is 
infinite at a pole. For verification of the other properties, see Probs. 4.2 and 4.5. 

4.3 2-Transforms of Some Common Sequences 

A. Unit Impulse Sequence C>[n]: 

From definitions (l.45) and (4.3) 

00 

X(z) = _L i5[n]z-n = z-o = 1 all z 
n=-oo 

Thus, 

i5[n] - 1 all z 

B. Unit Step Sequence u[n]: 

Setting a = 1 in Eqs. (4.8) to (4.10), we obtain 

C. z-Transform Pairs: 

1 z 
u[n]----=--

1-z-1 z-1 lzl> 1 

The z-transforms of some common sequences are tabulated in Table 4-1. 

(4.14) 

(4.15) 

(4.16) 
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TABLE 4-1 Some Common z-Transform Pairs 

x[n] X(z) ROC 

o[n] 1 All z 

u[n] 
1 z 

----
1-z-l 'z-1 lzl > 1 

-u[-n-1] 
1 z 

----
1-z-l 'z-1 lzl < 1 

o[n-m] All z except 0 if (m > 0) or oo if (m < 0) 

-anu[-n-1] 

-nanu[-n-1] 

(r" cos Q 0n)u[n] 

O:::sn:::sN-1 

otherwise 

1 z 
-----
1-az-1 'z-a 

1 z 
-----
l-az-1 'z-a 

az-1 az 
---

(l-az-1)2 '(z-a)2 

az-1 az 
---

(l-az-1)2 '(z-a)2 

1 [ z ]2 

(1-az-1)2 ' z-a 

z2- (cos Q 0 )z 

z2- (2cos Q 0 )z+l 

4.4 Properties of the z-Transform 

lzl > lal 

lzl < lal 

lzl > lal 

lzl < lal 

lzl > lal 

lzl > 1 

lzl > 1 

lzl > r 

lzl > r 

lzl > 0 

Basic properties of the z-transform are presented in the following discussion. Verification of these properties is 
given in Probs. 4.8 to 4.14. 
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A. Linearity: 

If 

then 

x1[n] - X1(z) 

x2 [n] - X2(z) 

where a1 and a2 are arbitrary constants. 

B. Time Shifting: 

If 

then 

Speclal Cases: 

x[n] - X(z) 

x[n - 1] - z- 1 X(z) 

x[n + 1] - zX(z) 

ROC = R1 

ROC = R2 

ROC=R 

R' =Rn{O< lzl <oo} 

R'=Rn{O< lzl} 

R'=Rn{lzl<oo} 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Because of these relationship [Eqs. (4.19) and (4.20)], z- 1 is often called the unit-delay operator and z is called 
the unit-advance operator. Note that in the Laplace transform the operators s- 1 = lls ands correspond to time­
domain integration and differentiation, respectively [Eqs. (3.22) and (3.20)]. 

C. Multiplication by z~: 

If 

x[n] - X(z) ROC=R 

then 

(4.21) 

In particular, a pole (or zero) at z = zk in X(z) moves to z = z0z k after multiplication by z~ and the ROC expands 
or contracts by the factor I Zo 1-

Speclal Case: 

R' =R (4.22) 

In this special case, all poles and zeros are simply rotated by the angle Q 0 and the ROC is unchanged. 
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D. Time Reversal: 

If 

then 

x[n] - X(z) 

x[-n]-xc) 

ROC=R 

R' = _!_ 
R 

•o• 

(4.23) 

Therefore, a pole (or zero) in X(z) at z = zk moves to llzk after time reversal. The relationship R' = 1/R indi­
cates the inversion of R, reflecting the fact that a right-sided sequence becomes left-sided if time-reversed, and 
vice versa. 

E. Multiplication by n (or Differentiation in z): 

If 

then 

F. Accumulation: 

If 

then 

x[n] - X(z) 

dX(z) 
nx[n]--z--

dz 

x[n] - X(z) 

ROC=R 

R'=R 

ROC=R 

n 1 Z :L x[k] - --_1 X(z) = -X(z) 
k=-00 1- z z -1 

(4.24) 

(4.25) 

Note that ~~~-~x[k] is the discrete-time counterpart to integration in the time domain and is called the accumu­
lation. The comparable Laplace transform operator for integration is lls. 

G. Convolution: 

If 

then 

x1[n] - X1(z) 

x2[n] - X2(z) 

ROC = R1 

ROC = R2 

(4.26) 

This relationship plays a central role in the analysis and design of discrete-time LTI systems, in analogy with 
the continuous-time case. 

H. Summary of Some z-transform Properties: 

For convenient reference, the properties of the z-transform presented above are summarized in Table 4-2. 
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TABLE 4-2. Some Properties of the z-Transform 

PROPERTY SEQUENCE TRANSFORM ROC 

x[n] X(z) R 

x1[n] X1(z) RI 

x2[n] X2(z) Rz 

Linearity a1x1[n] + azX2[n] a1X 1(z) + azXz(z) R'~R1 nR2 

Time shifting x[n-n0] z-n°X(z) R'~Rn{O <lzl< oo} 

Multiplication by z3 z3x[n] x(~) R'=lz0 IR 

Multiplication by ejfion ejfionx[n] X(e- jOoz) R'=R 

Time reversal x[-n] x(~) R'=l_ 
R 

Multiplication by n nx[n] 
dX(z) 

R'=R -z--
dz 

n 1 
Accumulation L x[n] ~X(z) R'~Rn{lzl > 1} 

k=-010 -z 

Convolution x1[n]*x2[n] X1(z)Xz(z) R'~R1 nR2 

4.5 The Inverse z-Transform 

Inversion of the z-transform to find the sequence x[n] from its z-transform X(z) is called the inverse z-transform, 
symbolically denoted as 

x[n] = 3-1{X(z)} (4.27) 

A. Inversion Formula: 

As in the case of the Laplace transform, there is a formal expression for the inverse z-transform in terms of an 
integration in the z-plane; that is, 

x[n] = -1-~ X(z)zn-I dz 
2:rcj c 

(4.28) 

where C is a counterclockwise contour of integration enclosing the origin. Formal evaluation of Eq. (4.28) 
requires an understanding of complex variable theory. 

B. Use of Tables of z-Transform Pairs: 

In the second method for the inversion of X(z), we attempt to express X(z) as a sum 

X(z) = X1(z) + · · · + Xn (z) (4.29) 

where X1(z), ... , Xn(z) are functions with known inverse transforms x 1[n], ... ,xn[n]. From the linearity property 
(4.17) it follows that 

x[n] = x 1[n] + · · · + xn [n] (4.30) 
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C. Power Series Expansion: 

The defining expression for the z-transform [Eq. (4.3)] is a power series where the sequence values x[n] are the 
coefficients of z-n. Thus, if X(z) is given as a power series in the form 

00 

X[z] = ,L x[n]z-n 
n=-oo 

=···+x[-2]z2 +x[-l]z+x[O]+x[l]z-1 +x[2]z-2 +··· (4.31) 

we can determine any particular value of the sequence by finding the coefficient of the appropriate power of z- 1• 

This approach may not provide a closed-form solution but is very useful for a finite-length sequence where X(z) 
may have no simpler form than a polynomial in z- 1 (see Prob. 4.15). For rational z-transforms, a power series 
expansion can be obtained by long division as illustrated in Probs. 4.16 and 4.17. 

D. Partial-Fraction Expansion: 

As in the case of the inverse Laplace transform, the partial-fraction expansion method provides the most gen­
erally useful inverse z-transform, especially when X(z) is a rational function of z. Let 

Assuming n ::=:: m and all poles pk are simple, then 

where 

Hence, we obtain 

X(z) = c0 + _c_1 _ + ____:1__ + ... + ----5!_ =co + f __!i_ 
Z Z Z - p1 Z - P2 Z - Pn Z k=I Z - Pk 

co = X(z)lz=O X(z) I ck= (z- Pk)--
z z=pk 

Z Z n Z 
X(z) = c0 + c1 --+···+en --= c0 + ,L ck --

z - P1 z- Pn k=I z- Pk 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z) and using Table 4-1, we can then 
invert each term, producing thereby the overall inverse z-transform (see Probs. 4.19 to 4.23). 

If m > n in Eq. ( 4.32), then a polynomial of z must be added to the right-hand side of Eq. ( 4.35), the order 
of which is (m - n). Thus form> n, the complete partial-fraction expansion would have the form 

m-n n 

X(z) = ,L bq zq + ,L ck _z_ 
q=O k=I z- Pk 

(4.36) 

If X(z) has multiple-order poles, say, P; is the multiple pole with multiplicity r, then the expansion of X(z)lz 
will consist of terms of the form 

;, A.2 A., --+ + ... + ----'--
z - pi (z-p;)1 (z-p;)' 

(4.37) 

where 

A. =_!_~[< - ·)'X(z)JI r-k kl d k z p, 
. z Z z=p; 

(4.38) 
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4.6 The System Function of Discrete-Time LTI Systems 

A. The System Function: 

In Sec. 2.6 we showed that the outputy[n] of a discrete-time LTI system equals the convolution of the inputx[n] 
with the impulse response h[n]; that is [Eq. (2.35)], 

y[n] = x[n] * h[n] (4.39) 

Applying the convolution property ( 4.26) of the z-transform, we obtain 

Y(z) = X(z)H(z) (4.40) 

where Y(z), X(z), and H(z) are the z-transforms of y[n], x[n], and h[n], respectively. Equation (4.40) can be 
expressed as 

H(z) = Y(z) 
X(z) 

(4.41) 

The z-transform H(z) of h[n] is referred to as the system function (or the transfer function) of the system. By 
Eq. ( 4.41 ) the system function H(z) can also be defined as the ratio of the z-transforms of the output y[n] and 
the input x[n]. The system function H(z) completely characterizes the system. Fig. 4-3 illustrates the relation­
ship of Eqs. (4.39) and (4.40). 

·I h[n] • x[n] y[n]=y[n] • h[n] 

t t t 
X(z) 

·I 
Y(z)=X(z)H(z) 

H(z) • 
Fig. 4-3 Impulse response and system function. 

B. Characterization of Discrete-Time LTI Systems: 

Many properties of discrete-time LTI systems can be closely associated with the characteristics of H(z) in the 
z-plane and in particular with the pole locations and the ROC. 

1. Causallty: 
For a causal discrete-time LTI system, we have [Eq. (2.44)] 

h[n] = 0 n < 0 

since h[n] is a right-sided signal, the corresponding requirement on H(z) is that the ROC of H(z) must be of the form 

lzl > rmax 

That is, the ROC is the exterior of a circle containing all of the poles of H(z) in the z-plane. Similarly, if the sys­
tem is anticausal, that is, 

h[n] = 0 n ;:::: 0 

then h[n] is left-sided and the ROC of H(z) must be of the form 

lzl < r. mm 

That is, the ROC is the interior of a circle containing no poles of H(z) in the z-plane. 
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2. Stablllty: 
In Sec. 2.7 we stated that a discrete-time LTI system is BIBO stable if and only if [Eq. (2.49)] 

00 

:L I h[n] I< co 
n=-oo 

The corresponding requirement on H(z) is that the ROC of H(z) contains the unit circle (that is, I z I = 1). (See 
Prob. 4.30.) 

3. Causal and Stable Systems: 
If the system is both causal and stable, then all of the poles of H(z) must lie inside the unit circle of the 
z-plane because the ROC is of the form I z I > r max' and since the unit circle is included in the ROC, we must 
have rmax < 1. 

C. System Function for LTI Systems Described by Unear Constant-Coefficient 
Difference Equations: 

In Sec. 2.9 we considered a discrete-time LTI system for which input x[n] and output y[n] satisfy the general lin­
ear constant-coefficient difference equation of the form 

N M 

}-; aky[n - k] = }-; bkx[n - k] (4.42) 
k=O k=O 

Applying the z-transform and using the time-shift property (4.18) and the linearity property (4.17) of the 
z-transform, we obtain 

or 

Thus, 

N M 
}-; akz -kY(z) = }-; bkz -k X(z) 
k=O k=O 

N M 
Y(z) }-; akz -k = X(z) }-; bkz -k 

k=O k=O 

M 

}-; bkz-k 

H(z) = Y(z) = _k=_O __ 

X(z) ~ -k 
L.J akz 
k=O 

(4.43) 

(4.44) 

Hence, H(z) is always rational. Note that the ROC of H(z) is not specified by Eq. (4.44) but must be inferred 
with additional requirements on the system such as the causality or the stability. 

D. Systems Interconnection: 

For two LTI systems (with h1 [n] and h2[n], respectively) in cascade, the overall impulse response h[n] is given by 

(4.45) 

Thus, the corresponding system functions are related by the product 

(4.46) 

Similarly, the impulse response of a parallel combination of two LTI systems is given by 

(4.47) 
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and 

(4.48) 

4. 7 The Unilateral z-Transform 

A. Definition: 

The unilateral (or one-sided) z-transform X1(z) of a sequence x[n] is defined as [Eq. (4.5)] 

00 

X1 (z) = ,L x[n]z-n (4.49) 
n=O 

and differs from the bilateral transform in that the summation is carried over only n :=:: 0. Thus, the unilateral 
z-transform of x[n] can be thought of as the bilateral transform of x[n]u[n]. Since x[n]u[n] is a right-sided 
sequence, the ROC of X/z) is always outside a circle in the z-plane. 

B. Basic Properties: 

Most of the properties of the unilateral z-transform are the same as for the bilateral z-transform. The unilateral 
z-transform is useful for calculating the response of a causal system to a causal input when the system is described 
by a linear constant-coefficient difference equation with nonzero initial conditions. The basic property of the uni­
lateral z-transform that is useful in this application is the following time-shifting property which is different 
from that of the bilateral transform. 

Time-Shifting Property: 

If x[n] - X/z), then form :=:: 0, 

x[n - m] - z-m X/z) + z-m+I x[-1] + z- m+z x[-2] + ··· + x[-m] 

x[n + m] - zm X/z) - zmx[O] - zm-lx[l] - · · · - zx[m - 1] 

The proofs ofEqs. (4.50) and (4.51) are given in Prob. 4.36. 

D. System Function: 

(4.50) 

(4.51) 

Similar to the case of the continuous-time LTI system, with the unilateral z-transform, the system function 
H(z) = Y(z)IX(z) is defined under the condition that the system is relaxed; that is, all initial conditions are zero. 

SOLVED PROBLEMS 

The z-Transform 

4.1. Find the z-transform of 

(a) x[n] =-an u[-n - 1] 

(b) x[n] = a-n u[-n - 1] 

(a) From Eq. (4.3) 

oo -I 

X(z)=- '}: anu[-n-l]z-n=- '}: anz-n 
n=-oo n=-oo 

00 00 

= - '}: (a- 1z)n = 1- '}: (a-'zt 
n=I n=O 
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By Eq. (l.91) 

Thus, 

(b) Similarly, 

~ ( -1 )n _ 1 
~a z ---_1-

n=O 1- a Z 

1 -a- 1z z 1 
X(z) = 1- --_1- = --_1- = -- = --_-1 

1-a z 1-a z z-a 1-az 

00 

X(z)=}: a-nu[-n-l]z-n= 
n=-oo n=-oo 

00 00 

= }: (azt = }: (azt -1 
n=I n=O 

Again by Eq. (l.91) 

00 1 
}:<azt=--

n=O 1- az 
ifl azl < 1 or I z I< I~ I 

Thus, 

1 az z 
X(z)=---1=--=---

1-az 1-az z-1/a 

4.2. A finite sequence x[n] is defined as 

{
*O 

x[n] = 0 
N1 ::5 n ::5 N2 

otherwise 

1 
lzl<~ 

•i• 

(4.52) 

(4.53) 

where N1 and N2 are finite. Show that the ROC of X(z) is the entire z-plane except possibly z = 0 or z = oo. 

From Eq. (4.3) 

Nz 
X(z)= }: x[n]z-n (4.54) 

n=N1 

For z not equal to zero or infinity, each term in Eq. (4.54) will be finite and thus X(z) will converge. If N1 < 0 and 
N2 > 0, then Eq. (4.54) includes terms with both positive powers of z and negative powers of z. As I z I --+ 0, terms 
with negative powers of z become unbounded, and as I z I --+ oo, terms with positive powers of z become unbounded. 
Hence, the ROC is the entire z-plane except for z = 0 and z = oo. If N1 ;::,, 0, Eq. (4.54) contains only negative powers 
of z, and hence the ROC includes z = oo. If N2 ,;:; 0, Eq. (4.54) contains only positive powers of z, and hence the ROC 
includes z = 0. 

4.3. A finite sequence x[n] is defined as 

Find X(z) and its ROC. 

x[n] = {5, 3, - 2, 0, 4, - 3} 

t 
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From Eq. (4.3) and given x[n] we have 

"' 3 
X(z) = ,L x[nV" = ,L x[n]z- " 

n =-oo n=- 2 

= x[- 2]z2 +x[- l]z+x[O]+x[l]z- 1 +x[2V 2 +x[3]z- 3 

= 5z2 + 3z - 2 + 4z- 2 - 3z- 3 

For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will converge. Note that 
X(z) includes both positive powers of z and negative powers of z. Thus , from the result of Prob. 4.2 we conclude 

that the ROC of X(z) is 0 < lzl < oo. 

4.4. Consider the sequence 

!a" 
x[n] = 0 

Find X(z) and plot the poles and zeros of X(z). 

By Eq. (4.3) and using Eq. (1.90) , we get 

0 ::5 n ::5 N - 1, a > 0 

otherwise 

X( ) - ~1 n - n _ N~I( - 1)" _ 1 - (az- l)N _ I ZN - aN 
z - L., a z - L., az - _1 - N=T 

n=O n=O 1- az Z Z - a 
(4.55) 

From Eq. (4.55) we see that there is a pole of (N - !)th order at z = 0 and a pole at z = a. Since x[n] is a finite 

sequence and is zero for n < 0 , the ROC is I z I > 0 . The N roots of the numerator polynomial are at 

k = O, l , .. . ,N - I 

The root at k = 0 cancels the pole at z = a. The remaining zeros of X(z) are at 

The pole-zero plot is shown in Fig. 4-4 with N = 8. 

lm(z) 

(N - 1)th 1:{ 
order pole 

~ 
' 
' 
' 
" 

k = l , ... ,N - 1 

z-plane 

Pole-zero cancel 

Re(z) 

Fig. 4-4 Pole-zero plot with N = 8 . 

(4.56) 

(4.57) 
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4.5. Show that if x[n] is a right-sided sequence and X(z) converges for some value of z, then the ROC of 

X(z) is of the form 

or 00 > lzl > rmax 

where r max is the maximum magnitude of any of the poles of X(z). 

Consider a right-sided sequence x[n] so that 

x[n] = 0 

andX(z) converges for lzl = r0• Then from Eq. (4.3) 

00 00 

I X(z) I~ ~ I x[n] lro-n = ~ I x[n] lro-n < oo 
n=-oo n=N1 

since (r1 lr0 )-n is a decaying sequence. Thus, X(z) converges for r = r1 and the ROC of X(z) is of the form 

lzl > ro 

Since the ROC of X(z) cannot contain the poles of X(z), we conclude that the ROC of X(z) is of the form 

lzl > rmax 

where r max is the maximum magnitude of any of the poles of X(z). 

If N1 < 0, then 

00 00 

X(z)= ~ x[n]z-n =x[Ni]z-Ni +···+x[-l]z+ ~ x[n]z-n 
n=N1 n=O 

That is, X(z) contains the positive powers of z and becomes unbounded at z = oo. In this case the ROC is of 
the form 

00 > lzl > rmax 

From the above result we can tell that a sequence x[n] is causal (not just right-sided) from the ROC of X(z) if z = oo 

is included. Note that this is not the case for the Laplace transform. 

4.6. Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the following sequences: 

(a) x[n]=(+ru[n]+(~ru[n] 

(b) x[n]=( ~r u[n]+(~r u[-n-l] 

(c) x[n]=(+r u[n]+( ~r u[-n-l] 
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From Table 4-1 (a) 

)
n z 

(_!__ u[n] ++ -1 
2 z- 2 

)
n z 

(__!_ u[n] ++ -1 
3 z- 3 

1 and thus, d (4 59) over ap, (458)an · 

(4.58) 

(4.59) 

W see that the ROCs in Eqs. . ( - --2._) 1 

' , , z " I z I > 2 
Z - )( I ) 

- _z + -1 - ( I --

X(z) - _! z- - , _2 z 3 - t mdtha> 

z 2 3 - '~z - , 
5 d two poles at z - 2 d _- an t z = O an z - 12 ) has two zeros a 60) we see that X(z . . 4-S(a). From Eq. (4. I s sketched m Fig. 

(4 .60) 

the ROC is I zl > 2 ' a 

From Table 4-1 (b) 

)
n z 

( __!__ u[n]++ 1 

3 z- 3 

n Z (+) u[- • - 1]- - z-~ 

(4 .61) 

(4.62) 

nd thus d (4 62) overlap, a 1 (461)an · 1 I ROC•ioEq•. . -<lz <2 W< ~' thru Ure z ~ - ! z I ) 3 

_ _z - - 1 6 ( 1 ) (z - -
X(z) - _! z-- z - 2 3 _ 'mdthatth<ROC 

z 
3 

2 - ',ooz -
3 d two poles at z - 2 tz = Oan that X(z) has one zero a 

From Eq. (4.6~) wes~::ched in Fig. 4-S(b). 

(4.63) 

is ! < I zl < 2' as 3 

lm(z) lm(z) 

Re(z) Re(z) 

(a) (b) 

Fig. 4-5 
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(c) From Table 4-1 

(+)" u[n]++ z ~ ~ 
2 

(+f u[- n - 1]++ - z~~ 
3 

1 
lzl > -

2 

1 
lzl < -

3 

•D 

(4.64) 

(4.65) 

We see that the ROCs in Eqs. (4.64) and (4.65) do not overlap and that there is no common ROC , and thus 

x[n] will not have X(z). 

4.7. Let 

x[n] = alnl a > O 

(a) Sketch x[n] for a < 1 and a > 1. 

(b) Find X(z) and sketch the zero-pole plot and the ROC for a < 1 and a > 1. 

(a) The sequence x[n] is sketched in Figs. 4-6(a) and (b) for both a < 1 and a > 1. 

0 

(a) 

x[n] = alnl 

0 < a < 1 

n 

Fig. 4-6 

(b) Since x[n] is a two-sided sequence , we can express it as 

From Table 4-1 

x[n] = a"u[n] + a- nu[ - n - l] 

lzl > a 

a- "u[ - n- l] ++ - __ z_ 
z - 1/ a 

1 
lzl < -

a 

x[n] = alnl 

a > 1 

0 

(b) 

If a < 1, we see that the ROCs in Eqs. (4.68) and (4.69) overlap, and thus, 

z z a2 - 1 z 
X(z) = -- - --= --------

z - a z - l/a a (z - a)(z - 1/a) 
1 

a < lzl < -
a 

(4.66) 

n 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

From Eq. (4.70) we see that X(z) has one zero at the origin and two poles at z = a and z = Ila and that the 

ROC is a < I zl < Ila, as sketched in Fig . 4-7. If a > 1, we see that the ROCs in Eqs . (4.68) and (4.69) do 

not overlap and that there is no common ROC, and thus x[n] will not have X(z). 
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lm(z) 

z-plane 

Re(z) 

Fig. 4-7 

Properties of the z-Transtorm 

4.8. Verify the time-shifting property (4.18); that is, 

R'::>Rn{O < lzl < oo} 

By definition (4.3) 

"' 
,3 {x[n - n0 ]} = _L x[n - n0 ]z- n 

n=-oo 

By the change of variables m = n - n0 , we obtain 

"' ,3 {x[n - non = .L x[m] z- (m +no) 
m=-oo 

"' = z-"0 _L x[m]z- m= z- "0 X(z) 
m=-oo 

Because of the multiplication by z-"0 , for n0 > 0 , additional poles are introduced at z = 0 and will be deleted at z = oo. 

Similarly, if n0 < 0 , additional zeros are introduced at z = 0 and will be deleted at z = oo. Therefore, the points z = 0 
and z = oo can be either added to or deleted from the ROC by time shifting. Thus, we have 

R' =>Rn {O < lzl < oo} 

where Rand R' are the ROCs before and after the time-shift operation. 

4.9. Verify Eq. (4.21); that is, 
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By definition (4.3) 

A pole (or zero) at z = zk in X (z) moves to z = z0z k' and the ROC expands or contracts by the factor I Zo I · Thus, 
we have 

z~x[n]++X(z:) R'=lzolR 

4.10. Find the z-transform and the associated ROC for each of the following sequences: 

(a) x[n] = b[n - n0] (b) x[n] = u[n - n0] 

(c) x[n] = an+lu[n + 1] (d) x[n] = u[-n] 

(e) x[n] = a-nu[-n] 

(a) From Eq. (4.15) 

c5[n] ++ 1 all z 

Applying the time-shifting property (4.18), we obtain 

lzl < oo,no < 0 

(b) From Eq. (4.16) 

u[n],._._z_ lzl>l 
z-1 

Again by the time-shifting property (4.18) we obtain 

-(no-I) 
u[n-no] ..... z-no_Z_=_z __ 

z-1 z-1 

(c) From Eqs. (4.8) and (4.10) 

l<lzl<oo 

anu[n],._._z_ lzl>lal 
z-a 

By Eq. (4.20) we obtain 

n+I Z z2 a u[n+l]++z-=- lal<lzl< 00 

z-a z-a 

(d) From Eq. (4.16) 

u[n],._._z_ lzl>l 
z-1 

By the time-reversal property (4.23) we obtain 

llz 1 
u[-n]++--=- lzl<l 

1/z-1 1-z 

(e) From Eqs. (4.8) and (4.10) 

anu[n]++_z_ lzl>lal 
z-a 

(4.71) 

(4.72) 

(4.73) 

(4.74) 
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Again by the time-reversal property (4.23) we obtain 

-n l/z 1 
a u[-n]---=--

1/z-a 1-az 
1 

lzl<~ 

4.11. Verify the multiplication by n (or differentiation in z) property (4.24); that is, 

From definition (4.3) 

dX(z) 
nx[n]--z-­

dz 

00 

X(z) = ~ x[n]z-n 
n=-oo 

R'=R 

Differentiating both sides with respect to z, we have 

and 

Thus, we conclude that 

dX(z) = ~ -nx[n]z-n-1 
dz n=-00 

00 dX(z) 
-z--= 

dz 
~ {nx[n]} z-n = .8 {nx[n]} 

n=-oo 

dX(z) 
nx[n]--z--

dz 
R'=R 

4.12. Find the z-transform of each of the following sequences: 

(a) x[n] = nanu[n] 

(b) x[n] = nan-lu[n] 

(a) From Eqs. (4.8) and (4.10) 

Using the multiplication by n property (4.24), we get 

na u[n]--z- -- =---n d ( z ) az 
dz z-a (z-a)2 

(b) Differentiating Eq. (4.76) with respect to a, we have 

na u[n]-- -- =---n-1 d ( Z ) Z 
da z - a (z - a)2 

Note that dividing both sides of Eq. (4.77) by a, we obtain Eq. (4.78). 

4.13. Verify the convolution property (4.26); that is, 

By definition (2.35) 

00 

y[n] = x1[n]*x2 [n] = ~ x1[k]x2 [n- k] 
k=-oo 

(4.75) 

(4.76) 

(4.77) 

(4.78) 
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Thus, by definition (4.3) 

Noting that the term in parentheses in the last expression is the z-transform of the shifted signal x2[n - k], then by 
the time-shifting property (4.18), we have 

with an ROC that contains the intersection of the ROC of X1(z) and X2(z). If a zero of one transform cancels a pole 
of the other, the ROC of Y(z) may be larger. Thus, we conclude that 

4.14. Verify the accumulation property (4.25); that is, 

n 1 Z :L x[k] - --_1 X(z) = -X(z) 
k=-00 1- z z -1 

From Eq. (2.40) we have 

n 

y[n] = ~ x[k] = x[n] *U[n] 
k=-00 

Thus, using Eq. (4.16) and the convolution property (4.26), we obtain 

Y (z) = X(z) (~) = X(z)(-z -) 
1-z z-1 

with the ROC that includes the intersection of the ROC of X(z) and the ROC of the z-transform of u[n]. Thus, 

n 1 Z 
~ x[k]++--_1 X(z)=-X(z) 

k=-oo 1- z z-1 
R' :) Rn {I z I> 1} 

Inverse .zr. Transform 

4.15. Find the inverse z-transform of 

X(z)=z2 (1- ~ z-')(1-z-1)(1+2z-1) 

Multiplying out the factors of Eq. (4.79), we can express X(z) as 

Then, by definition (4.3), 

2 1 5 -I 
X(z)=z +-z--+z 

2 2 

O<lzl<oo 

X(z) = x[-2]z2 + x[- l]z + x[O] + x[l]z- 1 

and we get 

X[n] = { ... , 0, 1, ±· -%, 1, 0, ... } 

t 

(4.79) 
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4.16. Using the power series expansion technique, find the inverse z-transform of the following X(z): 

1 
(a) X(z) = _1 , 

1-az 

1 
(b) X(z) = _1 , 

1-az 

(a) Since the ROC is I z I > I a I, that is, the exterior of a circle, x[n] is a right-sided sequence. Thus, we must 
divide to obtain a series in the power of z-•. Carrying out the long division, we obtain 

Thus, 

1 + az-1+ a2z-2 + ... 
1-az-1 1 

1- az-1 

---;=r 
az-1 - a2z-2 

a2z-2 

X( ) 1 1 -I 2 -2 k -k z =---= +az +a z +···+a z +··· 
1-az-1 

and so by definition (4.3) we have 

x[n] = 0 

x[O] = 1 

n<O 

x[l] =a x[2] = a2 x[k] = ak 

Thus, we obtain 

x[n] = anu[n] 

(b) Since the ROC is I z I < I a I, that is, the interior of a circle, x[n] is a left-sided sequence. Thus, we must 
divide so as to obtain a series in the power of z as follows. Multiplying both the numerator and denominator 
of X(z) by z, we have 

z 
X(z)=-­

z-a 

and carrying out the long division, we obtain 

Thus, 

- a-1 z- a-2 z2 - a-3 z3 - ... 

-a+zz 

z-a-'z2 
a-1z2 

a-'z2 - a-2z3 

<f-2z3 

X ) 1 -I -2 2 -3 3 -k k 
(z = ---= - a z - a z - a z - · · · - a z - · · · 

1-az-1 

and so by definition (4.3) we have 

x[n] = 0 n ~ 0 

x[-1] =-a-• x[-2] = -a-2 x[-3] = -a-3 x[-k] = -a-k 
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Thus, we get 

x[n] = -a"u[-n - 1] 

4.17. Find the inverse z-transform of the following X(z): 

(a) X(z)=log( 1 -i)·lzl>lal 
1-az 

(b) X(z)=log( 1 _1 ).lzl<lal 
1-a z 

(a) The power series expansion for log(l - r) is given by 

Now 

00 1 
log(l- r) = - ~ -;;rn 

n=I 
lrl<l 

X(z)=log( 1 _1 )=-log(l-az-1) lzl>lal 
1-az 

Since the ROC is lzl > lal, that is, laz- 1 I < 1, by Eq. (4.80),X(z) has the power series expansion 

from which we can indentify x[n] as 

{
(l / n)a" 

x[n]= 
0 

n~l 

n,.,;O 

(4.80) 

or 
1 

x[n] = -a"u[n -1] (4.81) 

(b) 

n 

X(z)=log(~)= -log(l-a-1z) lzl< lal 
1-a z 

Since the ROC is lzl < lal, that is, la- 1zl < 1, by Eq. (4.80),X(z) has the power series expansion 

X(z) = ~ .!..(a-1z)" = ~ - .!..(a-1z)-n = ~ - .!..a•z-n 
n=I n n=-1 n n=-1 n 

from which we can identify x[n] as 

or 

x[n] = {~ (lln)an 

1 n 
x[n]=--a u[-n-1] 

n 

4.18. Using the power series expansion technique, find the inverse z-transform of the following X(z): 

z 
(a) X(z) = ----,,2---

2z - 3z + 1 

z 
(b) X(z) = - 2---

2z - 3z + 1 

1 
lzl<-

2 

lzl>l 

(4.82) 
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(a) Since the ROC is I z I < 4, x[n] is a left-sided sequence. Thus, we must divide to obtain a series in power of z. 

Carrying out the long division, we obtain 

Thus, 

z + 3z2 + 7 z3 + 15 z4 + · · · 
1- 3z + 2z2 z 

z- 3z2 + 2z3 

3z2 - 2z3 

3z2 - 9z3 + 6z4 

7z3 - 6z4 

7z3 - 21z4 +14z5 

15z4 •·· 

X(z) = · · · + 15z4 + 7z3 + 3z2 + z 

and so by definition (4.3) we obtain 

x[n] = { ... , 15, 7, 3, 1, O} 

t 

(b) Since the ROC is I z I > 1, x[n] is a right-sided sequence. Thus, we must divide so as to obtain a series in 
power of C 1 as follows: 

1 -I + 3 -2 + 7 -3 + 2z 4Z gZ ··· 
2z2 -3z+1 z 

Thus, 

X( ) 1 -1 3 -2 7 -3 z =-z +-z +-z +··· 
2 4 8 

and so by definition (4.3) we obtain 

4.19. Using partial-fraction expansion, redo Prob. 4.18. 

(a) X(z) = --=_z __ 
2z2 - 3z + 1 

Using partial-fraction expansion, we have 

X(z) ___ _ 
-z- - 2z2 - 3z + 1 

z 

2(z -1)( z - ~) 
1 lzl<-
2 

1
( 1)=z~l+ ~1 

2(z-1) z- 2 z 2 
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(b) 

where 

and we get 

Cl = 2 (z - ~) = 1 

z=I 

z z X(z)=----
z-1 1 z--

2 

1 lzl<-
2 

Since the ROC of X(z) is I zl < 4, x[n] is a left-sided sequence, and from Table 4-1 we get 

which gives 

x[n]=-u[-n-1]+( ~ r u[-n-1]=[( ~ r-l]u[-n-1] 

x[n] = { ... , 15, 7, 3, 1, O} 

t 

z z X(z)=----
z-1 1 z--

2 

lzl> 1 

Since the ROC of X(z) is I z I > 1, x[n] is a right-sided sequence, and from Table 4-1 we get 

x[n]=u[n]-( ~ r u[n]=[1-( ~ rJu[n] 

which gives 

4.20. Find the inverse z-transform of 

z 
X(z)= 2 

z(z - l)(z - 2) 
lzl>2 

Using partial-fraction expansion, we have 

where 

X(z) 

z 
___ 1_--=- = _c_I_ +_A_!_+ _Ai __ 
(z-l)(z-2)2 z-1 z-2 (z-2)2 

ci=-1-1 =1 
(z-2)2 z=I 

A.i=-1-1 =1 
z-1 

z=2 

Substituting these values into Eq. (4.83), we have 

~~1~~=-l-+-~~+-1-
(z-l)(z-2)2 z-1 z-2 (z-2)2 

Setting z = 0 in the above expression, we have 

1 ~ 1 
--=-1--+--+~ =-1 

4 2 4 

•u• 

(4.83) 
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Thus, 

z z z X(z)=----+--
z - 1 z - 2 (z - 2)2 

lzl>2 

Since the ROC is I z I > 2, x[n] is a right-sided sequence, and from Table 4-1 we get 

x[n] = (1 - 2n + n2•- 1)u [n] 

4.21. Find the inverse z-transform of 

X(z) = 2z3 - 5z2 + z + 3 
(z- l)(z- 2) 

3 2 
X(z) = 2z - 5z + z + 3 

(z- l)(z - 2) 

lzl<l 

2z3 - 5z2 + z + 3 

z2 - 3z+2 

Note that X(z) is an improper rational function; thus, by long division, we have 

Let 

Then 

where 

Thus, 

and 

1 1 
X(z)=2z+l+ 2 -2z+l+----

z - 3z + 2 (z - l)(z - 2) 

x ( )- 1 
1 z - (z- l)(z-2) 

X1(Z) _ 1 Cl C2 C3 -+--+-­
z z-1 z-2 z z(z-l)(z-2) 

c1 = (z - l)~z - 2) lz=O 

1 

2 

1 z 1 z 
X1(z)=----+---

2 z-1 2z-2 

2 

3 z 1 z 
X(z) = 2z +- - --+---

2 z-1 2z-2 
lzl<l 

Since the ROC of X(z) is I zl < 1, x[n] is a left-sided sequence, and from Table 4-1 we get 

3 1 
x[n]= 2£5[n + 1] +-c5[n] +u[-n-1]--2nu[-n-1] 

2 2 

= 2c5[n + 1] + ~c5[n] + (1- 2n-l)u[- n -1] 
2 

4.22. Find the inverse z-transform of 

X(z) can be rewritten as 

3 
X(z)=-­

z-2 
lzl>2 

X(z)= - 3-= 3z-1(-z-) 
z-2 z-2 

lzl>2 
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Since the ROC is I zl > 2, x[n] is a right-sided sequence, and from Table 4-1 we have 

Using the time-shifting property (4.18), we have 

Thus, we conclude that 

4.23. Find the inverse z-transform of 

We see that X(z) can be written as 

where 

Thus, if 

2n-I [ -l] -1( Z )- 1 un ++z -- ---
z-2 z-2 

x[n] = 3(2)n- I u[n - 1] 

X(z) = 2 + z -2 + 3z -4 

z2 + 4z + 3 

z 
X1 (z) = -2~--

z + 4z+ 3 

lzl>O 

then by the linearity property ( 4 .17) and the time-shifting property ( 4 .18), we get 

x[n] = 2x1[n - 1] + x1[n - 3] + 3x1[n - 5] 

Now X1(Z) _ 1 1 =~+~ 
-z- - z2 + 4z + 3 (z + l)(z + 3) z + 1 z + 3 

Where 
2 2 

Then 1 z 1 z 
X1(z)=------

2z+l 2z+3 
lzl>O 

Since the ROC of X1(z) is lzl > 0, x 1[n] is a right-sided sequence, and from Table 4-1 we get 

Thus, from Eq. (4.84) we get 

1 
X1[n] = -[(- l)n - (- 3t]u[n] 

2 

x[n] = [(-1r1 - (- 3r1]u[n -1] + .!..[(-1r3 - (- 3t- 3 ]u[n - 3] 
2 

+ ~[<-1r5 - <- 3r5 Ju[n - 5J 
2 

4.24. Find the inverse z-transform of 

1 
X(z)= -12 

(1- az ) 

•u• 

(4.84) 

(4.85) 
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From Eq. (4.78) (Prob. 4.12) 

Now, from Eq. (4.85) 

nan-lu[n] ++ __ z_ 
(z - a)2 

X(z)=z[-z ] 
(z - a)2 

and applying the time-shifting property (4.20) to Eq. (4.86), we get 

x[n] = (n + 1) anu[n + 1] = (n + l)anu[n] 

since x[-1] = 0 at n = -1. 

System Function 

4.25. Using the z-transform, redo Prob. 2.28. 

From Prob. 2.28, x[n] and h[n] are given by 

x[n] = u[n] h[n] = anu[n] O<a<l 

From Table 4-1 

Then, by Eq. (4.40) 

x[n]=u[n]++X(z)=-z- lzl>lll 
z-1 

h[n]=anu[n]++H(z)=-z- lzl>lal 
z-a 

z2 
Y (z) = X(z)H(z) = I z I> 1 

(z- l)(z-a) 

Using partial-fraction expansion, we have 

Y(z) 

z 
__ z __ = _c_1_ + _c_2_ 

(z-l)(z-a) z-1 z-a 

a 
where c1=-z I 

z-a 
cz=-z I =---

Thus, 

z=I 
1-a z-1 z=a 

1 z a z 
Y(z)=----- lzl>l 

1-az-1 1-az-a 

Taking the inverse z-transform of Y(z), we get 

1-a 

y[n] = --u[n] - --anu[n] = u[n] 1 a (1- an-I) 
1-a 1-a 1-a 

which is the same as Eq. (2.134). 

4.26. Using the z-transform, redo Prob. 2.29. 

(a) From Prob. 2.29(a), x[n] and h[n] are given by 

x[n] = anu[n] h[n] = 13nu[n] 

(4.86) 

(4.87) 
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From Table 4-1 

x[n] = anu[n] ++ X(z) = _z_ 
z-a 

h[n] = tru[n] ++ H(z) = _z_ 
z- fJ 

Then 
z2 

Y(z) = X(z)H(z) = ---­
(z - a)(z - fJ) 

I z I> max( a, fJ) 

Using partial-fraction expansion, we have 

where 

Thus, 

Y(z) 

z 
___ z __ = _c1_ +-c_2_ 

(z-a)(z-{J) z-a z-{J 

c1=-z I 
z-{J z=a 

a 

a-{J 
cz=-z I 

z-a 
z=/3 

fJ 

a- fJ 

a z fJ z 
Y(z)=--------- lzl>max(a,{J) 

a-{Jz-a a-{Jz-{J 

and y[n] = --an - --{Jn u[n] = - u[n] [ a fJ ] (an+I {Jn+I) 
a-{J a-{J a-{J 

which is the same as Eq. (2.135). When a= {J, 

z2 
Y(z)= 2 

(z-a) 
lzl>a 

Using partial-fraction expansion, we have 

Y(z) z 

z (z-a)2 

A.1 A.2 
--+--~ 
z-a (z-a)2 

where A.2 =zl =a z=a 

and z A.1 a 
------+---
(z-a)2 z-a (z-a)2 

Setting z = 0 in the above expression, we have 

Thus, 

and from Table 4-1 we get 

Y (z) = _z _ + _a_z---=­
z - a (z-a)2 

lzl>a 

y[n] = (an + nan) u[n] = a" (1 + n)u[n] 

Thus, we obtain the same results as Eq. (2.135). 

(b) From Prob. 2.29(b), x[n] and h[n] are given by 

x[n] = a"u[n] h[n] = a-• u[ -n] O<a<l 

From Table 4-1 and Eq. (4.75) 

z x[n] = anu[n] ++ X(z) = --
z - a 

h[n]=a-nu[-n]++H(z)=-1-=- 1 
1-az a(z-1/a) 

1 
lzl<~ 

•u• 
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Then 
1 z 

Y(z) = X(z)H(z) = - - I 
a(z-a)(z-la) 

1 
a<lzl<-

a 

Using partial-fraction expansion, we have 

where 

Thus, 

Y(z) _ 1 1 _ 1 ( Cl C2 ) 

-z-- - a (z-a)(z-lja) - -~ z-a + z-1/a 

ci= z-\/al 
z=a 

c2 =-1-1 - l-aa2 
z- a z=l/a 

1 z 1 z 
Y(z)=----------

1-a2 z-a 1-a2 z-1/a 
1 

a<lzl<-
a 

and from Table 4-1 we obtain 

y[n] = - 1-2 anu[n]- - 1-2 j-(_!_)n u[- n-1]) 
1-a 1-a a 

1 n 1 -n 1 lnl =--a u[n]+--a u[-n-1]=--a 
1 - a 2 1 - a 2 1 - a 2 

which is the same as Eq. (2.137). 

4.27. Using the z-transform, redo Prob. 2.30. 

From Fig. 2-23 and definition (4.3) 

x[n] = {l,l,1,1} ++ X(z) = 1 + z-1 + z-Zz-3 
h[n] = {l,1,1} ++ H(z) = 1 + z-1 + z-2 

Thus, by the convolution property (4.26) 

Y(z)=X(z)H(z)=(l+z-1 +z-2 +z-3)(1+z-1 +z-2) 

= 1+2z-1 + 3z-2 + 3z-3 + 2z-4 + z-5 

Hence, 

h[n] = {l,2,3,3,2,1} 

which is the same result obtained in Prob. 2.30. 

4.28. Using the z-transform, redo Prob. 2.32. 

Let x[n] and y[n] be the input and output of the system. Then 

Then, by Eq. (4.41) 

x[n] = u[n] 
z 

++ X(z)=-­
z-1 

z y[n] = anu[n] ++ Y(z) = --
z - a 

H(z)=Y(z)= z-1 
X(z) z-a 

lzl> 1 

lzl>a 
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Using partial-fraction expansion, we have 

H(z) 

z 
_z_-_1_ = 5.. + _c_2_ 

z(z-a) z z-a 

where Cl= z-l 1 

z-a 
C2 = z -11 

a-1 1-a 

z=O 
a Z z=a a a 

Thus, 

1 1-a z 
H(z)=------

a a z-a 
lzl>a 

Taking the inverse z-transform of H(z), we obtain 

1 1-a 
h[n] = -c5[n]- --anu[n] 

a a 

Whenn = 0, 

1 1-a 
h[0]=----=1 

a a 

Then 

h[n] = {~ (1- a)an-1 

n=O 

n~l 

Thus, h[n] can be rewritten as 

h[n] = c5[n] - (1 - a) a•-1u[n - 1] 

which is the same result obtained in Prob. 2.32. 

4.29. The output y[n] of a discrete-time LTI system is found to be 2(~)•u[n] when the input x[n] is u[n]. 

(a) Find the impulse response h[n] of the system. 

(b) Find the output y[n] when the input x[n] is <! )•u[n]. 

(a) 
z 

x[n] = u[n] ++ X(z) = -­
z -1 

lzl>l 

1 2z ( )

n 

y[n]=2 3 u[n]++Y(z)= z-! 

Hence, the system function H(z) is 

H(z) = Y(z) = 2(z - 1) 
X(z) z-! 

3 

Using partial-fraction expansion, we have 

H(z) _ 2(z-1) _ c1 c2 --- -+--
z z(z-+) z z-~ 

3 

1 
lzl>-

3 

1 
lzl>-

3 

where 2(z-1) 
C1=--l-

z--
=6 C2 = 2(z-1)1 = -4 

Z z=l/3 
3 z=O 
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(b) 

Thus, 
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z 
H[z]=6-4--

1 z--
3 

1 lzl>-
3 

Taking the inverse z-transform of H(z), we obtain 

h[n] = M[n]- 4( + r u[n] 

x[n]=( ~ r u[n]-X(z)= z~! 
2 

Then, 
2z(z -1) 

Y(z)=X(z)H(z)= (z- ~ )(z- ~) 

1 lzl>-
2 

1 lzl>-
2 

Again by partial-fraction expansion we have 

where 

Thus, 

Y(z) _ 2(z -1) _ c1 c2 -- ---+--

z (z- ~ )(z-+) z-~ z-~ 

2(z - 1) 
c,=--1- =-6 2(z - 1) 

C2 =--1-
z--

3 z=l/2 

z z Y(z)=-6--+8--
1 1 

z-2 z-3 

z--
2 z=l/3 

1 lzl>-
2 

Taking the inverse z-transform of Y(z), we obtain 

y[n1=[-6(~r +8(+rJu[n] 

=8 

4.30. If a discrete-time LTI system is BIBO stable, show that the ROC of its system function H(z) must 
contain the unit circle; that is, lz I = 1. 

A discrete-time LTI system is BIBO stable if and only if its impulse response h[n] is absolutely summable, that is 
[Eq. (2.49)], 

00 

}: lh[nJl<oo 
n=-oo 

00 

Now H(z) = }: h[n]z-n 
n=-oo 

00 00 

~}: lh[n]e-jQnl=}: lh[n]l<oo 
n=-oo n=-oo 
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Therefore, we see that if the system is stable, then H(z) converges for z = eJfJ.. That is, for a stable discrete-time 

LTI system, the ROC of H(z) must contain the unit circle I z I = 1. 

4.31. Using the z-transform, redo Prob. 2.38. 

(a) From Prob. 2.38 the impulse response of the system is 

Then 

h[n] = anu[n] 

H(z)=-z­
z-a 

Since the ROC of H(z) is lzl > I al, z = oo is included. Thus, by the result from Prob. 4.5 we conclude that 
h[n] is a causal sequence. Thus, the system is causal. 

(b) If I a I > 1, the ROC of H(z) does not contain the unit circle I z I = 1, and hence the system will not be stable. 
If I a I < 1, the ROC of H(z) contains the unit circle I z I = 1, and hence the system will be stable. 

4.32. A causal discrete-time LTI system is described by 

3 1 
y[n]- -y[n -1] +-y[n - 2] = x[n] 

4 8 

where x[n] and y[n] are the input and output of the system, respectively. 

(a) Determine the system function H(z). 

(b) Find the impulse response h[n] of the system. 

(c) Find the step response s[n] of the system. 

(a) Taking the z-transform of Eq. (4.88), we obtain 

or 

Thus, 

Y(z)- ~z- 1Y(z) + .!..z-2Y(z) = X(z) 
4 8 

(1- ! z-1++z-2)Y(z)=X(z) 

H(z)= Y(z) =----­
X(z) l-~z-1+.!..z-2 

4 8 
2 3 1 z --z+-

4 8 

(z- ~ )( z- ! ) 
lzl>.!.. 

2 

(b) Using partial-fraction expansion, we have 

where 

Thus, 

H(z) _ z _ c1 c2 --- --+--

z (z- ~ )(z- ! ) z-~ z-± 

z 
C1=--l 

z--
4 z=l/2 

=2 z 
C2 =--1 

z--
2 z=l/4 

=-1 

z z H(z) = 2--1 - --1 
1 

lzl>-
2 z-2 z-4 

(4.88) 
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(c) 

Taking the inverse z-transform of H(z), we get 

z 
x[n] = u[n] ++ X(z) = -­

z -1 
lzl>l 

Then Y(z) = X(z)H(z) = ( 1 )( 1 ) lzl>l 
(z-1) z-- z--

2 4 

Again using partial-fraction expansion, we have 

Y(z) 

z 

2 

where 
8 

3 
z2 Cz = = -2 

(z-l)(z- ~) 
z2 

C3=--~-~ 

(z- l)(z- ~) 3 

z=l/4 

Thus, 

8 z z 1 z 
Y(z)=3z-1-2--1 +3--1 lzl>l 

z-- z--
2 4 

Taking the inverse z-transformation of Y(z), we obtain 

y[n] = s[n] = [%-2U r + ~( ~ r]u[n] 

4.33. Using the z-transform, redo Prob. 2.41. 

As in Prob. 2.41, from Fig. 2-30 we see that 

q[n] = 2q[n - 1] + x[n] 

y[n] = q[n] + 3q[n - 1] 

Taking the z-transform of the above equations, we get 

Rearranging, we get 

from which we obtain 

Q(z) = 2z- 1 Q(z) + X(z) 

Y(z) = Q(z) + 3z-• Q(z) 

(1 - 2z- 1)Q(z) = X(z) 

(1 + 3z- 1)Q(z) = Y(z) 

H(z)= Y(z) = 1+3z-1 

X(z) 1- 2z-1 

z=l/2 

(4.89) 
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Rewriting Eq. (4.89), we have 

(1 - 2Z- 1)Y(z) = (1 + 3z- 1)X(z) 

or 

Y(z) - 2z- 1 Y(z) = X(z) + 3z- 1 X(z) (4.90) 

Taking the inverse z-transform of Eq. (4.90) and using the time-shifting property (4.18), we obtain 

y[n] - 2y[n - 1] = x[n] + 3x[n - 1] 

which is the same as Eq. (2.148). 

4.34. Consider the discrete-time system shown in Fig. 4-8. For what values of k is the system BIBO stable? 

x[n] 

+ 
+ 

----~ 
y [n] 

Fig. 4-8 

From Fig. 4-8 we see that 

k 
q[n] = x[n] + Zq[n - 1] 

k 
y[n] = q[n] + 3"q[n - 1] 

Taking the z-transform of the above equations, we obtain 

Rearranging, we have 

from which we obtain 

k - l 
Q(z) = X(z) + 2 z Q(z) 

k - l Y(z) = Q(z)+-z Q(z) 
3 

(1 - ~ z- ')Q(z) = X(z) 

(1+ ~ z- ')Q(z) = Y(z) 

H(z) = Y(z) = l+(k/3)z- 1 

X(z) 1- (k/2)z- 1 

z + k/3 
z - k/2 
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which shows that the system has one zero at z = -k/3 and one pole at z = k/2 and that the ROC is lzl > lk/21. 
Thus, as shown in Prob. 4.30, the system will be BIBO stable if the ROC contains the unit circle, I z I = 1. Hence, 
the system is stable only if I k I < 2. 

Unllateral z-Transform 

4.35. Find the unilateral z-transform of the following x[n]: 

(a) x[n] = an u [n] 

(b) x[n] = an+ 1 u[n + 1] 

(a) Since x[n] = 0 for n < 0, X1(z) = X(z), and from Example 4.1 we have 

1 z 
X1(z)=--_-1 =--

1-az z-a 

(b) By definition (4.49) we have 

00 00 00 

X1(z)= ~an+1u[n+l]z-n= ~an+lz-n=a ~(az-'r 
n=O n=O n=O 

1 az 
=a---=--

1-az-1 z-a 

Note that in this case x[n] is not a causal sequence; hence, X/z) i= X(z) [see Eq. (4.73) in Prob. 4.10]. 

4.36. Verify Eqs. (4.50) and (4.51); that is, form~ 0, 

(a) x[n - m] - z-m Xiz) + z-m+I x[-1] + z-m+Zx[-2] + ··· +x[-m] 

(b) x[n + m] - zm Xiz) - zmx[O] - zm- 1x[l] - ··· - zx[m - 1] 

(a) By definition (4.49) with m ~ 0 and using the change in variable k = n - m, we have 

(b) Withm ~ 0 

00 00 

3 1 {x[n - ml}= ~ x[n - m]z-n = ~ x[k]z-(m+k) 
n=O k=-m 

= z-m !k~/[k]z-k + k~/[k]z-k) 
= z-m{X1(z)+ x[- l]z + x[-2]z2 + ··· + x[- m]zm} 

= z-mX1(z) + z-m+1x[-1] + z-m+2x[- 2] + ··· + x[- m] 

00 00 

31 {x[n +ml}= ~ x[n + m]z-n = ~ x[k]z-(k-m) 
n=O k=m 

= zm t~/[k]z-k - ~>[k]z-k} 
= zm {X1(z)- (x[O] + x[l]z-1 + ·· · + x[m - l]z-<m-IJ)} 

= zm X1(z)- zm x[O] - zm-1x[l] - ··· - zx[m -1] 

4.37. Using the unilateral z-transform, redo Prob. 2.42. 

The system is described by 

y[n] - ay[n - l] = x[n] 

withy[-1] = y_ 1 andx[n] = Kbnu[n].Let 

(4.91) 

(4.92) 

(4.93) 
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Then from Eq. (4.50) 

From Table 4-1 we have 

z 
x[n] ...... X1 (z) = K-­

z - b 

Taking the unilateral z-transform of Eq. (4.93), we obtain 

or 

or 

Thus, 

Y1(z)- a{z-1Y1(Z)+ Y-1} = K-z­
z - b 

(1-az-1)Y1(z)= ay_1 + K-z­
z-b 

( z-a) z -- Y1(z) = ay_1 + K--
Z z-b 

z z2 
Y1(z) = ay_1--+ K----

z- a (z-a)(z-b) 

Using partial-fraction expansion, we obtain 

z K ( z z ) Y1(z)=ay_1--+-- b---a--
z-a b-a z-b z-a 

Taking the inverse z-transform of ~(z), we get 

b a 
y[n] = ay _1anu[n] + K--bn u[n]- K--anu[n] 

b-a b-a 

= Y-1an+I + K - u[n] ( 
bn+I an+I) 

b-a 

which is the same as Eq. (2.158). 

••• 

4.38. For each of the following difference equations and associated input and initial conditions, determine the 
output y[n]: 

(a) y[n] -!y[n - 1] = x[n], with x[n] = (~l. y[-1] = 1 

(b) 3y[n] - 4y[n - 1] + y[n - 2] = x[n], with x[n] = (~l. y[ -1] = 1, y[-2] = 2 

(a) 
z 

x[n] ...... X1(z) = --1 
z--

3 

Taking the unilateral z-transform of the given difference equation, we get 

Substituting y[ -1] = 1 and X1(z) into the above expression, we get 

or 

( 1 -)) 1 z 1--z Y1(z)=-+--
2 2 1 z--

3 

z-- 1 z 
( 1 l __ 2 Y1(z)=-+-­

z 2 1 z--
3 
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(b) 

Thus, 

Hence , 

l z z2 7 z z 
Yi(Z) = 2--l + ( )( ) - 2--l - 2--l 

z-- _ l _ l z-- z--
2 z2z3 2 3 

z x[n] ++ X1(z) = --1 
z--

2 

n;:o: - 1 

Taking the unilateral z-transform of the given difference equation, we obtain 

3Y1(z) - 4{z - 1Y/z) + y[ - 1]} + {z- 2 Y/z) + z- 1 y[ - 1] + y[ - 2]} = X/z) 

Substituting y[ - 1] = l, y[ - 2] = 2, and X/z) into the above expression, we get 

or 

Thus, 

3 z z l z = --- - --+---
2z - l l 2 l z-- z--

2 3 

Hence, 

y[n] = %- ( ~r +~(+)" 
4.39. Let x[n] be a causal sequence and 

x[n] - X(z) 

Show that 

x[O] = lim X(z) 
z--+oo 

Equation (4.94) is called the initial value theorem for the z-transform. 

Since x[n] = 0 for n < 0, we have 

00 

X[z] = 2 x[n]z- n = x[O] + x[l]z- 1 + x[2]z- 2 + ··· 
n=O 

(4.94) 
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As z--+ oo, z-•--+ 0 for n > 0. Thus, we get 

lim X(z) = x[O] 
z-oo 

4.40. Let x[n] be a causal sequence and 

x[n] - X(z) 

Show that if X(z) is a rational function with all its poles strictly inside the unit circle except possibly for 
a first-order pole at z = 1, then 

lim x[N]=lim(l-z-1)X(z) (4.95) 
N->oo z->I 

Equation ( 4.95) is called the final value theorem for the z-transform. 

From the time-shifting property (4.19) we have 

3{x[n] - x[n - 1]} = (1 - z- 1)X(z) (4.96) 

The left-hand side of Eq. (4.96) can be written as 

oo N 

~ {x[n]- x[n- l]}z-n = lim ~ {x[n]- x[n - l]}z-n 
LI N-oo LI 
n=O n=O 

If we now let z --+ 1, then from Eq. ( 4 .96) we have 

N 

lim(l-z- 1)X(z)= lim ~ {x[n]-x[n-1]}= limx[N] 
z-l N-oo ~ N-oo 

n=O 

SUPPLEMENTARY PROBLEMS 

4.41. Find the z-transform of the following x[n]: 

(a) x[n] = H· 1, - ~} 
(b) x[n] = 2c5[n + 2]- 3c5[n - 2] 

(c) x[n]=3(- ~r u[n]-2(3)"u[-n-1] 

(d) x[n]=3( ~r u[n]-2( ~ r u[-n-1] 

4.42. Show that if x[n] is a left-sided sequence and X(z) converges from some value of z, then the ROC of X(z) is of 
the form 

lzl < rmin or 0< lzl <rmin 

where r min is the smallest magnitude of any of the poles of X(z). 

4.43. Given 

X(z)= z(z-4) 
(z - l)(z - 2)(z - 3) 

(a) State all the possible regions of convergence. 

(b) For which ROC is X(z) the z-transform of a causal sequence? 
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4.44. Verify the time-reversal property (4.23); that is, 

x[-n]++X( ~) 

4.45. Show the following properties for the z-transform. 

(a) If x[n] is even, then X(Z- 1) = X(z). 

(b) If x[n] is odd, then X(z- 1) = -X(z). 

(c) If x[n] is odd, then there is a zero in X(z) at z = 1. 

4.46. Consider the continuous-time signal 

R' = ]:_ 
R 

x(t) = e-at t ~ 0 

Let the sequence x[n] be obtained by uniform sampling of x(t) such that x[n] = x(nTs), where Ts is the sampling 
interval. Find the z-transform of x[n]. 

4.47. Derive the following transform pairs: 

2 
( n ) [] z -(cosQ 0)z cos •• 0n u n ++ 2 z - (2cos Q 0)z + 1 

(sin Q0 )z 
(sin Q 0n)u[n] ++ - 2-----­

z - (2cos Q 0)z + 1 

4.48. Find the z-transforms of the following x[n]: 

(a) x[n] = (n - 3)u[n - 3] 

(b) x[n] = (n - 3)u[n] 

(c) x[n] = u[n] - u[n - 3] 

(d) x[n] = n{u[n] - u[n - 3]} 

4.49. Using the relation 

find the z-transform of the following x[n]: 

(a) x[n] = na•- 1u[n] 

(b) x[n] = n(n - 1) a•- 2 u[n] 

(c) x[n] = n(n - 1) ··· (n - k + 1) a•-ku[n] 

lzl>l 

lzl>l 

4.50. Using the z-transform, verify Eqs. (2.130) and (2.131) in Prob. 2.27; that is, 

(a) x[n] *c5[n] = x[n] 

(b) x[n] *c5[n - n0] = x[n - n0] 

4.51. Using the z-transform, redo Prob. 2.47. 

4.52. Find the inverse z-transform of 

X(z) = eatz lzl >O 

4.53. Using the method of long division, find the inverse z-transform of the following X(z): 

(a) X(z) = z , I z I< 1 
(z- l)(z- 2) 
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(b) X(z) = z , l<lzl<2 
(Z - l)(z - 2) 

(c) X(z) = z , lzl>2 
(Z - l)(z - 2) 

4.54. Using the method of partial-fraction expansion, redo Prob. 4.53. 

4.55. Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response h[n]. 

x[n] 

+ 

4.56. Consider the system shown in Fig. 4-10. 

(a) Find the system function H(z). 

y [n] 

Fig. 4-9 

(b) Find the difference equation relating the output y[n] and input x[n]. 

x[n] 

Fig. 4-10 

4.57. Consider a discrete-time LTI system whose system function H(z) is given by 

(a) Find the step response s[n]. 

z H(z) =--
1 z--
2 

(b) Find the output y[n] to the input x[n] = nu[n]. 

l 
lzl>-

2 

y[n] 
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4.58. Consider a causal discrete-time system whose output y[n] and input x[n] are related by 

5 1 
y[n] - -y[n - l] +-y [n - 2] = x[n] 

6 6 

(a) Find its system function H(z). 

(b) Find its impulse response h[n]. 

4.59. Using the unilateral z-transform, solve the following difference equations with the given initial conditions: 

(a) y[n] - 3y[n - l] = x[n], with x[n] = 4u[n], y[ - 1] = 1 

(b) y[n] - 5y[n - l] + 6y[n - 2] = x[n], with x[n] = u[n], y[ - 1] = 3, y[ - 2] = 2 

4.60. Determine the initial and final values of x[n] for each of the following X(z): 

2z (z - __2_) 
12 1 

(a) X(z) = -( z--~~-)~( z--~3~1 r lzl> 2 

(b) X(z) = 2 z , lzl > l 
2z - 3z + 1 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

4.41. (a) X(z) = ..!..+z- 1 - .!..z- 2 , O< lzl 
2 3 

(b) X(z) = 2z3 - 3z- 3, O< lzl < oo 

(c) X(z) = z(Sz - 8) , _!_ < lzl < 3 

( z + + )<z - 3) 2 

(d) X(z) does not exist. 

4.42. Hint: Proceed in a manner similar to Prob. 4 .5. 

4.43. (a) O < lzl < 1, 1 < lzl < 2,2 < lzl < 3, lzl > 3 

(b) I z I > 3 

4.44. Hint: Change n to - n in definition ( 4.3). 

4.45. Hint: (a) Use Eqs . (1.2) and (4.23). 

(b) Use Eqs. (1.3) and (4.23). 

(c) Use the result from part (b). 

1 
4.46. X(z) = 1 - aT - 1 - e sz 

4.47. Hint: Use Euler 's formulas. 

and use Eqs. (4 .8) and (4.10) with a = e" JQ 0 • 

1 n -~ 
sin Q n = -(e1"' 0" - e- J••on) 

0 2j 
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-2 
4.48. (a) _z_2• lzl>l 

(z-1) 

(b) 
- 3z2 + 4z 

, lzl>l 
(z -1)2 

-2 
(c) ~.lzl>l 

z-1 

(d) 
z-4z-2 +3z- 3 

'lzl>l 
(z -1)2 

4.49. Hint: Differentiate both sides of the given relation consecutively with respect to a. 

(a) _z_2• lzl>lal 
(z- a) 

2z 
(b) --3, lzl>lal 

(z- a) 

k'z 
(c) · k+I' lzl> lal 

(z-a) 

4.50. Hint: Use Eq. (4.26) of the z-transform and transform pairs 1and4 from Table 4-1. 

4.51. Hint: Use Eq. (4.26) and Table 4-1. 

4.52. Hint: Use the power series expansion of the exponential function e'. 

an 
x[n] = -u[n] 

n! 

7 3 1 
4.53. (a) x[n] = { ... , 8, 4, 2, O} 

t 
1 1 1 

(b) x[n]={ ... ,- 8,- 4,-2,-1,-1,-1, ... } 

t 
(c) x[n] = {O, 1, 3, 7, 15, ... } 

4.54. (a) x[n] = (1 - 2n)u[-n - 1] 

(b) x[n] = -u[n] - 2nu [- n - 1] 

(c) x[n] = (-1 + 2n)u[n] 

4.55. H(z) = ~ , h[n] = (J_)n u[n] 
l--z-1 2 

2 

(b) y[n] + a1y[n -1] + a2y[n - 2] = b0x[n] + b1x[n - l] + b2x[n - 2] 
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4.57. (a) s[n]=[2-( ~nu[n] 

(b) y[nJ=2[( ~r +n-1]u[nJ 

4.58. (a) 

4.59. (a) y[n]=-2+9(3t, n~-1 

1 9 
(b) y[n]= 2+8(2t- 2(3t, n~-2 

4.60. (a) x[O] = 2, x[oo] = 0 

(b) x[O] = 0, x[oo] = 1 



Fourier Analysis of 
Continuous-Time 

Signals and Systems 

5.1 Introduction 

In previous chapters we introduced the Laplace transform and the z-transform to convert time-domain 
signals into the complex s-domain and z-domain representations that are, for many purposes, more conven­
ient to analyze and process. In addition, greater insights into the nature and properties of many signals and 
systems are provided by these transformations. In this chapter and the following one, we shall introduce 
other transformations known as Fourier series and Fourier transform which convert time-domain signals 
into frequency-domain (or spectral) representations. In addition to providing spectral representations of 
signals, Fourier analysis is also essential for describing certain types of systems and their properties in the 
frequency domain. In this chapter we shall introduce Fourier analysis in the context of continuous-time 
signals and systems. 

5.2 Fourier Series Representation of Periodic Signals 

A. Periodic Signals: 

In Chap. 1 we defined a continuous-time signal x(t) to be periodic if there is a positive nonzero value of T 
for which 

x(t + T) = x(t) all t (5.1) 

The fundamental period T0 of x(t) is the smallest positive value ofTfor which Eq. (5.1) is satisfied, and 1/T0 = f 0 

is referred to as the fundamental frequency. 
Two basic examples of periodic signals are the real sinusoidal signal 

x(t) = cos(u>of + </J) (5.2) 

and the complex exponential signal 

(5.3) 

where%= 2ir!T0 = 2irf0 is called the fundamental angular frequency. . •. ,. 
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B. Complex Exponential Fourier Series Representation: 

The complex exponential Fourier series representation of a periodic signal x( t) with fundamental period T0 is 
given by 

00 

x(t) = ,L ckejkwot 

k=-00 

2:rc 
wo=-

To 

where ck are known as the complex Fourier coefficients and are given by 

ck = _!_ J x(t) e -jkwot dt 
To To 

(5.4) 

(5.5) 

where fro denotes the integral over any one period and 0 to T0 or -T0 /2 to T0 /2 is commonly used for the 
integration. Setting k = 0 in Eq. (5.5), we have 

c0 = _!_ J x(t) dt 
To To 

which indicates that c0 equals the average value of x(t) over a period. 
When x(t) is real, then from Eq. (5.5) it follows that 

c = c* -k k 

where the asterisk indicates the complex conjugate. 

C. Trigonometric Fourier Series: 

(5.6) 

(5.7) 

The trigonometric Fourier series representation of a periodic signal x(t) with fundamental period T0 is given by 

00 

x(t) = ao + ,L (ak cos kw 0t +bk sin kw0t) 
2 k=I 

where ak and bk are the Fourier coefficients given by 

2 
ak = - J x(t) cos kw0t dt 

To To 

bk = _3_ J x(t) sin kw0t dt 
To To 

2:rc 
wo=-

To 

The coefficients ak and bk and the complex Fourier coefficients ck are related by (Prob. 5.3) 

From Eq. (5.10) we obtain 

When x(t) is real, then ak and bk are real and by Eq. (5.10) we have 

Even and Odd Slgnals: 
If a periodic signal x(t) is even, then bk= 0 and its Fourier series (5.8) contains only cosine terms: 

00 

ao ~ x(t) = - + LJ ak cos kw 0t 
2 k=I 

2:rc 
wo=-

To 

(5.8) 

(5.9a) 

(5.9b) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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If x(t) is odd, then ak = 0 and its Fourier series contains only sine terms: 

00 

x(t) = ,L bk sin kw0t 
k=I 

D. Harmonic Form Fourier Series: 

2:rc 
Wo =-

To 
(5.14) 

Another form of the Fourier series representation of a real periodic signal x(t) with fundamental period T0 is 

00 

x(t) = C0 + ,L Ck cos(kw 0t - (Jk) 
k=I 

2:rc 
Wo =-

To 
(5.15) 

Equation (5.15) can be derived fromEq. (5.8) and is known as the harmonic form Fourier series of x(t). The term 
C0 is known as the de component, and the term Ckcos(kw0t - (Jk) is referred to as the kth harmonic component 
of x(t). The first harmonic component C1 cos(w0 t - (}1) is commonly called the fundamental component because 
it has the same fundamental period as x(t). The coefficients Ck and the angles (Jk are called the harmonic ampli­
tudes and phase angles, respectively, and they are related to the Fourier coefficients ak and bk by 

(5.16) 

For a real periodic signal x(t), the Fourier series in terms of complex exponentials as given in Eq. (5.4) is 
mathematically equivalent to either of the two forms in Eqs. (5.8) and (5.15). Although the latter two are 
common forms for Fourier series, the complex form in Eq. (5.4) is more general and usually more convenient, 
and we will use that form almost exclusively. 

E. Convergence of Fourier Series: 

It is known that a periodic signal x(t) has a Fourier series representation if it satisfies the following Dirichlet 
conditions: 

1. x(t) is absolutely integrable over any period; that is, 

f I x(t) I dt < oo 
To 

2. x(t) has a finite number of maxima and minima within any finite interval oft. 

3. x(t) has a finite number of discontinuities within any finite interval oft, and each of these 
discontinuities is finite. 

(5.17) 

Note that the Dirichlet conditions are sufficient but not necessary conditions for the Fourier series representation 
(Prob. 5.8). 

F. Amplitude and Phase Spectra of a Periodic Signal: 

Let the complex Fourier coefficients ck in Eq. (5.4) be expressed as 

(5.18) 

A plot of I ck I versus the angular frequency w is called the amplitude spectrum of the periodic signal x(t), and a 
plot of <Pk versus w is called the phase spectrum of x(t). Since the index k assumes only integers, the amplitude 
and phase spectra are not continuous curves but appear only at the discrete frequencies k%. They are therefore 
referred to as discrete frequency spectra or line spectra. 

For a real periodic signal x(t) we have c _k = ck. Thus, 

(5.19) 
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Hence, the amplitude spectrum is an even function of w, and the phase spectrum is an odd function of w for a 
real periodic signal. 

G. Power Content of a Periodic Signal: 

In Chap. 1 (Prob. 1.18) we introduced the average power of a periodic signal x(t) over any period as 

p = _!_ f I x(t>l2 dt 
To To 

(5.20) 

If x(t) is represented by the complex exponential Fourier series in Eq. (5.4), then it can be shown that (Prob. 5.14) 

_!_J lx(t)l2dt= ~ hl2 
T. To L.,, 

0 k =-00 
(5.21) 

Equation (5.21) is called Parseval's identity (or Parseval's theorem) for the Fourier series. 

5.3 The Fourier Transform 

A. From Fourier Series to Fourier Transform: 

Let x(t) be a nonperiodic signal of finite duration; that is, 

x(t) = 0 

Such a signal is shown in Fig. 5-l(a). Let xT/t) be a periodic signal formed by repeating x(t) with fundamental 

period T0 as shown in Fig. 5-l(b). If we let T0 - oo, we have 

lim xT. (t) = x(t) 
To-oo o (5.22) 

x(t) 

(b} 

Fig. 5-1 (a) Nonperiodic signal x(t) ; (b} periodic signal formed by periodic extension of x(t) . 

The complex exponential Fourier series of xT0(t) is given by 

( ) - ~ C jkw 0t 
xTo t - L.,, k e (5.23) 

k =-00 
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where 1 fTo/2 - 'k t c =- x (t)e JWo dt 

k T. - To/2 To 
0 

(5.24a) 

Since xr.(t) = x(t) for It I < T0 /2 and also since x(t) = 0 outside this interval, Eq. (5.24a) can be rewritten as 

ck=_!__ JTo/2 x(t)e- jkwor dt=_!_ J''° x(t)e- jkwor dt 
To - Tol2 To - co 

(5.24b) 

Let us define X( w) as 

X(w) = J~00 x(t) e - jwt dt (5.25) 

Then from Eq. (5.24b) the complex Fourier coefficients ck can be expressed as 

(5.26) 

Substituting Eq. (5.26) into Eq. (5.23), we have 

or (5.27) 

As T0 - oo, % = 2n/T0 becomes infinitesimal(% - 0). Thus, let%= ll.w. Then Eq. (5.27) becomes 

xT. (t)I - - 1- ~ X(kll.w) ejkt>.wr ll.w 
o To -co 2n .L,, 

k =-00 

(5.28) 

Therefore, 

co 

x(t) = lim xT. (t) = lim - 1- ~ X(kll.w) ejkt>.wr ll.w 
To -co 0 t>.w-o 2n .L,, 

k =-00 

(5.29) 

The sum on the right-hand side ofEq. (5.29) can be viewed as the area under the function X(w) ejwt, as shown 
in Fig. 5-2. Therefore, we obtain 

1 Joo · x(t) = - X(w)e1wr dw 
2n - co 

(5.30) 

which is the Fourier representation of a nonperiodic x(t). 

X(oo)e iwt 

X(k!loo)e ikilwt ------- -- --- - -- _ 

0 k !loo (J) 

Fig. 5-2 Graphical interpretation of Eq. (5 .29). 
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B. Fourier Transform Pair: 

The functionX(w) defined by Eq. (5.25) is called the Fourier transform of x(t), and Eq. (5.30) defines the inverse 
Fourier transform of X(w). Symbolically they are denoted by 

I 1 oo . 
x(t)=fffe- {X(w)}=-J X(w)e1ro1dw 

2:rc -oo 

and we say that x(t) and X( w) form a Fourier transform pair denoted by 

x(t) - X(w) 

C. Fourier Spectra: 

The Fourier transform X(w) of x(t) is, in general, complex, and it can be expressed as 

X(w) = IX(w) I eN1<rol 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

By analogy with the terminology used for the complex Fourier coefficients of a periodic signalx(t), the Fourier 
transform X( w) of a non periodic signal x( t) is the frequency-domain specification of x( t) and is referred to as the 
spectrum (or Fourier spectrum) of x(t). The quantity IX(w) I is called the magnitude spectrum of x(t), and </J(w) 
is called the phase spectrum of x(t). 

If x(t) is a real signal, then from Eq. (5.31) we get 

Then it follows that 

X(-w) = X*(w) 

and IX(-w)I = IX(w)I </J(-w) = -<fJ(w) 

(5.35) 

(5.36a) 

(5.36b) 

Hence, as in the case of periodic signals, the amplitude spectrum IX( w) I is an even function and the phase spec­
trum </J(w) is an odd function of w. 

D. Convergence of Fourier Transforms: 

Just as in the case of periodic signals, the sufficient conditions for the convergence of X(w) are the following 
(again referred to as the Dirichlet conditions): 

1. x(t) is absolutely integrable; that is, 

(5.37) 

2. x(t) has a finite number of maxima and minima within any finite interval. 

3. x(t) has a finite number of discontinuities within any finite interval, and each of these discontinuities 
is finite. 

Although the above Dirichlet conditions guarantee the existence of the Fourier transform for a signal, if impulse 
functions are permitted in the transform, signals which do not satisfy these conditions can have Fourier trans­
forms (Prob. 5.23). 

E. Connection between the Fourier Transform and the Laplace Transform: 

Equation (5.31) defines the Fourier transform of x(t) as 

(5.38) 
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The bilateral Laplace transform of x(t), as defined in Eq. (4.3), is given by 

(5.39) 

Comparing Eqs. (5 .38) and (5 .39), we see that the Fourier transform is a special case of the Laplace transform 
in which s = jw; that is, 

X(s)ls=jm =.'ffe"{x(t)} 

Settings = a+ jw in Eq. (5.39), we have 

or 

X(a+ jw)= J:
00

x(t)e-(a+jm)tdt= J:)x(t)e-a1 ]e-jmt dt 

X(a+ jw)=.'ffe"{x(t)e-a1 } 

(5.40) 

(5.41) 

which indicates that the bilateral Laplace transform of x(t) can be interpreted as the Fourier transform of x(t) e-at. 
Since the Laplace transform may be considered a generalization of the Fourier transform in which the frequency 

is generalized fromjw to s = a+ jw, the complex variables is often referred to as the complex frequency. 
Note that since the integral in Eq. (5.39) is denoted by X(s), the integral in Eq. (5.38) may be denoted as X(jw). 

Thus, in the remainder of this book both X(w) and XUw) mean the same thing whenever we connect the Fourier 
transform with the Laplace transform. Because the Fourier transform is the Laplace transform withs = jw, it should 
not be assumed automatically that the Fourier transform of a signal x(t) is the Laplace transform withs replaced 
by jw. If x(t) is absolutely integrable, that is, if x(t) satisfies condition (5.37), the Fourier transform of x(t) can be 
obtained from the Laplace transform of x(t) withs = jw. This is not generally true of signals which are not absolutely 
integrable. The following examples illustrate the above statements. 

EXAMPLE 5.1 Consider the unit impulse function b(t). 

From Eq. (3.13) the Laplace transform of b(t) is 

2{<5(t)} = 1 alls 

By definitions (5.31) and (l.20) the Fourier transform of b(t) is 

Thus, the Laplace transform and the Fourier transform of b(t) are the same. 

EXAMPLE 5.2 Consider the exponential signal 

x(t) = e-atu(t) a > 0 

From Eq. (3.8) the Laplace transform of x(t) is given by 

1 
2{x(t)} = X(s) = --

s +a 

By definition (5.31) the Fourier transform of x(t) is 

Re(s)>-a 

.'ffe"{x(t)}=X(w)= J:
00

e-at u(t)e-jmtdt 

= f"' e-(a+jm)tdt=--1-
J o+ a+ jw 

Thus, comparing Eqs. (5.44) and (5.45), we have 

X(w) = X(s)ls=jm 

Note that x(t) is absolutely integrable. 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 
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EXAMPLE 5.3 Consider the unit step function u(t). 

From Eq. (3.14) the Laplace transform of u(t) is 

2{u(t)} =_!. 
s 

The Fourier transform of u(t) is given by (Prob. 5.30) 

Re(s)> 0 

1 
.'ffe"{u(t)} = .m5(w)+-. 

JW 

(5.47) 

(5.48) 

Thus, the Fourier transform of u(t) cannot be obtained from its Laplace transform. Note that the unit step function 
u(t) is not absolutely integrable. 

5.4 Properties of the Continuous-Time Fourier Transform 

Basic properties of the Fourier transform are presented in the following. Many of these properties are similar to 
those of the Laplace transform (see Sec. 3.4). 

A. Linearity: 

(5.49) 

B. Time Shifting: 

x(t - t0 )- e -jmto X(w) (5.50) 

Equation (5 .50) shows that the effect of a shift in the time domain is simply to add a linear term -wt0 to the 
original phase spectrum 8(w). This is known as a linear phase shift of the Fourier transform X(w). 

C. Frequency Shifting: 

(5.51) 

The multiplication of x(t) by a complex exponential signal ejmot is sometimes called complex modulation. Thus, 
Eq. (5.51) shows that complex modulation in the time domain corresponds to a shift of X(w) in the frequency 
domain. Note that the frequency-shifting property Eq. (5.51) is the dual of the time-shifting property Eq. (5.50). 

D. Time Scaling: 

x(at)--1 x( w) lal a 
(5.52) 

where a is a real constant. This property follows directly from the definition of the Fourier transform. Equation (5 .52) 
indicates that scaling the time variable tby the factor a causes an inverse scaling of the frequency variable w by lla, 
as well as an amplitude scaling of X(wla) by llla 1- Thus, the scaling property (5.52) implies that time compression 
of a signal (a > 1) results in its spectral expansion and that time expansion of the signal (a < 1) results in its 
spectral compression. 

E. Time Reversal: 

x(-t) - X(-w) (5.53) 

Thus, time reversal of x(t) produces a like reversal of the frequency axis for X(w). Equation (5.53) is readily 
obtained by setting a = -1 in Eq. (5.52). 

F. Duality (or Symmetry): 

X(t) - 2.irx(-w) (5.54) 
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The duality property of the Fourier transform has significant implications. This property allows us to obtain 
both of these dual Fourier transform pairs from one evaluation of Eq. ( 5 .31) (Probs. 5 .20 and 5 .22). 

G. Differentiation in the Time Domain: 

dx(t) - jwX(w) 
dt 

(5.55) 

Equation (5 .55) shows that the effect of differentiation in the time domain is the multiplication of X( w) by jw in 
the frequency domain (Prob. 5.28). 

H. Differentiation in the Frequency Domain: 

(-jt)x(t)- dX(w) 
dw 

Equation (5.56) is the dual property ofEq. (5.55). 

I. Integration in the Time Domain: 

I t 1 
x(-r) d-r- .irX(O) b(w) +-. X(w) 

-oo JW 

(5.56) 

(5.57) 

Since integration is the inverse of differentiation, Eq. (5.57) shows that the frequency domain operation corre­
sponding to time-domain integration is multiplication by 1/jw, but an additional term is needed to account for a 
possible de component in the integrator output. Hence, unless X(O) = 0, a de component is produced by the 
integrator (Prob. 5.33). 

J. Convolution: 

(5.58) 

Equation (5.58) is referred to as the time convolution theorem, and it states that convolution in the time domain 
becomes multiplication in the frequency domain (Prob. 5 .31). As in the case of the Laplace transform, this con­
volution property plays an important role in the study of continuous-time LTI systems (Sec. 5 .5) and also forms 
the basis for our discussion of filtering (Sec. 5.6). 

K. Multiplication: 

(5.59) 

The multiplication property (5 .59) is the dual property of Eq. (5 .58) and is often referred to as the frequency 
convolution theorem. Thus, multiplication in the time domain becomes convolution in the frequency domain 
(Prob. 5.35). 

L. Additional Properties: 

If x( t) is real, let 

where x.(t) and x0 (t) are the even and odd components of x(t), respectively. Let 

Then 

x(t) - X(w) = A(w) + jB(w) 

X(-w) = X*(w) 

x,(t) - Re{X(w)} = A(w) 

x0 (t) - j lm{X(w)} = jB(w) 

(5.60) 

(5.6la) 

(5.61b) 

(5.6lc) 

Equation (5.6la) is the necessary and sufficient condition for x(t) to be real (Prob. 5.39). Equations (5.61b) 
and (5.6lc) show that the Fourier transform of an even signal is a real function of wand that the Fourier 
transform of an odd signal is a pure imaginary function of w. 
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M. Parseval's Relations: 

(5.62) 

(5.63) 

Joo 2 1 J"" 2 
_ 00 1 x(t) I dt = 21"( _ 00 1 X(w) I dw (5.64) 

Equation (5.64) is called Parseval's identity (or Parseval's theorem) for the Fourier transform. Note that the quan­
tity on the left-hand side ofEq. (5.64) is the normalized energy content E of x(t) [Eq. (1.14)]. Parseval's identity says 
that this energy content E can be computed by integrating IX( w) I 2 over all frequencies w. For this reason, IX( w) I 2 

is often referred to as the energy-density spectrum of x(t), and Eq. (5.64) is also known as the energy theorem. 
Table 5-1 contains a summary of the properties of the Fourier transform presented in this section. Some com­

mon signals and their Fourier transforms are given in Table 5-2. 

PROPERTY 

Linearity 

Time shifting 

Frequency shifting 

Time scaling 

Time reversal 

Duality 

Time differentiation 

Frequency differentiation 

Integration 

Convolution 

Multiplication 

Real signal 

Even component 

Odd component 

Parseval's relations 

TABLE 5-1 Properties of the Fourier Transform 

SIGNAL 

x(t) 

x 1(t) 

x2(t) 

a1x 1(t) + a2x2(t) 

x(t- t0) 

ejroot x(t) 

x(at) 

x(-t) 

X(t) 

dx(t) 

dt 

(-jt)x(t) 

r~ x(r) dr 

x 1 (t) * x2(t) 

x 1(t)x2(t) 

x(t) = x/t) + x0 (t) 

r~ xi<J•)X2 (A) d.I. = r~ X1(A)x2 (A) d.I. 

r~ X1(t)x2(t) dt= 2~ r~ X1(co)X2(-co) dco 

f ~I x(t) 12 dt = 2~ f ~IX( co) 12 dco 

FOURIER TRANSFORM 

X(co) 

X1(co) 

Xz(co) 

a1X1 (co) + a;x2(co) 

e-jroto X(co) 

X(co - co0) 

l~lx(:) 
X(-co) 

2nx(-co) 

jcoX(co) 

dX(co) 

dco 

nX(O) o(co)+~ X(co) 
]CO 

X 1 (co)X2(co) 

1 
-X1(CO)*X2(co) 
21t" 

X(co) = A(co) + jB(co) 

X(-co) = X*(co) 

Re{X(co)} = A(co) 

j lm{X(co)}= jB(co) 
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TABLE 5.2 Common Fourier Transforms Pairs 

x(t) 

COSW0 t 

sin w0 t 

u(t) 

u(-t) 

e -atu(t), a> 0 

te-a1u(t), a> 0 

e-altl,a > 0 

1 

az + tz 

2 
e-at ,a>O 

Ct) = {i I t I< a 
Pa 0 ltl>a 

00 

sin at 

:rrt 

sgn t 

:L b(t- kT) 
k=-00 

X(w) 

1 

2:rr6 (w) 

2:rr6 (w-mo) 

:rr[(j(w - % ) + (j(w + w0 )] 

- j:rr[b(w -w0 ) - b(w + ffio)] 

1 
:rrb(w) +-. 

JW 
1 

:rrb(w) - -. 

1 

jw+a 

1 

JW 

(jw + a)2 

2a 

~ e-w214a 

2 sin wa 
a--

wa 

5.5 The Frequency Response of Continuous-Time LTI Systems 

A. Frequency Response: 

•.l·•• 

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system equals the convolution of the input 
x(t) with the impulse response h(t); that is, 

y(t) = x(t) * h(t) (5.65) 

Applying the convolution property (5.58), we obtain 

Y(w) = X(w)H(w) (5.66) 

where Y(w),X(w), andH(w) are the Fourier transforms ofy(t),x(t), and h(t),respectively. FromEq. (5.66) we have 

H(w)= Y(w) 
X(w) 

(5.67) 
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The function H(w) is called the frequency response of the system. Relationships represented by Eqs. (5.65) 
and (5.66) are depicted in Fig. 5-3. Let 

H(w) = IH(w)lejlly(w) (5.68) 

Then I H( w) I is called the magnitude response of the system, and (}8 ( w) the phase response of the system. 

1 H(ro) 

! ! 
S(t) LTI h(t) 

x(t) system y(t)=x(t) • h(t) 

! ! 
X(ro) Y(ro)=X(ro)H(ro) 

Fig. 5-3 Relationships between inputs and outputs in an LTI system. 

Consider the complex exponential signal 

x(t) = ejwot 

with Fourier transform (Prob. 5.23) 

X(w) = 2.m5(w - %) 

Then from Eqs. (5.66) and (l.26) we have 

Y(w) = 2nH(%) b(w - %) 

Taking the inverse Fourier transform of Y(w), we obtain 

y(t) = H(%) ejwot 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

which indicates that the complex exponential signal ejwot is an eigenfunction of the LTI system with corresponding 
eigenvalue H(Wa), as previously observed in Chap. 2 (Sec. 2.4 and Prob. 2.17]. Furthermore, by the linearity 
property (5 .49), if the input x(t) is periodic with the Fourier series 

00 

x(t) = ,L ck ejkwof 

k=-00 

then the corresponding output y(t) is also periodic with the Fourier series 

00 

y(t) = ,L ckH(kw 0 )ejkaior 

k=-00 

If x(t) is not periodic, then from Eq. (5.30) 

1 Joo . x(t) = - X(w) e1wt dw 
2Jr -oo 

and using Eq. (5.66), the corresponding output y(t) can be expressed as 

y(t) = - 1-J 00 H(w)X(w) ejwr dw 
2Jr -oo 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

Thus, the behavior of a continuous-time LTI system in the frequency domain is completely characterized by its 
frequency response H(w). Let 

X(w) = IX(w)lejBx(w) Y(w)= IY(w)lejBy(w) (5.77) 
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Then from Eq. (5.66) we have 

I Y( w) I = IX( w) 11 H( w) I 

•4·•• 
(5.78a) 

(5.78b) 

Hence, the magnitude spectrum I X(w) I of the input is multiplied by the magnitude response I H(w) I of the 
system to determine the magnitude spectrum I Y(w) I of the output, and the phase response 8H(w) is added to 
the phase spectrum 8iw) of the input to produce the phase spectrum 8y(w) of the output. The magnitude 
response I H(w) I is sometimes referred to as the gain of the system. 

B. Distortionless Transmission: 

For distortionless transmission through an LTI system we require that the exact input signal shape be repro­
duced at the output, although its amplitude may be different and it may be delayed in time. Therefore, if x(t) is 
the input signal, the required output is 

(5.79) 

where td is the time delay and K (> 0) is a gain constant. This is illustrated in Figs. 5-4(a) and (b). Taking the 
Fourier transform of both sides ofEq. (5.79), we get 

Y(w) = Ke- jwt, X(w) 

Thus, from Eq. (5.66) we see that for distortionless transmission, the system must have 

H(w) = IH(w)l ejllH(w) = Ke - jwr, 

Thus, 

IH(w)I = K 

8H(w) = -jwtd 

(5.80) 

(5.81) 

(5.82a) 

(5.82b) 

That is, the amplitude of H(w) must be constant over the entire frequency range, and the phase of H(w) must be 
linear with the frequency. This is illustrated in Figs. 5-4(c) and (d). 

x(t) IH(co)I 

A 

K 

0 0 co 

(a) (c) 

y(t) 

KA -- - ---- - -- - ---

0 co 

(b) (d) 
S lope = -td 

Fig. 5-4 Distortionless transmission. 
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Amplltude Distortion and Phase Distortion: 
When the amplitude spectrum I H( w) I of the system is not constant within the frequency band of interest, the 
frequency components of the input signal are transmitted with a different amount of gain or attenuation. This 
effect is called amplitude distortion. When the phase spectrum (JH(w) of the system is not linear with the 
frequency, the output signal has a different waveform than the input signal because of different delays in pass­
ing through the system for different frequency components of the input signal. This form of distortion is called 
phase distortion. 

C. LTI Systems Characterized by Differential Equations: 

As discussed in Sec. 2.5, many continuous-time LTI systems of practical interest are described by linear constant­
coefficient differential equations of the form 

(5.83) 

withM :5 N. Taking the Fourier transform of both sides ofEq. (5.83) and using the linearity property (5.49) and 
the time-differentiation property (5.55), we have 

or 

Thus, from Eq. (5.67) 

N M 

,L ak(jw)kY(w) = ,L bk(jwl X(w) 
k=O k=O 

N M 

Y(w) ,L ak(jwl = X(w) ,L bk(jwl 
k=O k=O 

M 

,L bk(jwl 
H(w) = Y(w) = _k=_o __ _ 

X(w) ~ (. )k 
L.J ak JW 
k=O 

(5.84) 

(5.85) 

which is a rational function of w. The result (5 .85) is the same as the Laplace transform counterpart H(s) = Y(s)IX(s) 
withs= jw [Eq. (3.40)]; that is, 

H(w) = H(s)ls=jw = H(jw) 

5.6 Filtering 

One of the most basic operations in any signal processing system is filtering. Filtering is the process by which 
the relative amplitudes of the frequency components in a signal are changed or perhaps some frequency 
components are suppressed. As we saw in the preceding section, for continuous-time LTI systems, the spectrum 
of the output is that of the input multiplied by the frequency response of the system. Therefore, an LTI system 
acts as a filter on the input signal. Here the word "filter" is used to denote a system that exhibits some sort of 
frequency-selective behavior. 

A. Ideal Frequency-Selective Filters: 

An ideal frequency-selective filter is one that exactly passes signals at one set of frequencies and completely 
rejects the rest. The band of frequencies passed by the filter is referred to as the pass band, and the band of 
frequencies rejected by the filter is called the stop band. 

The most common types of ideal frequency-selective filters are the following. 
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1. Ideal Low-Pass Fiiter: 
An ideal low-pass filter (LPF) is specified by 

which is shown in Fig. 5-5(a). The frequency we is called the cutoff frequency. 

2. Ideal High-Pass Fiiter: 
An ideal high-pass filter (HPF) is specified by 

which is shown in Fig. 5-5(b). 

3. Ideal Bandpass Fiiter: 
An ideal bandpass filter (BPF) is specified by 

which is shown in Fig. 5-5(c). 

4. Ideal Bandstop Fiiter: 
An ideal bandstop filter (BSF) is specified by 

which is shown in Fig. 5-5(d). 

IH(co) I 

(a) 

IH(co) I 

(c) 

co 

co 

w, <lwl<w2 
otherwise 

w, < lwl < w2 
otherwise 

IH(co) I 

(b) 

IH(co) I 

(d) 

Fig. 5-5 Magnitude responses of ideal frequency-selective filters . 

•4·•• 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

co 

co 



CHAPTER 5 Fourier Analysis of Continuous-Time 

In the above discussion, we said nothing regarding the phase response of the filters. To avoid phase distortion 
in the filtering process, a filter should have a linear phase characteristic over the pass band of the filter; that is 
[Eq. (5.82b)], 

(5.90) 

where td is a constant. 
Note that all ideal frequency-selective filters are noncausal systems. 

B. Nonideal Frequency-Selective Filters: 

As an example of a simple continuous-time causal frequency-selective filter, we consider the RC filter shown 
in Fig. 5-6(a). The output y(t) and the input x(t) are related by (Prob. 1.32) 

RC dy(t) + y(t) = x(t) 
dt 

Taking the Fourier transforms of both sides of the above equation, the frequency response H( w) of the RC filter 
is given by 

H(w) = Y(w) = 1 
X(w) l+jwRC l+jwlw 0 

where% = 1/ RC. Thus, the amplitude response I H(w) I and phase response OH(w) are given by 

IH(w)I= 1 
11+ jwlw 0 I 

8H(W) =-tan-I~ 
Wo 

1 + (wl w 0) 2 [ ]
1/2 

(5.91) 

(5.92) 

(5.93) 

which are plotted in Fig. 5-6(b). From Fig. 5-6(b) we see that the RC network in Fig. 5-6(a) performs as a 
low-pass filter. 

IH(oo)I 

R 
- ooo 0 1 (J) 

+ ooo= RC 

~ x(t) 

f 
y(t) 9H(oo) 

l- -l H --- -- --- - -- -- --- -- rr./2 

(a) 

(J) 

(b) 

Fig. 5-6 RC filter and its frequency response . 
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5. 7 Bandwidth 

A. Filter (or System) Bandwidth: 

One important concept in system analysis is the bandwidth of an LTI system. There are many different defini­
tions of system bandwidth. 

1. Absolute Bandwidth: 
The bandwidth W8 of an ideal low-pass filter equals its cutoff frequency; that is, W8 = we [Fig. 5-5(a)]. In this case 
W8 is called the absolute bandwidth. The absolute bandwidth of an ideal bandpass filter is given by W8 = w2 - w1 

[Fig. 5-5(c)]. A bandpass filter is called narrowband if W8 << %•where%=~ (w1 + w2) is the center frequency 
of the filter. No bandwidth is defined for a high-pass or a bandstop filter. 

2. 3-dB (or Halt-Power) Bandwidth: 
For causal or practical filters, a common definition of filter (or system) bandwidth is the 3-dB bandwidth W3 dB. In 
the case of a low-pass filter, such as the RC filter described by Eq. (5.92) or in Fig. 5-6(b), W3 dB is defined as the 
positive frequency at which the amplitude spectrum I H( w) I drops to a value equal to I H(O) I /Vl, as illustrated 
in Fig. 5-7(a). Note that I H(O) I is the peak value of H( w) for the low-pass RC filter. The 3-dB bandwidth is also 
known as the half-power bandwidth because a voltage or current attenuation of 3 dB is equivalent to a power atten­
uation by a factor of 2. In the case of a bandpass filter, W3 dB is defined as the difference between the frequencies 
at which IH(w)I drops to a value equal to 1/Vl times the peak value IH(wm)I as illustrated in Fig. 5-7(b). This 
definition of W3 dB is useful for systems with unimodal amplitude response (in the positive frequency range) and 
is a widely accepted criterion for measuring a system's bandwidth, but it may become ambiguous and nonunique 
with systems having multiple peak amplitude responses. 

Note that each of the preceding bandwidth definitions is defined along the positive frequency axis only and 
always defines positive frequency, or one-sided, bandwidth only. 

IH(oo)I IH(oo) I 

A A 

(J) - (J) - (J) - (J) 
2 m 1 

0 (J) 

(a) (b) 

Fig. 5-7 Filter bandwidth . 

B. Signal Bandwidth: 

The bandwidth of a signal can be defined as the range of positive frequencies in which "most" of the energy or 
power lies. This definition is rather ambiguous and is subject to various conventions (Probs. 5.57 and 5.76). 

3-dB Bandwidth: 
The bandwidth of a signal x(t) can also be defined on a similar basis as a filter bandwidth such as the 3-dB band­
width, using the magnitude spectrum IX(w) I of the signal.Indeed, if we replace IH(w) I by IX(w) I in Figs. 5-5(a) 
to (c), we have frequency-domain plots of low-pass, high-pass, and bandpass signals. 

Band-Limited Slgnal: 
A signal x(t) is called a band-limited signal if 

IX(w)I = 0 (5.94) 

Thus, for a band-limited signal, it is natural to define wM as the bandwidth. 
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SOLVED PROBLEMS 

Fourier Serles 

5.1. We call a set of signals {'Pp)} orthogonal on an interval (a, b) if any two signals 1P m(t) and llf/t) in the 
set satisfy the condition 

where* denotes the complex conjugate and a* 0. Show that the set of complex exponentials 
{ejkroot: k = 0, ± 1, ± 2, ... }is orthogonal on any interval over a period T0, where T0 = 2n/%. 

For any t0 we have 

Jto+To ejmwrf dt = ___ l_ejmwrJ = ___ 1_ (ejmw0 (t0 +T0 ) _ ejmw0t0 ) l
to+To 

1o 1mw0 to 1mwo 

= ___ 1_ ejmwoto ( ejm2tr - 1) = 0 m i= 0 
Jm% 

since eJmZtr = 1. When m = 0, we have ejmwotlm~o = 1 and 

I to+To jmwot d -Jto+Tod -T. e t- t- 0 to to 

Thus, from Eqs. (5.96) and (5.97) we conclude that 

mi=k 

m=k 

which shows that the set {eJkwot: k = 0, ± 1, ± 2, ... }is orthogonal on any interval over a period T0• 

5.2. Using the orthogonality condition (5.98), derive Eq. (5.5) for the complex Fourier coefficients. 

From Eq. (5.4) 

00 

x(t) = ~ ckejkwot 
k=-00 

Multiplying both sides of this equation by e-Jmwot and integrating the result from t0 to (t0 + T0), we obtain 

J::+To x(t)e-jmwot dt = J::+Tt~oo ckejkwot) e-jmwot dt 

= ~ ckJ::+To ej(k-m)wofdt 

k=-00 

Then by Eq. (5.98), Eq. (5.99) reduces to 

I t0 +T0 _ · ·' x(t)e Jmw.,. dt = c T. 
~ m 0 

Changing index m to k, we obtain Eq. (5.5); that is, 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 
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We shall mostly use the following two special cases for Eq. (5.101): t0 = 0 and t0 = -T0 /2, respectively. That is, 

1 iTo '" t c = - x(t)e - 1·"'0 dt 
k To o (5.102a) 

1 JTo/2 - '" t 
ck = - x(t)e 1'"'0 dt 

To -To/2 
(5.102b) 

5.3. Derive the trigonometric Fourier series Eq. (5.8) from the complex exponential Fourier series Eq. (5.4). 

Rearranging the summation in Eq. (5.4) as 

00 00 

x(t) = ~ ckeikruot =co+~ (ckeikruot + c_ke-ikruot) 

k=-oo k=I 

and using Euler's formulas 

we have 

Setting 

Eq. (5.103) becomes 

00 

x(t) = c0 + ~[(ck+ c_k) cos kw 0t + j(ck - c_k) sin koJof] 
k=I 

00 

x(t) = ao + ~ (ak cos kroot +bk sin koJo() 
2 k=I 

(5.103) 

(5.104) 

5.4. Determine the complex exponential Fourier series representation for each of the following signals: 

(a) x(1) = cos %1 

(b) x(1) = sin %1 

(c) x(1) =cos ( 21 + : ) 

(d) x(1) = cos 41 + sin 61 

(e) x(1) = sin2 1 

(a) Rather than using Eq. (5.5) to evaluate the complex Fourier coefficients ck using Euler's formula, we get 

Thus, the complex Fourier coefficients for cos Wot are 

1 1 c, =-
2 

c_, =-
2 

(b) In a similar fashion we have 

1 ' ~· ' t 1 ' t 1 ' t ~ sin w0t = - (e1"'u· - e-1"'0 ) = - -e-1"'0 + -e1"'0 = ~ ckejkrurJ 
2j 2j 2j k=-oo 
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Thus, the complex Fourier coefficients for sin w0t are 

(c) The fundamental angular frequency% of x(t) is 2. Thus, 

Now 

x(t) =cos( 2t + : ) = k~oo ckejkwot = k~oo ckej2kt 

x(t) =cos( 2t + : ) = ~(ej(2t+.irt4) + e-j(2t+.irt4» 

=!e-j.irt4e-j2t +!ej.irt4ej2t = f ckej2kt 

2 2 k=-00 

Thus, the complex Fourier coefficients for cos(2t + n/4) are 

c1 = !ej"'14 = ! 1 + j = .J2 (1 + j) 
2 2 .J2 4 

- 1 - j.ir/4 - 1 1 - j - .J2 (1 - ") c_, --e ------ J 
2 2.fi, 4 

ck=O lkl*l 

(d) By the result from Prob. 1.14 the fundamental period T0 of x(t) is 1r and % = 2n/T0 = 2. Thus, 

00 

x(t)=cos4t+sin6t= ~ ckejkwrJ= 
k=-00 k=-00 

Again using Euler's formula, we have 

Thus, the complex Fourier coefficients for cos 4t + sin 6t are 

1 1 
C_2 =-

2 
C2 =-

2 

and all other ck= 0. 

(e) From Prob. l.16(e) the fundamental period T0 of x(t) is 1r and% = 2n/T0 = 2. Thus, 

00 00 

x(t) = sin2 t = ~ ckejkwrJ = ~ ckej2kt 
k=-oo k=-oo 

Again using Euler's formula, we get 

( 
't 't)2 e1 - e-1 1 · · 

x(t)=sin2t= =--(el21 -2+e-J21 ) 
2j 4 

=-±e-j2t+~-±ej2t= f ckej2kt 

k=-oo 



CHAPTER 5 Fourier Analysis of Continuous-Time 

Thus, the complex Fourier coefficients for sin2 tare 

I I I 
c_ 1 =--

4 
co = -

2 
Cl =--

4 

and all other ck = 0. 

5.5. Consider the periodic square wave x(t) shown in Fig. 5-8. 

(a) Determine the complex exponential Fourier series of x(t). 

(b) Determine the trigonometric Fourier series of x(t). 

x(t) 

A 

Fig. 5-8 

(a) Let 

"' x(t) = :L ck eJkwot 

k =-00 

Using Eq. (5.102a), we have 

ck = O k = 2m * O 

A 
ck = - k = 2m+I 

jkn 

I f To I f T012 A c0 = - x(t)dt = - Adt = -
To o To o 2 

Hence, 

A A 
Co = - C2m = Q c = ----

2m+l j(2m + l)n 2 

and we obtain 

x(t) = i + ~ ~ _1_eJ(2m +l)w0t 

2 jn m=-oo 2m +I 

•.t•• 

(5.105) 

(5.106) 
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(b) From Eqs. (5.105), (5.10), and (5.12) we have 

a0 A 
- = co = -
2 2 

a2m = b2m = 0, m * 0 

a2m +l = 2 Re[c2m+il = 0 
2A 

b2m+l = - 2 lm[c2m +il = --­
(2m + l)n 

Substituting these values in Eq. (5.8), we get 

A 2A ~ I . 
x(t) = - +- L., --sm(2m + l)aJof 

2 n m=02m +I 

A 2A ( . I . 3 I . 5 ) 
= - + - sm w 0t + -sm w0t + -sm w0t + · · · 

2 n 3 5 

5.6. Consider the periodic square wave x(t) shown in Fig. 5-9. 

(a) Determine the complex exponential Fourier series of x(t). 

(b) Determine the trigonometric Fourier series of x(t). 

x(t) 

A 

Fig. 5-9 

(a) Let 

"' 
x(t) = }: ck ejkwrf 

k =-00 

Using Eq. (5.l02b), we have 

Thus, 

Hence, 

_ I JTo/2 ( ) - jkwrf d _ I JTo/4 A - jkwrf d ck - - x t e t - - e t 
~ -~n ~ -~~ 

A 
Co = -

2 

A (e- Jkw0T0/4 - ejkw0T0!4) 

- jkrooTo 

_ A ( - Jk!r/2 _ Jk;r/2) _ A . ( kn ) - --e e - -sm -
- jk2n kn 2 

ck = 0 

m A 
ck = (- 1) -

kn 

k = 2mofa 0 

k = 2m +I 

I rTo I f To/2 A c0 = - J, x(t) dt = - A dt = -
To o To o 2 

C2m = 0, m * 0 c _ (- l)m A 
2m +l - (2m + l)n 

(5.107) 

(5.108) 
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and we obtain 

x(t) = ~+~ f (- lr ej(2m+I)w0r 

2 Jr m=-oo 2m + l 

(b) From Eqs. (5.108) , (5.10), and (5.12) we have 

a0 A 
- = co = -
2 2 

a2m = 2Re[c2m] = O,m -:fa 0 

m 2A 
a2m+l = 2Re[czm +d = (- l) 

(2m + l)n 

Substituting these values into Eq. (5.8), we obtain 

A 2A "' (- l)m 
x(t) = - +- }: --cos(2m + l)root 

2 Jr m=02m + l 

A 2A ( l l ) = -+- cosw0t - -cos3w0t+-cos5w0t - ··· 
2 Jr 3 5 

•.t•• 

(5.109) 

(5 .110) 

Note that x(t) is even; thus, x(t) contains only a de term and cosine terms. Note also that x(t) in Fig. 5-9 can be 
obtained by shifting x(t) in Fig. 5-8 to the left by T0 /4. 

5.7. Consider the periodic square wave x(t) shown in Fig. 5-10. 

(a) Determine the complex exponential Fourier series of x(t). 

(b) Determine the trigonometric Fourier series of x(t). 

Note that x(t) can be expressed as 

where x1(t) is shown in Fig. 5-11. Now comparing Fig . 5-11 and Fig. 5-8 in Prob. 5.5 , we see that x1(t) is the 
same square wave of x(t) in Fig . 5-8 except thatA becomes 2A. 

x(t) 

A 

- A 

Fig. 5-10 

2A 

Fig. 5-11 



•.H• CHAPTER 5 Fourier Analysis of Continuous-Time 

(a) Replacing A by 2A in Eq . (5.106) , we have 

Thus, 

x(t) = x (t) - A = 2A f _1_ ej(2m+l)wot 
1 jn m=-00 2m + 1 

(5.111) 

(b) Similarly, replacing A by 2A in Eq. (5.107) , we have 

4A 00 1 
x1(t) = A+-}: --sin(2m + l)wof 

Jr m= 0 2m + l 

Thus, 

4A 00 1 
x(t) = - }: --sin(2m + l)mot 

Jr m= 0 2m + l 

4A ( . 1 . 3 1 . 5 ) = - smw0 t+-sm w 0t+-sm w0 t+ ··· 
Jr 3 5 

(5.112) 

Note that x(t) is odd; thus, x(t) contains only sine terms. 

5.8. Consider the periodic impulse train OT (t) shown in Fig. 5-12 and defined by 
0 

{>To (t) = L O(t - kTo) (5.113) 
k=-00 

li(t) 
li(t - T0) 

'. .a 

0 

Fig. 5-12 

(a) Determine the complex exponential Fourier series of OT. (t). 
0 

( b) Determine the trigonometric Fourier series of OT. (t). 
0 

(a) Let 

00 

OTo(t) = }: ckejkwor 
k =-oo 

Since O(t) is involved, we use Eq. (5.102b) to determine the Fourier coefficients and we obtain 

_ 1 JTo /2 "() - jkwor d _ 1 c - - ute t - -
k To - To /2 To 

(5.114) 

Hence, we get 

OT/t) = f O(t - kTo) = ; f ejkwor 
k =-oo 0 k =-oo 

(5.115) 
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(b) Let 

Since OT0(t) is even , bk = 0, and by Eq. (5.9a), ak are given by 

Thus, we get 

2 JTo /2 2 
ak = - o(t) cos kroot dt = -

To - Tol2 To 

2n 
Wo = ­

To 

2n 
Wo = ­

To 

•.it• 

(5.116) 

(5.117) 

5.9. Consider the triangular wave x(t) shown in Fig. 5-13(a). Using the differentiation technique, find (a) the 
complex exponential Fourier series of x(t), and (b) the trigonometric Fourier series of x(t). 

The derivative x'(t) of the triangular wave x(t) is a square wave as shown in Fig . 5-13(b). 

(a) Let 

"' x(t) = ,L ckejkwot 

k =-00 

Differentiating Eq. (5.118), we obtain 

"' 
x'(t) = ,L jkroockejkwrf 

k =-00 

x(t) 

- To To 0 To To 2T0 

2 2 
(a) 

x'(t) 

2A 

To 

-To To 0 To To 2T0 

2 2 

2A 

To 

(b) 

Fig. 5-13 

(5.118) 

(5.119) 
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Equation (5.119) shows that the complex Fourier coefficients of x'(t) equaljk%ck. Thus, we can find ck (k =/= 0) 
if the Fourier coefficients of x'(t) are known. The term c0 cannot be determined by Eq. (5.119) and must be 
evaluated directly in terms of x(t) with Eq. (5.6). Comparing Fig. 5-13(b) and Fig. 5-10, we see that x'(t) in 
Fig. 5-13(b) is the same as x(t) in Fig. 5-10 with A replaced by 2A/T0 • Hence, from Eq. (5.111), replacing A by 

2A/T0 , we have 

x'(t) = ~ f _l_ej(2m+l)ruof 

jnT0 m=-oo 2m + 1 

Equating Eqs. (5.119) and (5.120), we have 

ck =0 

.,,,_, 4A 
J,.,,,,ock = -.--

1nkT0 

From Fig. 5-13(a) and Eq. (5.6) we have 

or 

k=2m=t-0 

2A 
ck=--­

n2k2 

1 rTo A 
c0 =-J, x(t)dt=-

To o 2 

Substituting these values into Eq. (5.118), we obtain 

x(t) = ~ - 2A f 1 ej(2m+l)ruot 

2 n2 m=-oo (2m + 1)2 

(5.120) 

k=2m+l 

(5.121) 

(b) In a similar fashion, differentiating Eq. (5.8), we obtain 

00 

x'(t) = ~ kw0 (bk cos kroot - ak sin kw0t) 
k=I 

Equation (5.122) shows that the Fourier cosine coefficients of x'(t) equal to kWabk and that the sine 
coefficients equal to -k%ak. Hence, from Eq. (5.112), replacing A by 2A/T0 , we have 

x'(t) = ~ f - 1-sin(2m + l)w0t 
fi0 m=0 2m+l 

Equating Eqs. (5.122) and (5.123), we have 

bk= 0 ak = 0 

SA 
-kw0ak = -- or 

nkT0 

k=2m=t-0 

4A 
ak=-~ 

nk 

From Eqs. (5.6) and (5.10) and Fig. 5-13(a) we have 

ao 1 rTo A 
-= c0 =-J, x(t)dt =-
2 T0 o 2 

Substituting these values into Eq. (5.8), we get 

k=2m+l 

A 4A ~ 1 
x(t)= -- - 2 ~ 2 cos(2m+l)OJot 

2 n m=O (2m + 1) 

(5.122) 

(5.123) 

(5.124) 

5.10. Consider the triangular wave x(t) shown in Fig. 5-14(a). Using the differentiation technique, find the 
triangular Fourier series of x(t). 

From Fig. 5-14(a) the derivative x'(t) of the triangular wave x(t) is, as shown in Fig. 5-14(b), 

x'(t) = -: +A f {J(t - kT0 ) 

0 k=-oo 

(5.125) 
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- To 

~~ '. 

Using Eq. (5 .117), Eq . (5.125) becomes 

x(t) 

0 

(a) 

x' (t) 

Ali(t) ,~ 

0 

(b) 

Fig. 5-14 

"' 2A 
x'(t) = :L -cos kw0t 

k = l To 

Equating Eqs . (5.126) and (5.122), we have 

ak = 0, k -:/= 0 

From Fig. 5-14(a) and Eq. (5.9a) , we have 

To 

A li(t - T0) 

·~ 

2n 
Wo = ­

To 

or 

a0 1 JTo A 
- = - x(t)dt = -
2 T0 o 2 

Thus , substituting these values into Eq. (5.8) , we get 

A A "' 1 . 
x(t) = - + - :L - smkroot 

2 :Jr k = l k 

2T0 

~~ 

(5.126) 

(5.127) 

5.11. Find and sketch the magnitude spectra for the periodic square pulse train signal x(t) shown in Fig. 5-15(a) 
for(a)d= T0 /4,and(b)d= T0 /8. 

Using Eq. (5.102a) , we have 

I f To ·k A Jd ·k c = - x(t) e- 1wot dt = - e- 1wot dt 
k To o To o 

= ~-.1-e-Jkwofld = ~-. -1-(1 - e- Jkw0d) 
To - JkWo o To JkWo 

A e - Jkwrfl /2 ( e jkwrfl/2 _ e - Jkwrfl/2) 

- JkrooTo 

= Ad sin(kroodl2) e- Jkwrflt2 

T0 krood 12 
(5.128) 
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x(t) 

A 

- T 0 d T 2T 
(a) 

lck l 

x(t) .:!_A 
4 

A - - d = I_ 
4 

0 d T O roo 2rr (J) 

d 
(b) 

lck l 
x(t) 

A - T 1-A 
d = a 8 

Od T ~ (J) 

Fig. 5-15 

Note that ck = 0 whenever kw0d/2 = m.ir; that is, 

m2.ir 
nw0 = --

d 
m = 0, ±: 1, ±: 2, .. . 

I c I = ~ I sin(k.ir I 4) I 
k 4 k.ir/4 

The magnitude spectrum for this case is shown in Fig. 5-15(b). 

(b) d = T0 /8 , k%d/2 = k.ird/T0 = k.ir/8 , 

lc l = ~1sin(k.ir/8)1 
k 8 k.ir/8 

The magnitude spectrum for this case is shown in Fig. 5-IS(c). 

d 
(c) 

5.12. If x1(t) and x2(t) are periodic signals with fundamental period T0 and their complex Fourier series 
expressions are 

00 00 

X1 (t) = _L dkejkwot X2 (t) = _L ekejkwot 

k =-00 k=-00 
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show that the signal x(t) = x 1(t)xz(t) is periodic with the same fundamental period T0 and can be 
expressed as 

00 

x(t) = ,L ckejkwot 
2:rc 

wo=-
k=-00 

where ck is given by 

00 

Ck = ,L dmek-m 
m=-oo 

Now 

Thus, x(t) is periodic with fundamental period T0• Let 

00 

x(t) = ~ ckejkroot 

k=-00 

2n 
Wo=­

To 

Wo 

Then - 1 JTo/2 () -jkwof d - 1 JTo/2 () () -jkwot d ck - - x t e t - - x1 t x2 t e t 
To -Tol2 To -Tol2 

=_!_JTo/2 ( ~ d ejmwot)x (t)e-jkwrj dt 
T. -To/2 ~ m 2 

0 m=-oo 

since 

and the term in brackets is equal to ek- m· 

5.13. Let x1(t) and x2(t) be the two periodic signals in Prob. 5.12. Show that 

Equation (5.130) is known as Parseval's relation for periodic signals. 

From Prob. 5.12 and Eq. (5.129) we have 

Setting k = 0 in the above expression, we obtain 

5.14. Verify Parseval's identity (5.21) for the Fourier series; that is, 

00 

If x(t) = ~ ckejkwot 

k=-oo 

(5.129) 

(5.130) 
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then (5.131) 
k=-00 k=-00 

where* denotes the complex conjugate. Equation (5.131) indicates that if the Fourier coefficients of x(t) are ck, 

then the Fourier coefficients of x*(t) are c'l<_k. Setting x 1(t) = x(t) and x2(t) = x*(t) in Eq. (5.130), we have dk = ck 

and ek = c'l<_k or (e_k =en. and we obtain 

or 

5.15. (a) 

00 

1 JTo/2 ~ - x(t)x*(t)dt= ~ eke; 
To -To/2 k=-oo 

(5.132) 

The periodic convolution f(t) = x1(t) ® x2(t) was defined in Prob. 2.8. If dn and en are the complex 
Fourier coefficients of x 1(t) and x2(t), respectively, then show that the complex Fourier coefficients 
ck of f(t) are given by 

(5.133) 

where T0 is the fundamental period common to x1(t), x2(t), and f(t). 

(b) Find the complex exponential Fourier series of f(t) defined in Prob. 2.8(c). 

(a) From Eq. (2.70) (Prob. 2.8) 

00 00 

Let X1 (t) = }: dkejkwrf X2 (t) = }: ekejkwrf 
k=-00 k=-00 

Then f(t) = J:0 x('r) (k~oo ekejkwo(t-T) l dT 

= ~ ekejkwo-r: J:o x(T)e-jkwo-r: dT 

k=-00 

Since d _ 1 (To ( )-jkwo-r:d 
k--J, XTe T 

To o 

we get 

00 

f(t) = }: Todkekejkwrf (5.134) 
k=-00 

which shows that the complex Fourier coefficients ck of f(t) equal T0dkek. 

(b) In Prob. 2.8(c), x 1(t) = x2(t) = x(t), as shown in Fig. 2-12, which is the same as Fig. 5-8 (Prob. 5.5). From 
Eq. (5.105) we have 

k=2m,mi=O 

k=2m+l 

Thus, by Eq. (5.133) the complex Fourier coefficients ck of f(t) are 

A2 
co = Todoeo = To -

4 
k=2m,mi=O 

k=2m+l 
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Note that in Prob. 2.8(c), f(t) = x1(t) ®xz(t), shown in Fig. 2-13(b), is proportional to x(t), shown in Fig. 5-13(a). 

Thus, replacing A by A 2T0 /2 in the result from Prob. 5.9, we get 

{o 
c -

k - -ToA2 I k2n2 

which are the same results obtained by using Eq. (5.133). 

Fourier Transform 

5.16. (a) Verify the time-shifting property (5.50); that is, 

x(t - t0 )- ejmto X(w) 

By definition (5.31) 

By the change of variable T = t - t0 , we obtain 

Hence, 

x(t - t0 ) ++ e-jruto X(w) 

5.17. Verify the frequency-shifting property (5.51); that is, 

By definition (5.31) 

.¥{x(t)ejruot} = J~00 x(t)ejruote-jrut dt 

k=2m,mi=O 

k=2m+l 

= J~00 x(t)e-j(ru-ruo)t dt = X(w - ro0 ) 

Hence, 

5.18. Verify the duality property (5.54); that is, 

X(t) - 2.irx(-w) 

From the inverse Fourier transform definition (5 .32), we have 

J~"' X(w)ejrut dw = 2nx(t) 

Changing t to - t, we obtain 

J~00 X(w)e-jrut dw= 2nx(-t) 

Now interchanging t and w, we get 

J~00 X(t)e-jrut dt = 2nx(-w) 
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Since 3' {X(t)} = f~"' X(tV Jwt dt 

we conclude that 

X(t) ++ 2.irx( - w) 

5.19. Find the Fourier transform of the rectangular pulse signal x(t) [Fig. 5-16(a)] defined by 

By definition (5.31) 

Hence, we obtain 

x(t)= p0 (t)={~ ltl<a 
ltl>a 

X(w) = J~00 pa(tVjwt dt = fae- jwt dt 

_ 1 ( Jwa _ - Jwa) _ 2 sin wa _ 2 sin wa - -e e - --- a--
jw w wa 

( ) 2 sin wa 2 sin wa 
Pat ++ --= a--

w wa 

The Fourier transform X(w) of x(t) is sketched in Fig . 5-16(b). 

x(t) 

- a 0 a 

(a) 

Fig. 5-16 Rectangular pulse and its Fourier transform . 

5.20. Find the Fourier transform of the signal [Fig. 5-17 (a)] 

From Eq. (5.136) we have 

x(t) = sin at 
Jrt 

() 2 sin wa 
Pat++ -­

w 

Now by the duality property (5.54), we have 

2 sinat 2 () 
-t-++ npa - w 

Dividing both sides by 2.ir(and by the linearity property), we obtain 

sin at 
--++ p (- w) = p (w) 

nt a a 

where Pa(w) is defined by [see Eq. (5.135) and Fig. 5-17(b)] 

lwl<a 

lwl>a 

X(co) 

(b) 

(5.135) 

(5.136) 

co 

(5.137) 
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x(t) 

a 

- a 

(a) 

Fig. 5-17 sin at/ .7rt and its Fourier transform . 

5.21. Find the Fourier transform of the signal [Fig. 5-18(a)] 

x(t) = e -alt l a>O 

Signal x(t) can be rewritten as 

Then 

Hence , we get 

{ 
- ar 

x(t) = e -altl = e 
ear 

t> 0 

t < O 

Jo . Jco . X(w) = eare- 1wr dt+ e- are- 1wr dt 
-co 0 

=Jo e<a - Jw)r dt + Jco e - (a+ Jw)r dt 
-co 0 

1 1 2a 
= --+--= ---

a - jw a + jw a2 + w2 

-alrl 2a e ++---
a2 +w2 

The Fourier transform X(w) of x(t) is shown in Fig. 5-18(b) . 

x(t) 

0 

Fig. 5-18 e - lalt and its Fourier transform . 

5.22. Find the Fourier transform of the signal [Fig. 5-19( a)] 

From Eq. (5.138) we have 

1 
x(t)=-­

a2 + t2 

-alrl 2a e ++---
a2 +w2 

Now by the duality property (5.54) we have 

2a -al-wl -alwl 
--- ++ 2ne = 2ne 
az +t2 

Dividing both sides by 2a, we obtain 

1 1C -alwl ---++-e 
a2 + t 2 a 

The Fourier transform X(w) of x(t) is shown in Fig. 5-19(b) . 

X(w) 

0 a (J) 

(b) 

(5 .138) 

X(w) 
2/a 

0 

(5.139) 
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rr/a 

0 

Fig. 5-19 1/(a2 + t 2) and its Fourier transform. 

5.23. Find the Fourier transforms of the following signals: 

(a) x(t) = 1 

(c) x(t) = e- jwot 

(e) x(t) = sin %f 

(a) By Eq. (5.43) we have 

(b) x(t) = ejwot 

(d) x(t) = cos %f 

o(t) ++ 1 

Thus, by the duality property (5.54) we get 

1 ++ 2;ro( - w) = 2;ro(w) 

X(oo) 

0 

Figs. 5-20(a) and (b) illustrate the relationships in Eqs . (5 .140) and (5.141) , respectively. 

x(t) X(oo) 

8(t) 

0 0 

(a) 

x(t) X(oo) 

2rr8(oo) 

0 0 

(b) 

(J) 

(5.140) 

(5.141) 

(J) 

(J) 

Fig. 5-20 (a) Unit impulse and its Fourier transform; (b) constant (de) signal and its Fourier transform. 

(b) Applying the frequency-shifting property (5.51) to Eq. (5.141), we get 

(5.142) 
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(c) From Eq. (5.142), it follows that 

e- jwot ++ 2.m5(w + % ) 

(d) From Euler's formula we have 

1 . . 
coswof = -(elwot + elwo') 

2 

Thus, using Eqs. (5.142) and (5.143) and the linearity property (5.49), we get 

Fig. 5-21 illustrates the relationship in Eq. (5.144) . 

(e) Similarly, we have 

and again using Eqs. (5.142) and (5.143), we get 

sin %t ++ - j.ir[o(w - %) - o(w + %)1 

x(t) 

0 

I 
(a) 

Fig. 5-21 Cosine signal and its Fourier transform . 

5.24. Find the Fourier transform of a periodic signal x(t) with period To-

We express x(t) as 

"' 
x(t) = :L ckejkwot 

k=-00 

X(ro) 

0 

(b) 

Taking the Fourier transform of both sides and using Eq. (5.142) and the linearity property (5.49) , we get 

"' 
X(w) = 2.ir :L ck o(w - kWo) 

k =- oo 

which indicates that the Fourier transform of a periodic signal consists of a sequence of equidistant impulses 
located at the harmonic frequencies of the signal. 

5.25. Find the Fourier transform of the periodic impulse train [Fig. 5-22(a)] 

00 

DT0 (t)= 2 D(t-kT0 ) 

k =-00 

(5.143) 

(5.144) 

(5 .145) 

(5 .146) 
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From Eq. (5.115) in Prob. 5.8, the complex exponential Fourier series of {JT0(t) is given by 

Using Eq. (5.146) , we get 

or 

{JT. (t) = _!_ ~ ejkwof 
0 T. L., 

0 k =-co 

"' 

2:rr 
Wo = ­

To 

= % }: b(w - kw0) = WofJw0(W) 
k=-00 

"' "' 
}: b(t - kT0 )+-+w 0 }: b(w - kw 0 ) 

k =-00 k =-00 

Thus, the Fourier transform of a unit impulse train is also a similar impulse train [Fig. 5-22(b)] . 

x(t) X(w) 

· ~ · ~ ,. .. .. 

(a) (b) 

Fig. 5-22 Unit impulse train and its Fourier transform . 

5.26. Show that 

1 1 
x(t) cos root++ -X(w-roo) +-X(w + filo) 

2 2 

and x(t) sin root++ - j [~X(w-roo)- ~X(w +mo)) 

Equation (5.148) is known as the modulation theorem. 

From Euler's formula we have 

Then by the frequency-shifting property (5.51) and the linearity property (5.49), we obtain 

[ 1 . 1 . ] .cffe'[X(f) COS root] =.<¥ 2X(f) eJWof + 2X(f) e - JWQf 

1 1 
= -X(w - Wo) + -X(w + Wo) 

2 2 

Hence, 

1 1 
x(t) cos mot +-+-X(w - Wo) +-X(w + Wo) 

2 2 

(5.147) 

ro 

(5.148) 

(5.149) 
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In a similar manner we have 

1 . . 
sin w0t = -( e1wrf - e - JWcf) 

2j 

and [ 1 . 1 1] .9'[x(t) sin w0t] = .9' -x(t) elwot - -x(t) e - 1wo 
2j 2j 

1 1 
= -X(w - w0 ) - -X(w + w0 ) 

2j 2j 

Hence, 

x(t) sin wot++ - j [~x(w - roo) - ~X(w + roo)) 

5.27. The Fourier transform of a signal x(t) is given by [Fig. 5-23(a)] 

1 1 
X(w) = - p0 (w-w 0 ) +-p0 (w + w 0 ) 

2 2 

Find and sketch x(t). 

From Eq. (5.137) and the modulation theorem (5 .148), it follows that 

sin at 
x(t) = -- cos w0t 

nt 

which is sketched in Fig. 5-23(b). 

X(co) 

----.. ------------------ --------------------------. 

: 

, , 

0 

(a) 

(b) 

x(t) 

Fig. 5-23 

..... 

co 



•.H• CHAPTER 5 Fourier Analysis of Continuous-Time 

5.28. Verify the differentiation property (5.55); that is, 

dx(t) . X( ) --++JW W 
dt 

From Eq. (5.32) the inverse Fourier transform of X(w) is 

Then 

1 J co . x(t) = - X(w)e1wr dw 
2n - co 

dx(t) = _1 !!._[Jco X(w) eJwt dw] 
dt 2n dt - co 

= - 1-Jco X(w)!_(ejwt)dw 
2n -co at 

= - 1-Jco jwX(w) ejwt dw 
2n -co 

(5.150) 

(5.151) 

Comparing Eq. (5.151) with Eq. (5.150), we conclude that dx(t)ldt is the inverse Fourier transform ofjwX(w). Thus, 

dx(t) . X( ) 
--++ JW W 

dt 

5.29. Find the Fourier transform of the signum function, sgn(t) (Fig. 5-24), which is defined as 

sgn(t)={-~ 

sgn(t) 

0 

t>O 

t<O 

~----------1 - 1 

Fig. 5-24 Signum function. 

The signum function, sgn(t), can be expressed as 

sgn(t) = 2u(t) - 1 

Using Eq. (1.30), we have 

d 
-sgn(t) = 2c5(t) 
dt 

Let 

sgn(t) ++ X( w) 

Then applying the differentiation property (5.55), we have 

jwX(w) = 3i[2c5(t)] = 2--+ X(w) = ..;.._ 
JW 

(5.152) 
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Hence, 

2 
sgn( t) ++ --:­

;w 

••• 
(5.153) 

Note that sgn(t) is an odd function , and therefore its Fourier transform is a pure imaginary function of w (Prob. 5 .41). 

5.30. Verify Eq. (5.48); that is, 

1 
u(t) ++ .iro(w) + -

jw 

As shown in Fig. 5-25, u(t) can be expressed as 

1 1 
u(t) = - + -sgn(t) 

2 2 

(5.154) 

Note that! is the even component of u(t) and! sgn(t) is the odd component of u(t) . Thus, by Eqs. (5.141) and (5.153) 
and the linearity property (5 .49) , we obtain 

1 
u(t) ++ .m'J(w) +--:-

JW 

I u(t) 

• I' • + 
0 t 0 t 

Fig. 5-25 Unit step function and its even and odd components . 

5.31. Prove the time convolution theorem (5.58); that is, 

By definitions (2.6) and (5.31), we have 

Changing the order of integration gives 

Bi'[x1(t) * x2 (t)] = J~,, x1 (r) [J~,, x 2(t - r) e- Jwt dt] dr 

By the time-shifting property (5.50) 

Thus, we have 

Bi'[x1(t)*x2 (t)] = J~00 x1 (r)X2 (w)e-Jw• dr 

= [ J~,, x1 (r) e- Jw• dr] X2 (w) = X 1 (w)X2 (w) 

Hence, 

~ sgn(t) 

1 

2 

0 1 
- 2 
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5.32. Using the time convolution theorem (5.58), find the inverse Fourier transform of X(w) = ll(a + jw) 2• 

From Eq. (5.45) we have 

Now 

e-atu(t)--1-
a + jw 

X(w)= 1 =(-1-)(-1-) 
(a+ jw)2 a+ jw a+ jw 

Thus, by the time convolution theorem (5.58) we have 

x(t) = e -atu(t) * e -atu(t) 

= J~.,,e-aTu('r)e-a(t-T)u(t - T) d-r 

=e-at J~d-r=te-a1u(t) 

Hence, 

5.33. Verify the integration property (5.57); that is, 

I t 1 
x(-r) d-r - .irX(0)'5(w) +-. X(w) 

-oo JW 

From Eq. (2.60) we have 

f .. x(-r) d-r = x(t) * u(t) 

Thus, by the time convolution theorem (5.58) and Eq. (5.154), we obtain 

.¥[x(t) * u(t)] = X(w)[.m5(w) + ~1 = nX(w) <'l(w) + ~X(w) 
JW JW 

1 
= nX(O)<'l(w) +--;-X(w) 

JW 

since X(w)<'l(w) = X(O)<'l(w) by Eq. (l.25). Thus, 

[f 00 x(-r)d-r]-nX(O)<'l(w)+ j~ X(w) 

5.34. Using the integration property (5.57) and Eq. (l.31), find the Fourier transform of u(t). 

From Eq. (l.31) we have 

Now from Eq. (5.140) we have 

<'l(t) - 1 

Setting x( -r) = Cl( -r) in Eq. (5 .57), we have 

x(t) = <'l(t) - X(w) = 1 and X(O) = 1 

and 

I t 1 
u(t) = <'l(-r) d-r - n<'l(w) +--:-

-oo JW 

(5.155) 

(5.156) 
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5.35. Prove the frequency convolution theorem (5.59); that is, 

By definitions (5.31) and (5.32) we have 

gi[x1 (t)x2 (t)] = J~"' x1 (t)x2 (t) e- jrut dt 

= J"' [-1 J"' X (A.)ejAtdA.]x (t)e-jrutdt 
-oo 2n -oo I 2 

=-1 J"' X1(A.) [J"' Xz(t)e-j(ru-}..)tdt]dA. 
2n - 00 - 00 

Hence, 

5.36. Using the frequency convolution theorem (5.59), derive the modulation theorem (5.148). 

From Eq. (5.144) we have 

By the frequency convolution theorem (5.59) we have 

1 
x(t) cos w0t ++-X(w) * [ nb(w- w0 ) + nb(w + ro0 )] 

2n 
1 1 

= -X(w- w0 ) +-X(w + OJo) 
2 2 

The last equality follows from Eq. (2.59). 

5.37. Verify Parseval's relation (5.63); that is, 

I "' 1 Joo x1(t)x2(t)dt=- X1(w)X2(-w)dw -oo 2:rc -oo 
From the frequency convolution theorem (5.59) we have 

that is, 

Setting OJ= 0, we get 

By changing the dummy variable of integration, we obtain 

I "' 1 J"' x1(t)x2(t)dt=- X1(w)X2(-w)dw 
-oo 2n -oo 
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5.38. Prove Parseval's identity [Eq. (5.64)] or Parseval's theorem for the Fourier transform; that is, 

Joo 2 1 J°" 2 
_ 00 lx(t)I dt= 2:rr _00 IX(w)I dw 

By definition (5.31) we have 

~{x*(t)}= J~00 x*(t)e-jwt dt 

= [f~00 x(t)ejwtdrf = X*(-w) 

where * denotes the complex conjugate. Thus, 

x*(t) ++ X*(-w) 

Setting x 1(t) = x(t) and xif) = x*(t) in Parseval's relation (5.63), we get 

I "' 1 J"' _ 00 x(t)x*(t)dt= 2n _00 X(w)X*(w)dw 

or 

I "' 2 1 J"' 2 _Jx<t)I dt= 21r _ 00 IX(w)I dw 

5.39. Show that Eq. (5.61a); that is, 

X*(w) = X(-w) 

is the necessary and sufficient condition for x( t) to be real. 

By definition (5.31) 

If x(t) is real, then x* (t) = x(t) and 

X*(w)= [f~00 x(t)e-jwr dtf = f~00 x*(t)ejwr dt 

= J~00 x(t)ejwtdt=X(-w) 

(5.157) 

Thus, X* (w) = X(-w) is the necessary condition for x(t) to be real. Next assume that X*(w) = X(-w). From the 
inverse Fourier transform definition (5.32) 

1 J"' 't x(t) = - X(w)e1w dw 
2n -oo 

Then 

x*(t)=[-1 J"' X(w)ejwtdw]* =-1 J"' X*(w)e-jwtdw 
2n -oo 2n -oo 

=-1-J"' X(-w)e-jwtdw=-1-J"' X(A.)ejAldA.=x(t) 
2n -oo 2n -oo 

which indicates that x(t) is real. Thus, we conclude that 

X*(w) = X(-w) 

is the necessary and sufficient condition for x(t) to be real. 

5.40. Find the Fourier transforms of the following signals: 

(a) x(t) = u( - t) 

(b) x(t) = ea1u(-t), a> 0 
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From Eq. (5.53) we have 

x(-t) - X(-w) 

Thus, if x(t) is real, then by Eq. (5.6la) we have 

(a) From Eq. (5.154) 

x(-t) ++X(-w) = X*(w) 

1 
u(t) ++ :rrb(w) + -

jw 

Thus, by Eq. (5.158) we obtain 

(b) From Eq. (5.155) 

Thus, by Eq. (5.158) we get 

1 
u(-t) ++ :rrb(w)- -

jw 

e-atu(t)++-1-
a+ jw 

eatu(-t) ++-1-__ 
a - JW 

5.41. Consider a real signal x(t) and let 

X(w) = .'F[x(t)] = A(w) + jB(w) 

and 

x(t) = x.(t) + xp) 

where x.(t) and xp) are the even and odd components of x(t), respectively. Show that 

From Eqs. (1.5) and (1.6) we have 

x.(t) -A(w) 

xp) - jB(w) 

1 
x.(t) = -[x(t) + x(-t)] 

2 
1 

x0 (t) = -[x(t)- x(-t)] 
2 

Now if x(t) is real, then by Eq. (5.158) we have 

x(t) ++ X( w) = A( w) + jB( w) 

x( - t) ++ X( - w) = X*( w) = A( w) - jB( w) 

Thus, we conclude that 

1 1 
xe(t) ++ -X(w) +-X* (w) = A(w) 

2 2 

x0 (t)++_!..X(w)-.!..X*(w)= jB(w) 
2 2 

(5.158) 

(5.159) 

(5.160) 

(5.161a) 

(5.161b) 

Equations (5.16la) and (5.16lb) show that the Fourier transform of a real even signal is a real function of w, and 
that of a real odd signal is an imaginary function of w, respectively. 
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5.42. Using Eqs. (5.161a) and (5.155), find the Fourier transform of e-al ti (a> 0). 

From Eq. (5.155) we have 

-at() 1 a . w e ut ++--=----1---
a + jw a2 + w2 a2 + w2 

By Eq. (1.5) the even component of e-01 u(t) is given by 

Thus, by Eq. (5.161a) we have 

or 

.!..e-altl ++Re(-1-)=-a-
2 a+ jw a2 +w2 

-altl 2a e ++---
a2 +w2 

which is the same result obtained in Prob. 5.21 [Eq. (5.138)]. 

5.43. Find the Fourier transform of a Gaussian pulse signal 

x(t) = e-at' a>O 

By definition (5.31) 

Taking the derivative of both sides of Eq. (5.162) with respect tow, we have 

dX(w) _ ·J" -at2 -jwt d ----1 te e t 
dw -oo 

Now, using the integration by parts formula 

and letting 

we have 

and 

(3 1(3 (3 
faudv=uv a -fa vdu 

u = e-jwt and 

du= - jwe -jwt dt and 

dv = te -at2 dt 

1 -at2 
v=--e 

2a 

Joo at2 . t 1 2 . I" (J) I" 12 . t te - e - Jw dt = - - e -at e - Jwt - j - e -a e - Jw dt 
-oo 2a -oo 2a -oo 

- - • (J) J" -at2 - jwt dt - 1- e e 
2a -oo 

since a > 0. Thus, we get 

dX(w) = -~X(w) 
dw 2a 

(5.162) 
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Solving the above separable differential equation for X(w), we obtain 

2 
X(w) = Ae- w 14a 

••• 
(5.163) 

where A is an arbitrary constant. To evaluate A, we proceed as follows. Setting w = 0 in Eq. (5.162) and by a 
change of variable, we have 

Joo - a/2 J oo - a/2 2 Joo - ).2 ~ X(O) = A = e dt = 2 e dt = - e d)., = -
- oo o .J:i o a 

Substituting this value of A into Eq. (5.163), we get 

(5.164) 

Hence , we have 

e - a 12 , a > 0 ++ ~ e - w214a (5.165) 

Note that the Fourier transform of a Gaussian pulse signal is also a Gaussian pulse in the frequency domain. Fig. 5-26 
shows the relationship in Eq. (5.165). 

X(w) 

x(t) 

0 0 

Fig. 5-26 Gaussian pulse and its Fourier transform . 

Frequency Response 

5.44. Using the Fourier transform, redo Prob. 2.25. 

The system is described by 

y' (t) + 2y(t) = x(t) + x' (t) 

Taking the Fourier transforms of the above equation, we get 

jwY(w) + 2Y(w) = X(w) + jwX(w) 

or 

(jw + 2) f(w) = (I + jw) X (w) 

Hence, by Eq. (5.67) the frequency response H(w) is 

H(w) = Y(w) = l+ jw = 2+ jw - 1 = l - -1_ 
X(w) 2 + jw 2 + jw 2 + jw 
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Taking the inverse Fourier transform of H(w), the impulse response h(t) is 

h(t) = <5(t)- e - 21u(t) 

Note that the procedure is identical to that of the Laplace transform method withs replaced by jro (Prob. 3 .29). 

5.45. Consider a continuous-time LTI system described by 

dy(t) + 2y(t) = x(t) 
dt 

Using the Fourier transform, find the output y(t) to each of the following input signals: 

(a) x(t) = e- 1u(t) 

(b) x(t) = u(t) 

(a) Taking the Fourier transforms of Eq. (5.166), we have 

Hence, 

From Eq. (5.155) 

and 

Therefore, 

(b) From Eq. (5.154) 

jwY(w) + 2Y(w) = X(ro) 

H(w) = Y(w) = _1_ 
X(ro) 2+ jw 

1 
X(ro)=--

1+ jw 

Y(w) = X(w)H(w) = 1 -
(1+ jro)(2 + jw) 1 + jw 2 + jw 

y(t) = (e-t - e-21) u(t) 

1 
X(ro) = nb(w) +-;-

JW 

Thus, by Eq. (5.66) and using the partial-fraction expansion technique, we have 

Y(w) = X(w)H(w) = [n<5(ro) + ~]-1-.­
JW 2 + JW 

= nb(ro)-1- + --1--
2 + jw jw(2 + jw) 

n 1 1 1 1 
= -<5(ro) + -- - ---

2 2 jw 2 2 + jw 

= .!.[nb(ro) + __!__]- .!__l _ 
2 jw 2 2 + jw 

where we used the fact that f(w)b(w) = f(O)b(w) [Eq. (1.25)]. Thus, 

y(t) = .!.u(t)- .!.e-21u(t) = .!.(1- e-21 )u(t) 
2 2 2 

(5.166) 

We observe that the Laplace transform method is easier in this case because of the Fourier transform of u(t). 
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5.46. Consider the LTI system in Prob. 5.45. If the input x(t) is the periodic square waveform shown in Fig. 5-27, 
find the amplitude of the first and third harmonics in the output y(t). 

x(t) 

10 

- 2 - 1 0 2 3 4 

Fig. 5-27 

Note that x(t) is the same x(t) shown in Fig. 5-8 [Prob. 5.5] . Thus, setting A = 10, T0 = 2, and% = 2:rr/T0 = :rrin 
Eq. (5.106), we have 

Next, from Prob. 5.45 

x(t) = 5 + ..!.Q. f _1_ej(2m + l)m 

j:rr m=- 00 2m + 1 

1 1 
H(w) = -- --+ H(kw0 ) = H(k:rr) = --

2 + jw 2 + jk:rr 

Thus, by Eq. (5.74) we obtain 

Let 

y(t) = 5H(O)+..!.Q. f - 1-H[(2m+l):rr]ej(Zm +l)Jrt 
j:rr m=-oo 2m + 1 

= ~ + ..!.Q. f 1 ej(2m+l)Jrt 
2 j:rr m=-oo (2m + 1)[2 + j(2m + l):rr] 

00 

y(t) = :L dkejkwcf 

k =-00 

The harmonic form of y(t) is given by [Eq. (5 .15)] 

00 

y(t) = D0 + :L Dk cos(kmot - <Pk) 
k = I 

(5.167) 

where Dk is the amplitude of the kth harmonic component of y(t). By Eqs. (5.11) and (5.16), Dk and dk are related by 

Thus, from Eq. (5.167), with m = 0, we obtain 

With m = I, we obtain 

D1 = 2id1 1= 21. 10. 1= 1.71 
J:rr(2 + J:Tr) 

D = 2 d = 2 = 0.22 I 10 I 3 I 31 j:rr(3)<2 + j 3:rr) 

(5.168) 



... CHAPTERS Fourier Analysis of Continuous-Time 

5.47. The most widely used graphical representation of the frequency response H(w) is the Bode plot in 
which the quantities 20 log10 I H( w) I and OJ w) are plotted versus w, with w plotted on a logarithmic 
scale. The quantity 20 log10 I H(w) I is referred to as the magnitude expressed in decibels (dB), denoted 
by I H(w) I dB" Sketch the Bode plots for the following frequency responses: 

(a) H(w) = 1 + jw 
10 

1 
(b) H(w)----

1 + jw/100 

(c) H(w) = 10\1 + jw) 
(10 + jw )(100 + jw) 

(a) IH(w)ldB = 20 log10 I H(w)I = 20log10 11 + j ~I 

For w « 10, 

as w--+ 0 

For w » 10, 

asro--+O 

On a log frequency scale, 20 log10(ro/10) is a straight line with a slope of 20 dB/decade (a decade is a 10-to-1 
change in frequency). This straight line intersects the 0-dB axis at w = 10 [Fig. 5-28(a)]. (This value of w is 
called the comer frequency.) At the comer frequency w = 10 

H(lO) Ids= 20 log10 l l + jl I = 20 log10v'2"" 3 dB 

The plot of IH(ro) Ids is sketched in Fig. 5-28(a). Next, 

Then 

8y(w)= tan- 1 ~--+0 
10 

() ( ) -1 (I} 1r 
yro=tan ---+-

10 2 

asro--+O 

as w--+ oo 

At w = 10, ()H(lO) = tan- 1 1 = n/4 radian (rad). The plot of ()H(w) is sketched in Fig. 5-28(b). Note that the 
dotted lines represent the straight-line approximation of the Bode plots. 

(b) IH(w)ldB =20log10 1 .
1 l=-20log10 11+ j~1 

1 + ]W/100 100 

For w « 100, 

asro--+O 

For w » 100, 

I H(ro)ldB = -20 log10 11- j~i--+-20 log10 ( ~) 
100 100 

as ro--+ oo 
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(a) 
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~ 

Fig. 5-28 Bode plots. 
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On a log frequency scale - 20 log 10(w/100) is a straight line with a slope of - 20 dB/decade. This straight 
line intersects the 0-dB axis at the comer frequency w = 100 [Fig. 5-29(a)]. At the corner frequency w = 100 

H(lOO)lds = - 20log 10 Vz ~ - 3dB 

The plot of I H(w) I dB is sketched in Fig. 5-29(a). Next, 

Then 

(}H(w) = - tan- 1 ~ -+O 
100 

(} ( ) - I W Jr 
H w =-tan --+ - -

100 2 

asw-+O 

asw-+oo 

At w = 100, (JH(lOO) = - tan- 1 1 = - n/4 rad. The plot of (}H(w) is sketched in Fig . 5-29(b). 

(c) First, we rewrite H(w) in standard form as 

ID .., 

l 

H(w) = 10(1 + jw) 
(1 + jw/10)(1 + jw/100) 

Then 

I H(w) lcts = 20 log10 10 + 20log 10 1 t + jw I 

- 20 log IO 11+ j ~ I-20 log IO 11 + j 1 ~ I 
Note that there are three corner frequencies , w = 1, w = 10, and w = 100. At comer frequency w = 1 

20 

10 

0 

- 10 

- 20 

- 30 

- 40 

H(l)lcts = 20+ 20log 10 ..f2 - 201og 10 Jiill - 20logIO.Jl.0001~23dB 

10 

. . ,_,... 
~ K 

~ 

- 201091011 +j~ I 
100 

100 
oo(rad/s) 

(a) 

~ 
~ 

"r--. !'-

"' 
1000 

""" I' 
'" 'r- ' 
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n/2 

n/4 

~ 0 
<D ~ . 

- n/4 

- n/2 

10 

At corner frequency w = 10 

~ ~ i.:.-= i:-c~ 
- tan - 1(ro/100) 

... ~ 
~ 

100 
ro(rad/s) 

(b) 

Fig. 5-29 Bode plots. 

I 

~ ~ I""-r--i-. .. ... .. '"r--._ •• 

1000 

H(IO)lcts = 20 + 20 log 10 .JiOl - 20 logI0 viz - 20 logI0 J1fil""' 37 dB 

At corner frequency w = 100 

H(IOO)lcts = 20 + 20 log Io '110,001 - 20 logI0 .JiOl - 20 log Io viz""' 37 dB 

••• 

The Bode amplitude plot is sketched in Fig. 5-30(a). Each term contributing to the overall amplitude is also 
indicated. Next, 

Then 

and 

asw-+O 

:n; :n; :n; :n; 
(JH(w) = -+- - - - - = - -

2 2 2 2 
as w-+ oo 

(JH(I) = tan- 1(1) - tan- 1 (0.1) - tan- I (O.Ql) = 0.676 rad 

(JH(IO) = tan- 1 (10) - tan- 1(1) - tan- I (0.1) = 0.586 rad 

(JH(IOO) = tan- I( JOO) - tan- 1(10) - tan- I (I) = - 0.696 rad 

The plot of (JH(w) is sketched in Fig. 5-30(b). 
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5.48. An ideal (-:rc/2) radian (or - 90°) phase shifter (Fig. 5-31) is defined by the frequency response 

{
e -j(,.12) 

Hw= 
( ) ej(,.12) 

w>O 

w<O 

Fig. 5-31 -n/2 rad phase shifter. 

(a) Find the impulse response h(t) of this phase shifter. 

( b) Find the output y( t) of this phase shifter due to an arbitrary input x( t). 

(c) Find the output y(t) when x(t) = cos Wat. 

(a) Since e-i"12 = -j and ei"12 = j, H(w) can be rewritten as 

where 

Now from Eq. (5.153) 

H( w) = - j sgn( ro) 

sgn(ro)={-~ (J) > 0 

(J) < 0 

2 
sgn(t) ++-:-

}OJ 

and by the duality property (5.54) we have 

or 

2 
- ++ 2:rr sgn(-ro) = -2:rr sgn(ro) 
jt 

_!_ ++ - j sgn(ro) 
1rt 

since sgn(ro) is an odd function of w. Thus, the impulse response h(t) is given by 

(b) By Eq. (2.6) 

h(t) = g;-- 1[H(ro)] = g;-- 1[- j sgn(ro)] = _!__ 
nt 

1 1 J'° X(T) y(t)=x(t)*-=- --d-r 
lrt 1r -oo t - T 

(5.169) 

(5.170) 

(5.171) 

(5.172) 

(5.173) 

(5.174) 

The signal y(t) defined by Eq. (5.174) is called the Hilbert transform of x(t) and is usually denoted by x(t). 

(c) From Eq. (5.144) 

Then 

cos Wat++ Jt[<5(ro - we) + <5(ro + %)] 

Y(w) = X(w)H(w) = n[<5(ro- OJo) + <5(ro +mo)][- j sgn(ro)] 

= - j:rr sgn(roo)<5(ro - mo)- j:rr sgn(-roo)<5(ro + OJo) 

= - j:rr<'5(w- OJo) + jn<'5(w + OJo) 
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since sgn(%) = 1 and sgn(-%) = -1. Thus, from Eq. (5.145) we get 

y(t) =sin u1af 

Note that cos(o'of - :n:/2) = sin Wot. 

5.49. Consider a causal continuous-time LTI system with frequency response 

H(w) = A(w) + jB(w) 

Show that the impulse response h(t) of the system can be obtained in terms of A(w) or B(w) alone. 

Since the system is causal, by definition 

h(t) = 0 t < 0 

Accordingly, 

h(-t) = 0 t > 0 

Let 

h(t) = h.(t) + h/t) 

where h.(t) and h0 (t) are the even and odd components of h(t), respectively. Then from Eqs. (1.5) and (1.6) we 
can write 

h(t) = 2h.(t) = 2h0 (t) 

From Eqs. (5.61b) and (5.61c) we have 

h,(t) ...... A(w) and 

Thus, by Eq. (5.175) 

h(t) = 2h.(t) = 28f- 1[A(w)] t > 0 

h(t) = 2h0 (t) = 28f- 1[jB(w)] t > 0 

Equation (5.l 76a) and (5.176b) indicate that h(t) can be obtained in terms of A(w) or B(w) alone. 

5.50. Consider a causal continuous-time LTI system with frequency response 

H(w) = A(w) + jB(w) 

(5.175) 

(5.l 76a) 

(5.l 76b) 

If the impulse response h(t) of the system contains no impulses at the origin, then show thatA(w) and 
B( w) satisfy the following equation: 

A(w) =_!_Joo B(}.) d}. 
:n: -oo (J) - }. 

(5.177a) 

B(w)=-_!_f"" A(}.) d}. 
:n: -oo (J) - }. 

(5.177b) 

As in Prob. 5.49, let 

h(t) = h.(t) + h0 (t) 

Since h(t) is causal, that is, h(t) = 0 fort< 0, we have 
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Also from Eq. (5 .175) we have 

Thus, using Eq. (5.152), we can write 

h.(t) = h0 (t) sgn(t) 

h/t) = h.(t) sgn(t) 

Now, from Eqs. (5.61b), (5.61c), and (5.153) we have 

h.(t) ...... A(OJ) 
2 

sgn(t) ...... -:--
}OJ 

Thus, by the frequency convolution theorem (5.59) we obtain 

1 . 2 1 1 1 f 00 B().) 
A(OJ)= -JB(OJ)*-;--= -B(OJ)*- = - --d). 

2n ]OJ n OJ n - 00 OJ - ). 

and 

jB(OJ)= _l A(OJ)*~= -j.!..A(OJ)*_!.. 
2n ]OJ n OJ 

or 

B(OJ) = -.!..A(OJ) * _!.. = _ _!_ f 00 A().) d). 
n OJ n -oo OJ - ). 

(5.l 78a) 

(5.l 78b) 

Note that A(OJ) is the Hilbert transform of B(OJ) [Eq. (5.174)] and that B(OJ) is the negative of the Hilbert transform 
of A(OJ). 

5.51. The real part of the frequency response H( w) of a causal LTI system is known to be m5( w). Find the 
frequency response H(w) and the impulse function h(t) of the system. 

Let 

H(OJ) = A(OJ) + jB(OJ) 

Using Eq. (5.177b), with A(OJ) = m5(0J), we obtain 

B(OJ) =-.!..Joo m5().) d). =-Joo c5().)_1 _d). = _ _!_ 
n - 00 0J-). -oo OJ-A OJ 

Hence, 

H(OJ) = nc5(0J)- j.!.. = nc5(0J) + ~ 
OJ }OJ 

and by Eq. (5.154) 

h(t) = u(t) 

Rlterlng 

5.52. Consider an ideal low-pass filter with frequency response 

H(w)={~ 
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The input to this filter is 

(a) Find the output y(t) for a < we. 

(b) Find the output y(t) for a > we. 

x(t) =sin at 
:flt 

(c) In which case does the output suffer distortion? 

(a) From Eq. (5.137) (Prob. 5.20) we have 

sin at {1 x(t)= ---X(w)= p (w)= 
:rrt a 0 

Then when a < we, we have 

Thus, 

(b) When a > we, we have 

Thus, 

Y(w) = X(w)H(w) = X(w) 

sin at 
y(t) = x(t) = --

:rrt 

Y(w) = X(w)H(w) = H(w) 

( ) - h( ) _ sin wet yt-t---
:rrt 

lwl<a 
lwl>a 

(c) In case (a), that is, when we > a, y(t) = x(t) and the filter does not produce any distortion. In case (b), that is, 
when we < a, y(t) = h(t) and the filter produces distortion. 

5.53. Consider an ideal low-pass filter with frequency response 

H(w)={~ 
The input to this filter is the periodic square wave shown in Fig. 5-27. Find the output y(t). 

Setting A= 10, T0 = 2, and%= 2:rr/T0 = :rrin Eq. (5.107) (Prob. 5.5), we get 

x(t) = 5 + 20 (sin :rrt +_!_sin 3:rrt +_!_sin 5:rrt + · · ·) 
:rr 3 5 

Since the cutoff frequency we of the filter is 4:rr rad, the filter passes all harmonic components of x(t) whose angular 
frequencies are less than 4:rr rad and rejects all harmonic components of x( t) whose angular frequencies are greater 
than 4:rr rad. Therefore, 

() 5 20. 20.3 yt= +-sm:rrt+-sm :rrt 
:rr 3:rr 

5.54. Consider an ideal low-pass filter with frequency response 

H(w)={~ 
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The input to this filter is 

x(t) = e-21u(t) 

Find the value of wc such that this filter passes exactly one-half of the normalized energy of the input 
signal x( t). 

From Eq. (5.155) 

Then 

1 
X(ro)=--

2 + jw 

The normalized energy of x(t) is 

Joo 2 ( 00 -4t 1 
Ex= _00 lx(t)I dt= Joe dt= 4" 

Using Parseval's identity (5.64), the normalized energy of y(t) is 

J oo 2 1 Joo 2 1 Jwc dw E = IY(t)I dt=- IY(w)I dw=- --
Y -oo 21f -oo 21f -we 4 + OJ2 

from which we obtain 

OJc =tan~= 1 
2 4 

and wc = 2 rad/s 

5.55. The equivalent bandwidth of a filter with frequency response H(w) is defined by 

1 roo 2 weq = J, I H(w)I dw 
IH(w)l2 o 

max 

(5.179) 

where I H( w) I max denotes the maximum value of the magnitude spectrum. Consider the low-pass RC 
filter shown in Fig. 5-6(a). 

(a) Find its 3-dB bandwidth W3 dB" 

(b) Find its equivalent bandwidth W eq· 

(a) From Eq. (5.91) the frequency response H(w) of the RC filter is given by 

H(w)- l 
1 + jwRC 1 + j(wlroo) 

where%= I/RC. Now 

IH(ro)I= 1 
[l + (rotroo)2]112 

The amplitude spectrum IH(ro) I is plotted in Fig. 5-6(b). When w = % = I/RC, IH(mo) I = l!v'2. Thus, 
the 3-dB bandwidth of the RC filter is given by 

1 
W3dB =wo =­

RC 
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(b) From Fig. 5-6(b) we see that IH(O) I = 1 is the maximum of the magnitude spectrum. Rewriting H(w) as 

H(w) - l 
1 + jwRC RC l /RC + jw 

and using Eq. (5.179), the equivalent bandwidth of the RC filter is given by (Fig. 5-32) 

1 r°" dw 1 jf jf 

Weq = (RC)2 Jo (l / RC)2 + w2 = (RC)2 2 /RC = 2RC 

IH(w)l2 

0 (J) 

Fig. 5-32 Filter bandwidth . 

5.56. The risetime t, of the low-pass RC filter in Fig. 5-6(a) is defined as the time required for a unit step 
response to go from 10 to 90 percent of its final value. Show that 

0.35 
t =--
r iJdB 

where f 3 dB = W3 ctB/2:rr = 1 /2:rrRC is the 3-dB bandwidth (in hertz) of the filter. 

From the frequency response H(w) of the RC filter, the impulse response is 

h(t) = - 1-e- rtRc u(t) 
RC 

Then, from Eq. (2.12) the unit step response s(t) is found to be 

s(t) = f 1 h(r)dT = J1- 1-e- TIRC dT = (1 - e - t /RC)u(t) 
o ORC 

which is sketched in Fig . 5-33 . By definition of the risetime 

where 
s(t,) = 1 - e - r1 1Rc = 0.1 -+ e - r1 !RC = 0.9 

s(t2) = 1 - e - r2 !RC = 0.9-+ e - r2!RC = 0.1 

Dividing the first equation by the second equation on the right-hand side, we obtain 

eU2 - t1) !RC = 9 

and 

t, = t2 - t 1 = RC ln(9) = 2.197RC = 2·197 = 0.35 
2nf3ctB fJctB 

which indicates the inverse relationship between bandwidth and risetime. 
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s(t) 

0.9 

----- t, ----

Fig. 5-33 

5.57. Another definition of bandwidth for a signal x(t) is the 90 percent energy containment bandwidth W 90 , 

defined by 

where Ex is the normalized energy content of signal x(t). Find the W 90 for the following signals: 

(a) x(t) = e - at u(t), a> 0 

(b) x(t) =sin at 
!Ct 

(a) From Eq. (5.155) 

From Eq. (l.14) 

Now, by Eq. (5.180) 

x(t) = e- 01u(t)++ X(w) = _l_ 
a+ jw 

f "' I 12 f "' - 2a1 1 Ex = _00 x(t) dt = 0 e dt = Za 

_!_ r%ol X(w)l2dw = _!_JW90 ~= _!_tan- I (W90) = 0.9_!_ 
n Jo n o a2 + w2 an a 2a 

from which we get 

Thus, 

(b) From Eq. (5.137) 

w90 = a tan(0.45n) = 6.31a rad/s 

sin at {I x(t) = --++ X(w) = p (w) = 
:Jrt a 0 

lwl < a 

lwl > a 

(5.180) 
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Using Parseval's identity (5.64), we have 

1 Joo 2 1 J,oo 2 1 J,a a Ex=- IX(ro)I dt=- IX(ro)I dw=- dw=-
21f -00 1f 0 1f 0 1f 

Then, by Eq. (5.180) 

from which we get 

w90 = 0.9a rad/s 

Note that the absolute bandwidth of x(t) is a (radians/second). 

5.58. Let x(t) be a real-valued band-limited signal specified by [Fig. 5-34(b)] 

X(w) = 0 

Let x.(t) be defined by 

00 

xs(t) = x(t)bT,(t) = x(t) ,L b(t - kT,) (5.181) 
k=-00 

(a) Sketch x.(t) for T, < :rc/wM and for T, > :rc/wM. 

(b) Find and sketch the Fourier spectrum X.(w) of x.(t) for T, < :rc/wM and for T, > :rc/wM. 

(a) Using Eq. (l.26), we have 

00 

x,(t) = x(t)i5r/t) = x(t) ~ <5(t - kT,) 
k=-00 

00 00 

= ~ x(t)i5(t - kT,) = ~ x(kT,) <5 (t - kT,) (5.182) 
k=-00 k=-00 

The sampled signal x,(t) is sketched in Fig. 5-34(c) for T, < 7rlwM, and in Fig. 5-34(1) for T, > 7rlwM. 

The signal x,(t) is called the ideal sampled signal, T, is referred to as the sampling interval (or period), and 
f. = llT. is referred to as the sampling rate (or frequency). 

(b) From Eq. (5.147) (Prob. 5.25) we have 

00 

<5r.(t)++w, ~ <5(ro- kw8 ) 

k=-00 

21f 
OJ=-

s Ts 

Let 

x.(t) ++ X,(ro) 

Then, according to the frequency convolution theorem (5.59), we have 

X,(ro) = ~[x(t)i5r.(t)] = 2~[ X(ro) * w, k~oo <5(ro - kw,)] 

1 00 

=T ~ X(ro)*<5(ro-kro,) 
S k=-oo 
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Using Eq. (l.26), we obtain 

1 "' 
X, (w) = T ~ X(w - kw,) 

s k =- 00 

(5.183) 

which shows that Xs( w) consists of periodically repeated replicas of X( w) centered about kws for all k. The 

Fourier spectrum X,(w) is shown in Fig. 5-34(!) for T, < mwM (or w, > 2wM) , and in Fig. 5-34(j) for Ts> nlwM 

(or ws < 2wM), where ws = 2n!T,. It is seen that no overlap of the replicas X(w - kw,) occurs in X.(w) for 

ws ;:o: 2wM and that overlap of the spectral replicas is produced for ws < 2wM. This effect is known as aliasing. 

r£ ~ .----__ ...._______,___~-~ 
O ro - roM 0 WM 

(a) (b) 

I 
i "'l' r, 1111 

I 
- ro 0 ro s s 

(c) (d) 

(e) (f) 

(h) 

~. 
- 2ros - ros j 0 j ros 2ros ro 

(i) - roM (j) roM 

Fig. 5-34 Ideal sampling. 
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5.59. Let x(t) be a real-valued band-limited signal specified by 

X(w)=O 

Show that x(t) can be expressed as 

x(t) = f x(kT,) sin wM (t - kT,) 
k=-oo WM (t - kT.) 

where T, = :rd wM. 

Let 

x(t) ...... X( w) 

x,(t) = x(t)l>T, (t) ...... X,( w) 

From Eq. (5.183) we have 

00 

T,X,(w)= ~ X(w- kw,) 
k=-00 

Then, under the following two conditions, 

(1) X(w) = 0, I w I> wM and 
1r 

(2) T,=-

we see from Eq. (5.185) that 

1r 
X(w) = -X,(w) 

WM 

Next, taking the Fourier transform of Eq. (5.182), we have 

00 

X,(w)= ~ x(kT,)e-jkT,w 
k=-00 

Substituting Eq. (5.187) into Eq. (5.186), we obtain 

X ( w) = ..!!...._ ~ x( kT, )e - jkT,w 
WM k=-oo 

Taking the inverse Fourier transform of Eq. (5.188), we get 

x(t) = - 1-J00 X(w)ejwt dw 
2n - 00 

= _l_JwM ~ x(kT,)ejw(t-kT,) dw 
2wM -wM k=-oo 

wM 

= ~ x(kT,)-1-JwM ejw(t-kT,) dw 
~ 2w -wM 

k=-oo M 

(5.184) 

(5.185) 

(5.186) 

(5.187) 

(5.188) 

From Probs. 5.58 and 5.59 we conclude that a band-limited signal which has no frequency components higher 

than f M hertz can be recovered completely from a set of samples taken at the rate off, (~ 2f M) samples per second. 

This is known as the uniform sampling theorem for low-pass signals. We refer to T, = nlwM = 1/2/ M (wM = 2n f M) 

as the Nyquist sampling interval and f, = l IT,= 2f Mas the Nyquist sampling rate. 
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5.60. Consider the system shown in Fig. 5-35(a). The frequency response H(w) of the ideal low-pass filter is 
given by [Fig. 5-35(b)] 

{
Ts 

H(w) = TsPwc (w) = O 

Show that if we = w/2, then for any choice of T,, 

x(t) ·f >,(!) ·1 

o~ (t)= I. o(t - kT.i 
s k =-eti 

(a) 

y(mT,) = x(mT,) 

H(ro) 
y(t) • 

m = 0, ::!:: 1, ::!:: 2, ... 

- (JJ 
c 

Fig. 5-35 

From Eq. (5.137) the impulse response h(t) of the ideal low-pass filter is given by 

h(t) = T, sin wet = T,we sin wet 
:Jrt Jr wet 

From Eq. (5.182) we have 

"' 
x,(t) = x(t)O.,., (t) = ,L x(kT,)o(t - kT, ) 

k =-00 

By Eq. (2.6) and using Eqs. (2 .7) and (l.26) , the outputy(t) is given by 

y(t) = x,(t) * h(t) = [k~oo x(kT,)O(t - kT, )l * h(t) 

"' 
= _L x(kT,)[h(t)*O(t - kT,)] 

k =-00 

"' 
= _L x(kT,)h(t - kT,) 

k =-00 

Using Eq. (5.189), we get 

y(t) = f x(kT, ) T,we sin wc<t - kT, ) 

k=-oo n wc<t - kT,) 

If we= w/2, then T,wcln = 1 and we have 

"' y(t) = ,L x(kT, ) sin [w, (t - kT, )/2] 
k=-oo w, (t - kT,)12 

Setting t = mT, (m = integer) and using the fact that w,T, = 2n, we get 

(mT ) = ~ x(kT ) sin n(m - k) 
y s ~ s n(m - k) 

k =-oo 

H(ro) 

0 OJ 

(b) 

(5 .189) 
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Since 

we have 

sin n(m - k) -{O 
n(m - k) 0 

m =l= k 

m = k 

y(mT,) = x(mT,) m = 0 , ±: 1, ±: 2, ... 

which shows that without any restriction on x(t), y(mT.) = x(mT,) for any integer value of m. 

Note from the sampling theorem (Probs . 5.58 and 5.59) that if w .. = 2n!Ts is greater than twice the highest 

frequency present in x(t) and wc = w/2, then y(t) = x(t). If this condition on the bandwidth of x(t) is not satisfied, 

then y(t) =I= x(t). However, if wc = w/2, then y(mTs) = x(mT,) for any integer value of m. 

SUPPLEMENTARY PROBLEMS 

5.61. Consider a rectified sine wave signal x(t) defined by 

x(t) = IA sin ntl 

(a) Sketch x(t) and find its fundamental period. 

(b) Find the complex exponential Fourier series of x(t). 

(c) Find the trigonometric Fourier series of x(t) . 

5.62. Find the trigonometric Fourier series of a periodic signal x(t) defined by 

x(t) = t 2 , - n < t < n and x(t + 2n) = x(t) 

5.63. Using the result from Prob. 5.10, find the trigonometric Fourier series of the signal x(t) shown in Fig. 5-36. 

x(t) 

Fig. 5-36 

5.64. Derive the harmonic form Fourier series representation (5.15) from the trigonometric Fourier series representation (5.8). 

5.65. Show that the mean-square value of a real periodic signal x(t) is the sum of the mean-square values of its harmonics. 

5.66. Show that if 

x(t) ++ X(w) 

then 

d" x(t) 
x<n)(t) = --++ (jw)" X(w) 

dt" 
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5.67. Using the differentiation technique, find the Fourier transform of the triangular pulse signal shown in Fig. 5-37. 

5.68. Find the inverse Fourier transform of 

5.69. Find the inverse Fourier transform of 

x(t) 

A 

- d 0 d 

Fig. 5-37 

X(w) = --1-~ 
(a+ jw)N 

1 
X(w) = ----=---

2 - w2 + j3w 

5.70. Verify the frequency differentiation property (5.56); that is, 

(- jt)x(t)++ dX(w) 
dw 

5. 71. Find the Fourier transform of each of the following signals: 

(a) x(t) = cos %tu(t) 

(b) x(t) = sin Watu(t) 

(c) x(t) = e- ar cos %tu(t), a> 0 

(d) x(t) = e- ar sin Watu(t), a> 0 

5. 72. Let x(t) be a signal with Fourier transform X(w) given by 

Consider the signal 

Find the value of 

X(w) = {~ lwl<l 
lwl>l 

2 
y(t) = d x(t) 

dt 2 

5.73. Let x(t) be a real signal with the Fourier transform X(w). The analytical signal x+(t) associated with x(t) is a 
complex signal defined by 

x+(t) = x(t) + jx(t) 

where x(t) is the Hilbert transform of x(t). 

(a) Find the Fourier transform X+(w) of x+(t). 

(b) Find the analytical signal x+(t) associated with cos Wat and its Fourier transform X+(w). 
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5. 74. Consider a continuous-time LTI system with frequency response H( w). Find the Fourier transform S( w) of the unit 
step response s(t) of the system. 

5.75. Consider the RC filter shown in Fig. 5-38. Find the frequency response H(w) of this filter and discuss the type 
of filter. 

c 

x(t) R 

Fig. 5-38 

5. 76. Determine the 99 percent energy containment bandwidth for the signal 

1 
x(t) =-­

t2 + a2 

+ 

y(t) 

5.77. The sampling theorem in the frequency domain states that if a real signal x(t) is a duration-limited signal, that is, 

x(t) = 0 

then its Fourier transform X(w) can be uniquely determined from its values X(nnltM) at a series of equidistant 
points spaced nltM apart. In fact , X(w) is given by 

X(w) = f x(nn) sin( wt M - nn) 
n=- oo tM wtM - nn 

Verify the above sampling theorem in the frequency domain. 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

5.61. (a) X(t) is sketched in Fig. 5-39 and T0 = 1. 

(b) x(t) = - 2A f __ 1_ejk2:rr 

Jr k =-00 4k2 - 1 

2A 4A ~ 1 (c) x(t) = - - -.L.,-2--cosk2nt 
Jr Jr k = l 4k - 1 

- 1 

x(t) 

0 

Fig. 5-39 

2 
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n 2 00 (-ll 
5.62. x(t)=-+4 ~--2 -coskt 

3 k=l k 

A A 00 l. 
5.63. x(t) = - - - ~ -sm kw 0t 

2 :Jr k=I k 

and use the trigonometric formula cos(A - B) = cos A cos B + sin A sin B. 

5.65. Hint: Use Parseval's identity (5.21) for the Fourier series and Eq. (5.168). 

5.66. Hint: Repeat the time-differentiation property (5.55). 

Ad[ sin(wd/2)]2 
5.67. 

wd/2 

5.68. Hint: Differentiate Eq. (5.155) Ntimes with respect to (a). 

N-1 
_t __ e-atu(t) 
(N-1)! 

5.69. Hint: Note that 

2 - w2 + j3w = 2 + (jw)2 + j3w = (1 + jw)(2 + jw) 

and apply the technique of partial-fraction expansion. 

x(t) = (e-1 -e-21 )u(t) 

5.70. Hint: Use definition (5.31) and proceed in a manner similar to Prob. 5.28. 

5.71. Hint: Use multiplication property (5.59). 

_ n n jw 
(a) X(w)- -2 <5(w - wo) + -<5(w + wo) + . 2 2 

2 (JOJ) +w0 

_ n n Wo 
(b) X(w)--<5(w-OJo)--<5(w+w 0)+ 2 2 

2j 2j (jw) + OJo 

(c) X(w) = a+ jw 
(a+ jw)2 + w~ 

(d) X(w) = OJo 
(a+ jw)2 +w~ 

5.72. Hint: Use Parseval's identity (5.64) for the Fourier transform. 

1/3n 

{
2X(w) 

5.73. (a) X+(w) = 2X(w)u(w) = 0 
(J) > 0 

(J) < 0 

•• 
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5.74. Hint: Use Eq. (2.12) and the integration property (5.57). 

S(ro) = nH(0)6(w) + (1/jro) H(w) 

5.75. H(w) = jw , high-pass filter 
(l /RC) + jw 

5.76. W99 = 2.3/a radians/second or f 99 = 0.366/a hertz 

5.77. Hint: Expand x(t) in a complex Fourier series and proceed in a manner similar to that for Prob. 5.59. 



Fourier Analysis of Discrete-Time 
Signals and Systems 

6.1 Introduction 

In this chapter we present the Fourier analysis in the context of discrete-time signals (sequences) and systems. 
The Fourier analysis plays the same fundamental role in discrete time as in continuous time.As we will see, there 
are many similarities between the techniques of discrete-time Fourier analysis and their continuous-time coun­
terparts, but there are also some important differences. 

6.2 Discrete Fourier Series 

A. Periodic Sequences: 

In Chap. 1 we defined a discrete-time signal (or sequence) x[n] to be periodic if there is a positive integer N for 
which 

x[n + N] = x[n] all n (6.1) 

The fundamental period N0 of x[n] is the smallest positive integer N for which Eq. (6.1) is satisfied. 
As we saw in Sec. 1.4, the complex exponential sequence 

(6.2) 

where Q 0 = 2:rc/N0 , is a periodic sequence with fundamental period N0 . As we discussed in Sec. 1.4C, one very 
important distinction between the discrete-time and the continuous-time complex exponential is that the signals 
ejwo1 are distinct for distinct values of %, but the sequences ejDon, which differ in frequency by a multiple of 
2:rc, are identical. That is, 

Let 

Then by Eq. (6.3) we have 

Q _ 2:rr 
o-­

No 

(6.3) 

k = 0, ± 1, ± 2, .. . (6.4) 

(6.5) 
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and more generally, 

m =integer (6.6) 

Thus, the sequences WJn] are distinct only over a range of N0 successive values of k. 

B. Discrete Fourier Series Representation: 

The discrete Fourier series representation of a periodic sequence x[n] with fundamental period N0 is given by 

No-I 

x[n] = ,L ck ejkOon 

k=O 

where ck are the Fourier coefficients and are given by (Prob. 6.2) 

1 No-I 
ck=- ,L x[n]e-jkOon 

No n=O 

Because of Eq. (6.5) [or Eq. (6.6)], Eqs. (6.7) and (6.8) can be rewritten as 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

where ~k =<No> denotes that the summation is on k ask varies over a range of N0 successive integers. Setting 
k = 0 in Eq. (6.10), we have 

1 
c0 =- )_ x[n] 

No n=\No) 
(6.11) 

which indicates that c0 equals the average value of x[n] over a period. 
The Fourier coefficients ck are often referred to as the spectral coefficients of x[n]. 

C. Convergence of Discrete Fourier Series: 

Since the discrete Fourier series is a finite series, in contrast to the continuous-time case, there are no 
convergence issues with discrete Fourier series. 

D. Properties of Discrete Fourier Series: 

1. Periodicity of Fourier Coefftclents: 
From Eqs. (6.5) and (6.7) [or (6.9)], we see that 

which indicates that the Fourier series coefficients ck are periodic with fundamental period N0 . 

2. Duallty: 

(6.12) 

From Eq. (6.12) we see that the Fourier coefficients ck form a periodic sequence with fundamental period N0 . 

Thus, writing ck as c[k], Eq. (6.10) can be rewritten as 

Let n = -min Eq. (6.13). Then 

c[k] = )_ _l_x[n] e - jkOon 

n=\No)No 
(6.13) 
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Letting k = n and m = k in the above expression, we get 

c[n] = )_ _l_x[- k]ejkOon 

k=\fvo)NO 

•11• 

(6.14) 

Comparing Eq. (6.14) with Eq. (6.9), we see that (l/No)x [-k] are the Fourier coefficients of c[n]. Ifwe adopt 
the notation 

x[n] 
DFS 

ck= c[k] 

to denote the discrete Fourier series pair, then by Eq. (6.14) we have 

c[n] DFS 1 
-x[-k] 
No 

Equation (6.16) is known as the duality property of the discrete Fourier series. 

3. Other Properties: 
When x[n] is real, then from Eq. (6.8) or [Eq. (6.10)] and Eq. (6.12) it follows that 

where * denotes the complex conjugate. 

Even and Odd Sequences: 
When x[n] is real, let 

x[n] = x.[n] + x 0 [n] 

where x.[n] and x)n], are the even and odd components of x[n], respectively. Let 

x[n] DFS 

Then 

DFS 

DFS 

(6.15) 

(6.16) 

(6.17) 

(6.18a) 

(6.18b) 

Thus, we see that if x[n] is real and even, then its Fourier coefficients are real, while if x[n] is real and odd, its 
Fourier coefficients are imaginary. 

E. Parseval's Theorem: 

If x[n] is represented by the discrete Fourier series in Eq. (6.9), then it can be shown that (Prob. 6.10) 

: )_ lx[n11 2 = )_ hl 2 

0 n=\fvo) k=\fvo) 
(6.19) 

Equation (6.19) is called Parseval's identity (or Parseval's theorem) for the discrete Fourier series. 

6.3 The Fourier Transform 

A. From Discrete Fourier Series to Fourier Transform: 

Let x[n] be a nonperiodic sequence of finite duration. That is, for some positive integer N" 

x[n] = 0 
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Such a sequence is shown in Fig. 6-l(a). Let xN [n] be a periodic sequence formed by repeating x[n] with 
fundamental period N0 as shown in Fig. 6-l(b). uZve let N0 -+ oo, we have 

The discrete Fourier series of xN [n] is given by 
0 

where 

c = _1_ ~ x [ n] e - jkQon 
k N No 

0 n = N0 ) 

(6.20) 

(6.21) 

(6.22a) 

Since xN [n] = x[n] for In I :5 N1 and also since x[n] = 0 outside this interval, Eq. (6.22a) can be rewritten as 
0 

1 ~ 1 00 
~ - ;'kQ n ~ - ;'kQ n 

ck =N .L,, x[n]e 0 =N .L,, x[n]e o 
0 n =-N1 0 n =-oo 

(6.22b) 

Let us define X(Q) as 

00 

X(Q)= }: x[n]e- jQn (6.23) 
n =- oo 

Then, from Eq. (6.22b) the Fourier coefficients ck can be expressed as 

(6.24) 

x[n] 

- N1 0 N1 n 

(a) 

-N1 0 n 

(b) 

Fig. 6-1 (a) Nonperiodic finite sequence x[n] ; (b) periodic sequence formed by periodic extension of x[n] . 
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Substituting Eq. (6.24) into Eq. (6.21), we have 

or 

xN [n] = ~ _l_ X(kQ0 ) ejkQon 
o L.,, N 

k=(No ) o 

xNo[n]=-1- L X(kQo)ejkQongo 
27r k=(No ) 

(6.25) 

From Eq. (6.23), X(Q) is periodic with period 2;rand so is ejr>.n. Thus, the product X(Q) ejr>.n will also be periodic 
with period 2;r. As shown in Fig. 6-2, each term in the summation in Eq. (6.25) represents the area of a rectangle 
of height X(kQ0)ejrnon and width Q0 . As N0 -+ oo, Q0 = 2;r/N0 becomes infinitesimal (Q0 -+ 0) and Eq. (6.25) 
passes to an integral. Furthermore, since the summation in Eq. (6.25) is over N0 consecutive intervals of width 
Q0 = 2;r/N0 , the total interval of integration will always have a width 2;r. Thus, as N0 -+ oo and in view ofEq. (6.20), 
Eq. (6.25) becomes 

x[n] = - 1 J X(Q) ejQn dQ 
2;r 2n 

(6.26) 

Since X(Q)ejr>.n is periodic with period 2;r, the interval of integration in Eq. (6.26) can be taken as any interval 
of length 2;r. 

X(Q)eiQn 

- 2n - n 0 2n Q 

Fig. 6-2 Graphical interpretation of Eq. (6.25) . 

B. Fourier Transform Pair: 

The function X(Q) defined by Eq. (6.23) is called the Fourier transform of x[n], and Eq. (6.26) defines the 
inverse Fourier transform of X(Q). Symbolically they are denoted by 

00 

X(Q)=9'{x[n]}= }: x[n]e- jQn 
n =-oo 

x[n] = g;- I {X (Q)} = - 1-J X(Q) ejQn dQ 
2;r 2n 

and we say that x[n] and X(Q) form a Fourier transform pair denoted by 

x[n] ++ X(Q) 

Equations (6.27) and (6.28) are the discrete-time counterparts ofEqs. (5.31) and (5.32). 

C. Fourier Spectra: 

The Fourier transform X(Q) of x[n] is, in general, complex and can be expressed as 

X(Q) = IX(Q)leN1<r>.> 

(6.27) 

(6.28) 

(6.29) 

(6.30) 
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As in continuous time, the Fourier transform X(Q) of a nonperiodic sequence x[n] is the frequency-domain 
specification of x[n] and is referred to as the spectrum (or Fourier spectrum) of x[n]. The quantity IX(Q) I is 
called the magnitude spectrum of x[n], and <j>(Q) is called the phase spectrum of x[n]. Furthermore, if x[n] is real, 
the amplitude spectrum IX(Q) I is an even function and the phase spectrum <j>(Q) is an odd function of Q. 

D. Convergence of X(Q): 

Just as in the case of continuous time, the sufficient condition for the convergence of X(Q) is that x[n] is 
absolutely summable, that is, 

(6.31) 
n=-oo 

E. Connection between the Fourier Transform and the z-Transform: 

Equation (6.27) defines the Fourier transform of x[n] as 

00 

X(Q)= ,L x[n]e-jQn 
n=-oo (6.32) 

The z-transform of x[n], as defined in Eq. (4.3), is given by 

00 

X(z) = ,L x[n] z -n (6.33) 
n=-oo 

Comparing Eqs. (6.32) and (6.33), we see that if the ROC of X(z) contains the unit circle, then the Fourier trans­
form X(Q) of x[n] equals X(z) evaluated on the unit circle, that is, 

X(Q) = X(z) I z ~ ejQ (6.34) 

Note that since the summation in Eq. (6.33) is denoted by X(z), then the summation in Eq. (6.32) may be 
denoted as X(ej°'). Thus, in the remainder of this book, both X(Q) and X(ej°') mean the same thing whenever we 
connect the Fourier transform with the z-transform. Because the Fourier transform is the z-transform with z = 

ej°', it should not be assumed automatically that the Fourier transform of a sequence x[n] is the z-transform with 
z replaced by ej°'. If x[n] is absolutely summable, that is, if x[n] satisfies condition (6.31), the Fourier transform 
of x[n] can be obtained from the z-transform of x[n] with z = ej°' since the ROC of X(z) will contain the unit 
circle; that is, I ej°' I = 1. This is not generally true of sequences which are not absolutely summable. The 
following examples illustrate the above statements. 

EXAMPLE 6 .1 Consider the unit impulse sequence {J [ n] . 

From Eq. (4.14) the z-transform of {J[n] is 

2{{J[n]}=1 all z 

By definitions (6.27) and (l.45), the Fourier transform of {J[n] is 

00 

5'{{J[n]}= ,L fJ[n]e-jQn =l 
n=-oo 

(6.35) 

(6.36) 

Thus, the z-transform and the Fourier transform of {J [n] are the same. Note that {J [n] is absolutely summable and 
that the ROC of the z-transform of {J [n] contains the unit circle. 

EXAMPLE 6.2 Consider the causal exponential sequence 

x[n] = anu[n] a real 

From Eq. (4.9) the z-transform of x[n] is given by 

1 
X(z) = 1 1-az-
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Thus, X(ejQ) exists for I a I < 1 because the ROC of X(z) then contains the unit circle. That is, 

lal<l 

Next, by definition (6.27) and Eq. (1.91) the Fourier transform of x[n] is 

00 00 00 

X(Q)= ,L anu[n]e-jQn = ,L ane-jQn = ,L (ae-jQt 

n=-oo n=O n=O 

1 

Thus, comparing Eqs. (6.37) and (6.38), we have 

Note that x[n] is absolutely summable. 

EXAMPLE 6.3 Consider the unit step sequence u[n]. 

From Eq. (4.16) the z-transform of u[n] is 

1 
3{u[n]} = -1 _1 

-z 
lzl> 1 

•11• 

(6.37) 

(6.38) 

(6.39) 

The Fourier transform of u[n] cannot be obtained from its z-transform because the ROC of the z-transform of 
u[n] does not include the unit circle. Note that the unit step sequence u[n] is not absolutely summable. The 
Fourier transform of u[n] is given by (Prob. 6.28) 

1 
.'ffe"{u[n]}=.irb(Q)+ -·g 

1-e 1 
(6.40) 

6.4 Properties of the Fourier Transform 

Basic properties of the Fourier transform are presented in the following. There are many similarities to and sev­
eral differences from the continuous-time case. Many of these properties are also similar to those of the z-trans­
form when the ROC of X(z) includes the unit circle. 

A. Periodicity: 

X(Q + 2.ir) = X(Q) (6.41) 

As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of Q (radians) only 
over the range 0 ::5 Q < 2.ir or - .ir ::5 Q < .ir, while in the continuous-time case we have to consider values of 
w (radians/second) over the entire range -oo < w < oo. 

B. Linearity: 

(6.42) 

C. Time Shifting: 

(6.43) 

D. Frequency Shifting: 

(6.44) 
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E. Conjugation: 

x*[n] - X*(-Q) (6.45) 

where * denotes the complex conjugate. 

F. Time Reversal: 

x[-n] - X(-Q) (6.46) 

G. Time Scaling: 

In Sec. 5.4D the scaling property of a continuous-time Fourier transform is expressed as [Eq. (5.52)] 

x(at)- - 1 X (.!!!._) 
lal a 

(6.47) 

However, in the discrete-time case, x[an] is not a sequence if a is not an integer. On the other hand, if a is an 
integer, say a = 2, then x[2n] consists of only the even samples of x[n]. Thus, time scaling in discrete time takes 
on a form somewhat different from Eq. (6.47). 

Let m be a positive integer and define the sequence 

Then we have 

-{x[nlm]=x[k] 
x(m)[n]- 0 

if n = km, k = integer 

ifn=Fkm 
(6.48) 

(6.49) 

Equation (6.49) is the discrete-time counterpart ofEq. (6.47). It states again the inverse relationship between time 
and frequency. That is, as the signal spreads in time (m > 1), its Fourier transform is compressed (Prob. 6.22). 
Note that X(mQ) is periodic with period 2:rtlm since X(Q) is periodic with period 2n. 

H. Duality: 

In Sec. 5.4F the duality property of a continuous-time Fourier transform is expressed as [Eq. (5.54)] 

X(t) - 2nx(-w) (6.50) 

There is no discrete-time counterpart of this property. However, there is a duality between the discrete-time 
Fourier transform and the continuous-time Fourier series. Let 

x[n] - X(Q) 

From Eqs. (6.27) and (6.41) 

00 

X(Q) = ,L x[n] e -jQn (6.51) 
n=-oo 

X(Q + 2n) = X(Q) (6.52) 

Since Q is a continuous variable, letting Q = t and n = -kin Eq. (6.51), we have 

00 

X(t)= ,L x[-k]ejkt (6.53) 
k=-00 

Since X(t) is periodic with period T0 = 2nand the fundamental frequency%= 2n/T0 = 1, Eq. (6.53) indicates 
that the Fourier series coefficients of X(t) will be x[-k]. This duality relationship is denoted by 

FS 
X(t)+---+ck =x[-k] 

where FS denotes the Fourier series and ck are its Fourier coefficients. 

(6.54) 
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I. Differentiation in Frequency: 

J. Differencing: 

[ ] . dX(Q) 
nxn-1-­

dQ 

x[n] - x[n - 1] - (1 - e-j!J)X(Q) 

(6.55) 

(6.56) 

The sequence x[n] - x[n - 1] is called thefirstdif.ference sequence. Equation (6.56) is easily obtained from the 
linearity property (6.42) and the time-shifting property (6.43). 

K. Accumulation: 

n 1 
_L x[k] - .irX(O) ()(Q) + _ jO. X(Q) 

k=-oo 1- e 
(6.57) 

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the right-hand side 
of Eq. ( 6 .57) reflects the de or average value that can result from the accumulation. 

L. Convolution: 

(6.58) 

As in the case of the z-transform, this convolution property plays an important role in the study of discrete-time 
LTI systems. 

M. Multiplication: 

1 
x1[n] x2[n]- - X1 (Q) ® X2 (Q) 

2.ir 

where® denotes the periodic convolution defined by [Eq. (2.70)] 

The multiplication property (6.59) is the dual property of Eq. (6.58). 

N. Additional Properties: 

If x[ n] is real, let 

x[n] = x.[n] + x 0 [n] 

where x.[n] and x)n] are the even and odd components of x[n], respectively. Let 

Then 

x[n] - X(Q) = A(Q) + jB(Q) = I X(Q) I ejll(!J) 

X(-Q) = X*(Q) 

x.[n] - Re{X(Q)} = A(Q) 

x)n] - 1lm{X(Q)} = jB(Q) 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

(6.63a) 

(6.63b) 

Equation (6.62) is the necessary and sufficient condition for x[n] to be real. From Eqs. (6.62) and (6.61) we have 

A(-Q) = A(Q) 

IX(-Q) I = IX(Q) I 

B(-Q) = -B(Q) 

~-Q) = -~Q) 

(6.64a) 

(6.64b) 

From Eqs. (6.63a), (6.63b), and (6.64a) we see that if x[n] is real and even, then X(Q) is real and even, while if 
x[n] is real and odd, X(Q) is imaginary and odd. 
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0. Parseval's Relations: 

(6.65) 

(6.66) 

Equation (6.66) is known as Parseval's identity (or Parseval's theorem) for the discrete-time Fourier transform. 
Table 6-1 contains a summary of the properties of the Fourier transform presented in this section. Some 

common sequences and their Fourier transforms are given in Table 6-2. 

PROPERTY 

Periodicity 

Linearity 

Time shifting 

Frequency shifting 

Conjugation 

Time reversal 

Time scaling 

Frequency differentiation 

First difference 

Accumulation 

Convolution 

Multiplication 

Real sequence 

Even component 

Odd component 

Parseval' s theorem 

TABLE 6-1 Properties of the Fourier Transform 

SEQUENCE 

x[n] 

x1[n] 

x2[n] 

x[n] 

a1x1[n] +a2x2 [n] 

x*[n] 

x[-n] 

-{x[n Im] 
x(m)[n]- 0 

nx[n] 

x[n] - x[n -1] 

n 

:L x[k] 
k=-00 

x1 [n]x2 [n] 

ifn=km 

ifn=Fkm 

x[n] = xe [n] + x 0 [n] 

i lx[n]l2 =-1 J IX(Ql2 dQ 
n=-oo 2Jt 2it 

FOURIER TRANSFORM 

X(Q) 

x,(Q) 

Xz(Q) 

X(Q + 2n) = X(Q) 

a1X1 (Q) + a2X2 (Q) 

e-jQnoX(Q) 

X(Q-Qo) 

X*(- Q) 

X(-Q) 

X(mQ) 

.dX(Q) 
1----;[Q 

(l-e-j0 )X(Q) 

JtX(0)6(Q) + l .0 X(Q) 
l-e-1 

IQ1:5rc 
X1(Q)X2(Q) 

1 
2Jt x, (Q) ®Xz(Q) 

X(Q) = A(Q) + jB(Q) 

X(- Q) = X*(Q) 

Re{X(Q)} = A(Q) 

j hn{X(Q)} = jB(Q) 
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TABLE 6-2 Common Fourier Transform Pairs 

x[n] 

O[n] 
o(n - no) 

x[n] = 1 

u[n] 

-u[-n -1] 

-anu[- n -1], I a I> 1 

(n + 1) anu[n], I a I< 1 

sinWn 0 W --, < <n 
nn 

~ 

.L a[n - kN01 
k=-oo 

X(Q) 

2na(Q), I n I :s n 

2na(Q - n 0 ). In I. I n 0 I :s 7t 

n[a(n - n 0 ) + a(n + n 0 )l. In I. I n 0 I :s n 

- jn[a(Q - n 0 ) - a(n + n 0 )], In I. I n 0 I :s n 

1 
na(Q) + ·n .In I :sn 

1-e-1 

1 
- na(Q) + . , In I :s n 

1-e-m 

1 

1 _jQ 
-ae 

1 - 2a cos Q + a2 

sin (QI 2) 

{
1 o :s 1 n I :s w 

X(Q) = O W <IQ I :s n 

6.5 The Frequency Response of Discrete-Time LTI Systems 

A. Frequency Response: 

In Sec. 2.6 we showed that the outputy[n] of a discrete-time LTI system equals the convolution of the inputx[n] 
with the impulse response h[n]; that is, 

y[n] = x[n] * h[n] (6.67) 

Applying the convolution property (6.58), we obtain 

Y(Q) = X(Q)H(Q) (6.68) 

where Y(Q), X(Q), and H(Q) are the Fourier transforms of y[n], x[n], and h[n], respectively. From Eq. (6.68) 
we have 

H(Q)= Y(Q) 
X(Q) 

(6.69) 
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Relationship represented by Eqs. (6.67) and (6.68) are depicted in Fig. 6-3. Let 

(6.70) 

As in the continuous-time case, the function H(Q) is called the frequency response of the system, I H(Q) I the 
magnitude response of the system, and (JJ._Q) the phase response of the system. 

~[n] 
h[n] 

h[n] 

x[n] H(Q) y[n]=x[n] •h[n] 

1 1 
X(Q) Y(Q)= X(Q)H(Q) 

Fig. 6-3 Relationships between inputs and outputs in an LTI discrete-time system. 

Consider the complex exponential sequence 

(6.71) 

Then, setting z = ejQo in Eq. (4.1), we obtain 

y[n] = H(ejQo) ejQon = H(Qo) ejQon (6.72) 

which indicates that the complex exponential sequence ejQon is an eigenfunction of the LTI system with 
corresponding eigenvalue H(Q0), as previously observed in Chap. 2 (Sec. 2.8). Furthermore, by the linearity 
property (6.42), if the input x[n] is periodic with the discrete Fourier series 

then the corresponding output y[n] is also periodic with the discrete Fourier series 

y[n] = )_ ckH(kQ0) ejkQon 

k=(/vo) 

(6.73) 

(6.74) 

If x[n] is not periodic, then from Eqs. (6.68) and (6.28) the corresponding output y[n] can be expressed as 

y[n] = - 1 f( )H(Q) X(Q) ejQn dQ 
2:rtJl2n: 

B. LTI Systems Characterized by Difference Equations: 

(6.75) 

As discussed in Sec. 2.9, many discrete-time LTI systems of practical interest are described by linear constant­
coefficient difference equations of the form 

N M 

,L aky[n - k] = ,L bkx[n - k] (6.76) 
k=O k=O 

withM :5 N. Taking the Fourier transform of both sides ofEq. (6.76) and using the linearity property (6.42) and 
the time-shifting property (6.43), we have 

or, equivalently, 

N M ,L ak e - jkQ Y(Q) = ,L bk e - jkQ X(Q) 
k=O k=O 

M ,L bk e-jkQ 

H(Q) = Y(Q) = _k=_o __ _ 

X(Q) ~ -jkQ 
LJ ak e 
k=O 

(6.77) 



CHAPTER 6 Fourier Analysis of Discrete-Time 

The result (6.77) is the same as the z-transform counterpart H(z) = Y(z)IX(z) with z = ej°' [Eq. (4.44)]; that is, 

I ·g 
H(Q)=H(z) z=eig =H(e1 ) 

C. Periodic Nature of the Frequency Response: 

From Eq. (6.41) we have 

H(Q) = H(Q + 2.ir) (6.78) 

Thus, unlike the frequency response of continuous-time systems, that of all discrete-time LTI systems is periodic 
with period 2.ir. Therefore, we need observe the frequency response of a system only over the frequency range 
0 ::5 Q < 2.ir or - .ir ::5 Q < .ir. 

6.6 System Response to Sampled Continuous-Time Sinusoids 

A. System Responses: 

We denote by Yc[n], y,[n], and y[n] the system responses to cos Qn, sin Qn, and ejo.n, respectively (Fig. 6-4). 
Since ejO.n = cos Qn + j sin Qn, it follows from Eq. (6.72) and the linearity property of the system that 

y[n] = yJn] + jy,[n] = H(Q) ejO.n 

yJn] = Re{y[n]} = Re{H(Q) ej°'n} 

y,[n] = lm{y[n]} = lm{H(Q) ej°'n} 

cos Qn 

sin Qn 

H(Q) 
y[n] = H(Q)eiQn ~ 

Fig. 6-4 System responses to eiQn, cos Qn, and sin Qn. 

(6.79a) 

(6.79b) 

(6.79c) 

When a sinusoid cos Qn is obtained by sampling a continuous-time sinusoid cos wt with sampling interval 
T,, that is, 

cosQn=coswtlt=nT =coswTsn 
s 

(6.80) 

all the results developed in this section apply if we substitute wT, for Q: 

Q= wT 
s (6.81) 

For a continuous-time sinusoid cos wt there is a unique waveform for every value of win the range 0 to oo. 

Increasing w results in a sinusoid of ever-increasing frequency. On the other hand, the discrete-time sinusoid 
cos Qn has a unique waveform only for values of Q in the range 0 to 2.ir because 

cos[(Q + 2.irm)n] = cos(Qn + 2.irmn) = cos Qn m =integer 

This range is further restricted by the fact that 

Therefore, 

cos(Jt ± Q)n = cos .irn cos Qn + sin Jtn sin Qn 

= (-llcos Qn 

cos(.ir + Q)n = cos(.ir - Q)n 

(6.82) 

(6.83) 

(6.84) 

Equation (6.84) shows that a sinusoid of frequency (.ir + Q) has the same waveform as one with frequency 
(.ir - Q). Therefore, a sinusoid with any value of Q outside the range 0 to .iris identical to a sinusoid with Qin 
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the range 0 to :re. Thus, we conclude that every discrete-time sinusoid with a frequency in the range 0 :5 Q < :re 
has a distinct waveform, and we need observe only the frequency response of a system over the frequency range 
0 :5 Q < :re. 

B. Sampling Rate: 

Let wM (= 2:rcf M) be the highest frequency of the continuous-time sinusoid. Then from Eq. (6.81) the condition 
for a sampled discrete-time sinusoid to have a unique waveform is 

:re 
wMTs < :re-+ Ts< --

WM 
or (6.85) 

where f, = l!T, is the sampling rate (or frequency). Equation (6.85) indicates that to process a continuous-time 
sinusoid by a discrete-time system, the sampling rate must not be less than twice the frequency (in hertz) of the 
sinusoid. This result is a special case of the sampling theorem we discussed in Prob. 5 .59. 

6. 7 Simulation 

Consider a continuous-time LTI system with input x(t) and output y(t). We wish to find a discrete-time LTI sys­
tem with input x[n] and output y[n] such that 

if x[n] = x(nT, ) then y[n] = y(nT,) (6.86) 

where T, is the sampling interval. 
Let Hc(s) and Hiz) be the system functions of the continuous-time and discrete-time systems, respectively 

(Fig. 6-5). Let 

x(t) = ejwt x[n] = x(nTs) = ejnwT, 

Then from Eqs. (3.1) and (4.1) we have 

y(t) = H c(jw) ejwt 

Thus, the requirement y[n] = y(nT,) leads to the condition 

H c(jw) ejnwT, = Hd(ejwT,) ejnwT, 

from which it follows that 

H c(jw)= Hd(ejwT, ) 

In terms of the Fourier transform, Eq. (6.89) can be expressed as 

Q= wT 
s 

(6.87) 

(6.88) 

(6.89) 

(6.90) 

Note that the frequency response HiQ) of the discrete-time system is a periodic function of w (with period 
2:rc!T,), but that the frequency response H/w) of the continuous-time system is not. Therefore, Eq. (6.90) or 

x(t) y(t) 

x(t) 

9----·I ~d(z) x [n]= x(nT5 ) . y[n] 
e jnwTs 

Fig. 6-5 Digital simulation of analog systems. 
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Eq. (6.89) cannot, in general, be true for every w. If the input x(t) is band-limited [Eq. (5.94)], then it is possible, 
in principle, to satisfy Eq. (6.89) for every win the frequency range (-:rc!T, , :rc!T,) (Fig. 6-6). However, from 
Eqs. (5.85) and (6.77), we see that H/w) is a rational function of w, whereas HiQ) is a rational function of 
ejQ (Q = wT,). Therefore, Eq. (6.89) is impossible to satisfy. However, there are methods for determining a 
discrete-time system so as to satisfy Eq. (6.89) with reasonable accuracy for every win the band of the input 
(Probs. 6.43 to 6.47). 

1t 0 1t OJ 2n 1t 0 OJ -- - --
r. r. r. r. 

Fig. 6-6 

6.8 The Discrete Fourier Transform 

In this section we introduce the technique known as the discrete Fourier transform (OFT) for finite-length 
sequences. It should be noted that the OFT should not be confused with the Fourier transform. 

A. Definition: 

Let x[n] be a finite-length sequence of length N, that is, 

x[n] = 0 outside the range 0 :5 n :5 N - 1 (6.91) 

The OFT of x[n], denoted as X[k], is defined by 

N - l 

X[k] = L x[n] w;n k = 0, 1, ... , N -1 (6.92) 
n =O 

where W N is the Nth root of unity given by 

(6.93) 

The inverse OFT (IDFT) is given by 

N - l 
1 ~ - kn 

x[n]= NL.,, X[k]WN 
n =O 

n = 0, 1, ... , N -1 (6.94) 

The OFT pair is denoted by 

x[n] - X[k] (6.95) 

Important features of the OFT are the following: 

1. There is a one-to-one correspondence between x[ n] and X[ k]. 

2. There is an extremely fast algorithm, called the fast Fourier transform (FFT) for its calculation. 

3. The OFT is closely related to the discrete Fourier series and the Fourier transform. 

4. The OFT is the appropriate Fourier representation for digital computer realization because it is 
discrete and of finite length in both the time and frequency domains. 

Note that the choice of Nin Eq. (6.92) is not fixed. If x[n] has length N1 < N, we want to assume that x[n] has 
length N by simply adding (N - N1) samples with a value of 0. This addition of dummy samples is known as 
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zero padding. Then the resultant x[n] is often referred to as an N-point sequence, and X[k] defined in 
Eq. (6.92) is referred to as an N-point DFT. By a judicious choice of N, such as choosing it to be a power of 2, 
computational efficiencies can be gained. 

B. Relationship between the OFT and the Discrete Fourier Series: 

Comparing Eqs. (6.94) and (6.92) with Eqs. (6.7) and (6.8), we see that X [k] of finite sequence x[n] can be 
interpreted as the coefficients ck in the discrete Fourier series representation of its periodic extension multiplied 
by the period N0 and N0 = N. That is, 

X[k] = Nck (6.96) 

Actually, the two can be made identical by including the factor 1/Nwith the DFT rather than with the IDFT. 

C. Relationship between the OFT and the Fourier Transform: 

By definition (6.27) the Fourier transform of x[n] defined by Eq. (6.91) can be expressed as 

N-1 

X(Q) = ,L x[n] e -jQn (6.97) 
n=O 

Comparing Eq. (6.97) with Eq. (6.92), we see that 

X[k] = X(Q)IQ=k2.irm = x( k~:rc) (6.98) 

Thus, X[k] corresponds to the sampled X(Q) at the uniformly spaced frequencies Q = k2:rc/N for integer k. 

D. Properties of the OFT: 

Because of the relationship (6.98) between the DFT and the Fourier transform, we would expect their proper­
ties to be quite similar, except that the DFT X[k] is a function of a discrete variable while the Fourier transform 
X(Q) is a function of a continuous variable. Note that the DFT variables n and k must be restricted to the range 
0 :5 n, k < N, the DFT shifts x[n - n0] or X[k - k0] imply x[n - n0]modN or X[k - k0]modN' where the modulo 
notation [m]modN means that 

[m]modN = m + iN (6.99) 

for some integer i such that 

0 :5 [m]modN < N (6.100) 

For example, if x[n] = Mn - 3], then 

x[n - 4]mod 6 = b[n - 7]mod 6 = b[n - 7 + 6] = b[n - 1] 

The DFT shift is also known as a circular shift. Basic properties of the DFT are the following: 

1. Linearity: 

(6.101) 

2. Time Shifting: 

(6.102) 

3. Frequency Shifting: 

-kno 
WN x[n]++X[k-k0 ]modN (6.103) 
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4. Conjugation: 

x* [n] - X* [ -k]modN 

where * denotes the complex conjugate. 

5. Time Reversal: 

6. Duallty: 

7. Clrcular Convolutlon: 

where 

x[-n]modN - X[ -k]modN 

X[n] - Nx[-k]modN 

N-1 

x1[n]®x2[n]= ,L x1[i]x2 [n-i]modN 
i=O 

The convolution sum in Eq. (6.108) is known as the circular convolution of x1[n] and x2[n]. 

8. Multlpllcatlon: 

where 

9. Addltlonal Properties: 
When x[n] is real, let 

N-1 

X1[k] ® X2[k] = _L X1[i] X2[k - i1modN 
i=l 

x[n] = x.[n] + x)n] 

where x.[n] and x)n] are the even and odd components of x[n], respectively. Let 

Then 

From Eq. (6.110) we have 

10. Parseval's Relatlon: 

x[n] - X[k] = A[k] + jB[k] = IX [k] I ei11 1kl 

X[ -k]modN = X * [k] 

x.[n] - Re {X[k]} = A[k] 

x)n] - j lm{X[k]} = jB [k] 

A[ -k]modN = A[k] 

IX[-k] lmodN = I X[k] I 

B[-k] modN = -B[k] 

8[-k]modN = -O[k] 

Equation (6.113) is known as Parseval's identity (or Parseval's theorem) for the DFT. 

•.fl• 
(6.104) 

(6.105) 

(6.106) 

(6.107) 

(6.108) 

(6.109) 

(6.110) 

(6.llla) 

(6.lllb) 

(6.112a) 

(6.112b) 

(6.113) 
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SOLVED PROBLEMS 

Discrete Fourier Serles 

6.1. We call a set of sequences {Wk[n]} orthogonal on an interval [N1, N2] if any two signals 1P m[n] and 
'Pk[n] in the set satisfy the condition 

(6.114) 

where* denotes the complex conjugate and a* 0. Show that the set of complex exponential sequences 

k=0,1, ... ,N-1 (6.115) 

is orthogonal on any interval of length N. 

From Eq. (1.90) we note that 

a=l 

(6.116) 

Applying Eq. (6.116), with a= ejk(ZnlN), we obtain 

N-1 !N ~ ejk(27r/N)n = l _ ejk(2n/N)N = O 

n=O l _ ejk(2n/N) 

k=O,±N,±2N, ... 

otherwise 
(6.117) 

since ejk(ZJ<tN)N = ejkZ" = 1. Since each of the complex exponentials in the summation in Eq. (6.117) is periodic 

with period N, Eq. (6.117) remains valid with a summation carried over any interval of length N. That is, 

~ ejk(27r/N)n = {: 

n~N) 

k=O,±N,±2N, ... 

otherwise 

Now, using Eq. (6.118), we have 

~ 'II m [n] w: [n] = ~ ejm(2n/N)n e- jk(27r/N)n 

n~N) n~N) 

~ ej(m-k)(2n/N)n = {: 

n~N) 

where m, k < N. Equation (6.119) shows that the set {ejk(ZJ<tN)n: k = 0, 1, ... , N - l} is orthogonal over any 

interval of length N. Equation (6.114) is the discrete-time counterpart of Eq. (5.95) introduced in Prob. 5.1. 

6.2. Using the orthogonality condition Eq. (6.119), derive Eq. (6.8) for the Fourier coefficients. 

Replacing the summation variable kby min Eq. (6.7), we have 

N-1 

x[n] = ~ cm ejm(21r/No)n 

m=O 

Using Eq. (6.115) with N = N0 , Eq. (6.120) can be rewritten as 

No-I 

x[n]= ~ cm'Pm[n] 
m=O 

(6.118) 

(6.119) 

(6.120) 

(6.121) 
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Multiplying both sides of Eq. (6.121) by IP~[n] and summing over n = 0 to (N0 - 1), we obtain 

~~1 x[n]'P;[n] = ~~· c~~cm'Pm[n])w;[n] 
Interchanging the order of the summation and using Eq. (6.119), we get 

(6.122) 

Thus, 

No - I No - I 

ck = - 1- ,L x[n]'P;[n] = - 1- ,L x[n]e- jk(ZJr!No)n 
No n=O No n=O 

6.3. Determine the Fourier coefficients for the periodic sequence x[n] shown in Fig. 6-7. 

From Fig. 6-7 we see that x[n] is the periodic extension of {O, 1 , 2, 3} with fundamental period N0 = 4. Thus, 

and 

By Eq. (6.8) the discrete-time Fourier coefficients ck are 

1 3 1 3 
c0 = - ,L x[n] = -(0+1+2 + 3) = -

4 n=O 4 2 
3 

c1 = .!. ,L x[n](- j)" = .!. (0 - jl - 2 + j3) = _.!_ + j.!_ 
4 n=O 4 2 2 

1 ..(. . 2n 1 1 
c2 = - .L,,x[n](- 1) = -(0 - 1+2 - 3) =- -

4 n=O 4 2 

3 
c3 = .!_ ,L x[n] (- j)3n = .!_ (0 + jl - 2 - j3) = _ .!_ _ j.!_ 

4 n=O 4 2 2 

Notethatc3 = c4 _ 1 = cj[Eq.(6.17)]. 

x[n] 

- 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 

Fig. 6-7 

n 

6.4. Consider the periodic sequence x[n] shown in Fig. 6-8(a). Determine the Fourier coefficients ck and 
sketch the magnitude spectrum I ck I· 

From Fig. 6-8(a) we see that the fundamental period of x[n] is N0 = IO and Q0 = 2n/N0 = n/5. By Eq. (6.8) and 
using Eq. (1.90), we get 

1 4 1 1--jb 
c = - ~ e- jk(Jr!5)n = - e 
k IO .L,, IO 1- e- jk(Jr!S) 

n=O 

_ 1 e- jkJrl2 (ejkJr!Z - e- jkJr/2 ) 

- IO e- jkJrllO(ejkJrllO - e- jkJr!IO) 

_ 1 _ jk(2,,.15 ) sin( kn I 2) 
- -e k = 0,1,2, ... ,9 

IO sin( kn /10) 
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The magnitude spectrum I ck I is plotted in Fig . 6-8(b) 

• " ,, 
'' ' ' 
' 

x[n] 

0 1 2 3 4 5 6 7 8 9 

(a) 

0.5 ,' \ 

• ,, 
'' 
,': 
' ' ' ' 

' 

",-•-, ,-e-,: 
,, : \ ........ ,' \1 

1' : ,, ,, 

6.5. Consider a sequence 

0 

(b) 

'' 
" . '' •' '' " 

, , ,, 
' 

23456789 

Fig. 6-8 

00 

x[n] = L o[n - 4k] 
k =- 00 

(a) Sketch x[n]. 

(b) Find the Fourier coefficients ck of x[n]. 

n 

,• 

k 

(a) The sequence x[n] is sketched in Fig. 6-9(a). lt is seen that x[n] is the periodic extension of the sequence 
{1 , 0, 0, O} with period N0 = 4. 

x[n] 

- 4 - 3 - 2 - 1 O 1 2 3 4 5 6 7 8 n 
(a) 

• • • • rl • • 
' ' ' ' r~ I I I ' ' 

0 1 2 3 k 

(b) 

Fig. 6-9 
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(b) From Eqs. (6.7) and (6.8) and Fig. 6-9(a) we have 

3 3 
x[n] = ~ ck ejk(2n:/4)n = ~ ck ejk(n:/2)n 

k=O k=O 

and 
1 3 . 1 1 

ck= - ~ x[n] e-jk(2n:l4 Jn = -x[O] = -

4 n=O 4 4 
all k 

since x[l] = x[2] = x[3] = 0. The Fourier coefficients of x[n] are sketched in Fig. 6-9(b). 

6.6. Determine the discrete Fourier series representation for each of the following sequences: 

:n: 
(a) x[n] = cos-n 

4 

(b) [] :n: .:n: 
x n = cos-n + sm-n 

3 4 

(c) x[n] = cos2 (in) 

(a) The fundamental period of x[n] is N0 = 8, and Q0 = 2n/N0 = n/4. Rather than using Eq. (6.8) to evaluate the 
Fourier coefficients ck, we use Euler's formula and get 

Thus, the Fourier coefficients for x[n] are c1 = ~· c_ 1 =c_ 1 + 8 = c7 = ~,andallotherck = O.Hence, the 
discrete Fourier series of x[ n] is 

1f 1 •n 1 ·7n 
x[n] =cos -n = -e'"on +-e' "on 

4 2 2 

(b) From Prob. 1.16(i) the fundamental period of x[n] is N0 = 24, and Q0 = 2n/N0 = n/12. Again by Euler's 
formula we have 

x[n] = .!_ (ej(n:/3)n + e- j(n:/3)n) + _!__ (ej(n:/4)n _ e- j(n:/4)n) 

2 2j 

_ 1 - j4!J0n · 1 - j3!J0n · 1 j3!J0n 1 j4!J0n 
--e + 1-e - 1-e +-e 

2 2 2 2 

Thus, c 3 = -j(~), c4 = ~· c_4 = c_4 + 24 = c20 = ~· c_3 = c_3+ 24 = c21 = j(~),andall other ck= O.Hence, 
the discrete Fourier series of x[n] is 

1r 
Qo=-

12 

(c) From Prob. 1.16(j) the fundamental period of x[n] is N0 = 8, and Q0 = 2n/N0 = n/4. Again by Euler's 
formula we have 

Thus, c0 = ~· c1 = *· c_ 1 = c_ 1 + 8 = c7 =*·and all other ck= 0. Hence, the discrete Fourier series of 
x[n] is 

1 1 n 1 ·7n x[n] = -+-e'"on +-e' .. on 
2 4 4 
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6.7. Let x[n] be a real periodic sequence with fundamental period N0 and Fourier coefficients 
ck = ak + jbk, where ak and bk are both real. 

(a) Show that a_k = ak and b_k = -bk. 

(b) Show that cN012 is real if N0 is even. 

(c) Show that x[n] can also be expressed as a discrete trigonometric Fourier series of the form 

(N0 -!)/2 

x[n] = c0 + 2 ,L (ak cosHl0n - bk sinHl0n) 
k=l 

if N0 is odd or 

(No-2)/2 

x[n]=c0 +(-ltcNo/2 +2 ,L (akcosHl0n-bksinHl0n) 
k=l 

if N0 is even. 

(a) If x[n] is real, then from Eq. (6.8) we have 

( ). No-I No-I 

c_k = ~ ~ x[n] ejH/.on = ~ ~ x[n] e-jH/.on = c; 
0 n=O 0 n=O 

Thus, 

and we have 

and 

(b) If N0 is even, then from Eq. (6.8) 

1 No-I 1 No-I 
cNo/2 =- ~ x[n]e-j(No/2)(2.ir!No)n =- ~ x[n]e-j.irn 

No n=O No n=O 

(c) Rewrite Eq. (6.7) as 

l No-I n 

=- ~ (-1) x[n]=real 
No n=O 

If N0 is odd, then (N0 - 1) is even and we can write x[n] as 

Now,fromEq. (6.17) 

and 

(No-1)/2 

x[n]=co + ~ (ckejHlon+cNo-kej(No-k)Qon) 
k=I 

(6.123) 

(6.124) 

(6.125) 
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Thus, 

(No-1)/2 

x[n]=c0 + ~ (ckejW.on+c;e-jW.on) 

k=I 

(No-1)/2 

= c0 + ~ 2Re(ckejW.on) 

k=I 

(No-1)/2 

=c0 +2 ~ Re(ak+jbk)(cosHl0n+jsinH20n) 
k=I 

(No-1)/2 

= c0 +2 ~ (ak coskQ0n-bk sinkQ0n) 
k=I 

If N0 is even, we can write x[n] as 

No-I 

x[n] =co+ ~ ckejkrlon 

k=I 

(No-2)/2 
= c + ~ (c ejkO.on + c ej(No-k)O.on) + c ej(N012)'10n o ~ k N0-k No/2 

k=I 

Again from Eq. (6.17) 

and ej(No-k)O.on = e- jk'10n 

and ej(N012)'10n = ej(N012)(2n:IN0)n = ejn:n = (-It 

(No -2)/2 

Then x[n] = c0 + (-It cN012 + ~ 2Re(ckejW.on) 
k=I 

(No-2)/2 

=c0 +(-ItcN012 +2 ~ (akcoskQ0n-bksinkQ0n) 
k=I 

4'.J:i• 

6.8. Let x1[n] and x2 [n] be periodic sequences with fundamental period N0 and their discrete Fourier series 
given by 

No-1 

X1[n] = ,L dkejH2on 

k=O 

No-1 

Xz[n] = ,L ek ejH2on 

k=O 

,.... - 2:rc 
~~o--

No 

Show that the sequence x[n] = x 1[n]x2 [n] is periodic with the same fundamental period N0 and can be 
expressed as 

where ck is given by 

Now note that 

No-1 

x[n] = ,L ck ejH2on 

k=O 

No-1 

Ck = ,L dmek-m 
m=O 

Thus, x[n] is periodic with fundamental period N0 • Let 

No-I 
x[n] = ~ ck ejkO.on 

k=O 

(6.126) 



... CHAPTER 6 Fourier Analysis of Discrete-Time 

Then 

since 

No-I No-I 
ck=~ ~ x[n]e-jk!Jon = ~ ~ x1[n]x2[n]e-jk!Jon 

0 n=O 0 n=O 

= ~ N}:I [N}:ldmejmOon)x2[n]e-jk!Jon 

0 n=O m=O 

= :~01 dm [~o ~~1 x2 [n]e-j(k-m)Oon )= :~:dmek-m 
No-I 

ek = ~ ~ X2[n]e-jk!Jon 
0 n=O 

and the term in parentheses is equal to ek- m· 

6.9. Let x1[n] and x2[n] be the two periodic signals in Prob. 6.8. Show that 

1 No-I No-1 

- ,L x1[n]x2 [n] = ,L dk e_k 

No n=O k=O 

Equation (6.127) is known as Parseval's relation for periodic sequences. 

From Eq. (6.126) we have 

Setting k = 0 in the above expression, we get 

6.10. (a) Verify Parseval's identity [Eq. (6.19)] for the discrete Fourier series; that is, 

(b) Using x[n] in Prob. 6.3, verify Parseval's identity [Eq. (6.19)]. 

(a) Let 

and 

Then 

No-I 
x[n] = ~ ckejk!Jon 

k=O 

No-I 
x*[n] = ~ dkejk!Jon 

k=O 

(6.127) 

(6.128) 

Equation (6.128) indicates that if the Fourier coefficients of x[n] are ck, then the Fourier coefficients of x*[n] 

are c:k. Setting x1[n] = x[n] and x2[n] = x*[n] in Eq. (6.127), we have dk = ck and ek = c:k (or e-k = C:) and 
we obtain 

(6.129) 

and 
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(b) From Fig. 6-7 and the results from Prob. 6.3, we have 

No - I 
1 ~ I 12 1 2 2 2 14 7 - L., x[n] = -(0 + 1 + 2 + 3 ) = - = -

No n=O 4 4 2 

~~lick 1
2 

= (%f +[(~f +(~r]+(- ~r +[(~f +(~r] = 1: = ~ 
and Parseval's identity is verified. 

Fourier Transform 

6.11. Find the Fourier transform of 

x[n] = -a"u[-n - 1] a real 

From Eq. (4.12) the z-transform of x[n] is given by 

1 
X(z) =--

1- az-1 

Thus, X(ejQ) exists for I a I > 1 because the ROC of X(z) then contains the unit circle. Thus, 

lal> 1 

6.12. Find the Fourier transform of the rectangular pulse sequence (Fig. 6-10) 

x[n] = u[n] - u[n - N] 

Using Eq. (1.90) , the z-transform of x[n] is given by 

N - l n 1- ZN 
X(z) = }: z = --

n=o 1- Z 
lzl>O 

Thus, X(ejQ) exists because the ROC of X(z) includes the unit circle. Hence, 

· 1 - e- JWV e- JWVl2 (eJWVt2 - eJWVl2) 
X (Q) = X ( e10 ) = . - -"""""7,.--~,----___,,=-=---

1 - e - 10 e- JQ/2 (eJQ/2 - e- JQ/2) 

= e- JO(N - I)t2 sin(QN/2) 
sin(Q/2) 

x[n] 

0 1 2 3 N - 1 

Fig. 6-10 

6.13. Verify the time-shifting property (6.43); that is, 

x[n - n0] ++ e- JOnoX(Q) 

By definition (6.27) 

00 

g;{x[n - n0 ]} = }: x[n - n0 ]e- J0 n 

n=- oo 

(6.130) 

(6.131) 

(6 .132) 

n 
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By the change of variable m = n - n0 , we obtain 

"' .'.1i {x[n - n0]} = ,L x[m]e- JO(m +no) 
m=-oo 

"' =e-JOno ,L x[m] e-J0 m=e-1°"0 X(Q) 
m=-oo 

Hence , 

6.14. (a) Find the Fourier transform X(Q) of the rectangular pulse sequence shown in Fig. 6-1 l(a). 

- N, 

1 
0 0 

0 

(a) 

x[n] 

- -N1 n 

(b) Plot X(Q) for N 1 = 4 and N 1 = 8. 

(a) From Fig. 6-11 we see that 

x1[n] 

0 1 2 3 

(b) 

Fig. 6-11 

where x1[n] is shown in Fig. 6-1 l(b) . Setting N = 2N1 + 1 in Eq. (6.132) , we have 

sin[Q(N1 + .!_)] 
X1(Q) = e- JON1 2 

sin(Q /2) 

Now, from the time-shifting property (6 .43) we obtain 

(b) Setting N1 = 4 in Eq. (6.133) , we get 

X(Q) = sin(4.5Q) 
sin(0.5Q) 

which is plotted in Fig. 6-12(a). Similarly, for N1 = 8 we get 

which is plotted in Fig. 6-12(b). 

X(Q) = sin(8.5Q) 
sin(0.5Q) 

2N1 n 

(6 .133) 
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X(Q) X(Q) 

9 17 

5 

(a) (b) 

Fig. 6-12 

6.15. (a) Find the inverse Fourier transform x[n] of the rectangular pulse spectrum X(Q) defined by 
[Fig. 6-13(a)] 

X(Q)= {~ 
(b) Plot x[n] for W = :rr/4. 

2n Q 

n 

(b) 

Fig. 6-13 

(a) From Eq. (6.28) 

Thus, we obtain 

--- ( ) = 
sinWn X Q {1 

:n:n 0 

(b) The sequence x[n] is plotted in Fig . 6-13(b) for W = :n:/4. 

(6.134) 
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6.16. Verify the frequency-shifting property (6.44); that is, 

ejQon x[n] ++ X(Q - Q 0 ) 

By Eq. (6.27) 

"' 
.'.1i{ej00"x[n]} = ~ ej 00"x[n]e- J°" 

n=-oo 

"' = ~ x[n]e- J<O- Oo)" = X(Q - Qo) 
n=- oo 

Hence , 

eiOon x[n] ++ X(Q - Qo) 

6.17. Find the inverse Fourier transform x[n] of 

X(Q) = 2.m5(Q - Q0) 

From Eqs. (6.28) and (1.22) we have 

1 rr ·o. ·o 
x[n] = -J 2no(Q - Q0 )el dQ = el o" 

2n - rr 

Thus, we have 

6.18. Find the Fourier transform of 

x[n] = 1 all n 

Setting Q0 = 0 in Eq. (6.135), we get 

x[n] = 1 ++ 2no(Q) 

Equation (6.136) is depicted in Fig. 6-14. 

x[n] 

1 
0 0 It ,. 0 0 

- 2 - 1 0 1 2 n - n 0 

Fig. 6-14 A constant sequence and its Fourier transform. 

6.19. Find the Fourier transform of the sinusoidal sequence 

From Euler 's formula we have 

J · n · n 
cos Q 0 n = - (e1" 0" + e- 1" 0") 

2 

Thus, using Eq. (6.135) and the linearity property (6.42), we get 

(6.135) 

(6.136) 

X(Q) 

2nli(Q) 

Q 
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which is illustrated in Fig . 6-15. Thus, 

x[n] X(Q) 

n 

Fig. 6-15 A cosine sequence and its Fourier transform. 

6.20. Verify the conjugation property (6.45); that is, 

x*[n] ++ X*(-Q) 

From Eq. (6.27) 

"' ( "' )* @i{x*[n]} = n~oo x*[n] e- jQn = n~oo x[n] ejQn 

Hence , 

x*[n] ++X*( - Q) 

6.21. Verify the time-scaling property (6.49); that is, 

From Eq. (6.48) 

Then, by Eq. (6.27) 

{
x[nlm] = x[k] 

X(m)[n] = 0 

"' 

if n = km, k = integer 

ifn ofo km 

@' {x(m)[n]} = }: x(m)[n] e- }Qn 

n=- oo 

Changing the variable n = km on the right-hand side of the above expression, we obtain 

"' "' 
@'{x(m)[n]} = }: x(m)[km]e- Jillm = }: x[k]e- J(mQ)k = X(mQ) 

k =- oo k =- oo 

Hence, 

(6.137) 

Q 
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6.22. Consider the sequence x[n] defined by 

x[n] = {~ 
otherwise 

(a) Sketch x[n] and its Fourier transform X(Q). 

(b) Sketch the time-scaled sequence xr2>[n] and its Fourier transform X<2>(Q). 

(c) Sketch the time-scaled sequence x<3>[n] and its Fourier transform X<3>(Q). 

(a) Setting N1 = 2 in Eq. (6.133) , we have 

X(Q) = sin(2.5Q) 
sin(0.5Q) 

The sequence x[n] and its Fourier transform X(Q) are sketched in Fig. 6-16(a). 

x[n] 

0 n 

0 n 

0 n 

(a) 

(b) 

(c) 

Fig. 6-16 

(b) From Eqs. (6.49) and (6.138) we have 

sin( SQ) 
Xr2>(Q) = X(2Q) = - .-­

sm(Q) 

X(Q) 

The time-scaled sequence x<2>[n] and its Fourier transform X <ZJ(Q) are sketched in Fig. 6-16(b). 

(c) In a similar manner we get 

X 3 (Q) = X(3Q) = sin(7.5Q) 
< > sin(! .SQ) 

The time-scaled sequence x<3>[n] and its Fourier transform X<3>(Q) are sketched in Fig. 6-16(c). 

(6.138) 

Q 

Q 

Q 
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6.23. Verify the differentiation in frequency property (6.55); that is, 

From definition (6.27) 

[ ] .dX(Q) 
nx n -1-­

dQ 

00 

X(Q)= ~ x[n]e-jrJn 
n=-oo 

Differentiating both sides of the above expression with respect to Q and interchanging the order of differentiation 
and summation, we obtain 

dX(Q) _ d ( ~ [ ] -jrJn)- ~ [ ] d ( -jrJn) ---- ~ x n e - ~ x n - e 
dQ dQ n=-oo n=-oo dQ 

00 

=- j ~ nx[n]e-jrJn 

n=-oo 

Multiplying both sides by j, we see that 

Hence, 

a{ [ ]}- ~ [ ] -jrJn _ .dX(Q) 
'7' nxn - ~ nxn e -1--

n=-oo dQ 

[ l .dX(Q) 
nx n ++1dQ 

6.24. Verify the convolution theorem (6.58); that is, 

By definitions (2.35) and (6.27), we have 

[ffe {x1[n] u 2[n]} = n~Jk~oo x1[k]x2 [n - k]) e- j!Jn 

Changing the order of summation, we get 

[ffe {x1[n] *X2 [n]} = k~oo x1[k] (n~oo x2 [n - k] e-j!Jn) 

By the time-shifting property Eq. (6.43) 

00 

~ x2 [n-k]e-jrJn =e-j™X2 (Q) 
n=-oo 

Thus, we have 

00 

~{x1 [n]u2 [n]}= ~ x1[k]e-jQkX2 (Q) 
k=-oo 

Hence, 
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6.25. Using the convolution theorem (6.58), find the inverse Fourier transform x[n] of 

!al< 1 

From Eq. (6.37) we have 

Now X(Q)= (1-a~-j'2)2 -(1-:e-jO )(i_:e-jO) 

Thus, by the convolution theorem Eq. (6.58) we get 

00 

x[n]=anu[n]*anu[n]= ~ aku[k]an-ku[n-k] 

Hence, 

k=-00 

00 

=an~ l=(n+l)anu[n] 
k=O 

(n+l)anu[n]++( . )2 
1-ae-10 

6.26. Verify the multiplication property (6.59); that is, 

1 
x1[n]x2 [n]- -X1(Q)®X2 (Q) 

2:rc 

Let x[n] = x1[n]x2[n]. Then by definition (6.27) 

00 

X(Q)= ~ x1[n]x2 [n]e-j'2n 
n=-oo 

By Eq. (6.28) 

lal<l 

Then X(Q)= n~j2~J2,..X1 (0)ejlln de] x2[n]e-j'2n 

Interchanging the order of summation and integration, we get 

X(Q)= - 1 J X (0)( ~ x [n] e-j(O-ll)n)de 
2n 2,.. t ~ 2 

n=-oo 

Hence, 

6.27. Verify the properties (6.62), (6.63a), and (6.63b); that is, if x[n] is real and 

x[n] = x,[n] + x)n] - X(Q) = A(Q) + jB(Q) 

where x,[n] and x)n] are the even and odd components of x[n], respectively, then 

X( - Q) = X*(Q) 

x,[n] - Re{X(Q)} = A(Q) 

x0 [n] - j lm{X(Q)} = jB(Q) 

(6.139) 

(6.140) 
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If x[n] is real, then x*[n], = x[n], and by Eq. (6.45) we have 

x*[n] ++ X*(-Q) 

from which we get 

X(Q) = X*(-Q) or X(-Q) = X*(Q) 

Next, using Eq. (6.46) and Eqs. (1.2) and (1.3), we have 

x[ -n] = x.[nl - xJnl ++ X(-Q) = X*(Q) = A(Q) - jB(Q) 

Adding (subtracting) Eq. (6.141) to (from) Eq. (6.140), we obtain 

6.28. Show that 

Let 

Now, note that 

x.[n] ++ A(Q) = Re{X(Q)} 

xJn] ++ jB(Q) = j lm{X(Q)} 

1 
u[n] - .m5(Q) + _ .0 

1-e 1 

u[n] ++X(Q) 

(j[n] = u[n] - u[n - 1] 

Taking the Fourier transform of both sides of the above expression and by Eqs. (6.36) and (6.43), we have 

Noting that (1 - e-jri) = 0 for Q = 0, X(Q) must be of the form 

X(Q)=Ac5(Q)+ l ·g 
1-e-1 

(6.141) 

(6.142) 

where A is a constant. To determine A we proceed as follows. From Eq. ( 1.5) the even component of u[ n] is given by 

Then the odd component of u[n] is given by 

and 

1 1 
u0 [n] = u[n]- u.[n] = u[n]- - - -c5[n] 

2 2 

1 1 
@'{u0 [n]}=Ac5(Q)+ _·g -.irc5(Q)--

1-e ' 2 

From Eq. (6.63b) the Fourier transform of an odd real sequence must be purely imaginary. Thus, we must have 
A= .ir,and 

6.29. Verify the accumulation property (6.57); that is, 

n 1 
~ x[k] - .irX(O) {J (Q) + _ jo X(Q) 

k=-oo 1-e 

From Eq. (2.132) 

n 

'}: x[k]=x[n]*u[n] 
k=-oo 
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Thus, by the convolution theorem (6.58) and Eq. (6.142) we get 

1 
= .irX(O) <5(Q) + _ ·c X(Q) 

1- e 1 

since X(Q)<5(Q) = X(0)<5(Q) by Eq. (1.25). 

6.30. Using the accumulation property (6.57) and Eq. (l.50), find the Fourier transform of u[n]. 

From Eq. (l.50) 

n 

u[n]= ~ <5[k] 
k=-00 

Now, from Eq. (6.36) we have 

<5[n] ++ 1 

Setting x[k] = <5[k] in Eq. (6.57), we have 

x[n] = <5[n] ++ X(Q) = 1 and X(O) = 1 

and 
n 1 

u[n]= ~ <5[k]++.ir<5(Q)+ -j!J 
k=-ao 1- e 

Frequency Response 

6.31. A causal discrete-time LTI system is described by 

3 1 
y[n]- -y[n-1] +-y[n - 2] = x[n] 

4 8 

where x[n] and y[n] are the input and output of the system, respectively (Prob. 4.32). 

(a) Determine the frequency response H(Q) of the system. 

(b) Find the impulse response h[n] of the system. 

(a) Taking the Fourier transform of Eq. (6.143), we obtain 

or 

Thus, 

H(Q) = Y(Q) = -~---­
X(Q) l - 3 - j!J + 1 - j2!J -e -e 

4 8 

(b) Using partial-fraction expansions, we have 

(6.143) 
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Taking the inverse Fourier transform of H(Q), we obtain 

which is the same result obtained in Prob. 4.32(b). 

6.32. Consider a discrete-time LTI system described by 

1 1 
y[n] - -y [n -1] = x[n] +-x[n -1] 

2 2 

(a) Determine the frequency response H(Q) of the system. 

(b) Find the impulse response h[n] of the system. 

(c) Determine its response y[n] to the input 

:n: 
x[n] = cos-n 

2 

(a) Taking the Fourier transform of Eq. (6.144), we obtain 

Y(Q)- .!_e- jOY(Q) = X(Q) + .!_e- jO X(Q) 
2 2 

Thus, 

(b) 

Taking the inverse Fourier transform of H(Q), we obtain 

(c) From Eq. (6.137) 

Then 

(6.144) 

n=O 

n;::,, 1 
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Taking the inverse Fourier transform of Y(Q) and using Eq. (6.135) , we get 

6.33. Consider a discrete-time LTI system with impulse response 

h[n] = sin(.irn I 4) 
.irn 

Find the output y[n] if the input x[n] is a periodic sequence with fundamental period N0 = 5 as shown in 
Fig. 6-17. 

• • 

From Eq. (6.134) we have 

rl II I. .' I I • • I II - 2 - 1 0 1 2 3 4 5 

Fig. 6-17 

H(Q) = {~ lnl~n/4 

.irt4 < lnl~n 

• • n 

Since Q0 = 2rrJN0 = 2rr,/5 and the filter passes only frequencies in the range IQ I ~ n/4, only the de term is passed 

through. From Fig . 6-17 and Eq. (6.11) 

1 4 3 
c0 = - ~ x[n] = -

5 n=O 5 

Thus, the output y[n] is given by 

3 
y[n] = - alln 

5 

6.34. Consider the discrete-time LTI system shown in Fig. 6-18. 

(a) Find the frequency response H(Q) of the system. 

(b) Find the impulse response h[n] of the system. 

(c) Sketch the magnitude response I H(Q) I and the phase response 8(Q). 

(d) Find the 3-dB bandwidth of the system. 

(a) From Fig. 6-18 we have 

y[n] = x[n] + x[n - l] 

x[n] y[n] 

-------------- 2: ---+ 
+ 

Fig. 6-18 

(6.145) 



CHAPTER 6 Fourier Analysis of Discrete-Time 

Taking the Fourier transform of Eq. (6.145) and by Eq . (6.77), we have 

= 2e-jW2 cos(~) 

(b) By the definition of h[n] [Eq. (2.30)] and Eq. (6.145) we obtain 

or 

(c) From Eq. (6.146) 

and 

which are sketched in Fig . 6-19. 

- n 

h[n] = o[n] + o[n - 1] 

{
1 0~n~1 

h [ n l = 0 otherwise 

IH(Q)l = 2cos( ~) 
Q 

8(Q) =- -
2 

7t 

2 

2 

0 

IH(Q)I 

9(Q) 

Fig. 6-19 

7t 

2 
7t Q 

(d) Let Q 3 db be the 3-dB bandwidth of the system. Then by definition (Sec. 5.7) 

we obtain 

IH(Q3dB)I = ~IH(Q)lmax 

and 
:n: 

Q3dB = -
2 

(6.146) 

We see that the system is a discrete-time wideband low-pass finite impulse response (FIR) filter (Sec. 2.9C). 
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6.35. Consider the discrete-time LTI system shown in Fig. 6-20, where a is a constant and 0 <a < 1. 

x[n] y[n] 

+ 

Fig. 6-20 

(a) Find the frequency response H(Q) of the system. 

(b) Find the impulse response h[n] of the system. 

(c) Sketch the magnitude response IH(Q) I of the system for a= 0.9 and a= 0.5. 

(a) From Fig. 6-20 we have 

y[n] - ay[n - 1] = x[n] 

Taking the Fourier transform of Eq. (6.147) and by Eq. (6.77), we have 

1 
H(Q) = o 

1- ae- 1 
lal<l 

(b) Using Eq. (6.37), we obtain 

h[n] = a"u[n] 

(c) From Eq. (6.148) 

1 
H(Q) = o 

1 - ae - J 1 - a cos Q + ja sin Q 

and 

1 
I H(Q) I= 1/2 2 1/2 

( (1 - a cos Q)2 +(a sin Q)2] (1 +a - 2acos Q) 

which is sketched in Fig . 6-21 for a = 0.9 and a = 0.5. 

We see that the system is a discrete-time low-pass infinite impulse response (IIR) filter (Sec. 2.9C). 

1t 

2 

IH(Q)I 
10 

0 

Fig. 6-21 

1t 

2 
1t Q 

(6.147) 

(6.148) 

(6.149) 
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6.36. Let hLPF[n] be the impulse response of a discrete-time low-pass filter with frequency response HLPF(Q). 

Show that a discrete-time filter whose impulse response h[n] is given by 

(6.150) 

is a high-pass filter with the frequency response 

(6.151) 

Since - 1 = ei", we can write 

(6.152) 

Taking the Fourier transform of Eq. (6.152) and using the frequency-shifting property (6.44), we obtain 

which represents the frequency response of a high-pass filter. This is illustrated in Fig. 6-22. 

I I 

- it - Q 
c 0 1t n 0 it - !2 1t c Q 

Fig. 6-22 Transformation of a low-pass filter to a high-pass filter. 

6.37. Show that if a discrete-time low-pass filter is described by the difference equation 

N M 

y[n]=- Laky[n-k]+ Lbkx[n-k] (6.153) 
k=I k=O 

then the discrete-time filter described by 

N M 

y[n]=- L(-l)kaky[n-k]+ L(-l)kbkx[n-k] (6.154) 
k=I k=O 

is a high-pass filter. 

Taking the Fourier transform of Eq. (6.153), we obtain the frequency response HLPF(Q) of the low-pass filter as 

If we replace Q by (Q - n:) in Eq. (6.155), then we have 

M 
2 bke- jk(Q - n) 

k =O HHPF(Q) = HLPF(Q - Jr) = __ N ____ _ 

1 + 2 ake- jk(O - rr) 

k = l 

N 

1+ 2<- l)kake- jkQ 

k = l 

(6.155) 

(6.156) 
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which corresponds to the difference equation 

N M 

y[n] =- ~(- l)kaky[n - k]+ ~(- l)kbkx[n - k] 
k = l k =O 

6.38. Convert the discrete-time low-pass filter shown in Fig. 6-18 (Prob. 6.34) to a high-pass filter. 

From Prob. 6.34 the discrete-time low-pass filter shown in Fig. 6-18 is described by [Eq. (6.145)] 

y[n] = x[n] + x[n - 1] 

Using Eq. (6.154) , the converted high-pass filter is described by 

y[n] = x[n] - x[n - 1] (6.157) 

which leads to the circuit diagram in Fig . 6-23. Taking the Fourier transform of Eq. (6.157) and by Eq. (6.77), we have 

H(Q) = 1- e- 1° = e- JW2(e1w2 - e- JW2) 

From Eq. (6.158) 

and 

= j2e - JW2 sin Q = 2eJ(;r - Q)/2 sin Q 
2 2 

{
(n - Q)/2 

8(Q) = 
(- n - Q)/2 

O< Q < n 

- n~Q < O 

which are sketched in Fig. 6-24. We see that the system is a discrete-time high-pass FIR filter. 

x[n] y[n] 

-------------- I---

- n 1t 

2 

Fig. 6-23 

1t 

2 

0 

IH(R)I 

8(Q) 

0 

1t 

2 

Fig. 6-24 

+ 

1t 

2 
1t Q 

1t Q 

(6 .158) 
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6.39. The system function H(z) of a causal discrete-time LTI system is given by 

-1 
H(z)=b+z_1 

1-az 
(6.159) 

where a is real and I a I < 1. Find the value of b so that the frequency response H(Q) of the system 
satisfies the condition 

IH(Q)I = 1 all Q 

Such a system is called an all-pass filter. 

By Eq. (6.34) the frequency response of the system is 

Then, by Eq. (6.160) 

which leads to 

or 

or 

b+e-j!J 
H(Q)= H(z)I ll = . 

z=el 1 - ae - J!J 

IH(Q)l=I b+e~: 1=1 
1-ae 1 

lb+ e-jlll = I 1 - ae-illl 

I b + cos Q - j sin Q I = I 1 - a cos Q + ja sin Q I 
1+b2 +2bcosQ = 1+a2 -2acosQ 

and we see that if b = -a, Eq. (6.162) holds for all Q and Eq. (6.160) is satisfied. 

6.40. Let h[n] be the impulse response of an FIR filter so that 

h[n] = 0 n <0,n :=::N 

Assume that h[n] is real and let the frequency response H(Q) be expressed as 

H(Q) = I H(Q) I ejO(!J) 

(a) Find the phase response O(Q) when h[n] satisfies the condition [Fig. 6-25(a)] 

h[n] = h[N - 1 - n] 

(b) Find the phase response O(Q) when h[n] satisfies the condition [Fig. 6-25(b)] 

h[n] = -h[N - 1 - n] 

(a) Taking the Fourier transform of Eq. (6.163) and using Eqs. (6.43), (6.46), and (6.62), we obtain 

or 

Thus, 

and 

H(Q) = H*(Q) e- i<N - l)ll 

I H(Q) I eiB(Q) = I H(Q) I e-iB(Q) e-i<N - J)Q 

B(Q) = - B(Q)- (N - 1) Q 

1 
B(Q)= - 2 (N-l)Q 

which indicates that the phase response is linear. 

(6.160) 

(6.161) 

(6.162) 

(6.163) 

(6.164) 

(6.165) 
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h[n] h[n] 

N odd 

0 N - 1 N n 0 
2 

(a) 

h[n] h[n] 

Nodd 

0 N n 0 

(b) 

Fig. 6-25 

(b) Similarly, taking the Fourier transform of Eq. (6.164), we get 

H(Q) = - H*(Q) e - j<N - I )Q 

or I H(Q) I e jO (Q) = I H(Q) I ejir e - j O(QJ e - j <N - I)Q 

Thus, 

and 

8(Q) = .ir - 8(Q) - (N - l)Q 

Jr 1 
8(Q) = - - -(N - l)Q 

2 2 

which indicates that the phase response is also linear. 

N - 1 
2 

N - 1 
2 

N 

N 

N even 

n 

N even 

n 

(6 .166) 

6.41. Consider a three-point moving-average discrete-time filter described by the difference equation 

1 
y[n] = -{x[n] + x[n -1] + x[n - 2]} 

3 

(a) Find and sketch the impulse response h[n] of the filter. 

(b) Find the frequency response H(Q) of the filter. 

(c) Sketch the magnitude response IH(Q) I and the phase response 6(Q) of the filter. 

(a) By the definition of h[n] [Eq. (2.30)] we have 

or 

1 
h[n] = -{b[n] + b[n - 1]+ b[n - 2]} 

3 

otherwise 

(6.167) 

(6.168) 
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h[n] 

1 
-
3 

0 1 2 3 n 

(a) 

Fig. 6-26 

- rr 2rr 0 
3 

(b) 

IH(fl)I 

8(fl) 

11: 

2 

11: 

2 

which is sketched in Fig . 6-26(a). Note that h[n] satisfies the condition (6.163) with N = 3. 

(b) Taking the Fourier transform of Eq . (6.168), we have 

By Eq. (1.90), with a = e-j R, we get 

where 

(c) From Eq. (6.169) 

and 

1 1 - j30. 1 e - j30. (ej3Q/2 - e - j3'1.t2) 
H(Q) = - - e . 

3 1 - e - ,o. 3 e - jO.t2 ( ejo.t2 - e - j0.!2 ) 

= .!.e- jO. sin(3Q/2) H (Q)e- jO. 
3 sin(Q/2) r 

H (Q) = .!_ sin(3Q/2) 
r 3 sin(Q/2) 

I H(Q)I = I H,(Q)I = .!_I si~(3Q/2) I 
3 sm(Q/2) 

8(Q) = ,.... {
- Q 

- •• +n 

when H,(Q) > 0 

when H,(Q) < 0 

••• 

2rr 11: fl 
3 

(6.169) 

(6.170) 

which are sketched in Fig. 6-26(b). We see that the system is a low-pass FIR filter with linear phase. 

6.42. Consider a causal discrete-time FIR filter described by the impulse response 

h[n] = {2, 2, -2, -2} 

(a) Sketch the impulse response h[n] of the filter. 

(b) Find the frequency response H(Q) of the filter. 

(c) Sketch the magnitude response IH(Q) I and the phase response 8(Q) of the filter. 
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(a) The impulse response h[n] is sketched in Fig. 6-27(a). Note that h[n] satisfies the condition (6.164) with N = 4. 

(b) By definition (6.27) 

"' H(Q) = ~ h[n]e- jQn = 2 + 2e- jQ - 2e- j 2Q - 2e- j 3Q 

n =-oo 

= 2(1 - e- j30 ) + 2(e- j0 - e- jm) 

= 2e - j3Q/2(ej3Q/2 _ e - j3Q/2) + 2e - j3Q/2(ejQ/2 _ e - jQ/2) 

= je - j3Q/2 (sin ~ + sin 3~ ) = Hr (Q) ej[(rr/ZJ- <3WZ)) 

where Hr(Q) = sin(~ ) +sin( 3~ ) 

(c) FromEq.(6.171) 

IH(Q)l = IHr(Q)l = lsin( ~)+sin( 3~ )I 

l 
3 

n/2 - -Q 
8(Q) = 2 

- n/2 - %Q 

Hr(Q) > 0 

Hr(Q) < 0 

which are sketched in Fig . 6-27(b). We see that the system is a bandpass FIR filter with linear phase. 

h[n] 
1t - n 
2 

2 

2 3 

0 1 4 n 

- 2 

(a) 

Fig. 6-27 

Slmulatlon 

6.43. Consider the RC low-pass filter shown in Fig. 6-28(a) with RC = 1. 

(a) Construct a discrete-time filter such that 

IH(Q)I 

0 ~ 1t 
2 

6(Q) 

1t 

- n 

(b) 

(6.171) 

Q 

(6.172) 
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where hc(t) is the impulse response of the RC filter, hJn] is the impulse response of the discrete­
time filter, and T, is a positive number to be chosen as part of the design procedures. 

(b) Plot the magnitude response I H/ w) I of the RC filter and the magnitude response I Hi wT,) I of the 
discrete-time filter for T, = 1 and T, = 0 .1. 

R 

1-------1\/1/W' ·1 
x(t) y(t) 

l l 
(a) 

x[n] y [n] 

(b) 

Fig. 6-28 Simulation of an RC filter by the impulse invariance method. 

(a) The system function H/s) of the RC filter is given by (Prob. 3.23) 

and the impulse response h/t) is 

1 
H (s) = -

c s + 1 

By Eq. (6.172) the corresponding hJn] is given by 

hd[n] = e- nI:,u[n] = (e- i:'t u[n] 

(6 .173) 

(6.174) 

(6.175) 

Then, taking the z-transform of Eq. (6.175), the system function H,lz) of the discrete-time filter is given by 

1 
Hd(z) = - T - 1 

1- e s z 

from which we obtain the difference equation describing the discrete-time filter as 

y[n] - e- Tsy[n - 1] = x[n] 

from which the discrete-time filter that simulates the RC filter is shown in Fig. 6-28(b). 

(b) By Eq. (5.40) 

Then 

1 
H(w) = H(s)I = --c c s=1·w . 1 ]W+ 

(6.176) 
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By Eqs. (6 .34) and (6.81) 

1 
Hd(wTs) = Hd (z)I _ JwTs = - T _ · T 

z - e 1 - e s e 1w s 

From Eq. (6 .149) 

From T, = 1, 

For T, = 0.1, 

1 I Hd(wTs)I = J/2 
[ 1 + e - 0·2 - 2e - o.1 cos(O.lw)) 

The magnitude response I H/ w) I of the RC filter and the magnitude response I H/ wT,) I of the discrete-time 
filter for T, = 1 and T, = 0.1 are plotted in Fig . 6-29. Note that the plots are scaled such that the magnitudes 
at w = 0 are normalized to 1 . 

The method utilized in this problem to construct a discrete-time system to simulate the continuous-time 
system is known as the impulse-invariance method. 

0 .8 

0 .6 

0 .4 

0 .2 

0 

IHc(ro)I 

IHc(roT.JI 

5 

T5 = 0.1 

10 15 

Fig. 6-29 

6.44. By applying the impulse-invariance method, determine the frequency response HiQ) of the discrete­
time system to simulate the continuous-time LTI system with the system function 

1 
H (s)-----

c (s + l)(s + 2) 

Using the partial-fraction expansion, we have 

1 1 
H c(s) = -- - -­

s + l s + 2 

Thus, by Table 3-1 the impulse response of the continuous-time system is 

(6.177) 
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Let hd[n] be the impulse response of the discrete-time system. Then, by Eq. (6.177) 

and the system function of the discrete-time system is given by 

1 
H (z)- --=---....,.. 

d - l -nT -I -e sz 
(6.178) 

Thus, the frequency response HiQ) of the discrete-time system is 

(6.179) 

Note that if the system function of a continuous-time LTI system is given by 

(6.180) 

then the impulse-invariance method yields the corresponding discrete-time system with the system function Hjz) 
given by 

H ( )- ~ Ak 
d Z - ~ l _ -aknT5 - I 

k=I e Z 
(6.181) 

6.45. A differentiator is a continuous-time LTI system with the system function [Eq. (3 .20)] 

H/s) = s (6.182) 

A discrete-time LTI system is constructed by replacing sin H/s) by the following transformation 
known as the bilinear transformation: 

2 1- z-1 
s=----

T, 1 + z-1 
(6.183) 

to simulate the differentiator. Again T. in Eq. (6.183) is a positive number to be chosen as part of the 
design procedure. 

(a) Draw a diagram for the discrete-time system. 

(b) Find the frequency response HjQ) of the discrete-time system and plot its magnitude and phase 
responses. 

(a) Let Hjz) be the system function of the discrete-time system. Then, from Eqs. (6.182) and (6.183) we have 

Writing Hjz) as 

2 1- z-1 
H (z)=---

d T, 1 + z-1 

Hd(z)= }:_ (-1-)<1- z-1) 
T, l+z-1 

(6.184) 

then, from Probs. (6.35) and (6.38) the discrete-time system can be constructed as a cascade connection of 
two systems as shown in Fig. 6-30(a). From Fig. 6-30(a) it is seen that we can replace two unit-delay 
elements by one unit-delay element as shown in Fig. 6-30(b). 

(b) By Eq. (6.184) the frequency response HjQ) of the discrete-time system is given by 

2 e - j0.!2 (ej0.!2 - e - j0./2 ) 

T, e - j0.!2 (ej0.!2 + e - j0.!2) 

. 2 g 2 g j1r/2 
1-tan-=-tan-e 

T, 2T, 2 
(6.185) 
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x[n] 
----.t L>-----------------.i 

+ 

(a) 

x[n] 
-----1~ L r------...-------1~ 

+ + 

(b) 

Fig. 6-30 Simulation of a differentiator. 

Note that when Q << 1, we have 

IfQ = wT,(Fig . 6-31). 

' , 
•,' ,, 

,,,''' 

H ri) . 2 Q . Q . 
d(•• = 1-tan-= 1-= lW 

Ts 2 Ts 

Fig. 6-31 

2 

r. 

y[n] 

y[n] 

(6.186) 

6.46. Consider designing a discrete-time LTI system with system function Hiz) obtained by applying the 
bilinear transformation to a continuous-time LTI system with rational system function H/s). That is, 

(6.187) 

Show that a stable, causal continuous-time system will always lead to a stable, causal discrete-time system. 

Consider the bilinear transformation of Eq. (6.183) 

2 I - z- 1 
s =---

Ts l+z- 1 
(6.188) 
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Solving Eq. (6.188) for z, we obtain 

1 +(T, /2)s 
z=----

1- (T, /2)s 

Settings = jw in Eq. (6.189), we get 

I z I= 11 + jw(T, /2) I= 1 
1- jw(T,/2) 

Thus, we see that the jw-axis of the s-plane is transformed into the unit circle of the z-plane. Let 

z = re1° and s = a+ jw 

Then from Eq. (6.188) 

2z - 1 2re'0 - 1 
s =---=----

T, z+l T, re1° +1 

2 ( r2 - 1 + . 2r sin Q ) 
= T, 1 + r2 + 2r cos Q 1 1 + r2 + 2r cos Q 

Hence, 

2 r2 - 1 
a =-------

T, l+r2 +2rcosQ 

2 2rsinQ 
w = - ----,,----

T, 1+r2 +2r cos Q 

.... 
(6.189) 

(6.190) 

(6.191a) 

(6.19lb) 

FromEq. (6.191a) we see thatif r< 1, then a< O,andif r> 1, then a> O.Consequently, the left-hand plane (LHP) 
ins maps into the inside of the unit circle in the z-plane, and the right-hand plane (RHP) ins maps into the outside of 
the unit circle (Fig. 6-32). Thus, we conclude that a stable, causal continuous-time system will lead to a stable, causal 
discrete-time system with a bilinear transformation (see Sec. 3.68 and Sec. 4.68). When r = 1, then a = 0 and 

or 

2 sinQ 2 Q 
w = - = -tan-

T, l+cosQ T, 2 

ri 2 - I wT, •• = tan --
2 

(6.192) 

(6.193) 

From Eq. ( 6 .193) we see that the entire range - oo < w < oo is mapped on! y into the range - n :o; Q :o; n. 

jm 

s-plane 

CJ 

Fig. 6-32 Bilinear transformation . 

lm(z) 

Unit circle 
lzl = 1 

z-plane 

Re(z) 
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6.47. Consider the low-pass RC filter in Fig. 6-28(a). Design a low-pass discrete-time filter by the bilinear 
transformation method such that its 3-dB bandwidth is :rc/4. 

Using Eq. (6.192), Q 3 d8 = nl4 corresponds to 

2 Q3dB 2 Jr 0.828 
w 3 ct8 = -tan-- = -tan- = --

Ts 2 Ts 8 Ts 
(6 .194) 

From Prob. 5.55(a), w3 d8 = l!RC. Thus, the system function H/s) of the RC filter is given by 

H ) 0.828 ITS 
(s = ---~-

c s + 0.828 ITS 
(6.195) 

Let Hjz) be the system function of the desired discrete-time filter. Applying the bilinear transformation (6.183) to 
Eq. (6.195) , we get 

H ) 0.828 ITS 
(Z = ---.,---­

d 2 1 - Z - I 0.828 
---+--
Ts 1 + z- 1 Ts 

0.293 (1 + Z - I) 

1- 0.414z- I 

from which the system in Fig . 6-33 results . The frequency response of the discrete-time filter is 

H (Q) = 0.293 (1 + e- 10 ) 

d 1- 0.414e- 10 

At Q = 0, HJ.,.o) = 1, and at Q = nl4 , IH/nl4)1 = 0.707 = 11../2, which is the desired response. 

0 .293 
x[n] y[n] 
---- I 1-------.....-------IM 

+ + 
+ + 

0.414 

Fig. 6-33 Simulation of an RC filter by the bilinear transformation method . 

(6 .196) 

(6 .197) 

6.48. Let h[n] denote the impulse response of a desired IIR filter with frequency response H(Q) and let hJn] 
denote the impulse response of an FIR filter of length N with frequency response H/Q). Show that 
when 

{
h[n] 

ho[n] = 0 

the mean-square error £ 2 defined by 

is minimized. 

By definition (6.27) 

00 

H(Q) = 2 h[n]e- jOn and 
n=- oo 

0:5n:5N-1 

otherwise 

00 

H 0 (Q) = 2 h0 [n]e- jQn 
n=- oo 

(6.198) 

(6.199) 
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"' 
Let E(Q) = H(Q) - H 0 (Q) = 2 (h[n] - h0 [n]) e- jQn 

n =-oo 

"' 
= 2 e[n]e- jQn 

n =-oo 

where e[n] = h[n] - h)n]. By Parseval's theorem (6.66) we have 

t: 2 = __!__ .() E(Q) 12 dQ = i I e[n] 12 = i I h[n] - h0 [n] 12 
2n n=-<» n=-<» 

N-l - I "' 

= 2 I h[n] - ho[n] 12 + 2 I h[n] 12 + 2 I h[n] 12 
n= O n=-oo n=N 

The last two terms in Eq. (6 .201) are two positive constants. Thus, t: 2 is minimized when 

h[n] - h)n] = 0 O-s;,n-s;,N - 1 

that is , 

h[n] = h)nl 

Note that Eq. (6.198) can be expressed as 

h)n] = h[n]w[n] 

where w[n] is known as a rectangular window function given by 

w[n] = {~ 

Discrete Fourier Transform 

O-s;,n-s;,N - 1 

otherwise 

6.49. Find the N-point OFT of the following sequences x[n]: 

(a) x[n] = b[n] 

(b) x[n] = u[n] - u[n - N] 

(a) From definitions (6 .92) and (1.45), we have 

N - l 

X[k] = 2 o[n]w~ = 1 k = 0, 1, .. .,N - 1 
n=O 

Fig. 6-34 shows x[n] and its N-point DPT X[k] . 

0 N - 1 n 

Fig. 6-34 

(b) Again from definitions (6.92) and (1.44) and using Eq. (1 .90), we obtain 

N - l l - WkN 

X[k] = 2 W~" = Nk = 0 k i= O 
n=O l - WN 

0 N - 1 

(6.200) 

(6.201) 

(6.202) 

(6.203) 

k 
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since W~N = e - J(Zl<IN)kN = e - JkZ" = 1. 

N - l N - l 

X[O] = _L wi = _L l = N 
n=O n =O 

Fig. 6-35 shows x[n] and its N-point DPT X[k]. 

x[n] X[k] 

N 

0 N - 1 n 0 

Fig. 6-35 

6.50. Consider two sequences x[n] and h[n] of length 4 given by 

x[n] =cos( ; n) n = 0, 1, 2, 3 

h[n]=(+r n=0,1,2,3 
(a) Calculate y[n] = x[n] ® h[n] by doing the circular convolution directly. 

(b) Calculate y[n] by OFT. 

(a) The sequences x[n] and h[n] can be expressed as 

By Eq. (6.108) 

x[n] = {1, 0, - 1, O} and I I I 
h[n] = {1,2'4'8} 

3 

y[n] = x[n]@h[n] = _Lx[i]h[n - ilmod4 
i = O 

N - 1 k 

The sequences x[i] and h[n - i]m004 for n = 0, 1, 2, 3 are plotted in Fig. 6-36(a). Thus, by Eq. (6.108) we get 

n = O 

n = l 

n = 2 

n = 3 

and 

which is plotted in Fig. 6-36(b). 

(b) By Eq. (6.92) 

3 

y[O] = 1(1) + (- 1)( +) = ~ 

y[l] = l( ~ )+(- 1)(+) = % 

y[2] = 1( +) + (- 1)(1) = -~ 

y[3] = 1( +) + (- 1)( ~) = -% 
y[n] = {~ ~ - ~ - ~} 

4' 8' 4' 8 

X[k] = _L x[nJWi" = 1- W4
2k k = 0, 1, 2, 3 

n=O 

k = 0, 1, 2, 3 
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Then by Eq. (6.107) the DFTofy[n] is 

Y[k] = X[k]H[k] = (1 - wr) (1 + _!_w4* + _!__wr + _!_wj*) 
2 4 8 

- l+ lw* _ 3w2* _ 3w3k _ lw4k _ lws* - 2444 84 44 84 

k = 0, 1, 2, 3 

Thus , by the definition of DFT [Eq. (6.92)] we get 

Y[n] ={2 2 _2 -2} 4 , 8, 4, 8 

x[i] 

1 
2 

2 

0 1 3 - 3 - 2 - 1 0 

- 1 

h[n - i] mod 4 h[n - i] mod 4 

1 n =O 1 n = 1 
2 2 

0 1 2 3 0 1 2 3 

h[n - i] mod 4 h[n - i] mod 4 

1 n =2 1 n =3 
2 2 

0 1 2 3 0 1 2 3 

(a) 

y[n] 

1 
2 

2 3 

0 1 n 
1 

-2 

-1 

(b) 

Fig. 6-36 
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6.51. Consider the finite-length complex exponential sequence 

{ 
jOon 

x[n] = ~ 
0:5n:5N-1 

otherwise 

(a) Find the Fourier transform X(Q) of x[n]. 

(b) Find the N-point DFf X[k] of x[n]. 

(a) From Eq. (6.27) and using Eq. (1.90), we have 

oo N-1 N-1 
X(Q)= ~ x[n]e-j!Jn = ~ ej'1one-j!Jn = ~ e-j(O-Oo)n 

n=-oo n=O n=O 

1 - e - j(O-Oo )N e - j(O-Oo )N 12 ( ej(O-Oo )N 12 - e - j(O-Oo )N 12) 

= 1 _ e - j(O-Oo) - e - j(0-00 )/2 ( ej(0-'10 )/2 _ e - j(0-00 )/2) 

= ej(O-Oo)(N-1)/2 sin[(Q- '2o)N /2] 
sin[(Q-Q0 )/2] 

(b) Note from Eq. (6.98) that 

X[k] = X(Q) lo=k2;r/N = x( k~:rr ) 
we obtain 

· [( 2:rr k n )N] sm - - •• 0 -

X[k] = ej[(2;r/N)k-00 ][(N-l)/2J N 2 

sin[( 2: k- '20 )±] 
6.52. Show that if x[n] is real, then its DFf X[k] satisfies the relation 

X[N - k] = X*[k] 

where * denotes the complex conjugate. 

From Eq. (6.92) 

N-1 N-1 
X[N - k] = ~ x[n] w:-k)n = ~ x[n] e-j(2;r/N)(N-k)n 

n=O n=O 

Now e-j(2;r/N)(N-k)n = e-j2;rnej(2;r/N)kn = ej(2;r/N)kn 

Hence, if x[n] is real, then x*[n] = x[n] and 

6.53. Show that 

N-1 [N-1 ]* X[N-k]= n~Ox[n]ej(2;r/N)kn= n~Ox[n]e-j(2;r/N)kn =X*[k] 

x[n] = IDFf {X[k]} = _!_[DFf{X * [k]}] * 
N 

where * denotes the complex conjugate and 

X[k] = DFT{x[n]} 
We can write Eq. (6.94) as 

x[n] = _!_ ~ X[k] ej(2;r/N)kn = _!_ ~ X *[k] e-j(2;r/N)nk [
N-1 ] [N-1 ] • 

N n=O N n=O 

(6.204) 

(6.205) 
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Noting that the term in brackets in the last term is the DFT of X*[k], we get 

x[n] = IDFT {X[k]} = _!_[DFT{X *[k]}] * 
N 

which shows that the same algorithm used to evaluate the DFT can be used to evaluate the IDFT. 

6.54. The DFf definition in Eq. (6.92) can be expressed in a matrix operation form as 

X=WNx 

where 

x[O] X[O] 

x[l] 
X= 

X[l] 
x= 

x[N-1] X[N-1] 

1 1 1 1 

1 WN wJ 
N-1 

WN 

WN= 1 w2 
N 

w4 
N 

W2(N-I) 
N 

1 N-1 
WN 

wJ<N-1) W~N-l)(N-1) 

(6.206) 

(6.207) 

The N X N matrix WN is known as the DFf matrix. Note that WN is symmetric; that is, WJ = WN, where 
WJ is the transpose of WN. 

(a) Show that 

where W,V 1 is the inverse of WN and w; is the complex conjugate of WN. 

(b) Find W4 and w4- 1 explicitly. 

(6.208) 

(a) If we assume that the inverse of WN exists, then multiplying both sides of Eq. (6.206) by W,V 1, we obtain 

(6.209) 

which is just an expression for the IDFT. The IDFT as given by Eq. (6.94) can be expressed in matrix form as 

(6.210) 

Comparing Eq. (6.210) with Eq. (6.209), we conclude that 

(b) Let w.+ l,k+ 1 denote the entry in the (n + l)strow and (k + l)stcolumnofthe W4 matrix. Then, from 
Eq. (6.207) 

(6.211) 

and we have 

-j -1 j -1 1 j -1 -j 
W4= W4 =-

-1 -1 4 -1 -1 
(6.212) 

j -1 -j -j -1 j 
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6.55. (a) Find the DFf X[k] of x[n] = {O, 1, 2, 3}. 

(b) Find the IDFf x[n] from X[k] obtained in part (a). 

(a) Using Eqs. (6.206) and (6.212), the DFT X[k] of x[n] is given by 

X[O] 0 6 

X[l] -j -1 j -2+ j2 

X[2] -1 -1 2 -2 

X[3] j -1 -j 3 -2- j2 

(b) Using Eqs. (6.209) and (6.212), the IDFT x[n] of X[k] is given by 

x[O] 6 0 0 

x[l] j -1 -j -2+ j2 4 

x[2] 4 -1 -1 -2 4 8 2 

x[3] -j -1 j -2- j2 12 3 

6.56. Let x[n] be a sequence of finite length N such that 

x[n] = 0 n <0,n :=::N 

Let the N-point DFf X[k] of x[n] be given by [Eq. (6.92)] 

N-1 

X[k] = :L x[n] W~n WN = e-j(2n:IN) k = 0, 1, ... , N -1 
n=O 

Suppose N is even and let 

f[n] = x[2n] 

g[n] = x[2n + 1] 

The sequencesf[n] and g[n] represent the even-numbered and odd-numbered samples of x[n], 
respectively. 

(a) Show that 

f[n] = g[n] = 0 outside 0 :5 n :5 N - 1 
2 

(b) Show that the N-point DFf X[k] of x[n] can be expressed as 

X[k] = F[k] + W~ G[k] 
N 

k = 0, 1, ... , 2 - 1 

X [ k + ~] = F[k] - W~ G[k] 
N 

k = 0, 1, ... , 2 - 1 

where 
(N/2)-1 

F[k] = :L f[n] W~72 
n=O 

N 
k = 0, 1, ... , 2 - 1 

(N/2)-1 

G[k] = :L g[n] W~72 
n=O 

N 
k = 0, 1, ... , 2 - 1 

(6.213) 

(6.214) 

(6.215a) 

(6.215b) 

(6.216) 

(6.217a) 

(6.217b) 

(6.218a) 

(6.218b) 

(c) Draw a flow graph to illustrate the evaluation of X[k] from Eqs. (6.217a) and (6.217b) with N = 8. 

(d) Assume that x[n] is complex and ~nk have been precomputed. Determine the numbers of complex 
multiplications required to evaluate X[k] from Eq. (6.214) and from Eqs. (6.217a) and (6.217b) and 
compare the results for N = 210 = 1024. 
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(a) From Eq. (6.213) 

f[n] = x[2n] = 0, n < 0 

Thus f[n] = 0 

Similarly 

g[n]= x[2n + 1]= O,n< 0 

Thus, g[n]=O 

and f [ ~] = x[N]= 0 

N 
n<O,n~-

2 

and g[~]=x[N+l]=O 
N 

n<O,n~-
2 

(b) We rewrite Eq. (6.214) as 

X[k] = ~ x[n] W~n + ~ x[n] W~n 
neven nodd 

(N/2)-1 (N/2)-1 

= ~ x[2m]WJmk + ~ x[2m + l]W~2m+l)k 
m=O m=O 

But wJ = (e- j(27r/N»2 = e- j(47r/N) = e- j(27r/N/2) = WN/2 

With this substitution Eq. (6.219) can be expressed as 

where 

(N/2)-1 (N/2)-1 

X[k]= ~ f[m]W;'1~ + W~ ~ g[m]W;'1~ 
m=O m=O 

= F[k] + W~ G[k] 

(N/2)-1 

F[k] = ~ f[n]W~72 
n=O 

(N/2)-1 

G[k]= ~ g[n]W~72 
n=O 

k = 0, 1, ... , N - 1 

N 
k= 0, 1, ... ,2-1 

N 
k= 0, 1, ... , 2-1 

Note that F[k] and G[k] are the (N/2)-point DFTs off[n] and g[n], respectively. Now 

w~+N12 = w~ w;12 = - w~ 

since 

Hence, Eq. (6.221) can be expressed as 

X[k] = F[k] + W~ G[k] 

x[ k+ ~] = F[k]-W~ G[k] 

N 
k= 0, 1, ... ,2-1 

N 
k= 0, 1, ... ,2-1 

(6.219) 

(6.220) 

(6.221) 

(6.222) 

(6.223) 

(c) The flow graph illustrating the steps involved in determining X[k] by Eqs. (6.217a) and (6.217b) is shown in 

Fig. 6-37. 

(d) To evaluate a value of X[k] from Eq. (6.214) requires N complex multiplications. Thus, the total number of 

complex multiplications based on Eq. (6.214) is N 2• The number of complex multiplications in evaluating 

F[k] or G[k] is (N/2)2• In addition, there are N multiplications involved in the evaluation of w;G[k]. Thus, 

the total number of complex multiplications based on Eqs. (6.217a) and (6.217b) is 2(N/2)2 + N = N 2/2 + N. 
For N = 210 = 1024 the total numberof complex multiplications based on Eq. (6.214) is 220 :::: 106 and is 

106/2 + 1024:::: 106/2 based on Eqs. (6.217a) and (6.217b). So we see that the number of multiplications is 

reduced approximately by a factor of 2 based on Eqs. (6.217a) and (6.217b). 

The method of evaluating X[k] based on Eqs. (6.217a) and (6.217b) is known as the decimation-in-time fast 

Fourier transform (FFT) algorithm. Note that since N/2 is even, using the same procedure, F[k] and G[k] can 
be found by first determining the (N/4)-point DFTs of appropriately chosen sequences and combining them. 
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x[O] 
F[O] 

X[O] 
F[1] 

x[2] 
4-point 

X[1] 
F[2] 

x[4] DFT X[2] 

x[6] 
F[3] 

X[3] 
G[O] 

x[1] X[4] 
G[1] Wao 

x[3] X[S] 
4-point G[2] Wa1 

x[S] OFT 
G[3] Wa2 

X[6] 

x[7] X[7] w3 - 1 
8 

Fig. 6-37 Flow graph for an 8-point decimation-in-time FFT algorithm. 

6.57. Consider a sequence 

x[n] = { 1, 1, -1, -1, -1, 1, 1, -1} 

Determine the DFf X[k] of x[n] using the decimation-in-time FFf algorithm. 

From Figs. 6-38(a) and (b), the phase factors ~k and W8k are easily found as follows: 

W40 = 1 wj =- j wl =- 1 W} = j 

and W8° = 1 wi = -1 _ _ j-1-
J2 J2 

Ws2 = - j W3 = _ _ 1 _ _ j_l_ 
8 J2 J2 

W84 = - 1 wi =- -1-+ j-1-
J2 J2 

Ws6 = j w1 1 . 1 
8 = -+;-

J2 J2 
Next, from Eqs. (6.215a) and (6.215b) 

f[n] = x[2n] = {x[O],x[2],x[4],x[6]} = {1 , - 1, - 1, 1} 

g[n] = x[2n + 1] = {x[l], x[3], x[5], x[7]} = {1 , - 1, 1, - 1} 

Then, using Eqs. (6.206) and (6.212), we have 

F[O] 

F[l] - j - 1 

F[2] - 1 

F[3] j - 1 

G[O] 

G[l] - j - 1 

G[2] - 1 

G[3] j - 1 

and by Eqs. (6.217a) and (6.217b) we obtain 

X[O] = F[O] + W8°G[O] = 0 

X[l] = F[l] + W81G[l] = 2 + j2 

X[2] = F[2] + W82G[2] = - j4 

X[3] = F[3] + W83G[3] = 2 - j2 

0 

j - 1 2+ j2 

- 1 - 1 0 

- j 2 - j2 

0 

j - 1 0 

- 1 4 

- j - 1 0 

X[4] = F[O] - W8°G[O] = 0 

X[5] = F[l] - W81G[l] = 2 + j2 

X[6] = F[2] - W82G[2] = j4 

X[7] = F[3] - W83G[3] = 2 - j2 

Noting that since x[n] is real and using Eq. (6.204), X[7], X[6], and X[5] can be easily obtained by taking the 
conjugates of X[l], X[2], and X[3], respectively. 
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lm(z) 

n = 3,7 

lz l= 1 

n =2,6 n = 4,12 

lm(z) 

n = 6,14 

n = ?,15 

lz l= 1 

-----<------+-------- Re(z) -~..-----?IE-------.-- Re(z) 
n =0,4 n = 0,8 

n = 1,5 n = 2,10 

(a) (b) 

Fig. 6-38 Phase factors ~n and lit{t-

6.58. Let x[n] be a sequence of finite length N such that 

x[n] = 0 n < 0, n 2: N 

Let the N-point OFT X[k] of x[n] be given by [Eq. (6.92)] 

N - 1 

X[k] = L x[n] w;n k = 0, 1, ... , N -1 
n=O 

Suppose N is even and let 

p[n]=x[n]+x[n+~] 0:5n<~ 

q[n]=(x[n]-x[n+ ~])w~ 0:5n<~ 
(a) Show that the N-point OFT X[k] of x[n] can be expressed as 

X[2k] = P[k] 

X[2k+l]=Q[k] 

(N/2) - 1 

where ~ kn P[k] = L.,, p[n] WN/2 

n=O 

(N/2) - 1 

Q[k] = L q[n] w;;2 

n=O 

N 
k =O, 1, ... , 2 -1 

N 
k = 0, 1, .. ., 2 - 1 

N 
k=0,1, ... ,2-1 

N 
k = 0, 1,. . ., 2 - 1 

n = 1,9 

(6.224) 

(6.225a) 

(6.225b) 

(6.226a) 

(6.226b) 

(6.227a) 

(6.227b) 

(b) Draw a flow graph to illustrate the evaluation of X[k] from Eqs. (6.226a) and (6.226b) with N = 8. 

(a) We rewrite Eq. (6.224) as 

(N /2) - 1 N- l 

X[k] = 2 x[n] W~" + 2 x[n] W~" (6.228) 
n =O n = N/2 
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Changing the variable n = m + N/2 in the second term of Eq. (6.228), we have 

(N/2) - 1 (N/2) - 1 

X[k] = n~O x[n] w~" + w:f'12 )k m~O x [ m + ~] w~m (6.229) 

Noting that [Eq. (6.223)] 

Eq. (6.229) can be expressed as 

(N/2) - 1 { N } 
X[k] = n~O x[n]+(- l)k x[n+ 2 ] W~" (6.230) 

Fork even, setting k = 2r in Eq. (6.230), we have 

(N/2) - 1 (N/2) - 1 

X[2r] = ,L p[n]W~rn = ,L p[n]W~72 
m =O n=O 

N 
r = 0, 1, ... , 2 - 1 (6.231) 

where the relation in Eq. (6.220) has been used. Similarly, for kodd , setting k = 2r + 1 in Eq. (6.230), we get 

(N /2) - 1 (N /2)- 1 

X[2r+l] = ,L q[n]W~rn = ,L q[n]W~72 (6.232) 

m=O n =O 

Equations (6.231) and (6.232) represent the (N/2)-point DPT of p[n] and q[n], respectively. Thus, Eqs . (6.231) 
and (6.232) can be rewritten as 

where 

X[2k] = P[k] 

X[2k+l] = Q[k] 

(N/2) - 1 

N 
k = 0, 1,. .. , 2 - 1 

N 
k = 0, 1, .. .,2 - 1 

P[k] = _L p[n]W~~2 
N 

k = 0, 1, ... , 2 - 1 
n=O 

(N/2) - 1 

Q[k] = ,L q[n] W~~2 
n=O 

N 
k = 0, 1, .. .,2 - 1 

(b) The flow graph illustrating the steps involved in determining X[k] by Eqs. (6.227a) and (6.227b) is shown in 
Fig. 6-39. 

The method of evaluating X[k] based on Eqs. (6.227a) and (6.227b) is known as the decimation-in­

frequency fast Fourier tramform (FFT) algorithm. 

x(O] 
p[O] 

X(O] 
p[1] 

X[2] x[1] 
4-point 

p[2] 
x[2] DFT X[4] 

x(3] 
p[3] 

X[6] 

q[O] 
x[4] X[1] 

q [1] 
wo 

8 
x(5] X[3] 

q[2] w1 4-point 
8 

X[5] x(6] DFT 
q[3] w2 

8 
X[7] x[7] 

-1 w3 
8 

Fig. 6-39 Flow graph for an 8-point decimation-in-frequency FFT algorithm. 



CHAPTER 6 Fourier Analysis of Discrete-Time 

6.59. Using the decimation-in-frequency FFf technique, redo Prob. 6.57. 

From Prob. 6.57 

x[n] = {l, 1, -1, -1, -1, 1, 1, -1} 

By Eqs. (6.225a) and (6.225b) and using the values of W8" obtained in Prob. 6.57, we have 

p[n]=x[n]+x[n+~] 
= {(1-1), (1+1), (-1+1), (-1-1)} = {O, 2, 0, 2} 

q[n] = ( x[n]- x [ n + ~]) w8n 

= {(l +l)W8°,(1-l)Wi,(-1-l)w~,(-1 +l)Ws3} 

= {2, 0, j2, O} 

Then using Eqs. (6.206) and (6.212), we have 

P[O] 

P[l] -j -1 

P[2] -1 

P[3] j -1 

Q[O] 

Q[l] -j -1 

Q[2] -1 

Q[3] j -1 

and by Eqs. (6.226a) and (6.226b) we get 

X[O] = P[O] = 0 

X[l] = Q[O] = 2 + j2 

X[2] = P[l] = -j4 

X[3] = Q[l] = 2 - j2 

which are the same results obtained in Prob. 6.57. 

j 

-1 

-j 

j 

-1 

-j 

0 0 

2 - j4 

0 0 

-2 j4 

2 2+ j2 

0 2- j2 

j2 2+ j2 

0 2- j2 

X[4] = P[2] = 0 

X[5] = Q[2] = 2 + j2 

X[6] = P[3] = j4 

X[7] = Q[3] = 2 - j2 

•• 

6.60. Consider a causal continuous-time band-limited signal x(t) with the Fourier transform X(w). Let 

x[n] = T,x(nT,) (6.233) 

where T, is the sampling interval in the time domain. Let 

X[k] = X(k A w) (6.234) 

where Aw is the sampling interval in the frequency domain known as the frequency resolution. Let T1 

be the record length of x(t), and let wM be the highest frequency of x(t). Show that x[n] and X[k] form an 
N-point DFf pair if 

T1 = 2wM =N 
Ts Aw 

and (6.235) 

Sincex(t) = 0 fort< 0, theFouriertransformX(w) of x(t) is given by [Eq. (5.31)] 

X(w)=f00 x(t)e-jwt dt= r"" x(t)e-jwt dt 
-ao Jo (6.236) 
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Let T1 be the total recording time of x(t) required to evaluate X(w). Then the above integral can be approximated by 

a finite series as 

N-1 

X(w)= M ~ x(tn)e-jwt. 
n=O 

where t. = n !l.t and T1 = N !l.t. Setting w = wk in the above expression, we have 

N-1 

X(wk)= M ~ x(t.)e-jwktn (6.237) 
n=O 

Next, since the highest frequency of x(t) is wM, the inverse Fourier transform of X(w) is given by [Eq. (5.32)] 

1 oo · 1 WM · 
x(t)=-J X(w)e1wt dw=-J X(w)e1wt dw 

2n - 00 2n -wM 
(6.238) 

Dividing the frequency range - wM ~ w ~ wM into N (even) intervals of length !l.w, the above integral can be 
approximated by 

where 2wM = N !l.w. Setting t = t. in the above expression, we have 

(6.239) 

Since the highest frequency in x(t) is wM, then from the sampling theorem (Prob. 5.59) we should sample x(t) 

so that 

2n 
-2' 2WM 
T, 

where T, is the sampling interval. Since T, = M, selecting the largest value of M (the Nyquist interval), we have 

M=_!!_ 
WM 

and 
n nN 

WM=-=-
tJ.t T, 

(6.240) 

Thus, N is a suitable even integer for which 

T1 =2wM =N 
T, !l.w 

and (6.241) 

From Eq. (6.240) the frequency resolution !l.w is given by 

(6.242) 

Let tn = n Mand wk= k !l.w. Then 

T1 2n 2n 
t w = (n!l.t)(k!l.w)= nk--= -nk 
nk NT1 N (6.243) 

Substituting Eq. (6.243) into Eqs. (6.237) and (6.239), we get 

N-1 

X(k!l.w)= ~ !l.tx(n!l.t)e-j<2"'1N>nk (6.244) 
n=O 

and 
/l. (N/2)-1 

x(n!l.t)= __!!!_ ~ X(k!l.w)e(2n:IN)nk 
2n k=-N/2 

(6.245) 
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Rewrite Eq. (6.245) as 

x(nM)= !!OJ [(N~-1 X(k!J.OJ)ej(2n:IN)nk + ~ X(k!J.0J)ej<2n:IN)nk] 

21r k=O k=-N/2 

Then from Eq. (6.244) we note that X(k!J.OJ) is periodic ink with period N. Thus, changing the variable k = m - N 
in the second sum in the above expression, we get 

x(nM) = __.!!!._ ~ X (k !!OJ) ej(2n:IN)nk + ~ X (m !!OJ) ej(2n:IN)nm 
tJ. [(N/2)-1 N-1 ] 

2n k=O m=N/2 

N-1 

=!!OJ ~ X(k!J.OJ)ej(2n:IN)nk 

21r k=O 

Multiplying both sides of Eq. (6.246) by Mand noting that !!OJ M = 2n/N, we have 

Now if we define 

N-1 

x(nM)M=_!_ ~ X(k!J.OJ)ej(2n:IN)nk 

N n=O 

x[n] = Mx(n tJ.t) = T ,x(nT,) 

X[k] = X(k !!OJ) 

then Eqs. (6.244) and (6.247) reduce to the DFT pair; that is, 

N-1 

X[k]= ~x[n]W~n k=O,l, ... ,N-1 
n=O 

1 N-l -kn 
x[n]=- ~ X[k]WN n=O,l, ... ,N-1 

N n=O 

6.61. (a) Using the DFf, estimate the Fourier spectrum X( w) of the continuous-time signal 

x(t) = e- 1u(t) 

Assume that the total recording time of x(t) is T1 = 10 sand the highest frequency of x(t) is 
wM = 100 rad/s. 

(6.246) 

(6.247) 

(6.248) 

(6.249) 

(b) Let X[k] be the DFf of the sampled sequence of x(t). Compare the values of X[O], X[l], and X[lO] 
with the values of X(O), X(Aw), and X(lOAw). 

(a) From Eq. (6.241) 

N ~ OJMTI = 100(10) = 318.3 
1r 1r 

Thus, choosing N = 320, we obtain 

and 

!!OJ= 200 = ~ = 0.625 rad 
320 8 

M = _!_Q_ = _!__ = 0.031 s 
320 32 

W N = W320 = e - j(2n:/230) 

Then from Eqs. (6.244), (6.249), and (1.92), we have 

N-1 

X[k]= ~ Mx(nM)e-j<2n:IN)nk 

n=O 

1 319 1 1 320(0.031) 
=- ~ e-n(0.03l)e-j(2n:/320)nk =----~e~~~~ 

32 n=O 32 1- e-0.03le-j(2n:/320)k 

0.031 

[l - 0.969 cos(k:!r /160)] + j0.969 sin(k:!r /160) 

which is the estimate of X(k !!. OJ). 

(6.250) 
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(b) Settingk = O, k = l , andk = lOinEq.(6 .250) , wehave 

From Table 5-2 

and 

X[O] = O.Q3 l = 1 
1- 0.969 

X[l] = 0.031 = 0.855e - J0.547 
0.0312 + J0.019 

X[lO] = 0.03l - 0.159e- J1314 
0.0496 - J0.189 

- f 1 
x(t) = e u(t)++X(w) = -.--

JW +1 
X(O) = 1 

X(~w) = X(0.625) = 1 = 0.848e- J0559 
1 + J0.625 

X(10~w) = X(6.25) = 1 = 0.158e- J1.4•2 

1 + }6.25 

Even though x(t) is not band-limited, we see that X[k] offers a quite good approximation to X(w) 

for the frequency range we specified. 

SUPPLEMENTARY PROBLEMS 

6.62. Find the discrete Fourier series for each of the following periodic sequences: 

(a) x[n] = cos(O, 1.irn) 

(b) x[n] = sin(O, 1.irn) 

(c) x[n] = 2 cos(l .6.irn) + sin(2.4.irn) 

6.63. Find the discrete Fourier series for the sequence x[n] shown in Fig. 6-40. 

x[n] 

Fig. 6-40 

n 

6.64. Find the trigonometric form of the discrete Fourier series for the periodic sequence x[n] shown in Fig. 6-7 in Prob. 6.3. 

6.65. Find the Fourier transform of each of the following sequences: 

(a) x[n] = al"I , lal < 1 

(b) x[n] = sin(Q0n), I '20 I < .ir 

(c) x[n] = u[ - n - 1] 

6.66. Find the Fourier transform of the sequence x[n] shown in Fig. 6-41 . 

x[n] 
3 

-3-2-1 

0 1 2 3 n 

-3 

Fig. 6-41 
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6.67. Find the inverse Fourier transform of each of the following Fourier transforms: 

(a) X(Q) = cos(2Q) 

(b) X(Q) = jQ 

6.68. Consider the sequence y[n] given by 

Express y(Q) in terms of X(Q). 

6.69. Let 

(a) Find y[n] = x[n] * x[n]. 

{
x[n] 

y[n] = 0 

x[n] = {~ 

(b) Find the Fourier transform Y(Q) ofy[n]. 

n even 

nodd 

6.70. Verify Parseval's theorem [Eq. (6.66)] for the discrete-time Fourier transform, that is, 

6. 71. A causal discrete-time LTI system is described by 

3 1 
y[n] - -y[n - 1] +-y[n - 2] = x[n] 

4 8 

where x[n] and y[n] are the input and output of the system, respectively. 

(a) Determine the frequency response H(Q) of the system. 

(b) Find the impulse response h[n] of the system. 

(c) Findy[n] ifx[n] = (~)"u[n]. 

6. 72. Consider a causal discrete-time LTI system with frequency response 

H(Q) = Re{H(Q)} + j lm{H(Q)} = A(Q) + jB(Q) 

(a) Show that the impulse response h[n] of the system can be obtained in terms of A(Q) or B(Q) alone. 

(b) Find H(Q) and h[n] if 

Re{H(Q)} = A(Q) = 1 + cos Q 

•• 

6. 73. Find the impulse response h[n] of the ideal discrete-time HPF with cutoff frequency Qc (0 < Qc < n) shown in 
Fig. 6-42. 

H(Q) 

-Q 
c 0 1t 

Fig. 6-42 

6. 74. Show that if HLPF(z) is the system function of a discrete-time low-pass filter, then the discrete-time system whose 
system function H(z) is given by H(z) = HLPF( - z) is a high-pass filter. 
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6. 75. Consider a continuous-time LTI system with the system function 

Determine the frequency response HjQ) of the discrete-time system designed from this system based on the 
impulse invariance method. 

6. 76. Consider a continuous-time LTI system with the system function 

1 
H (s)=-

c s + 1 

Determine the frequency response HjQ) of the discrete-time system designed from this system based on the step 
response invariance; that is, 

where sp) and sin] are the step response of the continuous-time and the discrete-time systems, respectively. 

6. 77. Let HP(z) be the system function of a discrete-time prototype low-pass filter. Consider a new discrete-time low-pass 
filter whose system function H(z) is obtained by replacing z in H/z) with (z - a)/(1 - az), where a is real. 

(a) Show that 

HP (z) I -1+ · = H (z) I -1+ · z- Jo z- Jo 

HP (z) lz=-1+ jo = H (z) lz=-1+ jo 

(b) Let QP1 and 0. 1 be the specified frequencies ( < n) of the prototype low-pass filter and the new low-pass filter, 
respectively. Then show that 

a= sin[(o.pl -0.1)12] 

sin[(o.pl +0.1)12] 

6. 78. Consider a discrete-time prototype low-pass filter with system function 

H/z) = 0.5(1 + z- 1) 

(a) Find the 3-dB bandwidth of the prototype filter. 

(b) Design a discrete-time low-pass filter from this prototype filter so that the 3-dB bandwidth of the new filter is 
2n/3. 

6. 79. Determine the DFT of the sequence 

6.80. Evaluate the circular convolution 

where 

(a) Assuming N = 4. 

(b) Assuming N = 8. 

x[n] =an 0'5,n'5,N-1 

y[n] = x[n] ® h[n] 

x[n] = u[n] - u[n - 4] 

h[n] = u[n] - u[n - 3] 

6.81. Consider the sequences x[n] and h[n] in Prob. 6.80. 

(a) Find the 4-point DFT of x[n], h[n], and y[n]. 

(b) Find y[n] by taking the IDFTof Y[k]. 
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6.82. Consider a continuous-time signal x(t) that has been prefiltered by a low-pass filter with a cutoff frequency of 

10 kHz. The spectrum of x(t) is estimated by use of the N-point DFT. The desired frequency resolution is 0.1 Hz. 
Determine the required value of N (assuming a power of 2) and the necessary data length T1• 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

6.62. (a) x[n] = ~ej!Jon + ~ejl91Jon, Q0 = 0.1.ir 

(b) x[n] = _!__ej!Jon - _!__ejl91Jon Q = O.ln 
2j 2j ' 0 

(c) x[n] = (1- j0.5) ej!Jon + (1 + j0.5) ej41Jon, Q0 = 0.4.ir 

8 

6.63. x[n] = ~ck ej!Jokn, Q0 = 2.ir 
k=O 9 

3 ;ii . ;rr 1 
6.64. x[n] = --cos-n- sm-n--cos.irn 

2 2 2 2 

2 
6.65. (a) X(Q)= l- a 2 

1-2acosQ +a 

(b) X(Q)=- j.ir[c5(Q-Qo)-c5(Q-Qo)1.IQl,IQo l~.ir 

1 
(c) X(Q)=.irc5(Q)- _ .0 ,IQl~;rr 

1- e 1 

6.66. X(Q) = j2(sin Q + 2sin 2Q + 3 sin 3Q) 

6.67. (a) x[n] = _!_ c5[n - 2] + _!_c5[n + 2] 
2 2 

{
(-ltln n*O 

(b) x[n] = 
0 n=O 

6.68. Y(Q) = ~X(Q) + ~X(Q - .ir) 

{
5 (1 - In It 5) 

6.69. (a) y[n] = 0 

(b) Y(Q)=(sin(2.5Q) )
2 

sin(0.5Q) 

6. 70. Hint: Proceed in a manner similar to that for solving Prob. 5 .38. 

6.71. (a) H[Q] = 3 l l 
1 - - j!J + -2j!J -e -e 

4 8 

(b) h[n1=[2(~r-(~rJu[n] 
(c) y[n]=[( ~ r +nur-l]u[n] 
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6.72. (a) Hint: Process in a manner similar to that for Prob. 5.49. 

(b) H(Q) = 1 + e-i'2, h[n] = (j[n] + (j[n - 1] 

6.73. h[n]=c5[n]- sinQcn 
nn 

6.74. Hint: Use Eq. (6.156) in Prob. 6.37. 

-jfJ. 

6.75. H(Q)= T, e-T. ~T _ ·o. 2 , where T, is the sampling interval of hc(t). 
(1- e • e J ) 

6.77. Hint: 
·o. ejrJ.1 -a 

Set e1 pl = ---
1- a ejrJ.i 

and solve for a. 

6.78. Hint: Use the result from Prob. 6.77. 

1r 
(a) Q3db = -

2 

1 +z-1 
(b) H(z)=0.634 1 

1+0.268z-

1-aN 
6.79. X[k]= -"(2/N)k 

1-ae 1 " 
k = 0.1, ... , N - 1 

6.80. (a) y[n] = {3, 3, 3, 3} 

(b) y[n] = {l,2,3,3,2,l,O,O} 

6.81. (a) [X[O],X[l],X[2],X[3]] = [4,0,0,0] 
[H[O], H[l], H[2], H[3]] = [3, - j, l ,J] 
[Y[O], Y[l], Y[2], Y[3]] = [12, 0, 0, O] 

(b) y[n] = {3, 3, 3, 3} 

6.82. N = 218 and T1 = 13.1072 s 



State Space Analysis 

7 .1 Introduction 

So far we have studied linear time-invariant systems based on their input-output relationships, which are known 
as the external descriptions of the systems. In this chapter we discuss the method of state space representations 
of systems, which are known as the internal descriptions of the systems. The representation of systems in this 
form has many advantages: 

1. It provides an insight into the behavior of the system. 

2. It allows us to handle systems with multiple inputs and outputs in a unified way. 

3. It can be extended to nonlinear and time-varying systems. 

Since the state space representation is given in terms of matrix equations, the reader should have some famil­
iarity with matrix or linear algebra. A brief review is given in App. A. 

7 .2 The Concept of State 

A. Definition: 

The state of a system at time t0 (or n0 ) is defined as the minimal information that is sufficient to determine the 
state and the output of the system for all times t :=::: t0 (or n :=::: n0 ) when the input to the system is also known for 
all times t :=::: t0 (or n :=::: n0 ). The variables that contain this information are called the state variables. Note that 
this definition of the state of the system applies only to causal systems. 

Consider a single-input single-output LTI electric network whose structure is known. Then the complete 
knowledge of the input x(t) over the time interval -oo tot is sufficient to determine the output y(t) over the same 
time interval. However, if the input x(t) is known over only the time interval t0 to t, then the current through the 
inductors and the voltage across the capacitors at some time t0 must be known in order to determine the output 
y(t) over the time interval t0 to t. These currents and voltages constitute the "state" of the network at time to- In 
this sense, the state of the network is related to the memory of the network. 

B. Selection of State Variables: 

Since the state variables of a system can be interpreted as the "memory elements" of the system, for discrete-time 
systems which are formed by unit-delay elements, amplifiers, and adders, we choose the outputs of the unit-delay 
elements as the state variables of the system (Prob. 7.1). For continuous-time systems which are formed by integra­
tors, amplifiers, and adders, we choose the outputs of the integrators as the state variables of the system (Prob. 7.3). 
For a continuous-time system containing physical energy-storing elements, the outputs of these memory elements 
can be chosen to be the state variables of the system (Probs. 7 .4 and 7.5). If the system is described by the differ­
ence or differential equation, the state variables can be chosen as shown in the following sections. 

--
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Note that the choice of state variables of a system is not unique. There are infinitely many choices for any 
given system. 

7.3 State Space Representation of Discrete-Time LTI Systems 

A. Systems Described by Difference Equations: 

Suppose that a single-input single-output discrete-time LTI system is described by an Nth-order difference equation 

y[n] + a1y[n - 1] + ··· + aNy[n - N] = x[n] (7.1) 

We know from previous discussion that if x[n] is given for n ::=:: 0, Eq. (7.1) requires N initial conditions y[-1], 
y[-2], ... ,y[-N] to uniquely determine the complete solution forn > 0. That is,Nvalues are required to spec­
ify the state of the system at any time. 

Let us define N state variables q1[n], q2[n], ... , qN[n] as 

q1[n] = y[n - N] 

q2 [n] = y[n - (N -1)] = y[n - N + 1] 

Then from Eqs. (7.2) and (7.1) we have 

q1[n + 1] = q2[n] 

q2[n + 1] = q3 [n] 

and 

qN[n + 1] = -aNq1[n] - aN- I q2[n] - ··· - a 1qN[n] + x[n] 

y[n] = -aNq1[n] - aN- I q2[n] - · · · - a1 qN[n] + x[n] 

In matrix form Eqs. (7.3a) and (7.3b) can be expressed as 

q1[n + 1] 0 1 0 0 q1[n] 

q2 [n + 1] 0 0 1 0 qz[n] 

qN[n + 1] -aN -aN-1 -aN-2 -al qN[n] 

q1[n] 

qz[n] 
y[n] = [- aN - aN-l ··· - a1] + [l]x[n] 

qN[n] 

+ 

0 

0 
x[n] 

1 

Now we define an N X 1 matrix (or N-dimensional vector) q[n], which we call the state vector: 

q1[n] 

qz[n] 
q[n] = 

(7.2) 

(7.3a) 

(7.3b) 

(7.4a) 

(7.4b) 

(7.5) 
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Then Eqs. (7.4a) and (7.4b) can be rewritten compactly as 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

where 

0 1 0 0 

0 0 1 0 
A= 

-aN -aN-1 -aN-2 -al 

c=[-aN -aN-1 ... -ai] 

0 

0 
b= 

1 

d=l 

•• 
(7.6a) 

(7.6b) 

Equations (7.6a) and (7.6b) are called an N-dimensional state space representation (or state equations) of 
the system, and the N X N matrix A is termed the system matrix. The solution of Eqs. (7 .6a) and (7 .6b) for a given 
initial state is discussed in Sec. 7 .5. 

B. Similarity Transformation: 

As mentioned before, the choice of state variables is not unique and there are infinitely many choices of the state 
variables for any given system. Let T be any N X N nonsingular matrix (App. A) and define a new state vector 

v[n] = Tq[n] (7.7) 

where q[n] is the old state vector which satisfies Eqs. (7.6a) and (7.6b). Since Tis nonsingular; that is, T- 1 

exists, and we have 

q[n] = T- 1v[n] 

Now 

v[n + 1] = Tq[n + 1] = T(Aq[n] + bx[n]) 

Thus, if we let 

then Eqs. (7.9a) and (7.9b) become 

= TAq[n] + Tbx[n] = TAT- 1 v[n] + Tbx[n] 

y[n] = cq[n] + dx[n] = cT- 1 v[n] + dt[n] 

A= TAT- 1 

b=Tb c=cT-1 

v[n + 1] = Av[n] + bx[n] 

y[n] = cv[n] + dt[n] 

d=d 

(7.8) 

(7.9a) 

(7.9b) 

(7.lOa) 

(7.lOb) 

(7.lla) 

(7.llb) 

Equations (7.lla) and (7.llb) yield the same output y[n] for a given input x[n] with different state equations. 
In matrix algebra, Eq. (7 .1 Oa) is known as the similarity transformation and matrices A and A are called sim­
ilar matrices (App. A). 

C. Multiple-Input Multiple-Output Systems: 

If a discrete-time LTI system has m inputs and p outputs and N state variables, then a state space representation 
of the system can be expressed as 

q[n + 1] = Aq[n] + Bx[n] 

y[n] = Cq[n] + Dx[n] 

(7.12a) 

(7.12b) 
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where 

q1[n] X1[n] Y1[n] 

q[n] = 
qz[n] 

x[n] = 
x2[n] 

y[n] = 
Yz[n] 

qN[n] xm[n] Yp[n] 

and 

au a12 a IN bu b12 blm 

A= 
az1 az2 azN 

B= 
b21 b22 bzm 

a NI aN2 aNN NXN bNI bN2 bNm NXm 

Cu C12 CIN du d12 dim 

C= 
Czl c22 CzN 

D= 
dz1 dz2 dzm 

cpl ap2 CpN pXN dpl dp2 dpm pXm 

7.4 State Space Representation of Continuous-Time LTI Systems 

A. Systems Described by Differential Equations: 

Suppose that a single-input single-output continuous-time LTI system is described by an Nth-order differential 
equation 

dN (t) dN-l (t) 
_Y_+a Y +···+a y(t)=x(t) 

dtN I dtN-1 N 
(7.13) 

One possible set of initial conditions is y(O), y<O(O), ... , y<N- J>(O), where y<k>(t) = dky(t)ldtk. Thus, let us define 
N state variables q1(t), q2(t), ... , qN (t) as 

Then from Eqs. (7.14) and (7.13) we have 

and 

where q/t) = dq/t)ldt. 

rii(t) = q2 (t) 

iJ2(t)=q3(t) 

qi (t) = y(t) 

q2 (t) = y<l)(t) 

In matrix form Eqs. (7.15a) and (7.15b) can be expressed as 

0 

0 

1 

0 

0 

1 

0 

0 

qi (t) 0 

q2 (t) 0 
+ x(t) 

1 

(7.14) 

(7.15a) 

(7.15b) 

(7.16a) 
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q1(t) 

y(t)=[l o ··· o] qz(t) 

Now we define an N X 1 matrix (or N-dimensional vector) q(t) which we call the state vector: 

qi (t) 

qz(t) 
q(t)= 

The derivative of a matrix is obtained by taking the derivative of each element of the matrix. Thus, 

ti1(t) 

dq(t) = q(t) = tiz(t) 
dt 

Then Eqs. (7.16a) and (7.16b) can be rewritten compactly as 

where 

0 1 

0 0 
A= 

-aN -aN-1 

0 

1 

q(t) = Aq(t) + bx(t) 

y(t) = cq(t) 

0 

0 
b= 

-aN-2 -al 

0 

0 
c =[1 o] 0 ... 

1 

•• 
(7.16b) 

(7.17) 

(7.18) 

(7.19a) 

(7.19b) 

As in the discrete-time case, Eqs. (7.l 9a) and (7.l 9b) are called an N-dimensional state space representa­
tion (or state equations) of the system, and the N X N matrix A is termed the system matrix. In general, state 
equations of a single-input single-output continuous time LTI system are given by 

q(t) = Aq(t) + bx(t) 

y(~ = cq(~ + dx(~ 

(7.20a) 

(7.20b) 

As in the discrete-time case, there are infinitely many choices of state variables for any given system. The solu­
tion of Eqs. (7.20a) and (7.20b) for a given initial state are discussed in Sec. 7.6. 

B. Multiple-Input Multiple-Output Systems: 

If a continuous-time LTI system has m inputs,p outputs, and N state variables, then a state space representation 
of the system can be expressed as 

q(t) = Aq(t) + Bx(t) 

y(t) = Cq(t) + Dx(t) 

(7.2la) 

(7.21b) 
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qi (t) Xi (t) Y1(t) 

where q(t)= 
q1(t) 

x(t) = 
X2(t) 

y(t) = 
Y2(t) 

qN(t) xm(t) Yp(t) 

and 

au a12 alN bu b12 blm 

A= 
a11 a12 a2N 

B= 
b21 b22 b2m 

a NI aN2 aNN NXN bNI bN2 bNm NXm 

Cu C12 CIN du d12 dim 

C= 
C21 C22 C2N 

D= 
d11 d12 d2m 

cpl ap2 CpN pXN dpl dp2 d pm pXm 

7.5 Solutions of State Equations for Discrete-Time LTI Systems 

A. Solution in the Time Domain: 

Consider an N-dimensional state representation 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

(7.22a) 

(7.22b) 

where A, b, c, and dare N X N, N X 1, 1 X N, and 1 X 1 matrices, respectively. One method of finding q[n], 
given the initial state q[O], is to solve Eq. (7.22a) iteratively. Thus, 

q[l] = Aq[O] + bx[O] 

q[2] = Aq[l] + bx[l] = A{Aq[O] + bx[O]} + bx[l] 

= A2q[O] + Abx[O] + bx[l] 

By continuing this process, we obtain 

q[n] =Anq[O] + An-lbx[O] + ··· + bx[n -1] 

n-1 
=Anq[O] + ,L An-l-kbx[k] n>O 

k=O 

If the initial state is q[n0] and x[n] is defined for n :=:: n0 , then, proceeding in a similar manner, we obtain 

n-1 
q[n] =A n-noq[no] + ,LA n-1-kbx[no + k] 

k=O 

The matrix An is then-fold product 

(7.23) 

(7.24) 
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and is known as the state-transition matrix of the discrete-time system. Substituting Eq. (7.23) into Eq. (7.22b ), 
we obtain 

n-1 

y[n]=cAnq[O]+ ,L cAn-l-kbx[k]+dx[n] 
k=O 

n>O (7.25) 

The first term cAnq[O] is the zero-input response, and the second and third terms together form the zero-state 
response. 

B. Determination of An: 

Method 1: Let A be an N X N matrix. The characteristic equation of A is defined to be (App. A) 

c(/..) = IAI -Al = 0 (7.26) 

where I A I - A I means the determinant of /..I - A and I is the identity matrix (or unit 
matrix) of Nth order. The roots of c(/..) = 0, /..k (k = 1, 2, ... , N), are known as the 
eigenvalues of A. By the Cayley-Hamilton theorem An can be expressed as [App. A, 
Eq. (A.57)] 

(7.27) 

When the eigenvalues /..k are all distinct, the coefficients b0 , b 1, ... , bN-I can be found from 
the conditions 

1 1N-l 1n 
bo + blr.k + ... + bN-lr.k = r.k k = 1, 2, ... , N 

For the case ofrepeated eigenvalues, see Prob. 7.25. 

Method 2: The second method of finding An is based on the diagonalization of a matrix A. If 
eigenvalues /..k of A are all distinct, then An can be expressed as [App. A, Eq. (A.53)] 

0 0 

(7.28) 

(7.29) 

where matrix Pis known as the diagonalization matrix and is given by [App. A, Eq. (A.36)] 

(7.30) 

and xk(k = 1, 2, ... , N) are the eigenvectors of A defined by 

k= 1,2, ... ,N (7.31) 

Method 3: The third method of finding An is based on the spectral decomposition of a matrix A. When 
all eigenvalues of A are distinct, then A can be expressed as 

N 

A= }.,1E1 + }.,2E2 + ... + }.,NEN = .L }.,kEk 

k=l 

(7.32) 
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where J....k (k = 1, 2, ... , N) are the distinct eigenvalues of A and Ek (k = 1, 2, ... , N) are 
called constituent matrices, which can be evaluated as [App. A, Eq. (A.67)] 

Then we have 

N IT (A-Ami) 
m=l 

E = _m_*k ___ _ 
k N 

IT (Ak -Am) 
m=l 
m*k 

Method 4: The fourth method of finding An is based on the z-transform. 

which is derived in the following section [Eq. (7.41)]. 

C. The z-Transform Solution: 

Taking the unilateral z-transform ofEqs. (7.22a) and (7.22b) and using Eq. (4.51), we get 

zQ(z) - zq(O) = AQ(z) + bX(z) 

Y(z) = cQ(z) + dX(z) 

where X(z) = 3 1{x[n]}, Y(z) = 31{y[n]}, and 

Ql(z) 

Q(z) = 3dq[n1} = Q2 (z) 

QN(z) 

Rearranging Eq. (7.36a), we have 

(z I - A)Q(z) = zq(O) + bX(z) 

Premultiplying both sides ofEq. (7.37) by (zl - A)- 1 yields 

Q(z) = (zl - A)- 1 zq(O) + (zl - A)- 1 bX(z) 

Hence, taking the inverse unilateral z-transform of Eq. (7 .38), we get 

q[n] = 3~ 1 { (zl -A)-1 z}q(O) + 3~1 { (zl -A)-1bX(z)} 

Substituting Eq. (7.39) into Eq. (7.22b), we get 

y[n] = c3~1 { (zl -A)-1 z}q(O) + c3~ 1 { (zl -A)-1bX(z)} + dx[n] 

A comparison of Eq. (7.39) with Eq. (7 .23) shows that 

An =3~1 {(zl-A)-1 z} 

(7.33) 

(7.34) 

(7.35) 

(7.36a) 

(7.36b) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 
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D. System Function H(z): 

In Sec. 4.6 the system function H(z) of a discrete-time LTI system is defined by H(z) = Y(z) IX(z) with zero ini­
tial conditions. Thus, setting q[O] = 0 in Eq. (7.38), we have 

Q(z) = (zl - A)- 1 bX(z) (7.42) 

The substitution of Eq. (7 .42) into Eq. (7 .36b) yields 

Y(z) = [c(zl - A)- 1 b + d] X(z) (7.43) 

Thus, 

H(z) = [c(zl - A)- 1 b + d] (7.44) 

E. Stability: 

From Eqs. (7 .25) and (7.29) or (7 .34) we see that if the magnitudes of all eigenvalues f..k of the system matrix 
A are less than unity, that is, 

all k (7.45) 

then the system is said to be asymptotically stable; that is, if, undriven, its state tends to zero from any finite initial 
state <Jo· It can be shown that if all eigenvalues of A are distinct and satisfy the condition (7 .45), then the system is 
also BIBO stable. 

7.6 Solutions of State Equations for Continuous-Time LTI Systems 

A. Laplace Transform Method: 

Consider an N-dimensional state space representation 

q(t) = Aq(t) + bx(t) 

y(t) = cq(t) + dx(t) 

(7.46a) 

(7.46b) 

where A, b, c, and dare N X N, N X 1, 1 X N, and 1 X 1 matrices, respectively. In the following we solve 
Eqs. (7 .46a) and (7 .46b) with some initial state q(O) by using the unilateral Laplace transform. Taking the uni­
lateral Laplace transform of Eqs. (7.46a) and (7.46b) and using Eq. (3.44), we get 

sQ(s) - q(O) = AQ(s) + bX(s) 

Y(s) = cQ(s) + dX(s) 

where X(s) = 2ix(t)}, Y(s) = 2iy(t)}, and 

Q1(s) 

Qz(S) 
Q(s) =:£I {q(t)} = 

Rearranging Eq. (7.47a), we have 

(sl - A)Q(s) = q(O) + bX(s) 

Premultiplying both sides ofEq. (7.48) by (sl - A)- 1 yields 

Q(s) = (sl - A)- 1 q(O) + (sl - A)- 1 bX(s) 

(7.47a) 

(7.47b) 

(7.48) 

(7.49) 
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Substituting Eq. (7.49) into Eq. (7.47b), we get 

Y(s) = c(sl - A)- 1 q(O) + [c(sl - A)- 1 b + d] X(s) (7.50) 

Taking the inverse Laplace transform ofEq. (7.50), we obtain the outputy(t). Note that c(sl - A)- 1q(O) corre­
sponds to the zero-input response and that the second term corresponds to the zero-state response. 

B. System Function H(s): 

As in the discrete-time case, the system function H(s) of a continuous-time LTI system is defined by H(s) = Y(s)I X(s) 
with zero initial conditions. Thus, setting q(O) = 0 in Eq. (7.50), we have 

Y(s) = [c(sl - A)- 1 b + d] X(s) (7.51) 

Thus, 

H(s) = c(sl - A)- 1 b + d (7.52) 

C. Solution in the Time Domain: 

Following 

2 k 

eat = 1 + at + ~ t 2 + · · · + ~ tk + · · · 
2! k! 

we define 

At A 2 2 Ak k 
e =l+At+-t +···+-t +··· (7.53) 

2! k! 

where k! = k(k - 1) ··· 2 · 1. If t = 0, then Eq. (7.53) reduces to 

e0 =I (7.54) 

where 0 is anN X Nzero matrix whose entries are all zeros.As in ea<t- -r) = ea1e-a-.. = e-a-r e01, we can show that 

(7.55) 

Setting r =tin Eq. (7.55), we have 

(7.56) 

Thus, 

(7.57) 

which indicates that e-At is the inverse of eA1. 

The differentiation of Eq. (7.53) with respect to t yields 

!!._eAt =O +A+ A2 2t+···+ Ak ktk-1 +··· 
dt 2! k! 

= A [I +At + ~ ~ t 2 + ... ] 

=[l+At+~~ t 2 +···]A 
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which implies 

Now using the relationship [App. A, Eq. (A.70)] 

and Eq. (7.58), we have 

~(AB)= dAB+A dB 
dt dt dt 

~[e-Atq(t)] = [~e-At]q(t)+e-Atq(t) 
dt dt 

= -e -At Aq(t) +e -Atq(t) 

Now premultiplying both sides ofEq. (7.46a) bye-At, we obtain 

or 

From Eq. (7.59) Eq. (7 .60) can be rewritten as 

~ [ e -At q(t)] = e -Atbx(t) 
dt 

Integrating both sides ofEq. (7.61) from 0 tot, we get 

or 

Hence 

e-Atq(t)I~ = {oe-Ai-bx(r)dr 

e-Atq(t)- q(O) = /o e-Ai-bx(r) dr 

Premultiplying both sides ofEq. (7.62) by eA1 and using Eqs. (7.55) and (7.56), we obtain 

q(t)=eAtq(O)+ J~eA(t-•)bx(r)dr 

If the initial state is q (t0) and we have x(t) for t ~ t0 , then 

q(t) = eA(t-to)q(to) + ft eA(t--r)bx(r) dr 
J to 

(7.58) 

(7.59) 

(7.60) 

(7.61) 

(7.62) 

(7.63) 

(7.64) 

which is obtained easily by integrating both sides ofEq. (7.61) from t0 tot. The matrix function eA1 is known as 
the state-transition matrix of the continuous-time system. Substituting Eq. (7.63) into Eq. (7.46b), we obtain 

t 
y(t) = ceAtq(O) +Jo ceA(t-•)bx(r) dr + dx(t) (7.65) 

D. Evaluation of eAt: 

Method 1: As in the evaluation of An, by the Cayley-Hamilton theorem we have 

(7.66) 
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When the eigenvalues J..k of A are all distinct, the coefficients b0, b 1, .•• , bN _ 1 can be found 
from the conditions 

b b ~ b ~N-1_ f..,t o+ 11\.k+···+ N-11\.k -e k= 1,2, ... ,N (7.67) 

For the case ofrepeated eigenvalues see Prob. 7 .45. 

Method 2: Again, as in the evaluation of An, we can also evaluate eAt based on the diagonalization of 
A. If all eigenvalues J..k of A are distinct, we have 

/1.11 0 0 

eAt =P 0 /-21 0 -I (7.68) p 

0 0 /'NI 

where P is given by Eq. (7 .30). 

Method 3: We could also evaluate eA1 using the spectral decomposition of A, that is, find constituent 
matrices Ek (k = 1, 2, ... , N) for which 

(7.69) 

where J..k (k = 1, 2, ... , N) are the distinct eigenvalues of A. Then, when eigenvalues J..k of 
A are all distinct, we have 

(7.70) 

Method 4: Using the Laplace transform, we can calculate eA1. Comparing Eqs. (7.63) and (7.49), we 
see that 

(7.71) 

E. Stability: 

From Eqs. (7.63) and (7.68) or (7.70), we see that if all eigenvalues "J..k of the system matrix A have negative real 
parts, that is, 

all k (7.72) 

then the system is said to be asymptotically stable. As in the discrete-time case, if all eigenvalues of A are distinct 
and satisfy the condition (7.72), then the system is also BIBO stable. 

SOLVED PROBLEMS 

State Space Representation 

7.1. Consider the discrete-time LTI system shown in Fig. 7-1. Find the state space representation of the 
system by choosing the outputs of unit-delay elements 1and2 as state variables q1[n] and q2[n], 

respectively. 

From Fig. 7-1 we have 

q1[n + l] = q2[n] 

q2[n + l] = 2q1[n] + 3q2[n] + x[n] 

y[n] = 2q1[n] + 3q2[n] + x[n] 
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x[n] 

q1[n] 

In matrix form 

or 

where 

y[n] 

2 

q1 [n + 1) 

Fig. 7-1 

[q1[n+l]] = [O l][q1[n]]+[O]x[n] 
q2 [n + 1] 2 3 q2 [n] 1 

y[nJ = [2 3][q,[n]]+x[n] 
qz[n] 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

A = [~ ~] b = [~] c = [2 3] d = l 

cu• 

(7 .73a) 

(7 .73b) 

7.2. Redo Prob. 7.1 by choosing the outputs of unit-delay elements 2 and 1 as state variables v1[n] and v2[n], 
respectively, and verify the relationships in Eqs. (7.lOa) and (7.lOb). 

We redraw Fig. 7-1 with the new state variables as shown in Fig. 7-2. From Fig. 7-2 we have 

x[n] 

In matrix form 

v1[n + 1] = 3v1[n] + 2v2[n] + x[n] 

v2[n + 1] = v1[n] 

y[n] = 3v1[n] + 2v2[n] + x[n] 

v1 [n] 

Fig. 7-2 

2 

[v1[n + 1]] = [3 2] [v1[n]] + [ 1 ]x[n] 
v2 [n + 1] 1 0 v2 [n] 0 

y[nJ = [3 2][v,[n]]+x[n] 
v2 [n] 

y[n] 

v1 [n + 1) 

(7.74a) 
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or 

where 

v[n + 1] = Av[n] + bx[n] 

y[n] = cv[n] +dx[n] 

b = [~] 

Note that v1[n] = q2[n] and v2[n] = q1[n]. Thus , we have 

v[n] = [~ ~]q[n] = Tq[n] 

Now using the results from Prob. 7.1 , we have 

TAT- 1 = [~ 

which are the relationships in Eqs. (7 .lOa) and (7 .lOb). 

(7.74b) 

c = [3 2] d = 1 

21 ' = A 
0 

d = 1 = d 

7.3. Consider the continuous-time LTI system shown in Fig. 7-3. Find a state space representation of the system. 

x(t) y(t) 

Fig. 7-3 

We choose the outputs of integrators as the state variables q 1(t), %(t), and %(t) as shown in Fig. 7-3. Then from 
Fig. 7-3 we obtain 

q1(t) = 2q1(t) - 3qz(t) + q3(t) + x(t) 

qz<t) = ql(t) 

qif) = qz(t) 

y(t) = - ql(t) + 2qp) 
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In matrix form 

[
2 - 3 

q(t) = I 0 

0 I 

I [I 
0 q(t) + 0 x(t) 

0 0 (7 .75) 

y(t) = [- 1 0 2]q(t) 

7.4. Consider the mechanical system shown in Fig. 7-4. It consists of a block with mass m connected to a 
wall by a spring. Let k1 be the spring constant and k2 be the viscous friction coefficient. Let the output 
y(t) be the displacement of the block and the input x(t) be the applied force. Find a state space 
representation of the system. 

By Newton's law we have 

or 

x(t) 
m 

y(t) 

Fig. 7-4 Mechanical system. 

my (t) = - k1y(t) - k2y(t) + x(t) 

my(t) + k2y(t) + k1y(t) = x(t) 

The potential energy and kinetic energy of a mass are stored in its position and velocity. Thus, we select the state 

variables q1(t) and %(t) as 

Then we have 

In matrix form 

41(t) = q2(t) 

q,(t) = y(t) 

qz(t) = y(t) 

. k1 k2 I 
q2(t) = - -qi(t) - -q2(t) +-x(t) 

m m m 
y(t) = ql(t) 

(7 .76) 
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7.5. Consider the RLC circuit shown in Fig. 7-5. Let the output y(t) be the loop current. Find a state space 
representation of the circuit. 

R L 

+ + 

x(t) c 

Fig. 7-5 RLC circuit. 

We choose the state variables q1(t) = iL(t) and qz(t) = v/t). Then by Kirchhoff's law we get 

Lq1(t) + Rq1(t) + qz(t) = x(t) 

Cqz(t) = q1(t) 

y(t) = ql(t) 

Rearranging and writing in matrix form, we get 

R 1 

q(t) ~ L - : q(t)+[!]x(t) 
c 

y(t) = [1 o]q(t) 

7.6. Find a state space representation of the circuit shown in Fig. 7-6, assuming that the outputs are the 
currents flowing in R1 and R2 • 

;1 (t) 

+ 
v1(t) c 

Fig. 7-6 

(7 .77) 

We choose the state variables q 1(t) = iL(t) and qz(t) = vp). There are two voltage sources and let x1(t) = v1(t) and 
xz<t) = vz<t). Let y 1(t) = i1(t) and yz(t) = iz(t). Applying Kirchhoff's law to each loop, we obtain 

Lq1(t) + R1q 1(t) + qz(t) = x1(t) 

qz(t) - [qi<t) - Cqz(t)l R2 = xz(t) 

Y1(t) = q1(t) 

- 1 yz<t) - R [qz(t) - xz<t)] 
2 
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Rearranging and writing in matrix form, we get 

q(t)= 

_RI 
L L L 

q(t)+ 

[
l 0 

y(t)= 0 _!__ q(t)+ 

R1 

0 
x(t) 

where y(t) = [YI (t)] 
Y2(t) 

State Equations of Discrete-Time LTI Systems Described by Difference Equations 

7.7. Find state equations of a discrete-time system described by 

3 1 
y[n]- -y[n -1] +-y[n - 2] = x[n] 

4 8 

Choose the state variables q1[n] and q2[n] as 

q1[n] = y[n - 2] 

q2[n] = y[n - 1 ] 

Then from Eqs. (7.79) and (7.80) we have 

q1[n + l] = q2[n] 

1 3 
q2 [n + l] = - 8q,[n] + 4q2 [n] + x[n] 

1 3 
y[n] = - 8q,[n] + 4q2 [n] + x[n] 

In matrix form 

q[n + l] ~ [-i fr[•]+[~] x[n] 

y[n] = [- ~ ~ )q[n] + x[n] 

7.8. Find state equations of a discrete-time system described by 

3 1 1 
y[n]- -y[n -1] +-y[n - 2] = x[n] +-x[n -1] 

4 8 2 

•• 
(7.78) 

(7.79) 

(7.80) 

(7.81) 

(7.82) 

Because of the existence of the term 4x[n - 1 ] on the right-hand side of Eq. (7.82), the selection of y[n - 2] and 
y[n - l] as state variables will not yield the desired state equations of the system. Thus, in order to find suitable 
state variables, we construct a simulation diagram of Eq. (7 .82) using unit-delay elements, amplifiers, and adders. 
Taking the z-transforms of both sides of Eq. (7.82) and rearranging, we obtain 

3 -I 1 -2 1 -I 
Y(z)=-z Y(z)--z Y(z)+X(z)+-z X(z) 

4 8 2 
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from which (noting that z-k corresponds to k unit time delays) the simulation diagram in Fig . 7-7 can be drawn. 
Choosing the outputs of unit-delay elements as state variables as shown in Fig. 7-7 , we get 

y[n] = q1[n] + x[n] 

3 1 
q1[n + 1] = q2[n] + 4"y[n] + 2x[n] 

3 5 
= 4"q1[n] + q2[n] + 4x[n] 

1 1 1 
q2[n + 1] = - sy[n] = - sq.[n] - sx[n] 

In matrix form 

3 5 

q[n+l] = 4 q[n]+ 4 
x[n] 

0 
8 8 

y[nl = [l 0 ]q[n] + x[n] (7 .83) 

x[n] 

y [n] 

Fig. 7-7 

7.9. Find state equations of a discrete-time LTI system with system function 

(7.84) 

From the definition of the system function [Eq. (4.41)] 

we have 

Rearranging the above equation, we get 
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from which the simulation diagram in Fig. 7-8 can be drawn. Choosing the outputs of unit-delay elements as state 
variables as shown in Fig. 7-8 , we get 

In matrix form 

y[n] = q1[n] + b0x[n] 

q1[n + l] = - a1y[n] + q2 [n] + b1x[n] 

= - a1q1[n] + q2 [n] + (b1 - a1b0 )x[n] 

q2 [n + l] = - a2y[n] + b2x[n] 

= - a2q1[n] + (b2 - a2b0 )x[n] 

q[n + 1] = q[n] + x[n] [ - a1 1 ] [ b1 - a1bo ] 
- a2 0 b2 - a2b0 

y[nJ = [l o]q[n]+box[n] 

(7 .85) 

Note that in the simulation diagram in Fig. 7-8 the number of unit-delay elements is 2 (the order of the system) 
and is the minimum number required. Thus, Fig. 7-8 is known as the canonical simulation of the first form and 
Eq. (7 .85) is known as the canonical state representation of the first form . 

x[n] 

Fig. 7-8 Canonical simulation of the first form . 

7.10. Redo Prob. 7.9 by expressing H(z) as 

where 

Let 

Then we have 

H Y(z) b b - 1 b - 2 2(z) = --= o+ 1Z + 2Z 
W(z) 

W(z) + a 1z- 1W(z) + a2z- 2W(z) = X(z) 

Y(z) = b0W(z) + b1z- 1W(z) + b2z- 2W(z) 

y [n] 

(7 .86) 

(7 .87) 

(7 .88) 

(7 .89) 
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Rearranging Eq . (7 .88), we get 

(7 .90) 

From Eqs. (7 .89) and (7 .90) the simulation diagram in Fig. 7-9 can be drawn. Choosing the outputs of unit-delay 

elements as state variables as shown in Fig. 7-9 , we have 

x[n] 

v1[n + 1] = v2 [n] 

v2 [n + 1] = - a2v1[n] - a1v2 [n] + x[n] 

y[n] = b2v1[n] + b1v2[n] + b0v2 [n + 1] 

= (b2 - b0a2 )v1[n] + (b1 - b0a1 )v2[n] + b0x[n] 

---~ I _ _.__~ 
+ v1[n + 1) 

+ 

Fig. 7-9 Canonical simulation of the second form . 

In matrix form 

v[n+l] = [ O 1 )v[n]+[0 )x[n] - a2 - a1 1 

y[nl = [b2 - b0a2 b1 - b0a1]v[n]+b0x[n] 

y [n] 

(7 .91) 

The simulation in Fig. 7-9 is known as the canonical simulation of the second fonn, and Eq. (7 .91) is known as the 

canonical state representation of the secondfonn. 

7.11. Consider a discrete-time LTI system with system function 

z 
H(z) = 2 

2z -3z +I 

Find a state representation of the system. 

Rewriting H(z) as 

1 - I - z 
2 H(z) = z 

2z2 (1 - ~ z- 1 + ~ z- 2 ) 
1 3 - I 1 - 2 

- - Z + - z 

Comparing Eq. (7 .93) with Eq. (7 .84) in Prob. 7 .9, we see that 

3 
a1 =- 2 

2 2 

1 
bi = -

2 

(7.92) 

(7 .93) 
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Substituting these values into Eq. (7.85) in Prob. 7.9, we get 

q[n + l] = ~ 1 
q[n] + [~]x[n] 

-- 0 0 
2 

y[n] = [ 1 0 ]q[n] 

7.12. Consider a discrete-time LTI system with system function 

z 
H(z)=~2---

2z - 3z + 1 

z 

2(z -1)( z - ~ ) 

Find a state representation of the system such that its system matrix A is diagonal. 

First we expand H(z) in partial fractions as 

where 

Let 

Then 

or 

H(z)= z =-z-

2(z -1)( z - ~ ) z - l 

z 
--1 
z--

2 

1 
H 1(z)=--

-1 
Hz(z)= 1 l -1 -z 1 -1 --z 

2 

Hk(z)= ak = Yk(z) 
1- PkZ-I X(z) 

(1- PkZ- 1)Yk(z) = akX(z) 

Yk(z) = PkZ- 1Yk(z) + akX(z) 

•• 
(7.94) 

(7.95) 

(7.96) 

from which the simulation diagram in Fig. 7-10 can be drawn. Thus, H(z) = H 1(z) + Hz(z) can be simulated by the 
diagram in Fig. 7-11 obtained by parallel connection of two systems. Choosing the outputs of unit-delay elements 
as state variables as shown in Fig. 7-11, we have 

In matrix form 

q1[n + l] = q1[n] + x[n] 

1 
q2 [n + l] = -q2 [n]- x[n] 

2 
1 

y[n] = q1[n + l] + q2[n + l] = q1[n] +-q2[n] 
2 

q[n+I]~[: ;]q[n]+[_:]Ajn] 

y[n]=[l ~]q[n] 

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles of H(z). 

(7.97) 
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x [n] 

+ 

Fig. 7-10 

L 
+ 

+ 

+ 
x [n] 

q1[n + 1] L 
y [n] 

+ 

L 

+ 

q2 [n + 1] 

Fig. 7-11 

7.13. Sketch a block diagram of a discrete-time system with the state representation 

q[n + l] ~ [~ i ]q[n] + [~]x[n] 
y[n] =[ 3 -2 ]q[n] (7.98) 

We rewrite Eq. (7 .98) as 

q1[n + 1] = q2[n] 

1 2 
q2 [n + 1] = Zq1[n] + 3'q2[n] + x[n] 

y [n] = 3q1[n] - 2q2 [n] (7 .99) 

from which we can draw the block diagram in Fig . 7-12. 

x[n] y[n] 

Fig. 7-12 



CHAPTER 7 State Space Analysis 

State Equations of Continuous-Time LTI Systems Described by Dlfferentlal Equations 

7.14. Find state equations of a continuous-time LTI system described by 

Choose the state variables as 

y(t) + 3y(t) + 2y(t) = x(t) 

ql(t) = y(t) 

qz(t) = j(t) 

Then from Eqs. (7.100) and (7.101) we have 

In matrix form 

ql(t) = qz(t) 

q2(t) = -2q1(t) - 3qz(t) + x(t) 

y(t) = qi<t) 

q(t)= [ 0 1)q(t)+ [0]x(t) -2 -3 1 

y(t)=[l o]q(t) 

7.15. Find state equations of a continuous-time LTI system described by 

y(t) + 3y(t) + 2y(t) = 4x(t) + x(t) 

•• 
(7.100) 

(7.101) 

(7.102) 

(7.103) 

Because of the existence of the term 4x(t) on the right-hand side of Eq. (7.103), the selection of y(t) andy(t) as 
state variables will not yield the desired state equations of the system. Thus, in order to find suitable state variables, 
we construct a simulation diagram of Eq. (7.103) using integrators, amplifiers, and adders. Taking the Laplace 
transforms of both sides of Eq. (7 .103), we obtain 

s2Y(s) + 3sY(s) + 2Y(s) = 4sX(s) + X(s) 

Dividing both sides of the above expression by s2 and rearranging, we get 

from which (noting that s-kcorresponds to integration of ktimes) the simulation diagram in Fig. 7-13 can be 
drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-13, we get 

In matrix form 

ql(t) = -3ql(t) + qz(t) + 4x(t) 

q2(t) = -2q1(t) + x(t) 

y(t) = ql(t) 

q(t)=[=~ ~]+[~]x(t) 
y(t)=[1 o]q<t) (7.104) 
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x(t) 

y(t) 

Fig. 7-13 

7.16. Find state equations of a continuous-time LTI system with system function 

(7.105) 

From the definition of the system function [Eq.(3.37)] 

we have 

Dividing both sides of the above expression by s3 and rearranging , we get 

Y(s) = - a,s - 1Y(s) - a2s- 2Y(s) - a3s- 3Y(s) 

+ b0X(s) + b,s- 1X(s) + b2s- 2 X(s) + b3s- 3X(s) 

from which (noting that s - k corresponds to integration of k times) the simulation diagram in Fig. 7-14 can be 
drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-14, we get 

In matrix form 

y(t) = q1(t) + b0x(t) 

q1 (t) = - a1y(t) + q2(t) + b1x(t) 

= - a1q1(t) + q2(t) + (b1 - a1b0 )x(t) 

q2(t) = - a2y(t) + q3(t) + b2x(t) 

= - a2q1 (t) + q3(t) + (b2 - a2b0 )x(t) 

q3(t) = - a3y(t) + b3x(t) 

= - a3q1(t) + (b3 - a3b0 )x(t) 

[
- a 

q(t) = - a~ 
- a3 

y(t) = [l 0 

1 0 [b1 - a1b0 l 
0 1 q(t)+ b2 - a2b0 x(t) 

O 0 b3 - a3b0 

0 ]q (t) + b0x(t) (7 .106) 
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As in the discrete-time case, the simulation of H(s) shown in Fig. 7-14 is known as the canonical simulation of the 
first form, and Eq. (7 .106) is known as the canonical state representation of the first form. 

x(t) 

Fig. 7-14 Canonical simulation of the first form. 

7.17. Redo Prob. 7.16 by expressing H(s) as 

where 

Let 

Then we have 

H(s)=H1(s)H2 (s) 

1 
H1(s)= 3 2 

s + a1s + a2s + a3 

H 2 (s) = b0s3 + b1s2 + b2s + b3 

W(s) 
H 1(s) = -- = ~-~---­

X(s) s3 + a,~.2 + a2s + a3 

Y(s) 3 2 
H 2(s) = -- = b0s + b1s + b2s + b3 

W(s) 

(s 3 + a1s2 + a2s + a3)W(s) = X(s) 

Y(s) = (b0s3 +b1s2 +b2s+b3 )W(s) 

Rearranging the above equations, we get 

s3W(s) = - a1s2W(s) - a2sW(s) - a3W(s) + X(s) 

Y(s) = b0s3W(s) + b1s2 W(s) + b2~W(s) + b3W (s) 

y(t) 

(7.107) 

from which, noting the relation shown in Fig. 7-15, the simulation diagram in Fig . 7-16 can be drawn. Choosing the 
outputs of integrators as state variables as shown in Fig. 7-16, we have 

v1(t) = v2(t) 

v2 (t) = v3(t) 

v3(t) = - a3v1 (t) - a2v2 (t) - a1 v3(t) + x(t) 

y(t) = b3v1 (t) + b2 v2 (t) + b1 v3(t) + b0v3(t) 

= (b3 - a3b0 )v1(t) + (b2 - a2b0 )v2 (t) 

+ (b1 - a1b0 )v3(t) + b0x(t) (7 .108) 
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s~(s) i.[IJ W(s) I) 

w(t) w(t) 

Fig. 7-15 

+ y(t) 

x(t) 

Fig. 7-16 Canonical simulation of the second form. 

In matrix form 

v(t) = [ ~ 0 ~ ]v(t) + [~]x(t) 
- a3 - a2 - a1 I 

(7.109) 

y(t) = [ b3 - a3b0 b2 - a2b0 b1 - a1b0 ]v(t) + b0x(t) 

As in the discrete-time case , the simulation of H(s) shown in Fig. 7-16 is known as the canonical simulation of the 

second form , and Eq. (7. I 09) is known as the canonical state representation of the second form. 

7.18. Consider a continuous-time LTI system with system function 

H(s)= 3s+7 
(s + 1) (s + 2) (s + 5) 

Find a state representation of the system. 

Rewrite H(s) as 

3s + 7 3s + 7 
H(s) = -------

(s +I) (s + 2) (s + 5) s3 + 8s2 + 17 s +IO 

Comparing Eq. (7 .111) with Eq. (7 .105) in Prob. 7.16, we see that 

Substituting these values into Eq. (7 .106) in Prob. 7.16, we get 

- 8 
q(t) = - 17 

- 10 

y(t) = [l 0 

~ riq (I)+ m x(I) 

0 ]q (t) 

(7.110) 

(7.111) 

(7.112) 
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7.19. Consider a continuous-time LTI system with system function 

H(s)= 3s+7 
(s + 1) (s + 2) (s + 5) 

Find a state representation of the system such that its system matrix A is diagonal. 

First we expand H(s) in partial fractions as 

where 

Let 

Then 

or 

2 

H(s) = 3s+7 = - - -3 _ _ _ 3_ 
(s+l)(s+2)(s+5) s+l s+2 s+5 

= H 1(s) + H 2 (s) + H 3(s) 

1 
H 1(s) = -­

s+l 
H2(s) =- -3-

s+2 

2 

H3(s) = _ _ 3_ 
s+5 

Hk(s) = __!!_t__ = Yk(s) 
s - Pk X(s) 

(s - Pk )Yk(s) = akX(s) 

Yk(s) = pks- 1Yk(s)+aks - 1X(s) 

(7.113) 

(7.114) 

from which the simulation diagram in Fig. 7-17 can be drawn. Thus , H(s) = H1(s) + Hz(s) + H3(s) can be 

simulated by the diagram in Fig. 7-18 obtained by parallel connection of three systems. Choosing the outputs of 
integrators as state variables as shown in Fig. 7-18 , we get 

q1 (t) = - q1(t) + x(t) 

. 1 
q2 (t) = - 2q2 (t) - 3x(t) 

. 2 
q3(t) = - 5q3(t) - 3x(t) 

y(t) = q,(t) + q2(t) + q3(t) 

In matrix form 

[-I 0 
~iq(t)+ q(t) = ~ - 2 

1 
x(t) 

3 
0 - 5 

2 
(7 .115) 

3 

y(t) = [l 1 l]q(t) 

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles of H(s). 

Fig. 7-17 
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+ 
x(~ + y(t) ---....... -- ~ ---

+ 

Fig. 7-18 

Solutlons of State Equations tor Discrete-Time LTI Systems 

7.20. Find An for 

A=[-i i] 
by the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(.il) of A. 

Thus , the eigenvalues of A are .il1 = ~and .il2 = ± . Hence , by Eqs. (7.27) and (7 .28) we have 

and b0 and b1 are the solutions of 

ho +b{~) = (+r 
ho + b {~) = ( + r 
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from which we get 

Hence, 

7.21. Repeat Prob. 7.20 using the diagonalization method. 

Let x be an eigenvector of A associated with A.. Then 

[A.I - A]x = 0 

1 For A. = A.1 = 2 we have 

2 

8 

The solutions of this system are given by x1 = 2x2• Thus, the eigenvectors associated with A.1 are those vectors of 

the form 

X1 =a[~] a*O 

1 For A. = A.2 = 4 we have 

-1 

[;~)=[~] 4 

8 2 

The solutions of this system are given by x1 = 4x2• Thus, the eigenvectors associated with A. 2 are those vectors of 

the form 

Let a = f3 = 1 in the above expressions and let 

Then -I_ 1[ 1 -4)-p --- -
2 -1 2 

-1 

2 
2 

2 
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and by Eq. (7.29) we obtain 

0 - 2 
2 

(+r - -1 
2 

7.22. Repeat Prob. 7.20 using the spectral decomposition method. 

Since all eigenvalues of A are distinct, by Eq. (7.33) we have 

E1 =-1-(A-J..il)=-1- A-_!_I =4 4 = 1 ( ) - .!. 1 1-1 4] 
A.1-A.i _!_ _ _!_ 4 1 1 -- 2 

2 4 -8 2 2 

E2 =-1-(A-J..il)=-1- A-_!_I =-4 2 = 1 ( ) 
- _!_ 1 12 - 4] 

Ai-Ai _!_ _ _!_ 2 1 1 - -1 
4 2 -8 4 2 

Then, by Eq. (7.34) we obtain 

A·~urE,+ur.,,~un~~ :]+HI~ =:J 

-u r + 2U r 4 ( ~ r -4u r 
-H ~ r + H + r 2( ~ r -( + r 

7.23. Repeat Prob. 7.20 using the z-transform method. 

First, we must find (zl - A)- 1• 

3 z--
4 

(z- n(z-±) (z- ~ )(z- ! ) 
1 
8 z 

~(z-~ )~(z-! ) (z- n(z-+) 
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__ 1_+2-1-
1 1 

4_1 __ 4_1 _ 
1 1 z-- z--

2 4 
z-- z--

2 4 
1 1 1 1 

----+---
2 1 2 1 

2-1 ___ 1_ 
1 1 

z-2 z-4 z-2 z-4 

Then by Eq. (7.35) we obtain 

An= 3~1 {(zl-A)-1 z} 

__ z_+ 2_z_ 
1 1 

4_Z __ 4_Z _ 
1 1 

-3-1 
- I _1 z +1 z 

2--1 2--1 
z-- z--

2 4 

z-- z--
2 4 

z-- z--
2 4 

2_z ___ z_ 
1 1 z-- z--
2 4 

-( ~ r + 2(: r 4( ~ r -4(: r 
-H ~ r + H + r 2( ~ r -( : r 

~uir± :]+(-H[~ =:J 
From the above results we note that when the eigenvalues of A are all distinct, the spectral decomposition 

method is computationally the most efficient method of evaluating An. 

7.24. Find An for 

The characteristic polynomial c(A.) of A is 

A. -1 

c(A.)=IA.I-AI= - ;.,-i 
3 3 

Thus, the eigenvalues of A are A.1 = 1 and A.2 = -j. and by Eq. (7.33) we have 

1 
1 1 1 3 3 

E 1 =--(A-A.zl)=-(A--1)=- l 
A.,-A.z 1-.! 3 2 

3 3 

3 
2 2 

3 
2 2 

3 3 

~]= 2 - 2 
- 1 
3 2 2 
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Thus, by Eq. (7.34) we obtain 

3 3 
- - -

( r +(+r n n 1 2 2 2 A = (1) E1 + 3 E2 = 
3 1 

2 2 2 

-~+~(+r ~-~(+r 
-~+H+r ~-H+r 

7.25. Find An for 

A=[~ ~] 
The characteristic polynomial c(A.) of A is 

I
A.- 2 

c(A.)=IM-AI= o 1 I= (A.-2)2 
A.-2 

3 

2 

2 

Thus, the eigenvalues of A are A.1 = A.2 = 2. We use the Cayley-Harnilton theorem to evaluate An. By Eq. (7.27) 

we have 

An=bl+bA= O 1 1 [
b + 2b b ] 

0 I 0 bo + 2b1 

where b0 and b1 are determined by setting A.= 2 in the following equations [App. A, Eqs. (A.59) and (A.60)]: 

b0 + b1A. = A.• 

b1 = nA.•-1 

Thus, 

b0 + 2b1 = 2" 

b1 = n2n-I 

from which we get 

and 

7.26. Consider the matrix A in Prob. 7.25. Let A be decomposed as 

A=~ ~=~ ~+~ ~=D+N 
where D=[~ ~] and N=[~ ~] 

(a) Show that N2 = 0. 

(b) Show that D and N commute, that is, DN = ND. 

(c) Using the results from parts (a) and (b), find An. 
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(a) By simple multiplication we see that 

(b) Since the diagonal matrix D can be expressed as 21, we have 

DN = 2IN = 2N = 2NI = N(21) = ND 

that is, D and N commute. 

(c) Using the binomial expansion and the result from part(b), we can write 

Since N2 = 0, then Nk = 0 fork~ 2, and we have 

A"= (D + N)" = D" + nn•- 1N 

Thus [see App. A, Eq. (A.43)], 

which is the same result obtained in Prob. 7.25. 

Note that a square matrix N is called nilpotent of index r if N'- 1 =/= 0 and N' = 0. 

7.27. The minimal polynomial m(J..) of A is the polynomial of lowest order having 1 as its leading coefficient 
such that m(A) = 0. Consider the matrix 

2 0 0 

A= 0 -2 1 

(a) Find the minimal polynomial m(J..) of A. 

(b) Using the result from part (a), find A". 

(a) The characteristic polynomial c(A.) of A is 

A.-2 

c(A.) =IA.I - Al= 0 

0 

0 4 1 

0 

A.+ 2 

-4 

0 

- 1 =(A.+ 3)(A. - 2)2 

A.-1 

Thus, the eigenvalues of A are A.1 = -3 and A.2 = A.3 = 2. Consider 

m(A.) = (A.+ 3)(A. - 2) = A.2 + A. - 6 
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Now 

[2 0 ol2 [2 m(A)=A2 +A-61= 0 -2 1 + 0 

0 4 1 0 

o ol 1 o ol -2 1 -6 0 1 0 

4 1 0 0 1 

Thus, the minimal polynomial of A is 

m(A.) = (A. + 3) (A. - 2) = A.2 + A. - 6 

(b) From the result from part (a) we see that An can be expressed as a linear combination of I and A only, even 

though the order of A is 3. Thus, similar to the result from the Cayley-Hamilton theorem, we have 

where b0 and b 1 are determined by setting A. = - 3 and A. = 2 in the equation 

Thus, 

from which we get 

and 

b0 - 3b1 = (-3)" 

b0 + 2b 1 = 2" 

2 n 3 n 1 n 1 n b0 = -(- 3) +-(2) bi=--(-3) +-(2) 
5 5 5 5 

(2)n 0 0 

An= 0 ±<- 3r + .!.<2r -.!.<- 3r + .!.<2t 
5 5 5 5 

0 -±(-3t +±(2t .!.(- 3t + ±(2t 
5 5 5 5 

0 0 0 0 0 

= (- 3)n 0 
4 1 

+(2t 0 
1 1 

- -- - -
5 5 5 5 

0 
4 1 

0 
4 4 -- - - -

5 5 5 5 

7.28. Using the spectral decomposition method, evaluate An for matrix A in Prob. 7 .27. 

Since the minimal polynomial of A is 
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which contains only simple factors, we can apply the spectral decomposition method to evaluate An. Thus, by 

Eq. (7.33) we have 

Thus, by Eq. (7.34) we get 

1 1 
E1 =--(A-A.ii)= --(A-21) 

A1 -.l..i -3-2 

~-~[~ 
0 

~i~ 
0 

-4 0 

4 -1 
0 

~ ~i= 0 
0 4 4 

0 4 4 

5 5 

5 
1 

=- 0 
5 

0 0 

5 5 

0 0 0 

=(-3t 0 
4 +(2t 0 
5 5 

0 
4 

0 -

5 5 

(2t 0 

0 0 

4 

5 5 
4 

5 5 

0 0 

5 5 
4 4 

5 5 

0 

0 ±(- 3t +.!.(2t 1 n 1 n --(-3) +-(2) 
5 5 5 5 

0 
4 n 4 n .!.(- 3t + ±(2)n - -(- 3) +-(2) 
5 5 5 5 

which is the same result obtained in Prob. 7.27(b). 

7.29. Consider the discrete-time system in Prob. 7 .7. Assume that the system is initially relaxed. 

(a) Using the state space representation, find the unit step response of the system. 

(b) Find the system function H(z). 

(a) From the result of Prob. 7 .7 we have 

where 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

b= [~] c= [-i ~] d=l 

Setting q[O] = 0 and x[n] = u[n] in Eq. (7 .25), the unit step response s[n] is given by 

n-1 

s[n] = '}: cAn-l-kbu[k] + du[n] 
k=O 

(7.116) 
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Now, from Prob. 7.20 we have 

A" ~r ± ir± :H ± n± ~:i 
md <A·-·--.~H ~* ~ rl~ :H ± r-·[~ ~:]}[~] 

Thus, 

~r ± r-·H ~n :i[~] 

+( ± rli ~i[± ~:i[~J 
=( ~ r-1-k -±( ± r-1-k =2( ~ r-k -( ± r-k 

-1[ ( )n-k ( )n-k] 
s[n] = ~o 2 + - ~ + 1 

= 2(J...)n ~1 2k -(J...)n ~ 4k + 1 
2 k=O 4 k=O 

= 2( ~ r ( ~ = ~n )-( + r ( ~ = :n) + 1 

=-2(+r +2+~( ~ r -~+1 
=%-2(+r +~( ~ r n~O 

which is the same result obtained in Prob. 4.32(c) 

(b) By Eq. (7.44) the system function H(z) is given by 

H(z) = c(zl-A)-1b + d 

Now 

Thus, 

1 [ 1 

H(z)~ (z- ~ )(z- ±) -,. 1 [~] + 1 

z 

1 3 --+-z 2 

~ ( z - ~· ( ± ) + 
1 ~ ( z - ~ )( z - ± ) 

which is the same result obtained in Prob. 4.32(a). 
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7.30. Consider the discrete-time LTI system described by 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

(a) Show that the unit impulse response h[n] of the system is given by 

ld 
n-1 

h[n]= ~A b 

n=O 

n>O 

n<O 

(7.117) 

(b) Using Eq. (7.117), find the unit impulse response h[n] of the system in Prob. 7.29. 

(a) By setting q[O] = 0, x[k], = b[k], and x[n] = b[n] in Eq. (7 .25), we obtain 

n-1 

h[n]= ~ cAn-l-kM[k]+d(j[n] 
k=O 

Note that the sum in Eq. (7.118) has no terms for n = 0 and that the first term is cA•- 1b for n > 0. 
The second term on the right-hand side of Eq. (7 .118) is equal to d for n = 0 and zero otherwise. 
Thus, we conclude that 

(b) From the result of Prob. 7 .29 we have 

n=O 

n>O 

n<O 

Afi il b~[~] o~[-i ~] d~I 
and cAn-lb=( ~ r-l -±( ± r-l n~l 

Thus, by Eq. (7.117) h[n] is 

1
1 

n-1 n-1 

~n]~ ~~) -(±) ""' 
n=O 

n<O 

which is the same result obtained in Prob. 4.32(b). 

7.31. Use the state space method to solve the difference equation [Prob. 4.38(b)] 

(7.118) 

3y[n] - 4y[n - 1] + y[n -2] = x[n] (7.119) 

withx[n] = (~)"u[n] andy[-1] = l,y[-2] = 2. 

Rewriting Eq. (7.119), we have 

4 1 1 
y[n]- -y[n-1] +-y[n - 2] = -x[n] 

3 3 3 
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Let q1[n] = y[n - 2] and q2[n] = y[n - 1]. Then 

In matrix form 

where 

and 

Then, by Eq. (7.25) 

q1[n + 1] = q2 [n] 

1 4 1 
q2 [n + 1] = -3q1[n] + 3q2[n] + 3x[n] 

1 4 1 
y[n] = - 3q1[n] + 3"q2 [n] + 3 x[n] 

q1[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] + dx[n] 

c= [-~ ~] 

q[O] = [q1[0]] = [y[- 2]] = [2] 
q2[0] y[- 1] 1 

n-1 

1 
d=-

3 

y[n]=cAnq[O]+ ~cAn-l-kbx[k]+dx[n] n>O 
k=O 

Now from the result of Prob. 7.24 we have 

and 

Thus, 

n [ 1 cA q[O]= - 3 

3 3 3 

~ ~ +(+r 2 

-
2 

-
2 2 2 2 

3 3) I ~I [~J 
2 2 

3 3 
2 + (...!_)n-1-k 2 
3 3 1 

2 2 

1 1 ( 1 )n n-1 [ 1 1 ( 1 )n+l-k ]( 1 )k 1 ( 1 )n 
y[n]=2+6 3 + k~O 2-2 3 2 +3 2 
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=!+!(!)" +! 1-( ~r _.!_(!)"+' 1-(%)" +!(!)" 
2 6 3 2 1- ! 2 3 1 - ~ 3 2 

2 2 

= ~ + i ( ~ r + l - ( ~ r + ~( ~ r -~( ~ r + ~( ~ r 
= % - (~)"+H~)" n>o 

which is the same result obtained in Prob. 4.38(b). 

7.32. Consider the discrete-time LTI system shown in Fig. 7-19. 

(a) Is the system asymptotically stable? 

(b) Find the system function H(z). 

(c) Is the system BIBO stable? 

x[n] 

Fig. 7-19 

(a) From Fig. 7-19 and choosing the state variables q1[n] and q2[n] as shown, we obtain 

In matrix form 

3 
q1[n + 1] = 2q2 [n] + x[n] 

1 
q2 [n + l] = - 2q1[n] + 2q2 [n] 

y[n] = q1[n] - q2 [n] 

q[n + l] = Aq[n] + bx[n] 

y[n] = cq[n] 

•• 

y [n] 
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where 

0 
3 

A= 2 
b = [~] c= [1 -1] 

2 
2 

)., 3 

c(A.) =IA.I - Al= 2 
= A.(A. - 2) + ~ = (A. - ~ )(A. - ~ ) 

).-2 
Now 

2 

Thus, the eigenvalues of A are A.1 = ~ and A.2 = ~- Since I A.2 1 > 1, the system is not asymptotically stable. 

(b) By Eq. (7.44) the system function H(z) is given by 

3 
-1 

z 

[~] H(z)= c(zl-A)- 1b=[l -1] 2 

z-2 
2 

z-2 
3 

= 1 D -1] 2 [~] 
(z-~ )(z-~ ) 

z 
2 

3 
z--

2 ---

(z- ~ )(z-~ ) 

1 
z--

2 

(c) Note that there is pole-zero cancellation in H(z) at z =~-Thus, the only pole of H(z) is~· which lies inside the 
unit circle of the z-plane. Hence, the system is BIBO stable. 

Note that even though the system is BIBO stable, it is essentially unstable if it is not initially relaxed. 

7.33. Consider an Nth-order discrete-time LTI system with the state equation 

q[n + 1] = Aq[n] + bx[n] 

The system is said to be controllable if it is possible to find a sequence of N input samples x[ n0], 

x[n0 + 1], ... ,x[n0 + N - 1] such that it will drive the system from q[n0] =~to q[n0 + N] = q 1 and~ 

and% are any finite states. Show that the system is controllable if the controllability matrix defined by 

Mc= [b Ab 

has rankN. 

We assume that n0 = 0 and q[O] = 0. Then, by Eq. (7.23) we have 

which can be rewritten as 

N-1 

q [N] = }: A N-l-k bx [k] 
k=O 

x[N -1] 

q[N]=[b Ab ··· AN-1b] x[N-l] 

x[O] 

(7.120) 

(7.121) 

(7.122) 
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Thus, if q[N] is to be an arbitrary N-dimensional vector and also to have a nonzero input sequence, as required for 

controllability, the coefficient matrix in Eq. (7.122) must be nonsingular; that is, the matrix 

must have rank N. 

7.34. Consider an Nth-order discrete-time LTI system with state space representation 

q[n + 1] = Aq[n] + bx[n] 

y[n] = cq[n] 

The system is said to be observable if, starting at an arbitrary time index n0, it is possible to determine 
the state q[n0] =~from the output sequence y[n0],y[n0 + 1], ... ,y[n0 + N- 1]. Show that the system 
is observable if the observability matrix defined by 

has rankN. 

M = 
0 

c 

cA 
(7.123) 

We assume that n0 = 0 andx[n] = 0. Then, by Eq. (7.25) the outputy[n] for n = 0, 1, ... ,N - 1, withx[n] = 0, is 

given by 

or 

y[n] = cAnq[O] n = 0, 1, ... , N - 1 

y[O] = cq[O] 

y[l] = cAq[O] 

y[N - 1] = cAN- 1 q[O] 

Rewriting Eq. (7.125) as a matrix equation, we get 

y[O] c 

y[l] cA 
q[O] 

y[N-1] 

(7.124) 

(7.125) 

(7.126) 

Thus, to find a unique solution for q[O], the coefficient matrix of Eq. (7.126) must be nonsingular; that is, the matrix 

must have rank N. 

7.35. Consider the system in Prob. 7.7. 

(a) Is the system controllable? 

(b) Is the system observable? 

(c) Find the system function H(z). 

c 

cA 
M = 

0 
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(a) From the result of Prob. 7 .7 we have 

Now 

Afi il b~ [~] ,~ H ~] 

Ab~ [-i il [~Hil 
and by Eq. (7.120) the controllability matrix is 

d=l 

and I Mc I = -1 -:/= 0. Thus, its rank is 2, and hence the system is controllable. 

(b) Similarly, 

and by Eq. (7.123) the observability matrix is 

3 

8 4 
3 7 

32 16 

and I M0 I = -th -:/= 0. Thus, its rank is 2, and hence the system is observable. 

(c) By Eq. (7.44) the system function H(z) is given by 

H(z)~<(zl-A)-'h+d~H ~l[i ,~f n~J+1 

1 3 -1 1 -2 --z +-z 
4 8 

7.36. Consider the system in Prob. 7.7. Assume that 

3 

~]z-14 
8 

q[O] = [~] 

Find x[O] and x[l] such that q[2] = 0. 

From Eq. (7.23) we have 

1 [~] + 1 

z 

Ab] [x[l]] q[2] =A 2q[O] + Abx[O] + bx[l] =A 2q[O] + [b 
x[O] 
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Thus, 

from which we obtain x[O] = - ~and x[l] = ~. 

7.37. Consider the system in Prob. 7.7. We observe y[O] = 1 and y[l] = 0 with x[O] = x[l] = 0. 

Find the initial state q[O]. 

Using Eq. (7.125), we have 

Thus, 

Solving for q1[0] and %[0], we obtain 

7.38. Consider the system in Prob. 7.32. 

(a) Is the system controllable? 

(b) Is the system observable? 

[y[O]] [ c ] 
y[l] = cA q[O] 

[~] = 
8 
3 

32 16 

3 -I 

8 4 
3 7 

32 16 

(a) From the result of Prob. 7.32 we have 

0 
3 

A= 2 
b = [~] c=[l -1] 

2 
2 

0 
3 

[~]~ [-~] Now Ab= 2 

2 
2 

and by Eq. (7.120) the controllability matrix is 

and I Mc I = - 4 i= 0. Thus, its rank is 2, and hence the system is controllable. 
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(b) Similarly, 

0 3 

cA=[l -1] 2 =[~ -~] 
2 

2 

and by Eq. (7.123) the observability matrix is 

and I M0 I = 0. Thus, its rank is less than 2, and hence the system is not observable. 

Note from the result from Prob. 7.32(b) that the system function H(z) has pole-zero cancellation. If H(z) 

has pole-zero cancellation, then the system cannot be both controllable and observable. 

Solutlons of State Equations for Continuous-Time LTI Systems 

7.39. Find eA1 for 

A=[-~ -~] 
using the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(A.) of A. 

c(A)=IA.I-Al=I~ A-+\I 

= A.2 + 5A. + 6 =(A+ 2) (A+ 3) 

Thus, the eigenvalues of A are A.1 = -2 and A.2 = -3. Hence, by Eqs. (7.66) and (7.67) we have 

and b0 and b1 are the solutions of 

from which we get 

Hence, 

eAt = 

bo - 2b1 = e-21 

bo - 3b1 = e-3t 

[ 
3e-21 _ 2e-3t e-21 _ e-31 ] 

-6e-21+6e-3t -2e-21+3e-31 

=e-21r 3 ll+e-31r-2 -11 
-6 -2 6 3 
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7.40. Repeat Prob. 7.39 using the diagonalization method. 

Let x be an eigenvector of A associated with A. Then 

[Al- A]x = 0 

For A = A1 = - 2 we have 

The solutions of this system are given by x2 = -2x1• Thus, the eigenvectors associated with A1 are those vectors of 
the form 

with a-:/= 0 

For A = A2 = - 3 we have 

The solutions of this system are given by x2 = -3x1• Thus, the eigenvectors associated with A2 are those vectors of 

the form 

Let a = fJ = 1 in the above expressions and let 

Then p-1 = - [- 3 -11 = [ 3 1 l 
2 1 -2 -1 

and by Eq. (7.68) we obtain 

r!'t = [ 1 1 l = [e- 21 0 ] [ 3 1 [ 3e-21 - 2e- 31 

-2 -3 0 e-3t -2 -11= -6e-2t +6e-3t 

=e-21 [ 3 ll+e-3t[-2 -11 
-6 -2 6 3 

7.41. Repeat Prob. 7.39 using the spectral decomposition method. 

Since all eigenvalues of A are distinct, by Eq. (7.33) we have 

E1 =--(A-A.zl)=A+31= 1 [ 3 1 l 
Ai-A.z -6 -2 

-2t -3t ] e -e 

- 2e-21 + 3e-3t 

E2 =--(A-A.ii)= -(A+ 21)= 1 [-2 -11 
A.z-Ai 6 3 
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Then by Eq. (7.70) we obtain 

7.42. Repeat Prob. 7.39 using the Laplace transform method. 

First, we must find (sl - A)- 1• 

[s -1 ]-I 1 [s+5 sl] 
(sl - A)-!= 6 s + 5 = (s + 2)(s + 3) - 6 

s+5 1 

(s + 2)(s + 3) (s + 2)(s + 3) 

6 s 

(s + 2)(s + 3) (s + 2)(s + 3) 

3 2 

s+2 s+3 s+2 s+3 

6 6 2 3 
---+-- ---+--

s+2 s+3 s+2 s+3 

Then, by Eq. (7.71) we obtain 

[ 
3 -21 2 -3t 

eAt=:!l-1{(sl-A)-1}= e - e 
-6e-21 +6e-3t 

-2t -3t ] e -e 

-2e-2t + 3e-3t 

Again we note that when the eigenvalues of A are all distinct, the spectral decomposition method is 
computationally the most efficient method of evaluating eA1• 

7 .43. Find eA1 for 

A= [- 2 1] 
1 -2 

The characteristic polynomial c(A.) of A is 

c(A) =IA.I-Al= I A-+12 A-+121 

=A. 2 + 4A. + 3 =(A+ 1) (A+ 3) 

Thus, the eigenvalues of A are A.1 = -1 and A.2 = -3. Since all eigenvalues of A are distinct, by Eq. (7.33) we have 

1 1 [1 ~] = 
2 2 E1=--(A+31)= -

2 2 1 

2 2 

1 1 [-1 E2 = -2(A +I)= -2 l - ~] = 
2 2 

2 2 



CHAPTER 7 State Space Analysis 

Then, by Eq. (7.70) we obtain 

7.44. Given matrix 

2 2 

2 2 

1 -I 1 -31 -e +-e 
2 2 
1 -I 1 -31 -e --e 
2 2 

(a) Show that A is nilpotent of index 3. 

(b) Using the result from part (a) find eAt. 

(a) By direct multiplication we have 

A'~AA~ [: 

-2 0 

0 3 0 

0 0 0 

A'~A'A~ [: 

0 -r 0 0 0 

0 0 0 

Thus, A is nilpotent of index 3. 

(b) By definition (7.53) and the result from part (a) 

2 2 

2 2 

1 -I 1 -31 -e --e 
2 2 
1 -I 1 -31 -e +-e 
2 2 

0 

0 3 = 0 

0 

0 
-2 l l 

0 0 0 0 

-2 
i l [o o 0 3 = 0 0 

0 0 0 0 

t 2 2 t 3 3 t 2 2 eAt=l+tA+-A +-A +···=l+tA+-A 
2! 3! 2 

= 1~ ~ ~i + t 1~ -~ ~ + t; ~ ~ -~i = 0 

001 0 00 00 0 0 

-~] 
0 

0 

0 

-2t t- 3t2 

1 3t 

0 1 

7.45. Find eA1for matrix A in Prob. 7.44 using the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(A.) of A. 

Thus, A.= 0 is the eigenvalues of A with multiplicity 3. By Eq. (7.66) we have 
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where b0 , b1, and b2 are determined by setting A= 0 in the following equations [App. A, Eqs. (A.59) and (A.60)]: 

bo + b1A. + b2A.2 = e'J 

Thus, 

Hence, 

b1 + 2b2A. = te'1 

2b2 = t2e'1 

t2 
eA1 =l+tA+-A2 

2 

which is the same result obtained in Prob. 7.44(b). 

7.46. Show that 

provided A and B commute; that is, AB= BA. 

By Eq. (7.53) 

and 

Thus, if AB = BA, then 

7.47. Consider the matrix 

= (I+ A+ ~! A 2 +···)(I+ B + ~! B2 + · · ·) 

=I+ A+ B +_!_A 2 +AB+ _!_B 2 + ... 
2! 2! 

A+B 1 2 e =l+(A+B)+-(A+B) +··· 
2! 

=I+ A+ B + _!_A 2 +_!_AB+ _!_BA+ _!_B 2 +··· 
2! 2 2 2! 

A B A+B 1 e e -e =-(AB-BA)+··· 
2 

eA+B = eAe8 

Now we decompose A as 

A=A+N 

where and 

1 0 

0 1 

0 0 
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(a) Show that the matrix N is nilpotent of index 3. 

(b) Show that A and N commute; that is, AN= NA. 

(c) Using the results from parts (a) and (b), find eA1• 

(a) By direct multiplication we have 

N'~NN~[~ 0 [" 0 1 0 0 

0 0 0 0 

0 0 

~rn N3 =N2N= 0 0 0 

0 0 0 

Thus, N is nilpotent of index 3. 

~]~ 
0 

0 

(b) Since the diagonal matrix A can be expressed as 21, we have 

0 0 

~] 0 0 

0 0 

0 0 

~] 0 0 

0 0 

AN = 2IN = 2N = 2NI = N(21) = NA 

that is, A and N commute. 

(c) Since A and N commute, then, by the result from Prob. 7 .46 

Now [see App.A, Eq. (A.49)] 

e2t 0 0 0 
eAt = 0 e2t 0 = e2t 0 

0 0 e2t 0 0 

and using similar justification as in Prob. 7.44(b), we have 

t2 
eNt = l+tN +-N2 

2! 

~]~~'I 

t2 
0 0 

t2 
1 t 

Thus, 

2 
0 0 0 

0 0 0 

2 
0 

0 0 

t -
2 

0 0 

7.48. Using the state variables method, solve the second-order linear differential equation 

y" (t) + 5y'(t) + 6y (t) = x(t) 

with the initial conditions y(O) = 2,y'(O) = 1, andx(t) = e-1u(t) (Prob. 3.38). 

Let the state variables q/t) and q2(t) be 

q2(t) = y'(t) 

(7.127) 
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Then the state space representation ofEq. (7.127) is given by [Eq. (7 .19)] 

tj(t) = Aq(t) + bx(t) 

y(t) = cq(t) 

with A = [- ~ - ~] b = [~] c = [l o] q[O] = [q1[0]] = [2] 
q2 [0] 1 

Thus, by Eq. (7 .65) 

with d = 0. Now, from the result of Prob. 7.39 , 

and 

Thus, 

y(t) = 7e- 2r - 5e- 3t + J~(e- 2(t - r) - e- 3(f-rl)e- rdr 

= 7e- 2r - 5e- 3t + e- 2rJ~ er dr - e-3tJ~ e2r dr 

= .!..e- r +6e- 2r - ~e- 3' t>O 
2 2 

which is the same result obtained in Prob. 3.38. 

7.49. Consider the network shown in Fig. 7-20. The initial voltages across the capacitors C1 and C2 are~ V and 
1 V, respectively. Using the state variable method, find the voltages across these capacitors fort> 0. 
Assume that RI = R2 = R3 = 1 Q and cl = c2 = 1 F. 

+ 
Ve (t) 

1 

Let the state variables q 1 (t) and qi<t) be 

2 

Fig. 7-20 

q2 (t) = VCz(t) 

+ 
Ve (t) 

2 
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Applying Kirchhoff's current law at nodes 1 and 2, we get 

Substituting the values of R1, R2, R3 , C1, and C2 and rearranging , we obtain 

In matrix form 

with 

q,(t) = - 2q,(t) + %(t) 

qz<t) = q,(t) - 2qz(t) 

q(t) = Aq(t) 

A = [- 2 1] 
1 - 2 

and 

Then , by Eq. (7 .63) with x(t) = 0 and using the result from Prob. 7.43 , we get 

Thus , 

3 - I } - 31 -e - -e 
4 4 
3 - I } - 31 -e +-e 
4 4 

( ) 3 - 1 1 - 31 Ve t = -e - -e 
I 4 4 

and ( ) 3 - I } - 31 
Ve t = -e +-e 

2 4 4 

7.50. Consider the continuous-time LTI system shown in Fig. 7-21. 

(a) Is the system asymptotically stable? 

(b) Find the system function H(s). 

(e) Is the system BIBO stable? 

x(t) 

Fig. 7-21 

•• 

y(t) 
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(a) From Fig. 7-21 and choosing the state variables q1(t) and %(t) as shown, we obtain 

In matrix form 

where 

Now 

A=[~ ~] 

q.(t) = %(t) + x(t) 

qz(t) = 2q1(t) + qz(t) - x(t) 

y(t) = q.(t) - qz(t) 

q(t) = Aq(t) + bx(t) 

y(t) = cq(t) 

b=[-~] c=[l -1] 

c(A) =IA.I - Al= =A 2 - A - 2 =(A+ 1) (A - 2) [ 
A. -1 ] 

-2 A.-1 

Thus, the eigenvalues of A are A.1 = -1 and A.2 = 2. Since Re{"-i} > 0, the system is not asymptotically 
stable. 

(b) By Eq. (7.52) the system function H(s) is given by 

-1 

H(s)=c(sl-A)- 1b=[l -1][ s -l] [ 1] 
-2 s-1 -1 

=(s+l)(s-2)[1 -1][s;l ~H-~] 
2(s-2) 2 

(s+l}(s-2) s+l 

(c) Note that there is pole-zero cancellation in H(s) at s = 2. Thus, the only pole of H(s) is -1, which is located 
in the left-hand side of the s-plane. Hence, the system is BIBO stable. 

Again, it is noted that the system is essentially unstable if the system is not initially relaxed. 

7.51. Consider an Nth-order continuous-time LTI system with state equation 

q(t) = Aq(t) + bx(t) 

The system is said to be controllable if it is possible to find an input x(t) which will drive the system 
from q(t0) = ~to q(t1) = q1 in a specified finite time and~ and q1 are any finite state vectors. Show 
that the system is controllable if the controllability matrix defined by 

Mc= [b Ab ··· AN-lb] 

has rankN. 

We assume that t0 = 0 and q[O] = 0. Then, by Eq. (7.63) we have 

Now, by the Cayley-Hamilton theorem we can express e-Ar as 

N-1 

e-AT = '}: ak(r)Ak 
k=O 

(7.128) 

(7.129) 

(7.130) 



CHAPTER 7 State Space Analysis 

Substituting Eq. (7.130) into Eq. (7.129) and rearranging, we get 

Let 

Then Eq. (7.131) can be rewritten as 

or 

N-1 

e-Atiq, = ~ Akb/3k 
k=O 

(7.131) 

(7.132) 

For any given state q 1 we can determine from Eq. (7.132) unique f3k's (k = 0, 1, ... , N - 1), and hence x(t), if the 
coefficients matrix of Eq. (7 .132) is nonsingular, that is, the matrix 

has rankN. 

7.52. Consider an Nth-order continuous-time LTI system with state space representation 

q(t) = Aq(t) + bx(t) 

y(t) = cq(t) 

The system is said to be observable if any initial state q(t0) can be determined by examining the system 
output y( t) over some finite period of time from t0 to t1• Show that the system is observable if the 
observability matrix defined by 

has rankN. 

M= 
0 

c 

cA 

We prove this by contradiction. Suppose that the rank of M 0 is less than N. Then there exists an initial state 

q[O] = q0 * 0 such that 

or 

Now from Eq. (7.65), for x(t) = 0 and t0 = 0, 

(7.133) 

(7.134) 

(7.135) 
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However, by the Cayley-Hamilton theorem, eA1 can be expressed as 

N-1 

eA! = ~ ak(t)Ak 
k=O 

Substituting Eq. (7.136) into Eq. (7.135), we get 

N-1 

y(t)= ~ ak(t)cAkq0 = 0 
k=O 

(7.136) 

(7.137) 

in view of Eq. (7.134). Thus, q0 is indistinguishable from the zero state, and hence, the system is not observable. 

Therefore, if the system is to be observable, then M 0 must have rank N. 

7.53. Consider the system in Prob. 7.50. 

(a) Is the system controllable? 

(b) Is the system observable? 

(a) From the result from Prob. 7.50 we have 

A = [~ ~] b = [- ~] c = [ 1 - 1] 

Now Ab = [~ ~ H- ~] = [-:] 

and by Eq. (7.128) the controllability matrix is 

Mc =[b Ab]= [ 1 -11 
- 1 1 

and I Mc I = 0. Thus, it has a rank less than 2, and hence, the system is not controllable. 

(b) Similarly, 

cA = [ 1 - 1] [~ ~] = [ - 2 0] 

and by Eq. (7.133) the observability matrix is 

and I M0 I = -2 =/= 0. Thus, its rank is 2, and hence, the system is observable. 

Note from the result from Prob. 7.50(b) that the system function H(s) has pole-zero cancellation. As in 

the discrete-time case, if H(s) has pole-zero cancellation, then the system cannot be both controllable and 
observable. 

7.54. Consider the system shown in Fig. 7-22. 

(a) Is the system controllable? 

(b) Is the system observable? 

(c) Find the system function H(s). 
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x(t) 

Fig. 7-22 

(a) From Fig. 7-22 and choosing the state variables q1(t) and qz(t) as shown, we have 

In matrix form 

where 

Now 

q1(t) = q1(t) + 2qz(t) + x(t) 

qz(t) = 3qz(t) + x(t) 

y(t) = q,(t) - qz(t) 

q1 (t) = Aq (t) + bx(t) 

y(t) = cq(t) 

A = [~ !] b = [~] c = [l - 1] 

Ab = [~ !][~] = [~] 
and by Eq. (7.128) the controllability matrix is 

and I Mc I = 0 . Thus, its rank is less than 2, and hence , the system is not controllable . 

(b) Similarly, 

and by Eq. (7.133) the observability matrix is 

M = [ c ] = [l - 1) 
0 cA 1 - 1 

and I M0 I = 0. Thus, its rank is less than 2, and hence, the system is not observable. 
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(c) By Eq. (7.52) the system function H(s) is given by 

H(s) = c(sl - A)- 1b 

Note that the system is both uncontrollable and unobservable. 

SUPPLEMENTARY PROBLEMS 

7.55. Consider the discrete-time LTI system shown in Fig . 7-23. Find the state space representation of the system with 
the state variables q1[n] and q2[n] as shown. 

x [n] 

Fig. 7-23 

7.56. Consider the discrete-time LTI system shown in Fig . 7-24. Find the state space representation of the system with 
the state variables q1[n] and q2[n] as shown. 

y, [n] 

q, [n ] 

x [n] 

Fig. 7-24 
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7.57. Consider the discrete-time LTI system shown in Fig . 7-25. 

(a) Find the state space representation of the system with the state variables q1[n] and %[n] as shown. 

(b) Find the system function H(z) . 

(c) Find the difference equation relating x[n] and y[n]. 

x [n] 

+ 

Fig. 7-25 

7.58. A discrete-time LTI system is specified by the difference equation 

y[n] + y[n - 1] - 6y[n - 2] = 2 x[n - 1] + x[n - 2] 

Write the two canonical forms of state representation for the system. 

7.59. Find A" for 

(a) Using the Cayley-Hamilton theorem method. 

(b) Using the diagonalization method. 

7.60. Find A" for 

3 

A = 0 - 2 1 o ol 

(a) Using the spectral decomposition method. 

(b) Using the z-transform method. 

0 4 1 

y [n] 

+ 



7.61. Given a matrix 

- 1 2 2 

A = 2 - 1 2 

2 2 - 1 

(a) Find the minimal polynomial m(A) of A. 

(b) Using the result from part (a), find A". 
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7.62. Consider the discrete-time LTI system with the following state space representation: 

q[•+I] ~ [~ 

(a) Find the system function H(z). 

(b) ls the system controllable? 

(c) ls the system observable? 

y[nJ = [O 

1 ol [ 1 0 1 q[n] + 0 

- 1 2 1 

1 o]q[n] 

7.63. Consider the discrete-time LTI system in Prob. 7.55. 

(a) ls the system asymptotically stable? 

(b) ls the system BIBO stable? 

(c) ls the system controllable? 

(d) ls the system observable? 

x[n] 

7.64. The controllability and observability of an LTI system may be investigated by diagonalizing the system matrix A. 
A system with a state space representation 

v[n + 1] = Av[n] + bx[n] 

y[n] = cv[n] 

(where A is a diagonal matrix) is controllable if the vector b has no zero elements, and it is observable if the vector 
c has no zero elements. Consider the discrete-time LTI system in Prob. 7.55. 

(a) Let v[n] = Tq[n]. Find the matrix T such that the new state space representation will have a diagonal system 
matrix. 

(b) Write the new state space representation of the system. 

(c) Using the result from part (b), investigate the controllability and observability of the system. 

7.65. Consider the network shown in Fig. 7-26. Find a state space representation for the network with the state variables 
q1(t) = iL(t), qz(t) = vc(t) and outputs y1(t), = i 1(t), yz(t) = v c<t), assuming R1 = R2 = 1 Q, L = 1 H, and C = 1 F. 

+ + 
x(t) c 

Fig. 7-26 
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7.66. Consider the continuous-time LTI system shown in Fig . 7-27 

(a) Find the state space representation of the system with the state variables q1(t) and q2(t) as shown. 

(b) For what values of a will the system be asymptotically stable? 

x(t) y(t) 

Fig. 7-27 

7.67. A continuous-time LTI system is described by 

2 
H(s) = 3s - 1 

s3 + 3s 2 - s - 2 

Write the two canonical forms of state representation for the system. 

7.68. Consider the continuous-time LTI system shown in Fig. 7-28 . 

(a) Find the state space representation of the system with the state variables q1(t) and q2(t) as shown. 

(b) ls the system asymptotically stable? 

(c) Find the system function H(s) . 

(d) ls the system BIBO stable? 

x(t) 

Fig. 7-28 

7.69. Find eA1 for 

[- 1 11 
A = - 1 - 1 

(a) Using the Cayley-Hamilton theorem method. 

(b) Using the spectral decomposition method. 

+ 
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7.70. Consider the matrix A in Prob. 7.69. Find e-Ar and show that e-Ar = [eA11-1. 

7.71. Find eA1 for 

(a) Using the diagonalization method. 

(b) Using the Laplace transform method. 

A=[-~ -~] 

7.72. Consider the network in Prob. 7.65 (Fig. 7-26). Find vc(t) if x(t) = u(t) under an initially relaxed condition. 

7.73. Using the state space method, solve the linear differential equation 

y"(t) + 3y'(t) + 2y(t) = 0 

with the initial conditions y(O) = 0, y'(O) = 1. 

7.74. As in the discrete-time case, controllability and observability of a continuous-time LTI system may be investigated 

by diagonalizing the system matrix A. A system with state space representation 

v(t) = Av(t) + bx(y) 

y(t) = cv(t) 

where A is a diagonal matrix, is controllable if the vector b has no zero elements, and is observable if the vectorc 

has no zero elements. Consider the continuous-time system in Prob. 7 .50. 

(a) Find a new state space representation of the system by diagonalizing the system matrix A. 

(b) Is the system controllable? 

(c) Is the system observable? 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

7.SS. q[n+l]~[-~ ilq[n]+[~]x[n] 
y[n]=[-1 2]q[n] 

1 

7.56. q[n+l]= ~ : q[n]+[~]x[n] 
3 2 

y[n]= [~ ~]q[n] 
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7.57. (a) q[n +I]~ [: - ~] q[n]+ [~] x[n] 

y[n] = - - q[n]- -x[n] [ 1 1 ] 1 
2 4 6 

2 
(b) H(z)=-!z -4z-l 

6 z2-z+! 
2 

1 1 2 1 
(c) y[n]- y[n -1] + Zy[n - 2] = - 6 x[n] + 3 x[n -1] + 6 x[n - 2] 

7.58. (1) q[n + l] = [-~ ~) q[n] + [~] x[n] 

y[nJ=[l o]q[n] 

(2) v[n + l] = [~ _ ~) v[n] + [~] x[n] 

y[nl=[l 2]v[n] 

(3t 0 0 

7.60. An= 0 !<2r +±<- 3t !(2t-!<- 3t 
5 5 5 5 

0 ±(2t-±<- 3t ±(2t-!<- 3t 
5 5 5 5 

7.61. (a) m(A.) =(A. - 3)(A. + 3) =A. 2 - 9 

3n + 2(- 3)n 3n -(- 3t 

(b) An=]:_ 3n -(- 3t 3n +2(- 3t 
3 

3n -(- 3t 3n -(- 3t 

(a) 
1 

7.62. H(z)=--
(z-1)2 

(b) The system is controllable. 

(c) The system is not observable. 

7.63. (a) The system is asymptotically stable. 

(b) The system is BIBO stable. 

(c) The system is controllable. 

(d) The system is not observable. 

3n -(- 3r 

3n -(- 3r 

3n +2(- 3t 



7.64. (a) T = [ 1 -2) 
-1 3 

-

(b) v[n+l]= 3 

0 
2 

y[nJ=[-1 o]v[n] 

( c) The system is controllable but not observable. 

7.65. <i. (t) = [- l l] q (t) + [0) x(t) 
-1 -1 1 

y(t)= [~ - ~] q(t) + [~ ]x(t) 

7.66. (a) q(t)= [~! ~]q(t)+ [~)x(t) 

y(t)=[l o]q(t) 

(b) a~ 4 

7.67. (1) q(t)= -~ ~ ~ q(t)+[ ~ix(t) 
2 0 0 -1 

y(t) = [ 1 0 0 ]q(t) 

(2) t(t)~ [~ 0 _: v(t) + ~] x(t) 

y(t)= [-1 0 3]v(t) 

7.68. (a) q(t)=[-~ -~]q(t)+[~)x(t) 

y(t) = [ 1 1 ]q(t) 

7.69. 

(b) The system is not asymptotically stable. 

1 
(c) H(s)=-­

s+2 

(d) The system is BIBO stable. 

At _ 1 [ cost sint] e =e 
- sint cost 

7.70. e = e -At 1 [cost - sint] 
sint cost 

CHAPTER 7 State Space Analysis 
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[ 
2e-r _ e-21 e-t -e-21 ] 

7.71. eAt= -2e-'+2e-21 -e-t+2e-21 

7.72. vc(t) = _!_(1 + e- 1 sint - e -t cost), t > 0 
2 

7.73. y(t) = e-1 - e- 21 , t > 0 

7.74. (a) v(t)=[-~ ~]v(t)+[~]x(t) 

y(t)=[2 -l]v(t) 

(b) The system is not controllable. 

(c) The system is observable. 

41·•• 



Random Signals 

8.1 Introduction 

Random signals, as mentioned in Chap. 1, are those signals that take random values at any given time and must 
be characterized statistically. However, when observed over a long period, a random signal may exhibit certain 
regularities that can be described in terms of probabilities and statistical averages. The probabilistic model used 
to describe random signals is called a random (or stochastic) process. 

8.2 Random Processes 

A. Definition: 

Consider a random experiment with outcomes A and a sample space S. If to every outcome AES we assign a real­
valued time function X(t, A), we create a random (or stochastic) process. A random process X(t, A) is therefore a 
function of two parameters, the time t and the outcome A. For a specific A, say, A;, we have a single time function 
X(t, A) = x;(t). This time function is called a sample function or a realization of the process. The totality of all 
sample functions is called an ensemble. For a specific time 0, X(ti, A) =Xi denotes a random variable. For fixed 
t( = ti) and fixed A(= A;), X( ti, A;) = x;( t) is a number. 

Thus, a random process is sometimes defined as a family of random variables indexed by the parameter 
t E T, where Tis called the index set. 

Fig. 8-1 illustrates the concepts of the sample space of the random experiment, outcomes of the experiment, 
associated sample functions, and random variables resulting from taking two measurements of the sample functions. 

In the following we use the notation X(t) to represent X(t, A). 

EXAMPLE 8.1 Consider a random experiment of flipping a coin. The sample space is S = {H, T} where H 
denotes the outcome that "head" appears and T denotes the outcome that "tail" appears. Let 

X(t,H) = x1(t) =sin w1t 

X(t, T) = xz(t) = sin w2 t 

where w1 and w2 are some fixed numbers. Then X(t) is a random signal with x1(t) and xz(t) as sample functions. Note 
that x 1(t) and x2(t) are deterministic signals. Randomness of X(t) comes from the outcomes of flipping a coin. 

EXAMPLE 8.2 Consider a random experiment of flipping a coin repeatedly and observing the sequence of 
outcomes. Then S = {A;, i = 1, 2, ... }, where A; = Hor T. 

Let X(t, /...) = sin (Q; t), (i - 1) T =::; t =::; iT 
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Sample space 

• 

Outcome 

X1 X2 

Fig. 8-1 Random process. 

Binary 0 0 0 
code 

' ' f ' f ~ 

v 

Fig. 8-2 

One realization (or sample function) of the random signal X(t) is shown in Fig. 8-2. This kind of random signal 
is the sort of signal that might be produced by a frequency shift keying (FSK) modem where the frequencies are 
determined by random sequence of data bits 1 or 0 (by replacing H = 1 and T = 0). 

EXAMPLE 8.3 Often a random signal X(t) is specified in terms of random variables. 

X(t) = a COS(%t + 8) 

where a and % are fixed amplitude and frequency and e is a random variable (r.v.) uniformly distributed over 
[O, 2Jr]; that is, r.v. e is defined by E>(A.) = A. for each A. in S = [O, 2Jr]. That is, 

X(t, A.) = a cos( %t + A.) for 0 :5 A. :5 2Jr 

The ensemble of X(t, A.) is the set of cosine functions that have the same amplitude and frequency, but whose phase 
angle are functions of uniform r.v. over S = [0, 2Jr]. Some sampling functions of X(t, A.) are plotted in Fig. 8-3. 

EXAMPLE 8.4 Let X1, X2, ••• be independent r.v. with 

P{Xn = l} = P{Xn = -1} =.!_for each n.Let X(n) = {Xn , n;::: O} with X 0 = 0. 
2 

Then X(n) is a discrete-time random sequence. A sample sequence of X(n) is shown in Fig. 8-4. 
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B. Description of a Random Process: 

In a random process {X(t), t ET}, the index set Tis called the parameter set of the random process. The values 
assumed by X(t) are called states, and the set of all possible values forms the state space E of the random process. 
If the index set T of a random process is discrete, then the process is called a discrete-parameter (or discrete-time) 
process. A discrete-parameter process is also called a random sequence and is denoted by { Xn, n = 1, 2, ... } . If T 
is continuous, then we have a continuous-parameter (or continuous-time) process. If the state space E of a 
random process is discrete, then the process is called a discrete-state process, often referred to as a chain. In this 
case, the state space Eis often assumed to be {O, 1, 2, ... }. If the state space Eis continuous, then we have a 
continuous-state process. 

A complex random process X(t) is defined by 

X(t) = X1(t) + jXz(t) 

where X1(t) and Xz(t) are (real) random processes andj = v'=l. Throughout this book, all random processes are 
real random processes unless specified otherwise. 

8.3 Statistics of Random Processes 

A. Probabilistic Expressions: 

Consider a random process X(t). For a particular time t 1, X(t1) = X1 is a random variable, and its distribution 
function Fx(x 1; t 1) is defined as 

(8.1) 

where x1 is any real number. 



CHAPTER 8 Random Signals 

And Fx<x1; t1) is called the first-order distribution of X(t). The corresponding first-order density function is 
obtained by 

(8.2) 

Similarly, given t1 and t2' X(t1) = X1 and X(t2) = X2 represent two random variables. Their joint distribution is 
called the second-order distribution and is given by 

(8.3) 

where x1 and x2 are any real numbers. 
The corresponding second-order density function is obtained by 

(8.4) 

In a similar manner, for n random variables X(t) = X;(i = 1, ... , n), the nth-order distribution is 

(8.5) 

The corresponding nth-order density function is 

(8.6) 

In a similar manner, we can define a joint distribution between two random processes X(t) and Y(t). The joint 
distribution for X(t 1) and Y(t2 ) is defined by 

Fxy(x 1, y 2 ; t 1, t 2) = P{X(t1) ::5 x 1 , Y(t 2 ) ::5 y 2 } 

and corresponding joint density function by 

az 
f xv (x,, yz; t,, tz) = Fxy (x,, yz; t,, tz) 

ax, ayz 

The joint nth-order distribution for X(t) and Y(t) is defined by 

and the corresponding nth-order density function by 

fxy (x,, ... ,xn;y,, .. .,yn; t,, ... , tn) 

a2n 
-------Fxy (x 1, ••• ,xn;y1, •• .,yn; t 1, ••• , tn) 
ax1 ••• axn ay1 ···ayn 

B. Statistical Averages: 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

As in the case of random variables, random processes are often described by using statistical averages 
(or ensemble averages). 

The mean of X(t) is defined by 

µx(t) = E[X(t)] = J~00 xfx(x; t) dx (8.11) 

where X(t) is treated as a random variable for a fixed value oft. 
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For discrete time processes, we use the following notation: 

µx(n) = E[X(n)] = ,L XnPx (xn) (8.12) 
n 

where px<xn) = P(X = xn). 
The autocorrelation of X(t) is defined by 

RxxUi, t1) = E[X(ti)X(t2)] 

= J:00 J:00 XiX2fx(Xi, X2; ti, t1)dxi dx2 (8.13) 

The autocorrelation describes the relationship (correlation) between two samples of X(t). In order to see how the 
correlation between two samples depends on how far apart the samples are spaced, the autocorrelation function 
is often expressed as 

Rxx(t, t + •) = E[X(t)X(t + •)] 

Note that 

and 

The autocovariance of X(t) is defined by 

CxxUi, t1) = E{[X(ti)- µx(ti)][X(t2)- µx(t2)]} 

= RxxUi. t1)- µxUi)µxU2) 

It is clear that if µit)= 0, then Cxx(t1, t2) = Rxx<t" t2). 
Note that Cxx(t1, t2) and Rxx(t1, t2) are deterministic functions of t1 and t2. 

The variance of X(t) is given by 

ai(t) = Var[X(t)] = E{[X(t) - µit)]2} = Cxif• t) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

If X(t) is a complex random process, then the autocorrelation and autocovariance of X(t) are defined by 

Rxx(t1, t2) = E[ X(t1) X*(t2)] 

Cxx(t,, tz) = E{[X(t,) - µx(t,)] [X(t2) - µx(tz)]*} 

where * denotes the complex conjugate. 

(8.19) 

(8.20) 

In a similar manner, for discrete-time random processes (or random sequences), X(n), the autocorrelation 
and autocovariance of X(n) are defined by 

and 

Rxx<n,, n2) = E[ X(n1) X(n2)] 

Cxx(n1, n2) = E{[X(n1) - µx(n 1)][X(n2) - µx(n2)]} 

Rxx<n,, nz) = Rxx<n2, n,) 

Rxx<n, n) = E[X2(n)] 

If µx(n) = 0, then Cxx<n,, n2) = Rxx<n,, n2). 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

For two different random signals X(t) and Y(t), we have the following definitions. The cross-correlation of 
X(t) and Y(t) is defined by 

RXY(ti, t1) = E[X(ti)Y (t2)] 

= J:00 J :00 XiY2fxy (xi, Y2; ti, t1 )dxi dy2 (8.25) 
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The cross-covariance of X(t) and Y(t) is defined by 

Cxy(t1, t1) = E {[X(t1)- µx(t1)][Y(t2)- µy(t2)]} 

= Rxy(t1, t1)- µx(t1) µy(t2) 

Some Properties or X(t) and Y(t): 
Two random processes X(t) and Y(t) are independent if for all t1 and t2 , 

Fxy(x,y; t 1, t2) = Fx<x; t 1)Fy(y; t2) 

They are uncorrelated if for all t1 and t2 

or 

They are orthogonal if for all t1 and t2 

•• 
(8.26) 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

By changing t 1 and t2 by n1 and n2, respectively, similar definitions can be obtained for two different random 
sequences X(n) and Y(n). 

C. Stationarity: 

1. Strict-Sense Stationary: 
A random process X(t) is called strict-sense stationary (SSS) if its statistics are invariant to a shift of origin. In 
other words, the process X(t) is SSS if 

(8.31) 

for any c. 
From Eq. (8.31) it follows that f x(x1; t1) = f x(x1; t1 + c) for any c. Hence, the first-order density of a 

stationary X(t) is independent oft: 

Similarly, fx(xl'x2; t1, t2) = fx(xl'x2; t1 + c, t2 + c) for any c. Setting c = -t1, we obtain 

f x<xl' x2; t1, t2) = f x<xl' x2; t2 - t1) 

(8.32) 

(8.33) 

which indicates that if X(t) is SSS, the joint density of the random variables X(t) and X(t + r) is independent of 
t and depends only on the time difference r. 

2. Wlde-5ense Stationary: 
A random process X(t) is called wide-sense stationary (WSS) if its mean is constant 

E[X(t)] = µx (8.34) 

and its autocorrelation depends only on the time difference r 

E[X(t)X(t + r)] = Rxi•) (8.35) 

From Eqs. (8.17) and (8.35) it follows that the autocovariance of a WSS process also depends only on the time 
difference r: 

(8.36) 

Setting r = 0 in Eq. (8.35), we obtain 

(8.37) 
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Thus, the average power of a WSS process is independent oft and equals Rxx<O). 
Similarly, a discrete-time random process X(n) is WSS if 

E[X(n)] = µx = constant (8.38) 

and 

E[X(n)X(n + k)] = Rxx(k) (8.39) 

Then 

(8.40) 

Setting k = 0 in Eq. (8 .39) we have 

(8.41) 

Note that an SSS process is WSS but a WSS process is not necessarily SSS. 
Two processes X(t) and Y(t) are called jointly wide-sense stationary (jointly WSS) if each is WSS and their 

cross-correlation depends only on the time difference r: 

Rxy(t, t + r) = E[X(t)Y(t + r)] = Rxy(r) (8.42) 

From Eq. (8.42) it follows that the cross-covariance of jointly WSS X(t) and Y(t) also depends only on the time 
difference r: 

(8.43) 

Similar to Eqs. (8.27) to (8.30), two jointly WSS random process X(t) and Y(t) are independent if for all x 
andy 

They are uncorrelated if for all r 

or 

They are orthogonal if for all r 

fxy(x,y) = fx(x)f y(y) 

Cx/ r) = RXY( r) - µxµY = 0 

Rxy(r) = µxµY 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

Similarly, two random sequences X(n) and Y(n) are jointly WSS if each is WSS and their cross-correlation 
depends only on the time difference k: 

Rx/n, n + k) = E[X(n)Y(n + k)] = Rxy(k) 

Then the cross-covariance of jointly WSS X(n) and Y(n) is 

They are uncorrelated if for all k 

or 

They are orthogonal if for all k 

Cxy(k) = 0 

Rxy(k) = µxµY 

(8.48) 

(8.49) 

(8.50) 

(8.51) 

(8.52) 
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D. Time Averages and Ergodicity: 

The time-averaged mean of a sample function x(t) of a random process X(t) is defined as 

1 T/2 
x=(x(t))= lim -J x(t)dt 

T-+oo T -T/2 

where the symbol(·) denotes time-averaging. 
Similarly, the time-averaged autocorrelation of the sample functionx(t) is defined as 

- 1 T/2 
Rxx(•)=(x(t)x(t+r))= lim -J x(t)x(t+r)dt 

T-+oo T -T/2 

(8.53) 

(8.54) 

Note that x andRxx< r) are random variables; their values depend on which sample function of X(t) is used in the 
time-averaging evaluations. 

If X(t) is stationary, then by taking the expected value on both sides ofEqs. (7.20) and (7.21), we obtain 

1 T/2 
E[x] = lim -J E[x(t)]dt = µx 

T-+oo T -T/2 

which indicates that the expected value of the time-averaged mean is equal to the ensemble mean, and 

- 1 T/2 
E[Rxx(•)] = lim -J E[x(t)x(t + r)] dt = Rxx(•) 

T-+oo T -T/2 

(8.55) 

(8.56) 

which also indicates that the expected value of the time-averaged autocorrelation is equal to the ensemble auto­
correlation. 

A random process X(t) is said to be ergodic if time averages are the same for all sample functions and equal to 
the corresponding ensemble averages. Thus, in an ergodic process, all its statistics can be obtained by observing a 
single sample function x(t) = X(t, A.) (A. fixed) of the process. 

A stationary process X(t) is called ergodic in the mean if 

x = (x(t)) = E[X(t)] = µx 

Similarly, a stationary process X(t) is called ergodic in the autocorrelation if 

Rxi•) = (x(t)x(t + r)) = E[X(t)X(t + r)] = Rxx(•) 

The time-averaged mean of a sample sequence x(n) of a random sequence X(n) is defined as 

1 N 
x = (x(n)) = lim -- :L x(n) 

N-+oo 2N + 1 n=-N 

Similarly, the time-average autocorrelation of the sample sequence x(n) is defined as 

If X(n) is stationary, then 

and 

- 1 N 
Rxx(k) = (x(n)x(n + k)) = lim -- :L x(n)x(n + k) 

N-+oo 2N + 1 n=-N 

1 N 
E[ x] = lim -- ~ E[x(n)] = µx 

N-+oo 2N + 1 n~N 

- 1 N 
E[Rxx(k)]= lim-- ~ E[x(n)x(n+k)]=Rxx(k) 

N-+oo 2N + 1 n~N 

(8.57) 

(8.58) 

(8.59) 

(8.60) 

(8.61) 

(8.62) 
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Thus, X(n) is also ergodic in the mean and autocorrelation if 

x = (x(n)) = E[X(n)] = µx 

Rxx(k) = (x(n)x(n + k)) = E[x(n)x(n + k)] = Rxx(k) 

(8.63) 

(8.64) 

Testing for the ergodicity of a random process is usually very difficult. A reasonable assumption in the ran­
dom analysis of most random signals is that the random waveforms are ergodic in the mean and in the autocor­
relation. Fundamental electrical engineering parameters, such as de value, root-mean-square (rms) value, and 
average power can be related to the statistical averages of an ergodic random process. They are summarized in 
the following: 

1. x = ( x( t)) is equal to the de level of the signal. 

2. [ x]2 = (x(t))2 is equal to the normalized power in the de component. 

3. Rxx<O) = (x2(t)) is equal to the total average normalized power. 

4. a;= (x2(t)) - (x(t)) 2 is equal to the average normalized power in the time-varying or ac component 
of the signal. 

5. ax is equal to the rms value of the ac component of the signal. 

8.4 Gaussian Random Process: 

Consider a random process X(t), and define n random variables X(t1), .•• , X(t) corresponding to n time instants 
t1, ••• , tn. Let X be a random vector (n X 1 matrix) defined by 

X = Xit1)] 

X(tn) 

(8.65) 

Let x be an n-dimensional vector (n X 1 matrix) defined by 

(8.66) 

so that the event {X(t1) :5 x1, ••• , X(tn) :5 xn} is written {X :5 x}. Then X(t) is called a Gaussian (or normal) 
process if X has a jointly multivariate Gaussian density function for every finite set of {t;} and every n. 

The multivariate Gaussian density function is given by 

1 [ 1 T -I ] fx(x) = 112 exp - -(x - 11) C (x - 11) 
<2.irt12 1 det c I 2 

(8.67) 

where T denotes the "transpose," µis the vector means, and C is the covariance matrix, given by 

(8.68) 

(8.69) 

where (8.70) 

which is the covariance of X( t;) and X( ~), and det C is the determinant of the matrix C. 
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Alternate Deftnltlon: 
A random process X( t) is a Gaussian process if for any integers n and any subset { t1, .•• , tn} of T, and any real 
coefficients ak(l ::5 k ::5 n), the r.v. 

n 

}: akX(tk) = a1X(t1) + a2X(t2 ) + ··· anX(tn) 
k=I 

is a Gaussian r.v .. 
Some of the important properties of a Gaussian process are as follows: 

1. A Gaussian process X(t) is completely specified by the set of means 

µ; = E[X(t)] i = 1, ... , n 

and the set of autocorrelations 

i,j= 1, ... ,n 

2. If the set ofrandom variables X(t), i = 1, ... , n, is uncorrelated, that is, 

cij = o i * j 
then X(t;) are independent. 

3. If a Gaussian process X(t) is WSS, then X(t) is SSS. 

(8.71) 

4. If the input process X(t) of a linear system is Gaussian, then the output process Y(t) is also Gaussian. 

SOLVED PROBLEMS 

8.1 Consider a random process X(t) defined by 

X(t) = Y cos wt 

where w is a constant and Yis a uniform r.v. over (0, 1). 

(a) Describe X(t). 

(b) Sketch a few typical sample functions of X(t). 

t;:::: 0 (8.72) 

(a) The random process X(t) is a continuous-parameter (or time), continuous-state random process. The state 
space is E = {x: -1 < x < 1} and the index parameter set is T = {t: t ~ O}. 

(b) Three sample functions of X(t) are sketched in Fig. 8-5. 

8.2. Consider a random signal X(t) given by 

00 

X(t)= _L Akp(t-kTb -Td) 
k=-00 

where {Ak} is a sequence of independent r.v.'s with P[Ak =A]= P[Ak = -A]= ~,p(t) is a unit 
amplitude pulse of duration Tb, and Td is a r.v. uniformly distributed over [O, Tb]. 

(a) Describe X(t). 

(b) Sketch a sample function of X(t). 

(8.73) 

(a) The random signal X(t) is a continuous time, discrete-state random process. The state space is (A, -A), and 
the index parameter set is T = (t; -co< t <co). X(t) is known as a random binary signal. 

(b) A sample function of X(t) is sketched in Fig. 8-6. 
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x1(t) 

Y = O 

Fig. 8-5 

x (t) 

A """" 

~Tb--+ 

0 td ' 
14--- Tb -----:------ Tb-----+ t 

' 
- A 

Fig. 8-6 Random binary signal. 

8.3. Consider a random process { X( t); t ;:::: 0}, where X( t) represents the total number of "events" that have 
occurred in the interval (0, t). 

(a) Describe X(t). 

(b) Sketch a sample function of X(t). 

(a) From definition, X(t) must satisfy the following conditions: 

I. X(t) ;;::, 0 and X(O) = 0 

2. X(t) is integer valued. 

3. X(t1) ,;:; X(t2) if t1 < t2 

4. X(t2) - X(t1) equals the number of events that have occurred on the interval (t1, t2) . 
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Thus, X(t) is a continuous-time discrete state random process. 

Note that X(t) is known as a counting process. A counting process X(t) is said to possess independent 

increments if the number of events which occur in disjoint intervals are independent. 

(b) A sample function of X(t) is sketched in Fig. 8-7. 

x(t) 

4 

3 

2 

0 

Fig. 8-7 A sampling function of a counting process. 

8.4. Let W1, W2, ••. be independent identically distributed (i.i.d.) zero-mean Gaussian r.v.'s. Let 

n 

xn = L wk =W, +W2 +···+Wn 
k = l 

n =1,2, ... 

with X0 = 0. The collection of r.v.'s X(n) = {Xn' n;:::: O} is a random process. 

(a) Describe X(n). 

(b) Sketch a sample function of X(n). 

(8.74) 

(a) The random signal X(n) is a discrete time, continuous-state random process. The state space is E = ( - oo , oo) 

and the index parameter set is T = {O, 1, 2, ... } . 

(b) A sample function of X(t) is sketched in Fig . 8-8 . 

x (n) 
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5 n 
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Fig. 8-8 
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8.5. Let Z1, Z2, ••. be independent identically distributed r.v.'s with P(Zn = 1) = p and P(Zn = -1) = q = 1 - p 

for all n. Let 

n=l, 2, ... (8.75) 

and X0 = 0. The collection of r.v.'s {Xn, n :2: O} is a random process, and it is called the simple random 
walk X(n) in one dimension. 

(a) Describe the simple random walk X(n). 

(b) Construct a typical sample sequence (or realization) of X(n). 

(a) The simple random walk X(n) is a discrete-parameter (or time), discrete-state random process. The state space 

is E = { .. . , - 2, - 1, 0, 1, 2, ... }, and the index parameter set is T = {O, 1, 2, ... }. 

(b) A sample sequence x(n) of a simple random walk X(n) can be produced by tossing a coin every second and 

letting x(n) increase by unity if a head appears and decrease by unity if a tail appears. Thus, for instance, 

n 0 

Coin tossing 

x(n) 0 

H 

2 

T 

3 

T 

0 - 1 

4 

H 

0 

5 

H 

6 

H 

2 

7 

T 

8 

H 

2 

9 

H 

3 

10 

T 

2 

The sample sequence x(n) obtained above is plotted in Fig . 8-9. The simple random walk X(n) specified in 

this problem is said to be unrestricted because there are no bounds on the possible values of X". 

x (n) 
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2 

0 
2 4 6 8 10 n 

- 1 

-2 

Fig. 8-9 

8.6. Give an example of a complex random signal. 

Consider a random signal X(t) given by 

X(t) = A(t) cos [wt+ 0(t)] (8.76) 

where w is a constant, and A(t) and 0(t) are real random signals. Now X(t) can be rewritten as 

X(t) = Re{A(t) ei0 <1> ei"''} = Re{Y(t) ei"''} (8.77) 

where Re denotes "take real part of." Then 

Y(t) = A(t)ei0 <1> = A(t)cos 0(t) + j A(t)sin 0(t) (8.78) 

is a complex random signal. 



CHAPTER 8 Random Signals 

Statistics of Random Processes 

8.7. Let a random signal X(t) be specified by 

X(t) = t - Y 

where Y is an exponential r.v. with pdf 

{
e-y, y;:::O 

fy(y)= 0 , y<O 

Find the first-order cdf of X(t), Fx(x; t). 

Fx(x;t)= P{X(t)~x} = P{t-Y ~ x} 

= P{Y ~t-X} 

= r'° £ (y)dy=f'° e-ydy=e-(t-x) t2'x 
Jr-xJY t-x 

Next, if x > t, then t - x < 0 and Y 2' 0, and 

Fx(x; t)= P{Y ~ t- X} = P{Y 2' O} 

= J:fy(y)dy= J:e-Ydy=l t<x 

Thus, 

{
-(t-x) e , 

Fx(x;t)= 1 , 
t<x 

(8.79) 

(8.80) 

8.8. A discrete-time random sequence X(n) is defined by X(n) = An(n ;::: 0), where A is a uniform r.v. over (0, 1). 
Find the mean &(n) and autocorrelation Rxx(n, m) of X(n). 

The pdf of A is given by 

Then 

{
l, 

fA(a)= O, 
O<a<l 

otherwise 

n J' n 1 µx(n)=E[X(n)]=E[A ]= a da=--
o n+l 

and Rxx(n,m)=E[X(n)X(m)]=E[An+m]= J'an+mda= 1 
0 n+m+l 

8.9. Show that 

From definition (8.13) 

Rxx(t, t) = E[X(t)X(t)] = E[X 2(t)] 2' 0 

since E[Y 2] 2' 0, for any r.v. Y. 

8.10. Show that 

(8.81) 

(8.82) 

(8.83) 

(8.84) 
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Since E[Y2] 2'. 0, for any r.v. Y, we have 

0 ~ E[(X(t1) + X(t2))2] = Rxx<t1' ti) + 2Rxx (ti' tz) + Rxx (t2' tz) 

0 ~ E[(X(t1) - X(t2))2] = Rxx<tl' t1) - 2Rxx (t1, t2) + Rxx (t2, t2) 

From Eqs. (8.85) and (8.86) we have 

which imply that 

8.11. Consider a random signal given by 

X(t) =A cos av 
where% is a constant and A is an uniform r.v. over [0,1]. Find the mean µit) and autocorrelation 
Rxx<t1, t2) of X(t). 

The pdf of A is given by 

O<a<l 
otherwise 

1 
µx(t) = E[X(t)] = E[A cos root]= E[A] cos root= -cos uJof 

2 

since i i ii 1 E[A]= afA(a)da= ada= -. 
0 0 2 

Rxx<t1• t2 ) = E[X(t1)X(t2 )] = E[A2 cos roo t1 cos w0 t2 ] 

2 1 = E[A ] cos w0 t1 cos w0 t2 =-cos w0 t1 cos w0 t2 
3 

since 

8.12. A random sequence X(n) is defined as 

X(n) =An+ B 

where A and B are independent zero mean Gaussian r.v.'s of variance a1 and oi, respectively. 

(a) Find the mean µx<n) and autocorrelation Rxx (n, m) of X(n). 

(b) Find E[X2(n)]. 

(a) µx(n) = E[X(n)] = E[An + B] = E[A]n + E[B] = 0 

since E[A] = E[B] = 0. 

Rxx(n, m) = E[X(n)X(m)] = E[(An + B)(Am + B)] 

= E[A2 ]nm + E[AB](n+ m)+ E[B2 ] 

=a~nm+a~ 

since E[AB] = E[BA] = E[A]E[B] = 0. 

(8.85) 

(8.86) 

(8.87) 

(8.88) 

(8.89) 

(8.90) 

(8.91) 

(8.92) 
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(b) Setting m = n in Eq. (8.92), we obtain 

(8.93) 

8.13. A counting process X(t) of Prob. 8 .3 is said to be a Poisson process with rate (or intensity) A (> 0) if 

1. X(O) = 0. 

2. X(t) has independent increments. 

3. The number of events in any interval of length tis Poisson distributed with mean At; that is, for 
alls,t>O, 

(Att P[X(t + s)- X(s)= n] = e-J..t __ 
n! 

n =O, 1, 2, ... 

(a) Find the mean µJ.t) and E[X2(t)]. 

(b) Find the autocorrelation Rxx(t1, t2) of X(t). 

(a) Settings = 0 in Eq. (8.94) and using condition 1, we have 

P[X(t) = n] = e-}.f (Mt n = 0, 1, 2, ... 
n! 

Thus, 

00 00 (Aft 
µx(t) = E[X(t)] = ~ nP[X(t) = n] = ~ ne-}.f---;;! 

n=l n=l · 

Now, the Taylor expansion of eJ.1 is given by 

}.f 00 (Aft 
e =~-

n=O n! 

Differentiating twice with respect to Af, we obtain 

}.f 00 <hr1 1 00 <ht 
e =~n--=-~n-

n=O n! ).J n=I n! 

}.f 00 (Af)n-Z 1 00 2 (Af)n 1 00 (Aft 
e = ~n(n-1)--=-~n ---~n-

n=O n! (Af)2 n=l n! (Af)2 n=l n! 

Using Eqs. (9.97) and (9.98), we obtain 

and 

oo oo (Af)n E[X2 (t)]= ~n2P[X(t)=n]=e-J.t~n2 ---;;I 
n=I n=I · 

= e -}.f [ (Af)2 eJ.1 + (Af)e}.f] = (Af)2 + (Af) 

(8.94) 

(8.95) 

(8.96) 

(8.97) 

(8.98) 

(8.99) 

(8.100) 

(b) Next, let t1 < t2, the r.v. 's X(t1) and X(t2 - t1) are independent since the intervals (0, t1) and (t1, 1z) are non­
overlapping, and they are Poisson distributed with mean Af1 and A.(t2 - t1), respectively. Thus, 

(8.101) 
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Now using identity 

we have 

Rxx<tl' t2) = E[X(t1) X(t2)] = E[X2(t1)] + E{X(t1)[X(t2) - X(t1)]} 

= A.ti + ).,2 ti + A.ti A(t2 - ti) = A.ti + ).,2 ti t2 ti ~ t2 

Interchanging t1 and t2, we have 

Thus, combining Eqs. (102) and (8.103), we obtain 

8.14. Let X(t) and Y(t) be defined by 

X(t) = Acos wt + Bsin wt 

Y( t) = Bcos wt - Asin wt 

(8.102) 

(8.103) 

(8.104) 

(8.105) 

(8.106) 

where w is constant and A and B are independent random variables both having zero mean and variance a 2• 

Find the cross-correlation of X(t) and Y(t). 

The cross-correlation of X(t) and Y(t) is 

Since 

we have 

or 

RXY(t1, t2 ) = E[X(t1)Y (t2 )] 

= E[(Acos wt1 + Bsin wt1)(Bcos wt2 - A sin wt2 )] 

= E[AB](cos wt1 cos wt2 - sin wt1 sin wt2 ) 

- E[A2 ]cos wt1 sin wt2 + E[B2 ]sin wt1 cos wt2 

E[AB] = E[A]E[B] = 0 E[A 2] = E[B2] = a 2 

Rxy(t1, t2) = a 2(sin wt1cos wt2 - cos wt1sin w9 

= a 2 sin w(t1 - t2) 

8.15. Consider a random process X(t) given by 

X(t) =A cos (wt+ 0) 

(8.107) 

(8.108) 

where A and ware constants and e is a uniform random variable over [-:re, :re]. Show that X(t) is WSS. 

From Eq. (B.57) (Appendix B), we have 

Thus, 

otherwise 

µx(t) = E[X(t)] = J:"' A cos (wt+ fJ)f9 (8) d(J 

=~J" cos(wt+fJ)dfJ=O 2:n: _,, (8.109) 
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Rxx(t, t + -r) = E[X(t)X(t + -r)] 
A2 

= -J"' cos(wt + 8)cos[w(t + -r) + 8]d8 
2Jr -n: 

A2 n: 1 
= -J -[cos wt+ cos(2wt + W + w-r)]d8 

2Jr -n: 2 

A2 
=-cosw-r 

2 

Since the mean of X(t) is a constant and the autocorrelation of X(t) is a function of time difference only, we 
conclude that X(t) is WSS. 

Note that Rxx ( -r) is periodic with the period T0 = 2Jr I w. A WSS random process is called periodic if its 
autocorrelation is periodic. 

8.16. Consider a random process X(t) given by 

X(t) = Acos (wt+ 8) 

where wand (J are constants and A is a random variable. Determine whether X(t) is WSS. 

µx<t) = E[X(t)] = E[Acos (wt+ 8)] 

=cos( wt+ 8)E[A] 

which indicates that the mean of X(t) is not constant unless E[A] = 0. 

Rxx(t, t + -r) = E[X(t)X(t + -r)] 
= E[(A2 cos (wt+ 8)cos [w(t + -r) + 8)]] 

=.!..[cos WT+ cos (2wt + W + w-r)]E[A2 ] 
2 

(8.110) 

(8.111) 

(8.112) 

(8.113) 

Thus, we see that the autocorrelation of X(t) is not a function of the time difference i: only, and the process X(t) is 

notWSS. 

8.17. Consider a random process X(t) given by 

X(t) = Acos wt + Bsin wt 

where w is constant and A and Bare random variables. 

(a) Show that the condition 

E[A] = E[B] = 0 

is necessary for X(t) to be stationary. 

(8.114) 

(8.115) 

(b) Show that X(t) is WSS if and only if the random variables A and Bare uncorrelated with equal 
variance; that is, 

E[AB] = 0 (8.116) 

and (8.117) 

(a) f1x(t) = E[X(t)] = E[A] cos wt+ E[B] sin wt must be independent oft for X(t) to be stationary. This is 
possible only if µx(t) = O; that is, 

E[A] = E[B] = 0 
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(b) If X(t) is WSS, then from Eq. (8.37) 

But 

Thus, 

E[X2 (0)] = E[ X2 ( 2:)] = Rxx(O) = ai 

X(O)=A and x( 2: )= B 

Using the preceding result, we obtain 

Rxx(t, t + -r) = E[X(t)X(t + -r)] 

= E[(A cos wt+ B sin wt)[A cos w(t + -r) + B sin w(t + -r)]] 

= a 2 cos wt+ E[AB]sin (2wt +WT) 

which will be a function of -ronly if E[AB] = 0. 

Conversely,ifE[AB] = OandE[A2] = E[B2] = a 2,thenfromtheresultofpart(a)andEq.(8.118), 
we have 

µx<t) = 0 

Rxx(t, t + -r) = a 2cos WT= Rxx(T) 

Hence,X(t) is WSS. 

(8.118) 

8.18. A random process X(t) is said to be covariance-stationary if the covariance of X(t) depends only on the 
time difference r = t2 - t 1; that is, 

Let X(t) be given by 

X( t) = (A + 1) cos t + B sin t 

where A and B are independent random variables for which 

E[A] = E[B] = 0 and 

Show that X(t) is not WSS, but it is covariance-stationary. 

~(t) = E[X(t)] = E[(A + 1) cost+ B sin t)] 

= E[A + 1] cost+ E[B]sin t 

=cost 

which depends on t. Thus, X(t) cannot be WSS. 

Now 

Rxx(t1, t2) = E[X(t1)X(t2)] 

= E[[(A + 1) cos t1 + B sin t1][(A + 1) cos t2 + B sin t2]] 

= E[(A + 1)2] cos t1 cos t2 + E[B2] sin t1 sin t2 

+ E[(A + l)B] (cos t1 sin t2 + sin t1 cos tz) 

E[(A + 1)2] = E[A2 + 2A + l] = E[A2] + 2E[A] + 1 = 2 

E[(A + l)B] = E[AB] + E[B] = E[A] E[B] + E[B] = 0 

E[B 2] = 1 

(8.119) 
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Substituting these values into the expression of Rxx(t1, 9, we obtain 

Rxx<t1, t2) = 2 cos t1 cos t2 +sin t1 sin t2 

= cos (t2 - ti) + cos ti cos t2 

From Eq. (8.17), we have 

cxx<t1, t2) = Rxx<t1' 9 - µX(tl) µX(t2) 

= cos (t2 - ti) + cos ti cos t2 - cos ti cos t2 

= cos (t2 - ti) 

Thus, X(t) is covariance-stationary. 

8.19. Show that if a random process X(t) is WSS, then it must also be covariance stationary. 

If X(t) is WSS, then 

Now 

E[X(t)] = µ(constant) for all t 

Rxx<t, t + -r) = Rxx<-r) for all t 

Cxx(t, t + -r) = Cov[X(t)X(t + -r)] = Rxx(t, t + -r) - E[X(t)] E[X(t + -r)] 

= Rxx<-r) - µ2 

which indicates that Cxx<t, t + -r) depends only on T. Thus, X(t) is covariance stationary. 

8.20. Show that if X(t) is WSS, then 

E[[X(t + -r) - X(t)]2] = 2[Rxx(O)- Rxx(-r)] 

where Rxx<•) is the autocorrelation of X(t). 

Using the linearity of E (the expectation operator) and Eqs. (8.35) and (8.37), we have 

E[[X(t + -r)- X(t)]2 ] = E[ X 2(t + -r)- 2X(t + -r)X(t) + X2(t)] 

= E[ X 2(t + -r)]- 2E[X(t + -r)X(t)] + E[ X2(t)] 

= Rxx(O)- 2Rxx(T) + Rxx(O) 

= 2[Rxx(O)- Rxx(T)] 

.... 

(8.120) 

8.21. LetX(t) =A cos (wt+ 0), where wis constant and both A and 0 are r.v.'s withpdf fia) and fc;/8), 
respectively. Find the conditions that X(t) is WSS. 

µx(t) = E[X(t)] = E[A cos (wt+ 0)] = ffa cos (wt+ 8) fA 0 (a, 8) d8da (8.121) 

The first condition for the double integral to be independent oft is for A and 0 to be statistically independent. Then 

µx<t) = E[A cos (wt+ 0)] = ffa cos (wt+ 8) f/a)f 9 ((J) d(J da 

The second condition is for 0 to be uniformly distributed over [0, 2n]. Then we have µx(t) = 0 since 
l f,02" cos (wt+ (J) d(J = 0. 
2n; 

Next, 

(8.122) 

(8.123) 
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Since A and 0 are independent, we have 

and E[cos w(t2 + t1) + 20] = 0 since 0 is uniformly distributed over [O, 2:rr]. 

Thus, 

So, we conclude that X(t) is WSS if A and 0 are independent, and 0 is uniformly distributed over [O, 2:rr]. 

(8.124) 

(8.125) 

8.22. Let Z(t) = X(t) + Y(t), where random processes X(t) and Y(t) are independent and WSS. Is Z(t) WSS? 

µz(t) = E[Z(t)] = E[X(t) + Y(t)] = µx + µr = constant 

Rzz<t, t + -r) = E[Z(t) Z(t + -r)] = E{[X(t) + Y(t)][X(t + -r) + Y(t + -r)]} 

= E[X(t)X(t + -r)] + E[Y(t)Y(t + -r)] + E[X(t)Y(t + -r)] + E[Y(t)X(t + -r)] 
= Rxx(-r) + Ryy(T) + E[X(t)]E[Y(t + -r)] + E[Y(t)]E[X(t + -r)] 
= Rxx< T) + Ry/ T) + 2µx µr 

Since the mean of Z(t) is constant and its autocorrelation depends only on T, Z(t) is WSS. 

(8.126) 

(8.127) 

8.23. Let Z(t) = X(t) + Y(t), where random processes X(t) and Y(t) are jointly WSS. Show that if X(t) and Y(t) 
are orthogonal, then 

Rzz<t, t + -r) = E[Z(t) Z(t + -r)] =E{[X(t) + Y(t)][X(t + -r) + Y(t + -r)]} 

= E[X(t)X(t + -r)] + E[Y(t)Y(t + -r)] + E[X(t)Y(t + -r)] + E[Y(t)X(t + -r)] 
= Rxx(T) + Ryy(T) + Rxy(T) + Ryx(T) 

Since X(t) and Y(t) are orthogonal, then Rxr( -r) = 0, and we have 

(8.128) 

(8.129) 

8.24. A random signal X(t) is defined as X(t) =At+ B, where A and Bare independent r.v.'s with both zero 
mean and unit variance. Is X(t) WSS? 

µx<t) = E[X(t)] = E[At + B] = E[A] t + E[B] = 0 

since E[A] = E[B] = 0. 

Rxx(t1, t2) = E[X(t1)X(91 = E[(At1 + B) (At2 + B)] 

= E[A2 t1 t2 + ABt1 + BAt2 + B2] 

= E[A2] t.t2 + E[AB] t1 + E[BA] t2 + E[B2] 

= 1 + t1 t2 

since E[A2] = E[B2] = 1 and E[AB] = E[BA] = E[A] E[B] = 0. 

Since Rxx<ti, t2) is not the function of I t2 - t1 I. X(t) is not WSS. 

(8.130) 

8.25. Let X(n) = {Xn, n ;::: O} be a random sequence of iid r.v.'s with mean 0 and variance 1. Show that X(n) 
is WSS. 

µx(n) = E[X(n)] = E[Xn] = 0 constant 
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which depends only on k. Thus X(n) is WSS. 

ki=O 

k=O 

.... 
(8.131) 

8.26. A random signal X(t) is defined as X(t) =A, where A is a r.v. uniformly distributed over [O, 1]. Is X(t) 

ergodic in the mean? 

µx(t) = E[X(t)] = E[A] = r' a da = _!_ Jo 2 

x = (x(t)) = - 1-JT x(t) dt =A as T--+ oo 
2T -T 

Since.Xi= µx<t), X(t) is not ergodic in the mean. 

8.27. Show that the process X(t) defined in Eq. (8.108) (Prob. 8.15) is ergodic in both the mean and the 
autocorrelation. 

From Eq. (8.53), we have 

. 1 JT/2 x=(x(t))= hm- Acos(wt+B)dt 
T-aoT -T/2 

A JTo/2 = - cos(wt + B)dt = 0 
To -Tol2 

(8.132) 

where T0 = 2n I w. 

From Eq. (8.54), we have 

Rxx('r) = (x(t)x(t + r)) 

. 1 JT/2 2 = hm - A cos (wt+ B)cos[w(t + r) + B]dt 
T-aoT -T/2 

A2 JTo/2 1 = - -[cos wr + cos(2wt + W + wr)]dt 
To -T0122 

A2 
=-coswr 

2 
(8.133) 

Thus, we have 

µit) = E[X(t)] = (x(t)) = x 
Rxx<-r) = E[X(t)X(t + T)] = (x(t)X(t + r)) = Rxx<-r) 

Hence, by definitions (8.57) and (8.58), we conclude that X(t) is ergodic in both the mean and the autocorrelation. 

8.28. Consider a random process Y( t) defined by 

where X(t) is given by 

where wis constant andA = N[O; a 2]. 

(a) Determine the pdf of Y(t) at t = tk. 

(b) Is Y(t) WSS? 

Y(t)= f~X(-r)d-r 

X(t) = Acos wt 

(8.134) 

(8.135) 
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(a) (8.136) 

Then from the result of Example B.10 (Appendix B) we see that Y(tk) is a Gaussian random variable with 

and 

E[Y(tk)] = sinwtk E[A] = 0 
w 

2 sinwtk 2 ( )
2 

ay=var[Y(tk)]= --w- a 

Hence, by Eq. (B.53), the pdf of Y(tk) is 

1 2, 2 2 fy(y)=---e-y ( ay) 

5iiay 

(b) From Eqs. (8.137) and (8.138), the mean and variance of Y(t) depend on time t(tk), so Y(t) is not WSS. 

8.29. Show that if a Gaussian random process is WSS, then it is SSS. 

If the Gaussian process X(t) is WSS, then 

µi = E[X(t)] = µ(=constant) for all ti 

and Rxx<ti, t) = Rxx<tj - t) 

Therefore, in the expression for the joint probability density ofEq. (8.67) and Eqs. (8.68), (8.69), and (8.70). 

for any c. It then follows that 

µ 1 = ~ = · · · = µn = µ--+ E[X(t)] = E[X(ti + c)] 

cij = CXX(ti, 9 = Rxx<ti' 9 - µiµj 

= Rxx<tj - t) - µ2 = Cxx(ti + c, tj + c) 

for any c. Therefore, X(t) is SSS by Eq. (8 .31) 

(8.137) 

(8.138) 

(8.139) 

8.30. Let X be an n-dimensional Gaussian random vector [Eq. (8.65)] with independent components. Show 
that the multivariate Gaussian joint density function is given by 

[ l~(x.-µ.)2 ] fx(x)= exp -- L.J ' ' 
(2.nf12IT a; 2 i=I a; 

(8.140) 

i=I 

whereµ;= E[XJ and a;= var(X). 

The multivariate Gaussian density function is given by Eq. (8.67). Since Xi= X(t;) are independent, we have 

Thus, from Eq. (8.69) the covariance matrix C becomes 

i= j 

i =t- j 

af 0 0 

C= 0 ai 

0 0 

0 

a2 
n 

(8.141) 

(8.142) 
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It therefore follows that 

and 

Then we can write 

n 

I detC 1112 = a 1a 2 ···an= f] a 1 
i=l 

a2 
0 0 

I 

c-'= 
0 

a~ 
0 

0 0 
a2 n 

(x- µl C-1(x-µ)= ~( X; -. µ; )
1 

i=I a, 

Substituting Eqs. (8.143) and (8.145) into Eq. (8.67), we obtain Eq. (8.140). 

SUPPLEMENTARY PROBLEMS 

8.31. Consider a random process X(t) defined by 

X(t) =cos Qt 

where Q is a random variable uniformly distributed over [O, wcJ. Determine whether X(t) is stationary. 

8.32. Consider the random process X(t) defined by 

X(t) = Acos wt 

.... 
(8.143) 

(8.144) 

(8.145) 

where w is a constant and A is a random variable uniformly distributed over [O, 1]. Find the autocorrelation and 
autocovariance of X(t). 

8.33. Let X(t) be a WSS random process with autocorrelation 

Find the second moment of the random variable Y = X(5) - X(2). 

8.34. A random signal X(t) is given by X(t) = A(t) cos (wt+ 0), where A(t) is a zero mean WSS random signal with 

autocorrelation RAA('r), and 0 is a r.v. uniformly distributed over [O, 2.ir] and independent of A(t). The total average 
power of A(t) is 1 watt. 

(a) Show thatX(t) is WSS. 

(b) Find the total average power of X(t). 

8.35. A random signal X(t) is given by X(t) =A+ B cos (wt+ 0), where A, B, and 0 are independent r.v.'s uniformly 
distributed over [0, l], [0, 2] and [0, 2.ir], respectively. Find the mean and the autocorrelation of X(t). 

8.36. Let X(t) be a WSS random process with mean /1x· Let Y(t) = a + X(t). Is Y(t) WSS? 

8.37. Let X(t) and Y(t) be defined by 

X(t) = A + Bt, Y(t) = B + At 
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where A and Bare independent r.v.'s with zero means and variance a] and a~, respectively. Find the 
autocorrelations and cross-correlation of X(t) and Y(t). 

8.38. Let Z(t) = X(t)Y(t), where X(t) and Y(t) are independent and WSS. Is Z(t) WSS? 

8.39. Two random signals X(t) and Y(t) are given by 

X(t) = A cos wt + B sin wt, Y(t) = B cos wt - A sin wt 

where w is a constant, and A and Bare independent r.v.'s with zero mean and same variance a 2• Find the cross­
correlation function of X(t) and Y(t). 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

8.31. Nonstationary. 

Hint: Examine specific sample functions of X(t) for different frequencies, say, Q = n/2, :Jr, and 2n. 

8.33. 2A(l - e-3a) 

8.34. (a) Yes. (b) 1/2 watts. 

1 1 1 
8.35. µx(t)=-2 , Rxx(t,t+-r)=-+-cosw-r 

3 3 

8.36. Yes. 

8.38. Yes. 



Power Spectral Density and 
Random Signals in Linear System 

9.1 Introduction 

In this chapter, the notion of power spectral density for a random signal is introduced. This concept enables us 
to study wide-sense stationary random signals in the frequency domain and define a white-noise process. The 
response of a linear system to random signal is then studied. 

9.2 Correlations and Power Spectral Densities 

In the following, we assume that all random processes are WSS. 

A. Autocorrelation Rxx<r): 

The autocorrelation of X(t) is [Eq. (8.35)] 

Rxx(t) = E[X(t)X(t + t)] 

Properties of Rxx('r): 

1. Rxx(-t) = RxxCr) 

2. IRxx(t)I ::5 Rxx(O) 

3. Rxx(O) = E[X 2(t)] 

(9.1) 

(9.2) 
(9.3) 

(9.4) 

Property 3 [Eq. (9.4)] is easily obtained by setting T = 0 in Eq. (9.1). If we assume that X(t) is a voltage wave­
form across a 1-Q resistor, then E[X2(t)] is the average value of power delivered to the 1-Q resistor by X(t). 
Thus, E[X2(t)] is often called the average power of X(t). Properties 1 and 2 are verified in Prob. (9.1). 

In case of a discrete-time random process X(n), the autocorrelation function of X(n) is defined by [Eq. (8 .39)] 

Rxx(k) = E[X(n)X(n+ k)] (9.5) 

Various properties of Rxik) similar to those of Rx i T) can be obtained by replacing T by kin Eqs. (9 .2) to (9 .4 ). 

B. Cross-Correlation RXY(r): 

The cross-correlation of X(t) and Y(t) is [Eq. (8.42)] 

Rxy(T) = E[X(t)Y(t + T)] (9.6) .... 
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Properties or RXY('r): 

1. RXY(-r) = Ryx(•) (9.7) 

2. I Rxr(•) I :5 ~Rxx(O)Ryy(O) (9.8) 

3. I Rxr(•)I :5 ~[Rxx(O) + Ryy(O)] (9.9) 

These properties are verified in Prob. 9.2. 
Similarly, the cross-correlation function of two discrete-time jointly WSS random sequences X(n) and Y(n) 

is defined by 

Rxy(k) = E[X(n)Y(n + k)] (9.10) 

And various properties of Rxy(k) similar to those of Rx/•) can be obtained by replacing rby kin Eqs. (9.7) to (9.9). 

C. Power Spectral Density or Power Spectrum: 

Let Rxx<•) be the autocorrelation of X(t). Then the power spectral density (or power spectrum) of X(t) is defined 
by the Fourier transform of Rxx< r) as 

Thus, 1 Joo jWT Rxx(•)=- Sxx(w)e dw 
2n: -oo 

Equations (9.11) and (9.12) are known as the Wiener-Khinchin relations. 

Properties or Sxx(w): 

1. Sxx<w) is real and Sxx<w) ::=:: 0 

2. sxx<-w) = sxx<w) 

3. _l f 00 Sxx(w)dw=Rxx(O)=E[X2(t)] 
2n: -oo 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

Similarly, the power spectral density Sxx(Q) of a discrete-time random process X(n) is defined as the Fourier 
transform of Rxx(k): 

00 

Sxx(Q)= ,L Rxx(k)e-jQk 
k=-00 

Thus, taking the inverse Fourier transform of Sxx<Q), we obtain 

1 J" 'Qk Rxx(k)=- Sxx(Q)e1 dQ 2n: _,. 

Properties or Sx<Q): 

1. sxx<Q + 2n:) = sxx(Q) 

2. Sxx(Q) is real and Sxx(Q) ::=:: 0. 

3. sxx(-Q) = sxx(Q) 

4. E[X2(n)] = Rxx(O) = - 1 f" Sxx(Q) dQ 2n: _,. 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

Note that property 1 [Eq. (9.18)] follows from the fact that e-jQk is periodic with period 2n:. Hence it is sufficient 
to define Sxx(Q) only in the range (-n:, n:). 
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D. Cross-Power Spectral Densities: 

The cross-power spectral density (or cross-power spectrum) SXY( w) of two continuous-time random processes 
X(t) and Y(t) is defined as the Fourier transform of Rxy(r): 

Sxy(w)= J~00 Rxy(r)e-j= dr 

Thus, taking the inverse Fourier transform of Sxy(w), we get 

1 Joo jan: RXY(r) = - Sxy(w)e dw 
2:rt -oo 

Properties or SXY(w): 
Unlike Sxx(w), which is a real-valued function of w, Sxy(w), in general, is a complex-valued function. 

1. Sxy(w) = Syx(-w) 

2. Sxy(-w)=Siy(w) 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

Similarly, the cross-power spectral density Sxy(Q) of two discrete-time random processes X(n) and Y(n) is 
defined as the Fourier transform of Rxy(k): 

00 

SXY(Q)= ,L RXY(k)e-jQk 
k=-00 

Thus, taking the inverse Fourier transform of Sx/Q), we get 

1 J" 'Qk RXY(k)=- SXY(Q)e1 dQ 
2:rt _,, 

Properties or Sxy(Q): 
Unlike Sxx(Q), which is a real-valued function of Q, Sx/Q), in general, is a complex-valued function. 

1. Sx/Q + 2:rt) = Sxy(Q) 

2. Sx/Q) = Syx(-Q) 

3. SXY(-Q) = Sky(Q) 

9.3 White Noise 

A random process X(t) is called white noise if [Fig. 9-l(a)] 

Taking the inverse Fourier transform ofEq. (9.31), we have 

which is illustrated in Fig. 9-l(b). It is usually assumed that the mean of white noise is zero. 
Similarly, a zero-mean discrete-time random sequence X(n) is called a discrete-time white noise if 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

(9.32) 

(9.33) 

Again the power spectral density of X(n) is constant. Note that Sxx<Q + 2:rt) = Sxx(Q) and the average power of 
X(n) is a 2 = Var[X(n)], which is constant. Taking the discrete-time inverse Fourier transform ofEq. (9.33), we have 

(9.34) 
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T] 

________ 2______ ~ o(i-) 

Band-Limited White Noise: 

0 

(a) 

Fig. 9-1 White noise . 

0 

(b) 

A random process X(t) is called band-limited white noise if 

Then 

R ( ) - 1 Jwn 17 Jw•d _ 17w8 sin w8 t: xx t: -- -e w-----~ 
2Jr - wn 2 2Jr w8 t: 

And Sxx(w) and Rxx(i:) of band-limited white noise are shown in Fig. 9-2. 

(9.35) 

(9.36) 

Note that the term white or band-limited white refers to the spectral shape of the process X(t) only, and these 
terms do not imply that the distribution associated with X(t) is Gaussian. 

Fig. 9-2 Band-limited white noise. 

Narrowband Random Process: 
Suppose that X(t) is a WSS process with zero mean and its power spectral density Sxx(w) is nonzero only in some 
narrow frequency band of width 2 W that is very small compared to a center frequency we. Then the process X( t) 
is called a narrowband random process. 

In many communication systems, a narrowband process (or noise) is produced when white noise (or broadband 
noise) is passed through a narrowband linear filter. When a sample function of the narrowband process is viewed on 
an oscilloscope, the observed waveform appears as a sinusoid of random amplitude and phase. For this reason, the 
narrowband noise X(t) is conveniently represented by the expression 

X(t) = V(t) cos [w/ + <f>(t)] (9.37) 
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9.4 Response of Linear System to Random Input 

A. Linear System: 

As we discussed in Chap. 1 (Sec. 1.5), a system is a mathematical model for a physical process that relates the input 
(or excitation) signal x to the output (or response) y, and the system is viewed as a transformation (or mapping) of 
x into y. This transformation is represented by the operator T as (Eq. (1.60)) 

y = Tx (9.38) 

For a continuous-time linear time-invariant (LTI) system, Eq. (9.38) can be expressed as Eq. (2.60) 

y(t) = J~00 h(a)x(t - a) da = h(t)*x(t) (9.39) 

where h(t) is the impulse response of a continuous-time LTI system. For a discrete-time LTI system, Eq. (9.38) 
can be expressed as (Eq. (2.45)) 

00 

y(n)= ,L h(i)x(n-i)=h(n)*x(n) (9.40) 
i=-00 

where h(n) is the impulse response (or unit sample response) of a discrete-time LTI system. 

B. Response of a Continuous-Time Unear System to Random Input: 

When the input to a continuous-time linear system represented by Eq. (9.38) is a random process {X(t), tE T), 
then the output will also be a random process { Y ( t), t E TY}; that is, 

T{X(t), t ET) = {Y(t), t E Ty} 

For any input sample function x;(t), the corresponding output sample function is 

If the system is LTI, then by Eq. (9 .39), we can write 

Y(t) = J~00 h(a)X(t- a) da = h(t)*X(t) 

Note that Eq. (9.43) is a stochastic integral. Then 

µy(t) = E[Y(t)] = E[J:00 h(a)X(t-a) da] 

= J:
00 

h(a)E[X(t - a)] da 

= J:00 h(a)µx(t-a)da=h(t)*µx(t) 

Ryy(t1, t2 ) = E[Y(t1)Y(t2)] 

= E[ J:00 J:00 h(a)X(t1 - a)h(/3)X(t2 - /3) dadfJ] 

= J:00 J:00 h(a)h(f3)E[X(t1 - a)X(t2 - /3)] dadf3 

= J:00 J:00 h(a)h(f3)Rxx(t1 - a, t2 - /3)] dadf3 

If the input X(t) is WSS, then from Eq. (9.43) we have 

E[Y(t)] = J:00 h(a)µxda = µx J:00 h(a)da = µxH(O) 

(9.41) 

(9.42) 

(9.43) 

(9.44) 

(9.45) 

(9.46) 

where H(O) is the frequency response of the linear system at w = 0. Thus, the mean of the output is a constant. 
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The autocorrelation of the output given in Eq. (9 .45) becomes 

which indicates that Ryy(t1, t2) is a function of the time difference T = t2 - t1• Hence, 

Thus, we conclude that ifthe input X(t) is WSS, the output Y(t) is also WSS. 
The cross-correlation function between input X(t) and Y(t) is given by 

Rxr (t1, t2 ) = E[ X(t1 )Y (t2 )] 

=E[X(t1)J:00 h(a)X(t2 -a)da] 

= J:00 h(a)E[X(t1)X(t2 -a)]da 

= J:00 h(a)RxxU1, t2 - a) da 

When input X(t) is WSS, Eq. (9.49) becomes 

which indicates that Rxy(t1, t2) is a function of the time difference T = t2 - t 1• Hence 

(9.47) 

(9.48) 

(9.49) 

(9.50) 

(9.51) 

Thus, we conclude that if the input X(t) to an LTI system is WSS, the output Y(t) is also WSS. Moreover, the 
input X(t) and output Y(t) are jointly WSS. 

In a similar manner, it can be shown that (Prob. 9.11) 

(9.52) 

Substituting Eq. (9.51) into Eq. (9.52), we have 

(9.53) 

Now taking Fourier transforms ofEq. (9.51), (9.52), and (9.53) and using convolution property of Fourier trans­
form [Eq. (5.58)], we obtain 

Sxy(w) = H(w)Sxx(w) 

Syy(w) = H*(w)Sxy(w) 

Syy(w) = H*(w)H(w)Sxx(w) = IH(w)l 2 sxx(w) 

The schematic of these relations is shown in Fig. 9-3. 

Rxxt'r) 
System 

Rxy(-r) 
System 

h(-r) h(--r) 
sxx(w) 

H(w) 
Sxy(w) 

H'(w) 

Fig. 9-3 

Ryy(-r) 

Syy(w) 

(9.54) 

(9.55) 

(9.56) 



CHAPTER 9 Power Spectral Density and Random Signals .... 
Equation (9 .56) indicates the important result that the power spectral density of the output is the product of the 
power spectral density of the input and the magnitude squared of the frequency response of the system. 

When the autocorrelation of the output Ryy( r) is desired, it is easier to determine the power spectral density 
Syy(w) and then to evaluate the inverse Fourier transform (Prob. 9.13). Thus, 

1 Joo jWT Ryy(r)=- Syy(w)e dw 
2:rt -oo 
1 Joo 2 . 

= - I H(w)I Sxx(w)e1=dw 
2:rt -oo (9.57) 

By Eq. (9.4), the average power in the output Y(t) is 

2 1 Joo 2 E[Y (t)]=Ryy(O)=- IH(w)I Sxx(w)dw 
2:rt -oo (9.58) 

C. Response of a Discrete-Time LTI System to Random Input: 

When the input to a discrete-time LTI system is a discrete-time random sequence X(n), then by Eq. (2.39), the 
output Y(n) is 

00 

Y(n) = :L h(i)X(n - i) (9.59) 
i=-00 

The autocorrelation function of Y(n) is given by (Prob. 9.22) 

00 00 

Ryy(n,m)= :L :L h(i)h(l)Rxx(n-i,m-l) (9.60) 
i=-00 l=-00 

The cross-correlation function of X(n) and Y(n) is given by (Prob. 9.23) 

00 

Rxy(n,m)=E[X(n)Y(m)]= :L h(l)Rxx(n,m-l) (9.61) 
i=-00 

When X(n) is WSS, then from Eq. (9.59) 

00 

µy(n)=E[Y(n)]=µx :L h(i)=µxH(O) (9.62) 
i=-00 

where H(O) = H(Q) I !J = 0 and H(Q) is the frequency response of the system defined by the Fourier transform 
of H(n). 

The autocorrelation function of Y(n) is, from Eq. (9.60) 

00 00 

Ryy(n,m)= :L :L h(i)h(l)Rxx(m-n+i-l) (9.63) 
i=-00 l=-00 

Setting m = n + k, we get 

00 00 

Ryy(n, n + k) = :L :L h(i)h(l)Rxx(k + i - l) = Ryy(k) (9.64) 
i=-00 l=-00 

Similarly, from Eq. (9.61), we obtain 

00 

Rxy(k)= :L h(l)Rxx(k-l)=h(k)*Rxx(k) (9.65) 
l=-00 
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and (Prob. 9.24) 

00 

Ryy(k)= _L h(-l)RXY(k-l)=h(-k)*Rxy(k) 
l=-00 

Substituting Eq. (9.65) into Eq. (9.66), we obtain 

Ryy(k) = h(-k) * h(k) * Rxx(k) 

Now taking Fourier transforms ofEq. (9.65), (9.66) and (9.67), we obtain 

Sxy(Q) = H(Q) Sxx(Q) 

Syy(Q) = H*(Q) Sxy(Q) 

Syy(Q) = H*(Q)H(Q)Sxx(Q) = IH(Q)l 2 Sxx(Q) 

(9.66) 

(9.67) 

(9.68) 

(9.69) 

(9.70) 

Similarly, when the autocorrelation function of the output Ryy(k) is desired, it is easier to determine the power 
spectral density Syy(Q) and then take the inverse Fourier transform. Thus, 

1 J" jQk 1 J" I 12 jQk Ryy(k)=- Syy(Q)e dQ=- H(Q) Sxx(Q)e dQ 
2Jr -;r 2Jr -;r 

By Eq. (9.21), the average power in the output Y(n) is 

E[Y 2(n)]=Ryy(0)=-1 J" IH(Q)l2 Sxx(Q)dQ 2Jr -;r 

SOLVED PROBLEMS 

Correlatlons and Power Spectral Densities 

9.1. Let X(t) be a WSS random process. Verify Eqs. (9.2) and (9.3); that is, 

(a) Rxx<-•) = Rxx<•) 

(b) IRxi•) I :5 Rxx<O) 

(a) From Eq. (8.35) 

Rxx(•) = E[X(t)X(t + -r)] 

Setting t + T = t', we have 

(b) 

or 

or 

or 

Hence, 

Rxx<•) = E[X(t' - -r)X(t')] 

= E[X(t')X(t' - -r:)] = Rxx(--r) 

E[[X(t) ± X(t + -r)]2] ~ 0 

E[X2(t) ± 2X(t)X(t + -r) + X2(t + "t)] ~ 0 

E[X2(t)] ± 2E[X(t)X(t + -r)] + E[X2(t + -r)] ~ 0 

2Rxx(O) ± 2Rxx(-r) ~ 0 

Rxx(O) ~ IRxx(-r)I 

9.2. Let X(t) and Y(t) be WSS random processes. Verify Eqs. (9.7) and (9.8); that is, 

(a) Rxy(--r:) = Ryx(•) 

(b) I Rxy(-r:) I :5 ~Rxx (O)Ryy (0) 

(9.71) 

(9.72) 
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(a) By Eq. (8.42) 

RXY(-T) = E[X(t)Y(t - T)] 

Setting t - T = t', we obtain 

RXY(- T) = E[X(t' + T)Y(t')] = E[Y(t')X(t' + T)] = Ryx( T) 

(b) From the Cauchy-Schwarz inequality Eq. (B.129) (Appendix B), it follows that 

{E[X(t)Y(t + "t)]}2 ~ E[X 2(t)]E[Y2(t + T)] 

or [Rx/T)]2 ~ Rxx(O)Ryy(O) 

Thus, I Rxy(T) I~ .JRxx(O)Ryy(O) 

9.3. Show that the power spectrum of a (real) random process X(t) is real, and verify Eq. (9.14); that is, 

From Eq. (9.11) and by expanding the exponential, we have 

Sxx(w)= J~00 Rxx(T)e-j= dT 

= J~00 Rxx(T)(cosWT- jsinWT)dT 

= J~00 Rxx(T)cosWTdT- jf~00 Rxx(T)sinWTdT 

Since Rxx( - T) = Rxx( T) [Eq. (9 .2)] imaginary term in Eq. (9 .73) then vanishes and we obtain 

which indicates that Sxx<w) is real. 

Since the cosine is an even function of its arguments, that is, cos ( - wT) = cos WT, it follows that 

which indicates that the power spectrum of X(t) is an even function of frequency. 

9.4. Let X(t) and Y(t) be both zero-mean and WSS random processes. Consider the random process Z(t) 
defined by 

(9.73) 

(9.74) 

Z(t) = X(t) + Y(t) (9.75) 

(a) Determine the autocorrelation and the power spectrum of Z(t) if X(t) and Y(t) are jointly WSS. 

(b) Repeat part (a) if X(t) and Y(t) are orthogonal. 

(c) Show that if X(t) and Y(t) are orthogonal, then the mean square of Z(t) is equal to the sum of the 
mean squares of X(t) and Y(t). 

(a) The autocorrelation of Z(t) is given by 

Rzz(t1, t2) = E[Z(t1)Z(t2)1 

= E[[X(t1) + Y(t1)][X(t2) + Y(t2)]] 

= E[X(t1)X(t2)] + E[X(t1)Y(t2)] 

+ E[Y(t1)X(t2)] + E[Y(t1)Y(t2)] 

= Rxx<t1, 9 + Rxr<t1• 9 + Rrx<t1, 9 + Ryy(t1, 9 (9.76) 
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If X(t) and Y(t) are jointly WSS, then we have 

where T = t2 - tr 

Taking the Fourier transform of both sides of Eq. (9 .77), we obtain 

(b) If X(t) and Y(t) are orthogonal [Eq. (8.47)], 

Then Eqs. (9.77) and (9.78) become 

and 

(c) From Eqs. (9.79) and (8.37) 

or E[V(t)] = E[X2(t)] + E[Y2(t)] 

which indicates that the mean square of Z(t) is equal to the sum of the mean squares of X(t) and Y(t). 

9.5. Two random processes X(t) and (Y(t) are given by 

X(t) = Acos (wt+ 0) 

Y(t) = Asin (wt+ 0) 

where A and ware constants and 0 is a uniform random variable over [O, 2.ir]. Find the cross­
correlation of X(t) and Y(t), and verify Eq. (9.7). 

From Eq. (8.42), the cross-correlation of X(t) and Y(t) is 

Similarly, 

Rxy(t, t + -r) = E[X(t)Y (t + -r)] 
= E[A2 cos (wt+ El)sin [w(t + -r) +El]] 

2 

= ~E[sin (2wt +WT+ 20)- sin (-WT)] 
2 

A2 . 
= -smWT= Rxy(T) 

2 

Rrx(t, t + -r) = E[Y(t)X(t + -r)] 
= E[A2 sin (wt+ El)cos [w(t + -r) +El]] 

2 

= ~E[sin (2wt +WT+ 20) +sin (-WT)] 
2 

A2 . 
= - -smWT= Rrx(T) 

2 

From Eqs. (9.84) and (9.85) 

A2 . A2 . 
Rxy(--r)= -sm w(--r)= - -sm WT= Rrx(T) 

2 2 

which verifies Eq. (9.7). 

(9.77) 

(9.78) 

(9.79) 

(9.80) 

(9.81) 

(9.82) 

(9.83) 

(9.84) 

(9.85) 
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9.6. A class of modulated random signal Y(t) is defined by 

Y(t) = AX(t) cos (w/ + 0) (9.86) 

where X(t) is the random message signal and Acos (wet+ 0) is the carrier. The random message signal 
X(t) is a zero-mean stationary random process with autocorrelation Rxx("r) and power spectrum Sxx(w). 
The carrier amplitude A and the frequency we are constants, and phase 0 is a random variable uniformly 
distributed over [O, 2Jr]. Assuming that X(t) and 0 are independent, find the mean, autocorrelation, and 
power spectrum of Y(t). 

µy(t) = E[Y(t)] = E[AX(t) cos (wet+ 0)] 

= AE[X(t)]E[cos (wet+ 0)] = 0 

since X(t) and 0 are independent and E[X(t)] = 0. 

Ryy(t, t + <) = E[Y(t)Y(t + <)] 

= E[A 2 X(t)X (t +<)cos (wet+ 0)cos [wc<t + T) + 0]] 

A2 
= -E[X(t)X(t + <)]E[cos Wc'f +cos (2wct + Wc'f + 20)] 

2 
A2 

= -Rxx«)cos Wc'f = Ryy(T) 
2 

(9.87) 

Since the mean of Y(t) is a constant and the autocorrelation of Y(t) depends only on the time difference T, Y(t) is 
WSS. Thus , 

By Eqs. (9.11) and (5.144) 

gi[Rxx(T)] = Sxx(w) 

gi(cos Wc'f) = lrO(W - wJ + lrO(W +We) 

Then, using the frequency convolution theorem (5.59) and Eq. (2.59) , we obtain 

(9.88) 

9.7. Consider a random process X(t) that assumes the values ::!:: A with equal probability. A typical sample func­
tion of X(t) is shown in Fig. 9-4. The average number of polarity switches (zero crossings) per unit time is a. 
The probability of having exactly k crossings in time Tis given by the Poisson distribution [Eq. (B.48)] 

k 
P(Z = k) = e - m: (aT) 

kl 

x(t) 

A 

0 

-A 

Fig. 9-4 Telegraph signal. 

(9.89) 
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where Z is the random variable representing the number of zero crossing. The process X(t) is known as 
the telegraph signal. Find the autocorrelation and the power spectrum of X(t). 

If Tis any positive time interval, then 

Rxx(t, t + <) = E[X(t)X (t + <)] 

= A 2 P[X(t) and X(t + T) have same signs] 

+ (- A 2 )P[X(t) and X(t +<)have different signs] 

= A2 P[Z even in (t, t + <)] - A2P[Z odd in (t, t + <)] 

= A2 :L e-ar (a<)* - A2 :L e- ar (a<)* 

keven k! k odd k! 

"' k 
A2 - ar ~ (- a<) A2 - ar - ar A2 - 2ar = e .£.,--- = e e = e 

k =O k! 
(9 .90) 

which indicates that the autocorrelation depends only on the time difference T. By Eq. (9.2), the complete solution 

that includes T < 0 is given by 

(9 .91) 

which is sketched in Fig. 9-S(a). 

Taking the Fourier transform of both sides of Eq. (9 .91), we see that the power spectrum of X(t) is [Eq. (5.138)] 

2 4a 
Sxx(w) = A 2 2 

w +(2a) 

which is sketched in Fig. 9-S(b). 

Fig. 9-5 

0 
(b) 

a 

(9 .92) 

(J) 

9.8. Consider a random binary process X(t) consisting of a random sequence of binary symbols 1 and 0. 
A typical sample function of X(t) is shown in Fig. 9-6. It is assumed that 

1. The symbols 1 and 0 are represented by pulses of amplitude +A and -AV, respectively, and 
duration Tbs. 

2. The two symbols 1 and 0 are equally likely, and the presence of a 1 or 0 in any one interval is 
independent of the presence in all other intervals. 

3. The pulse sequence is not synchronized, so that the starting time td of the first pulse after t = 0 is 
equally likely to be anywhere between 0 to Tb. That is, td is the sample value of a random variable 
Td uniformly distributed over [O, Tb]. 
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x (t) 

A """" 
+--Tb_. 

0 td +---Tb --:---- Tb---+ t 

' 
- A 

Fig. 9-6 Random binary signal. 

Find the autocorrelation and power spectrum of X(t). 

The random binary process X(t) can be represented by 

"' 
X(t) = :L Akp(t - kTb - Td) 

k=-00 

where {Ak} is a sequence of independent random variables with P[Ak = A] = P[Ak = - A] = ~ , p(t) is a unit 

amplitude pulse of duration Tb , and Td is a random variable uniformly distributed over [O , Tb]. 

1 1 
µx(t) = E[X(t)] = E[Ak] = -A + -(- A) = 0 

2 2 

Let t2 > t1• When t2 - t1 > Tb , then t1 and t2 must fall in different pulse intervals [Fig . 9-7(a)] and the random 
variables X(t1) and X(t2) are therefore independent. We thus have 

(9 .93) 

(9 .94) 

(9 .95) 

When t2 - t1 < Tb , then depending on the value of Td, t1 and t2 may or may not be in the same pulse interval 
[Fig. 9-7(b) and (c)] . If we let B denote the random event " t1 and t2 are in adjacent pulse intervals," then we have 

Now 

Rxx<t, , t2) = E[X(t1)X(t2) IBJ P(B) + E[X(t1)X(t2) IBJP(B) 

E[X(t1)X(9 IBJ = E[X(t1)]E[X(t2)] = 0 

E[X(t1)X(t2) IBJ = A 2 

Since P(B) will be the same when t1 and t2 fall in any time range of length Tb , it suffices to consider the case 0 < t < Tb , 
as shown in Fig. 9-7(b). From Fig. 9-7 (b); 

From Eq. (B.4) , we have 

Thus, 

where i: = t2 - t 1• 

P(B) = 1 - P(B) = 1- ' 2 - t, 
Tb 

(9 .96) 
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x (I) 

.__Tb -+ 

0 11 Id Tb 12 I 

(a) 

x(I) 

Id ._Tb -+ 
~ 

0 11 12 Tb I 

(b) 

x (I) 

Id .__Tb -+ 

11 12 Tb I 

(c) 

Fig. 9-7 

Since Rxx< - r) = Rxx<•), we conclude that 

(9 .97) 

which is plotted in Fig. 9-8(a). 

From Eqs . (9.94) and (9.97), we see that X(t) is WSS . Thus, from Eq. (9.11), the power spectrum of X(t) is 
(Prob. 5.67) 

(9.98) 

which is plotted in Fig. 9-8(b). 

-Tb 0 Tb " 2n 0 2n w 
- - -

Tb Tb 
(a) (b) 

Fig. 9-8 
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Response of Linear System to Random Input 

9.9. A WSS random process X(t) is applied to the input of an LTI system with impulse response h(t) = 3e-21 u(t). 
Find the mean value of the output Y(t) of the system if E[X(t)] = 2. 

By Eq. (5.45), the frequency response H(w) of the system is 

1 
H(w)= ~[h(t)] = 3--

jw + 2 

Then, by Eq. (9.46), the mean value of Y(t) is 

µy(t) = E[Y(t)] = µxH(O) = 2( ~) = 3 
9.10. Let Y(t) be the output of an LTI system with impulse response h(t), when X(t) is applied as input. 

Show that 

(a) Rxr<t1,t2)= J:ooh(fj)Rxx<t1,t2 -p)dp 

(b) Ryy(t1,t2)= J:00 h(a)Rxy(t1,-a,t2)da 

(a) Using Eq. (9.43), we have 

(b) Similarly, 

Rxy(t1, t2 ) = E[X(t1)Y (t2 )] 

= E[X(t1 )f~00 h(,B)X(t2 - ,B)d,B] 

= J~00 h(,B)E[X(t1 )X(t2 - ,B)]d,B 

= J~00 h(,B)Rxx<t1, t2 - ,B)d,B 

Ryy(t1, t2 ) = E[Y(t1)Y(t2 )] 

=E[J~00 h(a)X(t1 -a)daY(t2 )] 

= J~00 h(a)E[X(t1 - a)]Y(t2 )da 

= J~00 h(a)Rxr (t1 - a, t2 )da 

(9.99) 

(9.100) 

9.11. Let X(t) be a WSS random input process to an LTI system with impulse response h(t), and let Y(t) be the 
corresponding output process. Show that 

(a) Rxr('r:) = h(r) * Rxx<•) (9.101) 

(b) Ryy(r) = h(-r) * Rxr<•) (9.102) 

(c) Sx/w) = H(w)Sxx<w) (9.103) 

(d) Syy(w) = H* (w)Sxy(w) (9.104) 

where* denotes the convolution and H*(w) is the complex conjugate of H(w). 

(a) If X(t) is WSS, then Eq. (9.99) of Prob. 9.10 becomes 

(9.105) 

which indicates that Rxy(t1, t2) is a function of the time difference i: = t2 - t1 only. Hence, Eq. (9.105) yields 
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(b) Similarly, if X(t) is WSS, then Eq. (9.100) becomes 

or 

(c) Taking the Fourier transform of both sides of Eq. (9.101) and using Eqs. (9.22) and (5.58), we obtain 

(d) Similarly, taking the Fourier transform of both sides of Eq. (9.102) and using Eqs. (9.11), (5.58), and (5.53), 

we obtain 

Note that by combining Eqs. (9.103) and (9.104), we obtain Eq. (9.56); that is, 

9.12. Let X(t) and Y(t) be the wide-sense stationary random input process and random output process, 
respectively, of a quadrature phase-shifting filter (-rr,/2 rad phase shifter of Prob. 5 .48). Show that 

(a) Rxx<•) = Ryy(r) (9.106) 

(b) Rxy(r)=Rxx<r) (9.107) 

whereRxx(•) is the Hilbert transform of Rxx<•). 

(a) The Hilbert transform X(t) of X(t) was defined in Prob. 5.48 as the output of a quadrature phase-shifting filter 

with 

h(t) = _!_ H(w) = - j sgn(w) 
:m 

Since IH(w) I 2 = 1, we conclude that if X(t) is a WSS random signal, then Y(t) = X(t) and by Eq. (9.56) 

Hence, 

Syy(w) = IH(w)i2 sxx<w) = sxx<w) 

Rrr<•) = g;--•[syy(w)] = g;--•[sxx<w)] = Rxx<-r:) 

(b) Using Eqs. (9.101) and (5.174), we have 

9.13. A WSS random process X(t) with autocorrelation 

Rxi•) = Ae-al"I 

where A and a are real positive constants, is applied to the input of an LTI system with impulse 
response 

h(t) = e-bt u(t) 

where bis a real positive constant. Find the autocorrelation of the output Y(t) of the system. 

Using Eq. (5.45), we see that the frequency response H(w) of the system is 

So 

1 
H(w) = @i[h(t)] = -. -

JW + b 

IH(w)lz=_l_ 
(JJ2 +b2 
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Using Eq . (5.138), we see that the power spectral density of X(t) is 

Sxx(w) = 9'[RxxCr)] =A~ 
w +a 

By Eq. (9.56) , the power spectral density of Y(t) is 

Syy(w) =I H(w)l2 Sxx(w) 

= ( w2 : b2 ) ( w::Aa2 ) 

= (a2 :~2)b (w/:b2 )- a2 ~ b2 (w/:a2) 

Taking the inverse Fourier transform of both sides of the above equation and using Eq. (5.139), we obtain 

9.14. Verify Eq. (9.13); that is, the power spectrum of any WSS process X(t) is real and 

for every w. 

The realness of the power spectrum of X(t) was shown in Prob. 9 .3. Consider an ideal bandpass filter with 

frequency response (Fig. 9-9) 

{
1 w1 ~lwl~w2 

H(w) = 
0 otherwise 

with a random process X(t) as its input. From Eq. (9.56) it follows that the power spectrum Syy(w) of the resulting 

output Y(t) equals 

Hence , from Eq. (9.58), we have 

{
Sxx(w) 

Syy(w) = 
0 

W1 ~lwl~wz 

otherwise 

2 1 J"' ( 1 )Jwz E[Y (t)] = - Syy(w)dw = 2 - Sxx(w)dw?.0 
2n - co 2n w, (9.108) 

which indicates that the area of Sxx<w) in any interval of w is nonnegative. This is possible only if Sxx<w)?. 0 for 

every w. 

H(co) 

0 co 

Fig. 9-9 
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9.15. Consider a WSS process X(t) with autocorrelation RxxCr:) and power spectrum Sxx<w). Let X'(t) = 

dX(t) /dt. Show that 

(a) R ( )- dRxx(r) 
XX' 1: -

dr 
(9.109) 

2 

(b) R () __ dRxx(•) (9.110) X'X' 1: - 2 
dr 

(c) Sxx·(w) = w2Sxx(w) (9.111) 

A system with frequency response H(w) = jw is a differentiator (Fig. 9-10). Thus, if X(t) is its input, then its output 
is Y(t) = X'(t) [see Eq. (5.55)]. 

(a) From Eq. (9.103) 

X-(-t)----·~I ~-J-ro~__. ....... ----- Y(t) = X'(t) 

Fig. 9-10 Differentiator. 

Taking the inverse Fourier transform of both sides, we obtain 

R ( ) - dRxx(•) 
XX' T - ---"=---

dT 

(b) From Eq. (9.104) 

Again taking the inverse Fourier transform of both sides and using the result of part (a), we have 

2 
R ( ) - - dRxx.(T) - - d Rxx(T) 

X'X' T - -
d-r d-r2 

(c) From Eq. (9.56) 

9.16. Suppose that the input to the differentiator of Fig. 9-10 is the zero-mean random telegraph signal of 
Prob. 9.7. 

(a) Determine the power spectrum of the differentiator output and plot it. 

( b) Determine the mean-square value of the differentiator output. 

(a) From Eq. (9.92) of Prob. 9.7 

2 4a 
Sxx(w) =A 2 2 

w +(2a) 

For the differentiator H(w) = jw, and from Eq. (9.56), we have 

I 1
2 2 4aw2 

Syy(W) = H(w) Sxx(w) =A 2 2 
w + (2a) 

which is plotted in Fig. 9-11. 

(9.112) 
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0 w 

Fig. 9-11 

(b) From Eq. (9 .58) or Fig. 9-11 

2 1 J co E[Y (t)] = - Syy(w) dw = oo 
2n - co 

9.17. Suppose the random telegraph signal of Prob. 9.7 is the input to an ideal bandpass filter with unit gain 
and narrow bandwidth W8 (= 2nB)(<<w) centered at we = 2a. Find the de component and the average 
power of the output. 

From Eqs. (9.56) and (9 .92) and Fig. 9-5 (b) , the resulting output power spectrum 

is shown in Fig. 9-12. Since H(O) = 0, from Eq. (9.46) we see that 

Hence , the de component of the output is zero. 

From Eq. (9.92) (Prob. 9.7) 

The average output power is 

2 4a A2 
Sxx(± wc) = A 2 2 

(2a) + (2a) (2a) 

otherwise 

E[Y 2(t)] = _!_f co Syy(w) dw 
2n -co 

.. .... 
-w c 

,,,,_!_(2Wa)(£) = A2WB = A2B 
2n 2a 2na a 

.. .. 
.. ···· . .. · 

0 

s xx(w) 

······· .. / .. . . . . ····· 

Fig. 9-12 

(9.113) 
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9.18. Suppose that a WSS random process X(t) with power spectrum Sxx(w) is the input to the filter shown in 
Fig. 9-13. Find the power spectrum of the output process Y(t). 

X(t) + Y(t) 
-----------1 I --• 

From Fig. 9-13 , Y(t) can be expressed as 

Delay 
T 

Fig. 9-13 

Y(t) = X(t) - X(t - T) 

From Eq. (2 .1) the impulse response of the filter is 

h(t) = o(t) - o(t - T) 

and by Eqs. (5.140) and (5.50) the frequency response of the filter is 

H(w) = 1 - e - fwT 

Thus, by Eq. (9 .56) the output power spectrum is 

Syy ( w) = I H ( w) 12 S xx ( w) = 11 - e - jwT 12 S xx ( w) 

= [ (1 - cos wT)2 +sin 2 wT] Sxx(w) 

= 2(1 - coswT)Sxx(w) 

(9.114) 

(9.115) 

9.19. Suppose that X(t) is the input to an LTI system with impulse response hi(t) and that Y(t) is the input to 
another LTI system with impulse response hz(t). It is assumed that X(t) and Y(t) are jointly wide-sense 
stationary. Let V(t) and Z(t) denote the random process at the respective system outputs (Fig. 9-14). 
Find the cross-correlation and cross spectral density of V(t) and Z(t) in terms of the cross-correlation 
and cross spectral density of X(t) and Y(t). 

·I h1(t) • X(t) V(t) 

·I h2(t) • Y(t) Z(t) 

Fig. 9-14 

Using Eq. (9.43) , we have 

Rvz<ti, t2) = E[V(ti )Z(t2)l 

= E[J~00 X(ti - a)hi(a)da f~J(t2 - /))hz(/))d/)] 

= J~"" J~00 hi(a)hz(/))E[X(ti - a)Y(t2 - /))]dad/) 

= J~"" J~00 hi(a)hz(/))Rxr<ti - a , t2 - /))dad/) 

= J~"" f ~00 hi (a)hz(/))Rxy (t2 - ti +a - /))dad/) 

since X(t) and Y(t) are jointly WSS. 

(9.116) 
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Equation (9 .116) indicates that Rvz(t1, 9 depends only on the time difference T = t2 - t1• Thus, 

Taking the Fourier transform of both sides of Eq. (9.117), we obtain 

Svz(w)= J~00 Rvz(T)e-j=dr 

= J~00 J~00 J~00 h1(a)hz(/3)Rxy(T +a- /3)e-j=dadf3dr 

Let T + a - /3 = A., or equivalently T = A. - a + f3. Then 

S (ro)=J00 J00 J00 h (a)I. (/3)R (A.)e-jru().-a+f3)dadf3dA. VZ _ 00 _ 00 _ 00 I "2 XY 

= J~00 h1(a)ejruada J~00 hz(/3)e- jru{3 d/3 J~00 Rxy(A.)e- jru). dA. 

= H 1(-w)H2(w)Sxy(w) 

= H;(w)H2 (w)Sxy(w) 

where H1(ro) and Hz(w) are the frequency responses of the respective systems in Fig. 9-14. 

9.20. The input X(t) to the RC filter shown in Fig. 9-15 is a white-noise process. 

(a) Determine the power spectrum of the output process Y( t). 

(b) Determine the autocorrelation and the mean-square value of Y(t). 

R 

r>--------'Wlv r 
X(t) C 1 Y{t) 

~>--------'-I---<~ 
Fig. 9-15 RC filter. 

From Eq. (5.91) the frequency response of the RC filter is 

(a) From Eqs. (9.31) and (9.56) 

(b) Rewriting Eq. (9.119) as 

H(w)---1--
1 + jwRC 

I 1
2 1 T/ 

Syy(w)= H(w) Sxx(w)= 2 
1 + (wRC) 2 

S ( )- TJ 1 2[1/(RC)] 
rr w - 2 2RC w2 + [l/(RC)]2 

and using the Fourier transform pair Eq. (5.138), we obtain 

•&• 
(9.117) 

(9.118) 

(9.119) 

(9.120) 
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Finally, from Eq. (9.120) 

E[Y 2(t)] = Ryy(O) = _!J__ 
4RC 

(9.121) 

9.21. The input X(t) to an ideal bandpass filter having the frequency response characteristic shown in Fig. 9-16 
is a white-noise process. Determine the total noise power at the output of the filter. 

- (1) 
c 

Sxx(w) = !l. 
2 

H(ro) 

0 

Fig. 9-16 

Syy(w) = I H(w)l2 Sxx(w) = !I.I H(w)l2 

2 

The total noise power at the output of the filter is 

E[Y 2(t)] = _!_ J"' Syy(w)dw = _!_!l. J"' IH(w)l2 dw 
2n - 00 2n 2 - 00 

= !l._!_(2W8 ) = 17B 
2 2n 

where B = W8 /(2n) (in Hz). 

9.22. Verify Eq. (9.60); that is 

00 00 

Ryy(n,m)= L L h(i)h(l)Rxx(n-i,m-l) 
i =-00 / =-00 

From Eq. (9.59) we have 

Ryy(n, m) = E[Y (n)Y (m)] = E[;~oo 1~00 h(i)h(l)X(n - i)X(m -1)] 
00 00 

= ~ ~ h(i)h(l)E[X(n - i)X(m - /)] 
i =-00 / =-00 

00 00 

= ~ ~ h(i)h(l)Rxx<n - i, m - I) 
i =-oo / =-oo 

9.23. Verify Eq. (9.61); that is 

00 

Rxy(n,m)= L h(l)Rxx(n,m-l) 
/ =-00 

(9.122) 
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From Eq. (9.59), we have 

RXY(n, m) = E[X(n)Y(m)] = E[ X(n)1~00 h(l)X(m -l)] 
00 

= ~ h(l)E[X(n)X(m - l)] 
l=-00 

00 

= ~ h(l)Rxx(n, m - l) 
l=-00 

9.24. Verify Eq. (9.66); that is 

From Eq. (9.64), and using Eq. (9.65), we obtain 

00 00 

Ryy(k)= ~ ~ h(i)h(l) Rxx(k + i - l) 
i=-00 l=-00 

00 

= ~ h(i)Rxy(k + i) 
i=-00 

00 

= ~ h(-l)Rxy(k-l)=h(-k)*Rxy(k) 
l=-00 

9.25. The output Y(n) of a discrete-time system is related to the input X(n) by 

Y(n) = X(n) - X(n - 1) (9.123) 

If the input is a zero-mean discrete-time white noise with power spectral density a 2, find E[Y 2 (t)]. 

The impulse response h(n) of the system is given by 

h(n) = i5(n) - i5(n - 1) 

Taking the discrete-time Fourier transform of h(n), the frequency response H(Q) of the system is given by 

H(Q) = 1 - e-JQ. 

Then 

IH(Q)l 2 = I 1 - e-Jfl.1 2 = (1 - cosQ)2 + sin2 Q = 2(1 - cosQ) 

Since Sxx(Q) = a 2, and by Eq. (9.70), we have 

Thus, by Eq. (9.72) we obtain 

E[Y 2 (t)] = Ryy(O) = _!_f" Syy(O)dQ 
2:n: -n: 

2a2 =-I" <1- cos Q)dQ = 2a2 
2:n: -n: 

(9.124) 

(9.125) 

(9.126) 

9.26. The discrete-time system shown in Fig. 9-17 consists of one unit delay element and one scalar multiplier 
(a< 1). The input X(n) is discrete-time white noise with average power a 2 • Find the spectral density and 
average power of the output Y(n). 
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X(n) 

+ 

Y(n - 1) 

Unit 
delay 

Fig. 9-17 

From Fig . 9-17 , Y(n) and X(n) are related by 

Y(n) = aY(n - 1) + X(n) 

The impulse response h(n) of the system is defined by 

h(n) = ah(n - 1) + o(n) 

Solving Eq. (9.128), we obtain 

h(n) = a"u(n) 

where u(n) is the unit step sequence defined by 

u(n) = {~ 

Taking the Fourier transform of Eq . (9 .129) , we obtain 

n ;:o: O 

n < O 

Y(n) 

a < 1.1Ql < .ir 

Now, by Eq. (9.34) , 

and by Eq. (9.70) the power spectral density of Y(n) is 

Syy(Q) =I H(Q)l2 Sxx(Q) = H(Q)H(- Q)Sxx(Q) 

a z 
(1 - ae - jQ )(1 - aei0 ) 

az 

1 + a2 - 2a cos Q 

Taking the inverse Fourier transform of Eq. (9.130), we obtain 

2 

Ryy(k) =-a-alkl 
1- a2 

Thus, by Eq. (9 .72) the average power of Y(n) is 

2 a 2 
E[Y (n)] = Ryy(0) = --2 

l - a 

(9.127) 

(9.128) 

(9.129) 

(9 .130) 
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SUPPLEMENTARY PROBLEMS 

9.27. A sample function of a random telegraph signal X(t) is shown in Fig. 9-18. This signal makes independent random 
shifts between two equally likely values , A and 0. The number of shifts per unit time is governed by the Poisson 
distribution with parameter a . 

t X( ) 

A ...... - ...... 

0 

Fig. 9-18 

(a) Find the autocorrelation and the power spectrum of X(t) . 

(b) Find therms value of X(t). 

9.28. Suppose that X(t) is a Gaussian process with 

Find the probability that X( 4) ~ 1 . 

9.29. The output of a filter is given by 

-

Y(t) = X(t + T) - X(t - T) 

--

where X(t) is a WSS process with power spectrum Sx/w) and Tis a constant. Find the power spectrum of Y(t) . 

9.30. Let X(t) is the Hilbert transform of a WSS process X(t). Show that 

Rxx<O) = E[X(t)X(t)] = 0 

9.31. A WSS random process X(t) is applied to the input of an LTI system with impulse response h(t) = 3e- 2'u(t). Find 
the mean value of Y(t) of the system if E[X(t)] = 2. 

9.32. The input X(t) to the RC filter shown in Fig. 9-19 is a white noise specified by Eq. (9 .31 ). Find the mean-square 
value of Y(t) . 

f 
l\MN'v 

J f 
R 

X(t) Y(t) 

l I l 
Fig. 9-19 RC filter. 

9.33. The input X(t) to a differentiator is the random telegraph signal of Prob. 9.7. 

(a) Determine the power spectral density of the differentiator output. 

(b) Find the mean-square value of the differentiator output. 
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9.34. Suppose that the input to the filter shown in Fig. 9-20 is a white noise specified by Eq. (9.51) . Find the power 
spectral density of Y(t). 

X(t) 

Delay 
T 

+ 

Fig. 9-20 

Y(t) 

9.35. Suppose that the input to the discrete-time filter shown in Fig . 9-21 is a discrete-time white noise with average 
power a 2 . Find the power spectral density of Y(n). 

X(n) 

Unit 
delay 

+ 

Fig. 9-21 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

A2 - 2al r l A2 2 4a 9.27. (a) Rxx<"r) = -(l+ e );Sxx(w) = -.iro(w)+A 2 2 
4 2 w +(2a) 

(b) A 
2 

9.28. 0.159 

9.30. Hint: Use relation (b) of Prob. 9.12 and definition (5 .174). 

9.31. Hint: Use Eq. (9.46) . 

3 

9.32. Hint: Use Eqs. (9.57) and (9.58). 

17/(4RC) 

4aw 2 
9.33. (a) Sy(w) = 2 2 

w +4a 

(b) E[Y 2 (t)] = oo 

9.34. Sy(w) = a 2 -+ i (I + a2 + 2a cos wT) 

9.35. Sy(Q) = a 2(1 + a2 + 2a cos Q) 

Y(n) 



Review of Matrix Theory 

A.1 Matrix Notation and Operations 

A. Definitions: 

1. An m X n matrix A is a rectangular array of elements having m rows and n columns and is denoted as 

When m = n, A is called a square matrix of order n. 

2. A 1 X n matrix is called an n-dimensional row vector: 

An m X 1 matrix is called an m-dimensional column vector: 

3. A zero matrix 0 is a matrix having all its elements zero. 

4. A diagonal matrix Dis a square matrix in which all elements not on the main diagonal are zero: 

D= 

0 

d2 

0 

0 

Sometimes the diagonal matrix Din Eq. (A.4) is expressed as 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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5. The identity (or unit) matrix I is a diagonal matrix with all of its diagonal elements equal to 1. 

I= 

B. Operations: 

Let A= [ai)mxn• B = [b;)mxn• and C = [ci)mxn· 

a. Equality of Two Matrices: 

b. Addition: 

c. Multiplication by a Scalar: 

1 0 

0 1 

0 

0 

0 0 1 

B = a A ~ bij = aaij 

If a = -1, then B = -A is called the negative of A. 

EXAMPLE A.1 Let 

[ 1 2 ~] B=[2 0 -1) A-
-1 0 4 1 -2 

[ 1+2 2+0 
3-1] = [3 Then A+B= 

-1+4 0+1 4-2 3 

-B=(-l)B= [-2 0 1) 
-4 -1 2 

[ 1-2 2-0 3+1] [-1 A-B- -
-1-4 0-1 4+2 -5 

Notes: 

1. A = B and B = C ~A = C 

2. A+B=B+A 

3. (A + B) + C = A + (B + C) 

4. A+O=O+A=A 

5. A - A= A+ (-A)= 0 

6. (a+ f3)A = aA + aB 

7. a (A + B) = aA + aB 

8. a (/3A) = (af3)A = f3 (aA) 

d. Multiplication: 

n 

C=AB~cij = ~aikbkj 
k=I 

2 2) 
1 2 

2 

-1 :] 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 
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The matrix product AB is defined only when the number of columns of A is equal to the number of rows ofB. 
In this case A and Bare said to be conformable. 

EXAMPLE A.2 Let 

0 -1 

A= 1 2 B=[~ -~] 
2 -3 

Then 

0 -1 

AB = 1 2 [~ _ ~] = 

2 -3 

0(1) + (-1) 3 0(2) + (-1) (-1) 

1(1) + 2(3) 1(2) + 2(-1) 

2(1) + (-3) 3 2(2) + (-3)(-1) 

but BA is not defined. 

Furthermore, even if both AB and BA are defined, in general 

AB i=BA 

EXAMPLE A.3 Let 

A=[~ -~] B=[~ -~] 
Then AB=[~ -1][1 2]=[-3 1] 

2 3 -1 7 0 

BA=[~ -~H~ -1] [ 2 3] - i=AB 
2 -1 -5 

An example of the case where AB= BA follows. 

EXAMPLE A.4 Let 

Then 

Notes: 

1. AO= OA = 0 

2. AI= IA= A 

3. (A + B)C = AC + BC 

4. A(B + C) = AB + AC 

5. (AB)C = A(BC) = ABC 

6. a (AB)= (aA)B = A(aB) 

A=[~ ~] B = [~ ~] 

AB =BA= [2 O] 
0 12 

It is important to note that AB = 0 does not necessarily imply A = 0 or B = 0. 

-3 

7 0 
-7 7 

(A.12) 

(A.13) 
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EXAMPLE A.5 Let 

A=[~ : ] B = [- ~ _ ~] 

Then AB = [ ~ ~ H- ~ _ ~] = [ ~ ~] = 0 

A.2 Transpose and Inverse 

A. Transpose: 

Let A be an n X m matrix. The transpose of A, denoted by AT, is an m X n matrix formed by interchanging the 
rows and columns of A. 

EXAMPLE A.6 

[ 1 2 3) 
A= -1 0 4 

[
1 -1 

AT = [ 1 2 3]T = 2 0 
-1 0 4 

3 4 

If AT= A, then A is said to be symmetric, and if AT= -A, then A is said to be skew-symmetric. 

EXAMPLE A.7 Let 

1 2 3 0 1 -2 
A= 2 4 -1 

3 -1 5 

B= -1 0 3 

2 -3 0 

Then A is a symmetric matrix and B is a skew-symmetric matrix. 

Note that if a matrix is skew-symmetric, then its diagonal elements are all zero. 

Notes: 

1. (AT)T =A 

2. (A+ B)T =AT+ BT 

3. (aA)T = aAT 

4. (AB)T = BTAT 

B. Inverses: 

A matrix A is said to be invertible if there exists a matrix B such that 

BA=AB=I 

The matrix B is called the inverse of A and is denoted by A - 1• Thus, 

(A.14) 

(A.15) 

(A.16a) 

(A.16b) 
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EXAMPLE A.8 

[2 1] [ 1 -1] = [ 1 -1] [2 1] = [ 1 o] 1 1 -1 2 -1 2 1 1 0 1 
Thus, 

Notes: 

1. (A-1)-1 =A 

2. (A-l)T=(AT)-1 (A.17) 
3. (aA)-1 = ! A-1 

a 
4. (AB)- 1 = B- 1A- 1 

Note that if A is invertible, then AB = 0 implies that B = 0 since 

A.3 Linear Independence and Rank 

A. Linear independence: 

Let A= [a1 a 2 ••• an], where a; denotes the ith column vector of A.A set of column vectors a;(i = 1, 2, ... , n) 
is said to be linearly dependent if there exist numbers a; ( i = 1, 2, ... , n) not all zero such that 

aa +aa +···+aa =O 1 1 2 2 n n 
(A.18) 

If Eq. (A.18) holds only for all a;= 0, then the set is said to be linearly independent. 

EXAMPLE A.9 Let 

., ~ - ~] 

., ~ [~ l ., ~[~ d3 ~ [~] 
a1 0 

Then a 1d1 + a 2d 2 + a 3d 3 = a2 0 

a3 0 

implies that a 1 = a 2 = a 3 = 0. Thus, d 1, d2, and d3 are linearly independent. 
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B. Rank of a Matrix: 

The number of linearly independent column vectors in a matrix A is called the column rank of A, and the num­
ber of linearly independent row vectors in a matrix A is called the row rank of A. It can be shown that 

Rank of A = column rank of A = row rank of A (A.19) 

Note: 

If the rank of an N X N matrix A is N, then A is invertible and A - 1 exists. 

A.4 Determinants 

A. Definitions: 

Let A = [a;) be a square matrix of order N. We associate with A a certain number called its determinant, denoted 
by det A or I A 1- Let Mij be the square matrix of order (N - 1) obtained from A by deleting the ith row and jth 
column. The number Aij defined by 

A .. = (-l)i+jlM .. I 
lj lj 

is called the cofactor of aij" Then det A is obtained by 

or 

N 

det A = IAI = _L aikAik 
k=l 

N 

det A = IAI = _L akjAkj 
k=l 

i = 1, 2, ... , N 

j=l,2, ... ,N 

(A.20) 

(A.21a) 

(A.21b) 

Equation (A.21a) is known as the Laplace expansion of IAI along the ith row, and Eq. (A.21b) the Laplace 
expansion of I A I along the jth column. 

EXAMPLE A.10 For a 1 X 1 matrix, 

For a 2 X 2 matrix, 

For a 3 X 3 matrix, 

all a12 a13 

A = a21 a22 a23 

a31 a32 a33 

Using Eqs. (A.2la) and (A.23), we obtain 

(A.22) 

(A.23) 

(A.24) 
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B. Determinant Rank of a Matrix: 

The determinant rank of a matrix A is defined as the order of the largest square submatrix M of A such that det 
M * 0. It can be shown that the rank of A is equal to the determinant rank of A. 

EXAMPLE A.11 Let 

2 4 

A= -1 1 5 

0 -1 -3 

Note that I A I = 0. One of the largest submatrices whose determinant is not equal to zero is 

Hence the rank of the matrix A is 2. (See Example A.9.) 

C. Inverse of a Matrix: 

Using determinants, the inverse of an N X N matrix A can be computed as 

-1 1 d" A =--a JA 
detA 

(A.25) 

A11 Ai1 ANI 

and adjA=[Ajf = 
A12 Ai2 AN2 (A.26) 

AIN A2N ANN 

whereAij is the cofactor of aij defined in Eq. (A.20) and "adj" stands for the adjugate (or adjoint). Formula (A.25) 
is used mainly for N = 2 and N = 3. 

EXAMPLE A.12 Let 

1 0 -3 

A= 1 2 0 

3 -1 -2 

Then IAl=ll 2 -~1- 3 1~ 21 = - 4 - 3(- 7) = 17 
-1 -1 

I 2 01 I 0 - 31 I~ -~1 -1 -2 -1 -2 

[-4 3 6 

-I~ -~I 11 - 31 -1: -~1 adjA = = 2 7 -3 
3 -2 

-7 1 2 

I~ -~I -I~ -~I 1: ~I 
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Thus, 

For a 2 X 2 matrix, 

-4 3 6 

2 7 -3 

-7 1 2 

(A.27) 

From Eq. (A.25) we see that if det A = 0, then A- 1 does not exist. The matrix A is called singular if det 
A = 0, and nonsingular if det A =/= 0. Thus, if a matrix is nonsingular, then it is invertible and A- 1 exists. 

A.5 Eigenvalues and Eigenvectors 

A. Definitions: 

Let A be an N X N matrix. If 

Ax= A.x (A.28) 

for some scalar A. and nonzero column vectorx, then A. is called an eigenvalue (or characteristic value) of A and 
x is called an eigenvector associated with A. 

B. Characteristic Equation: 

Equation (A.28) can be rewritten as 

(A.I - A)x = 0 (A.29) 

where I is the identity matrix of Nth order. Equation (A.29) will have a nonzero eigenvector x only if A.I - A is 
singular, that is, 

IA.I-Al =O (A.30) 

which is called the characteristic equation of A. The polynomial c(A.) defined by 

c(A.) = I A.I - A I = A.N + c A.N-I + ··· + c A.+ c N-1 I 0 (A.31) 

is called the characteristic polynomial of A. Now if A.1, A.2' ... , A.i are distinct eigenvalues of A, then we have 

where m1 + m2 + · · · + mi = N and mi is called the algebraic multiplicity of Ai" 

Theorem A.1: 

(A.32) 

Let A.k (k = 1, 2, ... , i) be the distinct eigenvalues of A and let xk be the eigenvectors associated with the eigen­
values A.k. Then the set of eigenvectors x 1, x2' ... , x; are linearly independent. 

Proof The proof is by contradiction. Suppose that x 1, x2' ... , x; are linearly dependent. 

Then there exists a 1, a 2, ••• , a; not all zero such that 

i 

a 1x1 +a2x 2 +···+a;x; = ~ akxk =O 
K=l 

(A.33) 
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Assuming a 1 * 0, then by Eq. (A.33) we have 

(~l-A)(A,1-A) ··· (A,1-A)[ ~1 a,x,l~0 (A.34) 

Now by Eq. (A.28) 

0·} - A)xk = O•j - Ak)xk j *- k 

and (Aki - A)xk = 0 

Then Eq. (A.34) can be written as 

(A.35) 

Since Ak (k = 1, 2, ... , i) are distinct, Eq. (A.35) implies that a 1 = 0, which is a contradiction. Thus, the set of 
eigenvectors x1, x2, ••• , xi are linearly independent. 

A.6 Diagonalization and Similarity Transformation 

A. Diagonalization: 

Suppose that all eigenvalues of an N X N matrix A are distinct. Let x1, x2' ... , xN be eigenvectors associated with 
the eigenvalues A1, A2' ... , AN. Let 

p = [x1 Xz ... XN] (A.36) 

Then AP=A[x1 Xz ... xN] 

=[Ax1 Ax2 ... AxN] 

=[A1X1 AzXz ANxN] 

Ai 0 0 

=[x1 xN] 
0 Ai 0 

Xz ... =PA (A.37) 

0 0 AN 

A1 0 0 

0 Ai 0 
A= where (A.38) 

0 0 AN 

By Theorem A.I, P has Nlinearly independent column vectors. Thus, Pis nonsingular and p- 1 exists, and hence 

0 

0 

We call P the diagonalization matrix or eigenvector matrix, and A the eigenvalue matrix. 

(A.39) 
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Notes: 

1. A sufficient (but not necessary) condition that an N X N matrix A be diagonalizable is that A has N 
distinct eigenvalues. 

2. If A does not have N independent eigenvectors, then A is not diagonalizable. 

3. The diagonalization matrix Pis not unique. Reordering the columns of P or multiplying them by 
nonzero scalars will produce a new diagonalization matrix. 

B. Similarity Transformation: 

Let A and B be two square matrices of the same order. If there exists a nonsingular matrix Q such that 

(A.40) 

then we say that B is similar to A and Eq. (A.40) is called the similarity transformation. 

Notes: 

1. If B is similar to A, then A is similar to B. 

2. If A is similar to Band Bis similar to C, then A is similar to C. 

3. If A and Bare similar, then A and B have the same eigenvalues. 

4. An N X N matrix A is similar to a diagonal matrix D if and only if there exist N linearly independent 
eigenvectors of A. 

A. 7 Functions of a Matrix 

A. Powers of a Matrix: 

We define powers of an N X N matrix A as 

A0 =I 

It can be easily verified by direct multiplication that if 

0 

D= 

then 

0 0 

Notes: 

n 

0 

0 

1. If the eigenvalues of A are A.1, A.2, ••• , A.i, then the eigenvalues of An are A.~, A.~, ... , A.7. 
2. Each eigenvector of A is still an eigenvector of An. 

3. If P diagonalizes A, that is, 

(A.41) 

(A.42) 

(A.43) 
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Ai 0 0 

P- 1AP=A= 
0 Ai 0 

0 0 Aw 

then it also diagonalizes An, that is, 

since 

B. Function of a Matrix: 

A{' 0 

p-IAnP=N = 0 ~ 

0 0 

(P- 1 AP) (P- 1AP) = p-1 A2P = A2 

(P- 1 A2P) (P- 1 AP)= p-1 A3P = A3 

Consider a function of /... defined by 

00 

0 

0 

f(A) = a0 + a1A + a2A2 + ··· = ,L akAk 
k=O 

With any such function we can associate a function of an N X N matrix A: 
00 

f(A) = a01 + a1A + a2A 2 + ··· = ,L akAk 
k=O 

If A is a diagonal matrix Din Eq. (A.42), then using Eq. (A.43), we have 

00 

f(D) = a01 + a1D + a2D2 + · · · = ,L akDk 
k=O 

00 

,L akdf 0 0 
k=O 

00 

0 ,L akd~ 0 
k=O 

00 

0 0 ,L akd~ 
k=O 

f(d,) 0 

0 f(d2) 

0 0 

If P diagonalizes A, that is [Eq. (A.44)], 

then we have 

and 

p-1AP =A 

A= PAP- 1 

A2 = (PAP- 1) (PAP- 1) = PA2P- 1 

A3 = (PA2P- 1) (PAP- 1) = PA3P- 1 

(A.44) 

(A.45) 

(A.46) 

(A.47) 

(A.48) 

0 

0 
(A.49) 

f(dN) 

(A.50) 

(A.51) 
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Thus, we obtain 

Replacing D by A in Eq. (A.49), we get 

f(A)=P 

where A.k are the eigenvalues of A. 

C. The Cayley-Hamilton Theorem: 

f(A) = Pf (A)P- 1 

0 0 

0 

0 

Let the characteristic polynomial c(A.) of an N X N matrix A be given by [Eq. (A.31)] 

c(A.) =IA.I-Al= J,.N + cN-1 J,.N-1 + ... + c1A. +co 

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic equation; that is, 

c(A) =AN+ cN_ 1AN-I + ··· + c1A + c01 = 0 

EXAMPLE A.13 Let 

A=[~ ~] 
Then, its characteristic polynomial is 

and 

1

)..-2 
c(A) = l;..1-AI = 0 -l l=()..-2)()..-3)=)..2 -5)..+6 

)..-3 

[2 1]2 [2 c(A)=A2 -5A+61= O 3 -5 O 

= [4 5]-[10 5 ] + [6 o] 
0 9 0 15 0 6 

= [~ ~] = 0 

Rewriting Eq. (A.54), we have 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

Multiplying through by A and then substituting the expression (A.55) for AN on the right and rearranging, we get 

(A.56) 

By continuing this process, we can express any positive integral power of A as a linear combination ofl, A, ... , AN- 1. 
Thus, f(A) defined by Eq. (A.48) can be represented by 

N-1 

! (A) = b I+ b A + · · · + b A = b A N-1 }: m 
0 I N-1 m 

m=O 

In a similar manner, if).. is an eigenvalue of A, then f(A.) can also be expressed as 

N-1 
f(}..)=bo +b1A+···+bN-1AN-I =}: bm)..m 

m=O 

(A.57) 

(A.58) 
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Thus, if all eigenvalues of A are distinct, the coefficients bm (m = 0, 1, ... , N - 1) can be determined by the 
following N equations: 

(A.59) 

If all eigenvalues of A are not distinct, then Eq. (A.59) will not yield N equations. Assume that an eigenvalue 
Ai has multiplicity rand all other eigenvalues are distinct. In this case differentiating both sides of Eq. (A.58) 
r times with respect to/... and setting/...= /...i, we obtain r equations corresponding to /...i: 

:::11 NL,~ ::.-11 (I b.A·) •~• n = 1, 2, ... , r (A.60) 

Combining Eqs. (A.59) and (A.60), we can determine all coefficients bm in Eq. (A.57). 

D. Minimal Polynomial of A: 

The minimal (or minimum) polynomial m(/...) of an N X N matrix A is the polynomial of lowest degree having 1 
as its leading coefficient such that m(A) = 0. Since A satisfies its characteristic equation, the degree of m(/...) is 
not greater than N. 

EXAMPLE A.14 Let 

A=[~ ~] 
The characteristic polynomial is 

I
A-a 

c(A) =IAI-AI = 0 O I= (A - a)2 =A 2 - 2aA + a 2 

A-a 

and the minimal polynomial is 

m(A) =A- a 

since m(A)=A-al=[~ ~]-a[~~]=[~ ~]=o 
Notes: 

1. Every eigenvalue of A is a zero of m(A). 

2. If all the eigenvalues of A are distinct, then c(A) = m(A). 

3. c(A) is divisible by m(A). 

4. m(A) may be used in the same way as c(A) for the expression of higher powers of A in terms of a 
limited number of powers of A. 

It can be shown that m(A) can be determined by 

m(A) = c(A) 
d(A) 

where d(A) is the greatest common divisor (gcd) of all elements of adj(AI - A). 

EXAMPLE A.15 Let 

5 -6 -6 
A= -1 4 2 

3 -6 -4 

(A.61) 
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Then c().)= l).I-AI = [). ~ 5 
). : 4 -

6
2 

-3 6 ).+4 

=).3 -5).2 +8).-4=().-1)().-2)2 

l).~4 ).-+241 

adj( ).I - A] = -1- ~ ).-+2 41 

1-~ ).~ 4 1 
[
(). + 2)(). - 2) 

= -().- 2) (). + 1)().-2) 

3().-2) -6().-2) 

2().-2) 

().- 2)().- 7) 

Thus, d(A) = ). - 2 and 

m(A) = c(A) =(A -1)(). - 2) =). 2 - 3). + 2 
d(A) 

m(A)~(A-I)(A-21)~ [-; 
-6 -6] [ 3 -6 -6 

and 3 2 -1 2 2 

-6 -5 3 -6 -6 

E. Spectral Decomposition: 

~ [~ 

It can be shown that if the minimal polynomial m(A) of an N X N matrix A has the form 

then A can be represented by 

where Ej (j = 1, 2, ... , i) are called constituent matrices and have the following properties: 

1. I = E 1 + E2 + · · · + E; 

2. EmEk = 0, m i:- k 

3. E 2 = E k k 

4. AEk = EkA = ).kEk 

0 0 

0 0 

0 0 

(A.62) 

(A.63) 

(A.64) 

Any matrix B for which B2 = B is called idempotent. Thus, the constituent matrices Ej are idempotent matri­
ces. The set of eigenvalues of A is called the spectrum of A, and Eq. (A.63) is called the spectral decomposi­
tion of A. Using the properties ofEq. (A.64), we have 

(A.65) 

and (A.66) 
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The constituent matrices Ej can be evaluated as follows. The partial-fraction expansion of 

leads to 

Then 

where 

1 1 

m(A) (A-A1)(A-Ai)···(A- ~) 

=-k_l _+~+-··+__5_ 
A-A1 A-Ai A-~ 

1 
kj=-i ---

IT (Aj -Am) 
m=l 
m*j 

_1_ = k1g1(A)+ k2g2(A)+··· + k;g;(A) 

m(A) (A-At)(A-Ai)···(A- ~) 

i 

8j(A)= IT (A-Am) 
m=l 
m*j 

Let e}A) = kjg}A). Then the constituent matrices Ej can be evaluated as 

i IT (A-Ami) 
m=l 
m*j 

Ej =ej(A)=-i----

IT (Aj -Am) 
m=l 
m*j 

EXAMPLE A.16 Consider the matrix A in Example A.15: 

5 -6 -6 

A= -1 4 2 

3 -6 -4 

From Example A.15, we have 

m(A) =(A - l)(A - 2) 

Then 1 1 -1 1 
--= =--+--
m(A) (A-l)(A-2) A-1 A-2 

and e1(A)= -(A-2) e2(A)= A-1 

Then E 1 = e1(A) = - (A - 21) = [- ~ - ~ - ~i 
-3 6 6 

E2 =e2(A)=A-I=[-: -: -~i 
3 -6 -5 

A=A1E 1 +AiE2 =E1 +2E2 

=[-~ -~ -~]+2[-: 
- 3 6 6 3 

-6 -6 

3 2 

-6 -5 
=[-~ -: -~i 

3 -6 -4 

(A.67) 
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A.8 Differentiation and Integration of Matrices 

A. Definitions: 

The derivative of an m X n matrix A(t) is defined to be the m X n matrix, each element of which is the deriva­
tive of the corresponding element of A; that is, 

!!_A(t) = [ !!_aij(t)] 
dt dt mXn 

d d d 
-a11 (t) -a12 (t) -ain(t) 
dt dt dt 
d d d (A.68) 
-a21(t) -a22(t) -a2n(t) 
dt dt dt 

d d d 
-am1(t) -am2(t) -amn(t) 
dt dt dt 

Similarly, the integral of an m X n matrix A(t) is defined to be 

J A(t) dt = [J aij(t) dt ]mxn 

J a 11 (t) dt f a12<t)dt J a1n(t) dt 

f a 21 <t> dt f a22 <t> dt J a2n(t)dt (A.69) 

J am1(t)dt J am2(t)dt J amn(t) dt 

EXAMPLE A.17 Let 

A=[: ''] t3 

d d 2 
d 

-t -t 

= [~ 2t] dt dt 
Then -A= 

3t2 dt !!_ 1 d 3 -t 
dt dt 

1 1 1 1 
f/dt fot2 dt -

1 2 3 
and f 0 Adt= 1 1 1 

f 0 1dt fot3 dt 1 
4 

B. Differentiation of the Product of Two Matrices: 

If the matrices A(t) and B(t) can be differentiated with respect to t, then 

!!_[A(t)B(t)] = dA(t) B(t) + A(t) dB(t) 
dt dt dt 

(A.70) 



Review of Probability 

B.1 Probability 

A. Random Experiments: 

In the study of probability, any process of observation is referred to as an experiment. The results of an obser­
vation are called the outcomes of the experiment. An experiment is called a random experiment if its outcome 
cannot be predicted. Typical examples of a random experiment are the roll of a die, the toss of a coin, drawing 
a card from a deck, or selecting a message signal for transmission from several messages. 

B. Sample Space and Events: 

The set of all possible outcomes of a random experiment is called the sample space S. An element in S is called 
a sample point. Each outcome of a random experiment corresponds to a sample point. 

A set A is called a subset of B, denoted by A C B if every element of A is also an element of B. Any subset 
of the sample space S is called an event. A sample point of S is often referred to as an elementary event. Note 
that the sample space Sis the subset of itself, that is, SC S. Since Sis the set of all possible outcomes, it is often 
called the certain event. 

C. Algebra of Events: 

1. The complement of event A, denoted A, is the event containing all sample points in S but not in A. 
2. The union of events A and B, denoted AU B, is the event containing all sample points in either A or 

B or both. 

3. The intersection of events A and B, denoted An B, is the event containing all sample points in both 
A and B. 

4. The event containing no sample point is called the null event, denoted 0. Thus 0 corresponds to an 
impossible event. 

5. Two events A and B are called mutually exclusive or disjoint if they contain no common sample 
point, that is, An B = 0. 

By the preceding set of definitions, we obtain the following identities: 

D. Venn Diagram: 

S=0 0=S 
SUA=S snA=A 

AUA=S AnA=0 A=A 

A graphical representation that is very useful for illustrating set operation is the Venn diagram. For instance, in the 
three Venn diagrams shown in Fig. B-1, the shaded areas represent, respectively, the events AU B,A n B, and A. 
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s s 

(a) Shaded region : A u B (b) Shaded region: A n B 

-
(c) Shaded region : A 

Fig. B-1 

E. Probabilities of Events: 

An assignment of real numbers to the events defined on S is known as the probability measure. In the 
axiomatic definition, the probability P(A) of the event A is a real number assigned to A that satisfies the fol­
lowing three axioms: 

Axiom 1: 

Axiom 2: 

P(A);::: 0 

P(S) = 1 

Axiom 3: P(A U B) = P(A) + P(B) if A n B = 0 

With the preceding axioms, the following useful properties of probability can be obtained. 

1. P(A) = 1 - P(A) 

2. P(0) = 0 

3. P(A) .:5 P(B) ifA CB 

4. P(A) .:5 1 

5. P(A U B) = P(A) + P(B) - P(A n B) 

Note that Property 4 can be easily derived from axiom 2 and property 3. Since A C S, we have 

P(A) :5 P(S) = 1 

Thus, combining with axiom 1, we obtain 

0 :5 P(A) :5 1 

Property 5 implies that 

P(A U B) :5 P(A) + P(B) 

since P(A n B) ;::: 0 by axiom 1. 

(B.l) 

(B .2) 

(B.3) 

(B.4) 
(B.5) 
(B.6) 
(B.7) 
(B.8) 

(B .9) 

(B.10) 

One can also define P(A) intuitively, in terms of relative frequency. Suppose that a random experiment is 
repeated n times . If an event A occurs n A times, then its probability P(A) is defined as 

P(A)= lim nA (B .11) 
n-+ oo n 

Note that this limit may not exist. 
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EXAMPLE B.1 Using the axioms of probability, prove Eq. (B.4). 

S=AUA and AnA=0 

Then the use of axioms 1 and 3 yields 

Thus 

EXAMPLE B.2 Verify Eq. (B.5). 

P(S) = 1 = P(A) + P(A) 

P(A) = 1 - P(A) 

A=AU0 and An0=0 

Therefore, by axiom 3, 

P(A) = P(A U 0) = P(A) + P(0) 

and we conclude that 

P(0) = 0 

EXAMPLE B.3 Verify Eq. (B.6). 

Let AC B. Then from the Venn diagram shown in Fig. B-2, we see that 

B =A U (B n A) and A n (B n A) = 0 

Hence, from axiom 3, 

because by axiom 1, P(B n A);::: 0. 

EXAMPLE B.4 Verify Eq. (B.8). 

P(B) = P(A) + P(B n A) ::::: P(A) 

s 

Shaded region : An 8 

Fig. B-2 

8 

From the Venn diagram of Fig. B-3, each of the sets AU Band B can be expressed, respectively, as a union of 
mutually exclusive sets as follows: 

A U B = A U (A n B) and B = (A n B) u (A n B) 

Thus, by axiom 3, 

P(A U B) = P(A) + P(A n B) (B.12) 
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and P(B) = P(A n B) + P(A n B) 

From Eq. (B.13) we have 

P(A n B) = P(B) - P(A n B) 

Substituting Eq. (B.14) into Eq. (B.12), we obtain 

P(A U B) = P(A) + P(B) - P(A n B) 

s 

Shaded region: A n B 

Fig. B-3 

F. Equally Likely Events: 

Consider a finite sample space S with finite elements 

where /../s are elementary events. Let P(/..,;) = P;- Then 

1. 0'5'p; '5' 1 i= 1,2, ... ,n 
n 

2. LP; =Pi + P2 + · · · + Pn = 1 
i = I 

3. If A = U A., where I is a collection of subscripts, then 
jEJ l 

s 

P(A)= L p(A;)= LP; 
-'.;EA iE/ 

Shaded region : A n B 

When all elementary events/..,; (i = 1, 2, ... , n) are equally likely events, that is 

then from Eq. (B.15), we have 

and 

Pi= P2 = ··· = Pn 

1 
P; = - i = 1, 2, ... , n 

n 

P(A)= n(A) 
n 

where n(A) is the number of outcomes belonging to event A and n is the number of sample points in S. 

G. Conditional Probability: 

The conditional probability of an event A given the event B, denoted by P(A I B), is defined as 

P(A IB) = P(A n B) 
P(B) 

P(B) > 0 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B .19) 
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where P(A n B) is the joint probability of A and B. Similarly, 

P(BiA) = P(A n B) 
P(A) 

P(A)>O 

is the conditional probability of an event B given event A. From Eqs. (B .19) and (B .20) we have 

P(A nm= P(AIB)P(B) = P(B IA)P(A) 

Equation (B .21) is often quite useful in computing the joint probability of events. 

From Eq. (B.21) we can obtain the following Bayes rule: 

P(AiB) = P(BiA) P(A) 
P(B) 

EXAMPLE B.5 Find P(AIB) if (a)A n B = 0, (b)A CB, and (c) B CA. 

(a) If A n B = 0, then P(A n B) = P(0) = 0. Thus, 

P(AIB) = P(A n B) = P(0) = 0 
P(B) P(B) 

(b) If AC B, then A n B =A and 

P(AIB) = P(A n B) = P(A) 
P(B) P(B) 

(c) If B CA, thenA n B =Band 

P(AiB) = P(A n B) = P(B) = l 
P(B) P(B) 

H. Independent Events: 

Two events A and B are said to be (statistically) independent if 

P(A IB) = P(A) and P(B IA) = P(B) 

This, together with Eq. (B.21), implies that for two statistically independent events 

P(A n B) = P(A)P(B) 

•• 
(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

We may also extend the definition of independence to more than two events. The events A 1, A2' ... , An are 
independent if and only if for every subset {A. , A. , ... , A. } (2 ::5 k ::5 n) of these events, 

11 12 1k 

P(A. n A. n ... n A. ) = P(A. )P(A. ) ... P(A. ) 
11 12 1k 11 12 1k 

I. Total Probability: 

The events A 1, A2, ••• , An are called mutually exclusive and exhaustive if 

n 

LJ Ai = A1 U Az U ... U An = S and A; n Ai = 0 i -=f. j 
i=l 

Let B be any event in S. Then 

n n 

P(B) = ~ P(B n A;)= ~ P(BIAi) P(Ai) 
i=l i=l 

(B.25) 

(B.26) 

(B.27) 
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which is known as the total probability of event B. Let A = A; in Eq. (B .22); using Eq. (B .27) we obtain 

I P(BIA; )P(A;) 
P(A; B) = -n-~----

L P(BIA; )P(A;) 
(B.28) 

i = l 

Note that the terms on the right-hand side are all conditioned on events A;, while that on the left is conditioned 
on B. Equation (B.28) is sometimes referred to as Bayes' theorem. 

EXAMPLE B.6 Verify Eq. (B.27). 

Since B n S = B [and using Eq. (B.26)], we have 

B = B n s = B n (A, u A2 u ... u AN) 

= (B n A,) u (B n A2) u ... u (B n AN) 

Now the events B n Ak (k = l, 2, ... , N) are mutually exclusive, as seen from the Venn diagram of Fig. B-4. 
Then by axiom 3 of the probability definition and Eq. (B .21), we obtain 

N N 

P(B)= P(B n S)= L P(B n Ak)= L P(BIAk)P(Ak) 
k = l k = l 

s 

Fig. B-4 

B.2 Random Variables 

A. Random Variables: 

Consider a random experiment with sample space S. A random variable X(A) is a single-valued real function 
that assigns a real number called the value of X(A.) to each sample point A. of S. Often we use a single letter X 
for this function in place of X(A.) and use r.v. to denote the random variable. A schematic diagram represent­
ing a r.v. is given in Fig. B-5. 

s 

x 

X(A.) R 

Fig. B-5 Random variable X as a function . 



APPENDIX B Review of Probability •• 
The sample space Sis termed the domain of the r.v. X, and the collection of all numbers [values of X(A.)] is 

termed the range of the r.v. X. Thus, the range of Xis a certain subset of the set of all real numbers and it is usu­
ally denoted by Rx- Note that two or more different sample points might give the same value of X(A.), but two 
different numbers in the range cannot be assigned to the same sample point. 

The r.v. X induces a probability measure on the real line as follows: 

P(X = x) = P{A.: X(A.) = x} 

P(X .:5 x) = P{A.: X(A.) :5 x} 

P(x1 < X :5 x2) = P{A.: x 1 < X(A.) .:5 x2} 

If X can take on only a countable number of distinct values, then Xis called a discrete random variable. If X can 
assume any values within one or more intervals on the real line, then Xis called a continuous random variable. 
The number of telephone calls arriving at an office in a finite time is an example of a discrete random variable, 
and the exact time of arrival of a telephone call is an example of a continuous random variable. 

B. Distribution Function: 

The distribution function [or cumulative distribution function ( cdf)] of Xis the function defined by 

Properties of Fx<x): 

1. 0 :5 Fix) .:5 1 

2. F/x1) :5 Fx<x2) 

3. Fx(oo) = 1 

4. Fx(-oo) = 0 

5. Fx(a+)=Fx(a) 

Fx(x) = P(X .:5 x) 

a+= lim a+c 
O< E-0 

-00 < x < 00 

From definition (B.29) we can compute other probabilities: 

P(a < X :5 b) = Fx(b) - Fx<a) 

P(X > a)= 1 - Fx<a) 

P(X<b)=Fx(b- ) b - = lim b-c 
O<E-0 

C. Discrete Random Variables and Probability Mass Functions: 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

(B.33) 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

Let Xbe a discrete r.v. with cdf Fx(x). Then Fx(x) is a staircase function (see Fig. B-6), and Fx(x) changes val­
ues only in jumps (at most a countable number of them) and is constant between jumps . 

• • I 

I 
I 

2 • I 

I 
I 
I 
I 
I 

0 2 3 4 x 

Fig. B-6 
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Suppose that the jumps in F x<x) of a discrete r.v. X occur at the points x1, x2, ••• , where the sequence may 
be either finite or countably infinite, and we assume x; < xj if i < j. Then 

Let Px(x) = P(X = x) 

The function pix) is called the probability mass function (pmt) of the discrete r.v. X. 

Properties of px<x): 

1. 0 ::5 Px<x) ::5 1 i = 1, 2, .. . 

2. Px(x) = 0 if x * x;(i = 1,2, ... ) 

3. ,LPx(x;) = 1 
i 

The cdf Fx<x) of a discrete r.v. X can be obtained by 

Fx(x)=P(X::5x)= _L Px(x;) 

D. Examples of Discrete Random Variables: 

1. Bernoulll Distribution: 

Xj Sx 

A r.v. Xis called a Bernoulli r.v. with parameter p if its pmf is given by 

Px(k) = P(X = k) = pk(l - p)l-k k = 0, 1 

where 0 ::5 p ::5 1. By Eq. (B .29), the cdf F x<x) of the Bernoulli r.v. Xis given by 

2. Blnomlal Distribution: 

x<O 

0::5x<l 

x:::: 1 

A r.v. Xis called a binomial r.v. with parameters (n, p) if its pmf is given by 

k=O, 1, ... , n 

where 0 ::5 p ::5 1 and 

( n) n! 
k = k!(n- k)! 

which is known as the binomial coefficient. The corresponding cdf of Xis 

n ( ) 
n k n-k Fx(x)= ,L p (1-p) 

k=O k 
n:5x<n+l 

3. Poisson Distribution: 

A r.v. Xis called a Poisson r.v. with parameter}., (>O) if its pmf is given by 

-). ;..,k 
Px(k)= P(X= k) = e -

k! 
k=O,l, ... 

(B.38) 

(B.39) 

(B.40) 

(B.41) 

(B.42) 

(B.43) 

(B.44) 

(B.45) 

(B.46) 

(B.47) 

(B.48) 
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The corresponding cdf of X is 

n ).} 
F (x)=e-.A. ~ -

x ~ k' 
k=O • 

n::Sx<n+l 

E. Continuous Random Variables and Probability Density Functions: 

••• 
(B.49) 

Let Xbe a r.v. with cdf Fix). Then Fix) is continuous and also has a derivative dFix)ldx that exists everywhere 
except at possibly a finite number of points and is piecewise continuous. Thus, if Xis a continuous r.v., then 

P(X = x) = 0 (B.50) 

In most applications, the r.v. is either discrete or continuous. But if the cdf Fix) of a r.v. X possesses both fea­
tures of discrete and continuous r.v. 's, then the r.v. Xis called the mixed r.v. 

Let fx(x)= dFx(x) 
dx 

The function f x<x) is called the probability density function (pdt) of the continuous r.v. X. 

Properties or I x<x): 

1. f x<x)?. 0 

2. L00 f x(x)dx = 1 

3. f x<x) is piecewise continuous. 

4. P(a < X ::5 b) = J!f x<x) dx 

The cdf Fx(x) of a continuous r.v. X can be obtained by 

Fx(x) = P(X ::5 x) = {_,Jx(~) d~ 

F. Examples of Continuous Random Variables: 

1. Uniform Distribution: 

A r.v. Xis called a uniform r.v. over (a, b) if its pdf is given by 

The corresponding cdf of X is 

2. Exponentlal Distribution: 

a<x<b 

otherwise 

{
o x ::s a 

x-a 
Fx(x)= -- a<x<b 

b-a 
1 x?.b 

A r.v. Xis called an exponential r.v. with parameter A. (> 0) if its pdf is given by 

x>O 
x<O 

(B.51) 

(B.52) 

(B.53) 

(B.54) 

(B.55) 

(B.56) 

(B.57) 

(B.58) 
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The corresponding cdf of X is 

{1 -Ax -e 
Fx(x)= 0 

x:=::O 

x<O 

3. Normal (or Gaussian) Distribution: 
A r.v. X=N(µ; a 2) is called a normal (or Gaussian) r.v. if its pdf is given by 

1 2 2 fx(x)=--e-(x-µ) /(2a) 

J2;a 

The corresponding cdf of X is 

B.3 Two-Dimensional Random Variables 

A. Joint Distribution Function: 

(B.59) 

(B.60) 

(B.61) 

Let S be the sample space of a random experiment. Let X and Y be two r.v.'s defined on S. Then the pair 
(X, Y) is called a two-dimensional r.v. if each of X and Y associates a real number with every element of S. 
The joint cumulative distribution function (or joint cdf) of X and Y, denoted by FXY(x,y), is the function 
defined by 

Fxy(x, y) = P(X :5 x, Y :5 y) 

Two r.v.'s X and Y will be called independent if 

for every value of x and y. 

B. Marginal Distribution Function: 

Since { X :5 oo} and { Y :5 oo} are certain events, we have 

{X:5 x, Y:5 oo} = {X:5 x} {X:s oo, Y::s y} = {Y:s y} 

so that 

(B.62) 

(B.63) 

(B.64) 

(B.65) 

The cdf's Fx(x) and Fy(y), when obtained by Eqs. (B.64) and (B.65), are referred to as the marginal cdf's of X 
and Y, respectively. 

C. Joint Probability Mass Functions: 

Let (X, Y) be a discrete two-dimensional r.v. and (X, Y) takes on the values (xi, Y) for a certain allowable set of 
integers i andj. Let 

Pxr<x;, Y} = P(X = xi, Y = Y} (B.66) 

The function Pxr<x;, yj) is called the joint probability mass function (joint pmf) of (X, Y). 
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Properties or Pxrf.X,.)J): 

1. 0 ::5 Pxr<x;, Y) ::5 1 

2. ,L ,L Pxr (x;, Yj) = 1 
x; Yj 

The joint cdf of a discrete two-dimensional r.v. (X, Y) is given by 

FXY(x,y) = .L .L PXY(X;, Yj) 
x; :5xy1:5y 

D. Marginal Probability Mass Functions: 

Suppose that for a fixed value X =xi, the r.v. Y can only take on the possible values yj (j = 1, 2, ... , n). 

Then 

Similarly, 

Px(X;)= ,LPxy(X;,y) 
Yj 

py(yj)= ,LPxy(X;,yj) x, 

(B.67) 

(B.68) 

(B.69) 

(B.70) 

(B.71) 

The pmf's Px<x) and Pr<Yj), when obtained by Eqs. (B.70) and (B.71), are referred to as the marginal pmf's of 
X and Y, respectively. If X and Yare independent r.v.'s, then 

(B.72) 

E. Joint Probability Density Functions: 

Let (X, Y) be a continuous two-dimensional r.v. with cdf Fxy(x, y) and let 

2 

f ( )=aFxy(x,y) 
XY x,y axay (B.73) 

The function f xr<x, y) is called the joint probability density function (joint pdf) of (X, Y). By integrating Eq. (B .73), 
we have 

Properties or I xy(X, y): 

1. fxy(x,y) ~ 0 

2. .L00 .C,, f xr<x, y) dx dy = 1 

F. Marginal Probability Density Functions: 

By Eqs. (B.64), (B.65), and definition (B.51), we obtain 

fx(x) = J~00 fxy(x, y)dy 

fy(y) = J~00 fxy(X, y)dx 

(B.74) 

(B.75) 

(B.76) 

(B.77) 

(B.78) 

The pdf's f x<x) and f y(x), when obtained by Eqs. (B .77) and (B .78), are referred to as the marginal pdf's of X 
and Y, respectively. If X and Y are independent r.v.'s, then 

f xy(x, y) = f x<x)f y(y) (B.79) 



•• APPENDIX B Review of Probability 

The conditional pdf of X given the event {Y = y} is 

f (xiy)=fXY(x,y) fy(y)i:-0 
XIY fy(y) 

(B.80) 

where f y(y) is the marginal pdf of Y. 

B.4 Functions of Random Variables 

A. Random Variable g(X): 

Given a r.v. X and a function g(x), the expression 

y = g(X) (B.81) 

defines a new r.v. Y. Withy a given number, we denote DY the subset of Rx (range of X) such that g(x) ::5 y. Then 

(Y ::5 y) = [g(X) ::5 y] = (XE Dy) 

where (XE DY) is the event consisting of all outcomes ). such that the point X(A.) EDY. Hence, 

F y(y) = P(Y ::5 y) = P[g(X) ::5 y] = P(X ED) (B.82) 

If Xis a continuous r.v. with pdf f x<x), then 

Fy(y)= J v/x(x)dx (B.83) 

Determination off y(y) from f x<x): 
Let X be a continuous r.v. with pdf f x<x). If the transformation y = g(x) is one-to-one and has the inverse 

transformation 

x = g- 1(y) = h(y) (B.84) 

then the pdf of Y is given by 

(B.85) 

Note that if g(x) is a continuous monotonic increasing or decreasing function, then the transformation y = g(x) 
is one-to-one. If the transformation y = g(x) is not one-to-one, f y(y) is obtained as follows: 

Denoting the real roots of y = g(x) by xk, that is, 

then (B.86) 

where g'(x) is the derivative of g(x). 

EXAMPLE B.7 Let Y = aX + b. Show that if X = N(µ; a 2), then Y = N(aµ + b; a 2a 2). 

Theequationy = g(x) =ax+ bhas a single solutionx1 = (y- b)la,andg'(x) =a. Therangeofyis (-00,00). 
Hence, by Eq. (B.86) 

1 (y-b) fy(y) = - fx --lal a 
(B.87) 
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Since X = N(µ; a 2), by Eq. (B.60) 

fx(x)= ~ exp[-~(x-µ)2 ] 
v2:rca 2a 

Hence, by Eq. (B.87) 

1 1 y-b 
[ ( ) 2 l fy (y) = J2;1ala exp - 2a2 -a - - µ 

1 [ 1 2] = exp ---(y-aµ-b) 
J2;iala 2a2a 2 

which is the pdf of N(aµ + b; a 2a 2). Thus, if X = N(µ; a 2), then Y = N(aµ + b; a 2a 2). 

EXAMPLE B.8 Let Y = X2 • Find f y(y) if X = N(O; 1). 

If y < 0, then the equation y = x2 has no real solutions; hence, f y(y) = 0. 
If y > 0, then y = x 2 has two solutions 

Now,y = g(x) = x2 and g'(x) = 2x. Hence, by Eq. (B.86) 

fy(y)= 2~ [tx('1J)+ fx(-'1J)]u(y) 

Since X = N(O; 1) from Eq. (B .60), we have 

f ( ) 1 -x2 /2 x =--e x J2; 

Since f x<x) is an even function from Eq. (B.90), we have 

1 ( C) 1 _ 12 
fy(y)= '1Jfx vY u(y)= '12:rcy e Y u(y) 

B. One Function of Two Random Variables: 

Given two random variables X and Yanda function g(x, y), the expression 

Z = g(X, Y) 

(B.88) 

(B.89) 

(B.90) 

(B.91) 

(B.92) 

(B.93) 

is a new random variable. With z a given number, we denote by Dz the region of the xy plane such that 
g(x, y) :5 z. Then 

[Z :5 z] = {g(X, Y) :5 z} = {(X, Y) E Dz} 

where {(X, Y) E Dz} is the event consisting of all outcomes )., such that the point {X(A.), Y(A.)} is in Dz· 
Hence, 

F .j.z) = P(Z :5 z) = P{(X, Y) E Dz} 

If X and Y are continuous r.v.'s with joint pdf f xy(x, y), then 

fz(z)= J ffXY(x,y)dxdy 
Dz 

(B.94) 

(B.95) 
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EXAMPLE B.9 Consider two r.v.'s X and Y with joint pdf f xy(x, y). Let Z = X + Y. 

(a) Determine the pdf of Z. 

(b) Determine the pdf of Zif X and Y are independent. 

y 

Fig. B-7 

(a) The range R2 of Z corresponding to the event (Z:::; z) = (X + Y:::; z) is the set of points (x, y) which 
lie on and to the left of the line z = x + y (Fig. B-7). Thus, we have 

(B.96) 

Then fz(z)=!!:__Fz(z)=J00 [!!:__Jz - x fxy(x , y)dy] dx 
dz - 00 dz - 00 

= J~00 fxy(x, z-x)dx (B.97) 

( b) If X and Y are independent, then Eq. (B .97) reduces to 

(B.98) 

The integral on the right-hand side of Eq. (B .98) is known as a convolution off /z) and f y(z). Since 
the convolution is commutative, Eq. (B.98) can also be written as 

(B.99) 

C. Two Functions of Two Random Variables: 

Given two r.v.'s. X and Y and two functions g(x, y) and h(x, y), the expression 

Z = g(X, Y) W= h(X, Y) (B.100) 

defines two new r.v.'s Zand W. With z and w two given numbers we denote Dzw the subset of Rxr [range of (X, Y )] 
such that g(x, y) :::; z and h(x, y):::; w. Then 

(Z:::; z, W:::; w) = [g(x, y) :::; z, h(x, y) :::; w] = {(X, Y) E Dzw} 

where {(X, Y) E Dzw} is the event consisting of all outcomes). such that the point {X(A.), Y(A.)} E Dzw· 
Hence, 

Fzw(Z, w) = P(Z:::; z, W:::; w) = P{(X, Y) E Dzw} (B.101) 
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In the continuous case we have 

fzw(z,w)= J JfXY(x,y)dxdy 
Dzw 

Determination off zw(Z, w) from f XY(x, y): 
Let X and Ybe two continuous r.v.'s with joint pdf f x/x, y). If the transformation 

z = g(x,y) w = h(x,y) 

is one-to-one and has the inverse transformation 

x = q(z, w) y = r(z, w) 

then the joint pdf of Z and W is given by 

f zw(Z, w) = f xy(x, y) I J(x, y) 1-1 

where x = q(z, w), y = r(z, w) and 

ag ag 

ax ay 
J(x, y)= 

ah ah 
ax ay 

which is the Jacobian of the transformation (B.103). 

EXAMPLE B.10 Consider the transformation 

ax ax 

az az 

ax ay 

aw aw 

ax ay 

_ ar ae --lcosO -rsinOl--r J(x, y) = 
ay ay sin (J rcos 0 

ar ae 

Eq. (B.105) yields 

f Re(r, 8) = rf xy(r cos 8, r sin 8) 

B.5 Statistical Averages 

A. Expectation: 

The expectation (or mean) of a r.v. X, denoted by E(X) or µx, is defined by 

The expectation of Y = g(X) is given by 

{~ g(x; )Px (x;) 

E(Y) = E[g(X)] = ;
00 

J_
00

g(x)fx(x)dx 

X: discrete 

X: continuous 

(discrete case) 

(continuous case) 

(B.102) 

(B.103) 

(B.104) 

(B.105) 

(B.106) 

(B.107) 

(B.108) 

(B.109) 

(B .110) 
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The expectation of Z = g(X, Y) is given by 

Note that the expectation operation is linear, that is, 

E[X + Y] = E[X] + E[Y] 

E[cX] = cE[X] 

where c is a constant. 

EXAMPLE B.11 If X and Y are independent, then show that 

and 

E[XY] = E[X]E[Y] 

E[g1(X)g2(X)] = E[g1(X)]E[g2(Y)] 

If X and Yare independent, then by Eqs. (B .79) and (B .111) we have 

E[X Y] = J~,,J~00 xyfx(x)fy(y) dxdy 

(discrete case) 

(continuous case) 

= J~00 xfx(x) dx J~00 yfy (y) dy = E[X] E[Y] 

Similarly, 

E[gl (X)gz (Y)] = J~00J~00 gl (x)gz (y)fx (x) fy (y) dxdy 

= J~00 g1 (x)fx(x) dx J~00 g2 (y)fy (y) dy = E[g1 (X)E[g2 (Y)] 

B. Moment: 

The nth moment of a r.v. Xis defined by 

X: discrete 

X: continuous 

C. Variance: 

The variance of a r.v. X, denoted by a; or Var(X), is defined by 

Var(X) = ai = E [(X - µx) 2] 

Thus, 

X: discrete 

X: continuous 

(B .111) 

(B .112) 

(B.113) 

(B.114) 

(B.115) 

(B.116) 

(B .117) 

(B .118) 
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The positive square root of the variance, or ax, is called the standard deviation of X. The variance or stan­
dard variation is a measure of the "spread" of the values of X from its mean µx. By using Eqs. (B.112) and 
(B .113), the expression in Eq. (B .117) can be simplified to 

Mean and variance of various random variables are tabulated in Table B-1. 

TABLEB-1 

RANDOM VARIABLE X MEAN µx 

Bernoulli (p) p 

Binomial (n, p) np 

Poisson (A) ;., 

Uniform (a, b) a+b 

2 

Exponential (A) 1 
-
;., 

Gaussion (normal) µ 

D. Covariance and Correlation Coefficient: 

The (k, n)th moment of a two-dimensional r.v. (X, Y) is defined by 

The ( 1, 1 )th joint moment of (X, Y), 

mu= E(X Y) 

VARIANCEoi 

p(l-p) 

np(l - p) 
;., 

(b - a)2 

12 

1 
;.,2 

a2 

X: discrete 

X: continuous 

(B.119) 

(B.120) 

(B.121) 

is called the correlation of X and Y. If E(X Y) = 0, then we say that X and Y are orthogonal. The covariance of 
X and Y, denoted by Cov(X, Y) or axr is defined by 

Cov(X, Y) = axy = E[(X - µx)(Y - µy)] 

Expanding Eq. (B.122), we obtain 

Cov(X, Y) = E(XY) - E(X)E(Y) 

(B.122) 

(B.123) 

If Cov(X, Y) = 0, then we say that X and Y are uncorrelated. From Eq. (B .123) we see that X and Y are uncor­
related if 

E(X Y) = E(X)E(Y) (B.124) 

Note that if X and Y are independent, then it can be shown that they are uncorrelated. However, the converse 
is not true in general; that is, the fact that X and Yare uncorrelated does not, in general, imply that they are inde­
pendent. The correlation coefficient, denoted by p(X, Y) or Pxr is defined by 

(B.125) 
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It can be shown that (Example B.15) 

E. Some Inequalities: 

1. Markov lnequallty: 

IPxrl :5 1 

If f x<x) = 0 for x < 0, then for any a> 0, 

2. Chebyshev lnequallty: 
For any e > 0, then 

or 

P(X ?:. a) :5 ~ a 

where µx = E[X] and a; is the variance of X. This is known as the Chebyshev inequality. 

3. Cauchy-Schwarz lnequallty: 
Let X and Y be real random variables with finite second moments. Then 

(E[XY])2 :s E[X2] E[Y2 ] 

This is known as the Cauchy-Schwarz inequality. 

EXAMPLE B.12 Verify Markov inequality, Eq. (B .127). 

From Eq. (B .54) 

Since f x<x) = 0 for x < 0, 

Hence, 

P(X?:. a)= J: fx(x) dx 

f 00 fx(x) dx = P(X?:. a) :5 µx 
Ja a 

EXAMPLE B.13 Verify Chebyshev inequality, Eq. (B.128). 

From Eq. (B .54) 

By Eq. (B.118) 

Hence, 

J fx(x)dx 
lx-µxl;;,, E 

(B.126) 

(B.127) 

(B.128) 

(B.129) 
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or 

EXAMPLE B.14 Verify Cauchy-Schwarz inequality Eq. (B.129). 

Because the mean-square value of a random variable can never be negative, 

E[(X - aY)2] ~ 0 

for any value of a. Expanding this, we obtain 

E[X2] - 2aE[XY] + a 2E[Y2] ~ 0 

Choose a value of a for which the left-hand side of this inequality is minimum 

E[XY] 
a=--

E[Y2] 

which results in the inequality 

or (E[XY])2 :5 E[X2] E [Y2] 

EXAMPLE B.15 Verify Eq. (B.126). 

From the Cauchy-Schwarz inequality Eq. (B.129) we have 

or 

Then 

from which it follows that 

IPxyl :5 1 



Properties of Linear 
Time-Invariant Systems 
and Various Transforms 

C.1 Continuous-Time LTI Systems 

Unit impulse response: h(t) 

Convolution: y(t) = x(t) * h(t) = f'_ x(-r)h(t - -r)d-r 
- 00 

Causality: h(t) = 0, t < 0 

Stability: £'00 I h(t) I dt < 00 

C.2 The Laplace Transform 

The Bilateral (or Two-Sided) Laplace Transform: 

Definition: 

x(t)~X(s) 

X(s) = J~00x(t)e- st dt 

1 c+joo st 
x(t) = - . f . X(s)e ds 

2J'C]Jc - JOO 

Properties of the Biiaterai Laplace Transform: 

Linearity: alxl(t) + a2x2 (t) - al Xl(s) + a2X2 (s), R' ::>RI n R2 

Time shifting: x(t - t0) - e- sto X(s), R' = R 

Shifting in s: e'0 ' x(t) - X(s - s0), R' = R + Re(s0 ) 

Time scaling: x(at) - 1~ 1 X(s), R' = aR 

Time reversal: x(-t) - X(-s), R' = -R 

Differentiation int: d:~t) - sX(s), R' ::> R 

•• 
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D'" . . . dX(s) , 111erentlatlon ms: - tx(t) - --, R = R 
ds 

Integration: Loo x(•) dT - ~ X(s), R' :JR n {Re(s) > O} 

Some Laplace Transforms Pairs: 

<5(t) - 1, alls 
1 

u(t) - -, Re(s) > 0 
s 

1 
- u(- t) - -, Re(s) < 0 

s 
1 

tu(t) - 2 , Re(s) > 0 
s 

k k! 
t u(t) - k+T• Re(s) > 0 

s 

e-atu(t)- - 1-,Re(s)>-Re(a) 
s+a 

- e-atu(- t) - - 1-, Re(s) < -Re(a) 
s+a 

te-atu(t)- 1 
2 ,Re(s)>-Re(a) 

(s +a) 

- te-atu(- t) - 1 
2 , Re(s) < -Re(a) 

(s +a) 
s 

cos w0tu(t) - 2 2 , Re(s) > 0 
s +w0 

sin w0tu(t) - 2 Wo 2 , Re(s) > 0 
s +w0 

-at S +a 
e cos w0tu(t) - 2 2 , Re(s) > - Re( a) 

(s +a) + w0 

e -at sin w0tu(t) - w~ 2 , Re(s) > - Re( a) 
(s +a) + Wo 

The Unilateral (or One-Sided) Laplace Transform: 

Definition: 

Some Special Properties: 

Differentiation In the Time Domain: 

dx(t) -
-- - sX1(s)-x(O ) 

dt 
2 

d x(t) 2X ( ) (O-) '(O-) ---s IS -sx -x 
dt2 

dn x(t) n n-1 0- n-2 r 0- (n-1) -
---s X1(s)-s x( )-s x( )-···-x (0) 

dtn 
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Integration in the Time Domain: 

Initial value theorem :x(O+) = lim sX1 (s) 
s-oo 

Final value theorem: lim x(t) = lim sX1 (s) 
1-00 s-o 

C.3 The Fourier Transform 

Definition: 

x(t)-1L+X(w) 

X(w)= J~00 x(t)e-jwtdt 

x(t) = - 1-J"" X(w)ejwt dw 
2:rc -oo 

Properties of the Fourier Transform: 

Linearity: a1x1 (t) + a2x2(t)- a1X1 (w) + a2X2 (w) 

Time shifting: x(t - t0 )- e -jwto X(w) 

Frequency shifting: ejwot x(t)- X(w-w0 ) 

Time scaling: x(at)- l~I x( : ) 
Time reversal: x(- t)- X(-w) 

Duality: X(t)- 2:rcx(-w) 

Time differentiation: dx(t) - jwX(w) 
dt 

F d'"" . . ( . ) ( ) dX(w) requency 111erentlat10n: - Jf x t - --
dw 

Integraton: r1 x("i-) dr - :rcX(0)<5(w) + ~X(w) 
J-oo ]W 

Convolution: x1 (t) * x2 (t) - X1 (w) X2 (w) 

Multiplication: x1(t)x2(t)- - 1-X1(w)*X2 (w) 
2:rc 

Real signal: x(t) = xe(t) + x0 (t)- X(w) = A(w) + jB(w) 

X(-w)=X*(w) 

Even component: xe(t) - Re{X(w)} = A(w) 

Odd component: x0 (t) - j Im{X(w)} = jB(w) 

Parseval's Relatlons: 

00 1 00 f x1(t)x2(t)dt=-J X1(w)X2(-w)dw 
-oo 2:rc -oo 

oo 2 loo 2 J_ 00 lx(t)I dt = 2:Tl J_ 00 IX(w )I dw 
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Common Fourier Transforms Pairs: 

<5(t)-1 

<5(t - to)- e -jmto 

1-2.ir<5(w) 

ejmot - 2.ir<5( w - Wo) 

cos mot - .ir[<5(w - mo)+ <5(w +mo)] 

sin mot- j.ir[<5(w - mo)- <5(w +mo)] 

1 
u(t)- .ir<5(w) +­

jw 

1 
u(- t)- .ir<5(w)- -

jw 

e-atu(t)--.-1-, a> 0 
1w+a 

te-a1u(t)- l , a> 0 
(jw+ a)2 

-altl _ 2a >O 
e 2 2' a 

a +w 

1 -alml ----e 
a2 + t2 

e -atz - ~ e -mz /4a' a > 0 

ltl<a sinwa 
-2a--ltl>a wa 

sm at ( ) . {1 
---p w = 

.irt a 0 

2 
sgnt--.-

JW 

lwl<a 
lwl>a 

C.4 Discrete-Time LTI Systems 

Unit sample response: h[n] 

00 

Convolution: y[n] = x[n] * h[n] = ~ x[k]h[n - k] 
k=-00 

Causality: h[n] = 0, n < 0 

00 

Stability: ~ I h[n] I< oo 
n=-oo 

••• 
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C.5 The 2-Transform 

The Bilateral (or Two-Sided) z-Transform: 

Definition: 

00 

X(z) = ,L x[n]z-n 
n=-oo 

1 p ) n-1 x[n] =- X(z z dz 
2:rtj c 

Properties of the z-Transform: 

Lineartity: a1x1[n] + a2x2[n]- a1X1 (z) + a2X2(z), R' :J R1 nR2 

Time shifting: x[n - n0 ] - z -no X(z), R' :J R1 n { 0 <I z I< oo} 

Multiplication by z~: z~x[n] - x( ~o). R' =I Zo IR 
Multiplication by ejQoN: ejQon X[n]- X(e -jQo z), R' = R 

Time reversal: x[- n]- x( ~ ). R' = -j 
Multiplication by n: nx[n] - - z dX(z), R' = R 

dz 
n 1 

Accumulation: ,L x[n]-----1 X(z), R' :J Rn {I z I> 1} 
k=-00 1- z 

Convolution: x1[n]*x2[n]-X1(z)X2(z), R':JR1 nR2 

Some Common z-Transforms Pairs: 

<5[n] - 1, all z 

u[n]--1-=_z_.lzl> 1 
1-z-1 z-1 

-u[-n-1]--1-=-z-, lzl<l 
1-z-1 z-1 

<5[ n - m] - z - m, all z except 0 if m > 0, or oo if m < 0 

anu[n]- 1 -1 =-z-, lzl>lal 
1-az z-a 

-anu[-n-1]- 1 - =-z-, lzl<lal 
1-az 1 z-a 

-1 

nanu[n]- az -1 2 = az 2' lzl>lal 
(1-az ) (z-a) 

-1 

- nanu[- n -1]- az -1 2 = az 2 'I z I< I a I 
(1 - az ) (z - a) 

(n+l)anu[n]- 1 -1 2 =[-z-]2·1zl>lal 
(1- az ) z- a 

z2 -(cosQ ) z 
(cos Q 0n)u[n] - 2 ° , I z I> 1 

z - (2 cos Q0 ) z + 1 
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. (sid".!0 ) z I I (sm Q0n)u[n] - 2 , z > 1 
z - (2 cos Q0 ) z + 1 

z2 - (r cos Q ) z 
(rn cos Q0n)u[n] - 2 ° 2 , I z I> r 

z - (2r cos Q0 )z + r 

. (rsinQ0 )z I I (rn sm Q0n)u[n] - 2 2 , z > r 
z -(2rcosQ0 )z+r 

{
an 0 :5 n ~ N - 1 - 1 - aN z~IN , I z I > 0 
0 otheiw1se 1 - az 

The Unilateral (or One-Sided) z-Transform: 

00 

X1 (z) = ,L x[n] z-n 
n=O 

Some Special Properties: 

Time-Shifting Property: 

x[n - m] - z-m X1 (z) + z-m+lx[-1] + z-m+ 2x[-2] + ··· + x[-m] 

x[n + m]- zmX1 (z)-zmx[O]-zm-lx[l]-···-zx[m -1] 

Initial value theorem: x[O] = lim X(z) 

Final value theorem: lim x[N] = lim(l-z-1)X(z) 
N-oo z-1 

C.6 The Discrete-Time Fourier Transform 

Definition: 

[Ji 
x[n]-X(Q) 

00 

X(Q) = ,L x[n ]e - jQn 
n=-oo 

x[n] = - 1- f X(Q)ejQn dQ 
2:ahn: 

Properties of the Discrete-Time Fourier Transform: 

Periodicity: x[n] - X(Q) = X(Q + 2:rc) 

Linearity: a1x1[n] + a2x2[n] - a1X1 (Q) + a2X2 (Q) 

Time shifting: x[n - n0 ] - e - j'2no X(Q) 

Frequency shifting: ej'2on x[n] - X(Q - Q0 ) 

Conjugation: x*[n] - X*(- Q) 

Time reversal: x[- n] - X(- Q) 

. . {x[ n Im] if n = km 
Time scaling: x(m)[n] = 0 ifn *km - X(mQ) 

••• 
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Frequency differentiation: nx[n] - j dX(Q) 
d(Q) 

First difference: x[n] - x[n - l] - (1 - e - jg) X(Q) 

n 1 
Accumulation: ,L x[k] - .irX(O) <5(Q) + ·g X(Q) 

k=-oo l-e-1 

Convolution: x1[n] *x2[n]- X1 (Q) X2 (Q) 

Multiplication: x1[n]x2 [n] - - 1 X1 (Q)® X2 (Q) 
2.ir 

Real sequence: x[n] = xe[n] + x 0 [n] - X(Q) = A(Q) + jB(Q) 

X(-Q) = X*(Q) 

Even component: xe[n] - Re{x(Q)} = A(Q) 

Odd component: x 0 [n] - j Im{X(Q)} = jB(Q) 

Parseval's Relatlons: 

~ I x[n] 12 = _l J I X(Q) 12 dQ 
L.J 2.ir 2.ir 

n=-oo 

Some Common Fourier Transform Pairs: 

Mnl-1 

Mn - n0 ] - e - j'2no 

x[n] = 1- 2.ir <5(Q), IQ I :5 .ir 

e - jOon - 2.ir <5(Q - ~), I Q 1. I ~I :5 .1Z' 

cos ~n - .ir[<5(Q - ~) + <5(Q + ~)], IQ 1. I ~I :s .ir 

sin ~n - -j.ir[<5(Q - ~)- <5(Q + ~)], IQ 1. I ~I :5 .1Z' 

1 
u[n]-.ir<5(Q)+ -·g• 1~1:5.ir 

1- e 1 

1 
- u[- n -1] - -.ir <5(Q) + · ' I QI :5 .ir 

1- e-1'2 

anu[n] - 1 _ ·g, I a I< 1 
1- ae 1 

-anu[- n -1] - 1 _ ·g, I a I> 1 
1- ae 1 

(n+l)anu[n]- 1_.g 2 ,lal<l 
(1- ae 1 ) 

2 

alnl - 1 - a ' I a I < 1 
1 - 2a cos Q + a2 

x[n]={l lnl,;N, _ sm[c(N, +f )] 
0 lnl>N1 sin(Q/2) 

sin wn (0 < w < .ir) - X(Q) = {1 0 :s 1 Q I :5 w 
.irn 0 W<IQl:s.ir 

00 00 2 
,L Mn - kN0 ]-~ ,L <5(Q - k~], ~ = N.ir 

k=-00 k=-00 0 
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C. 7 Discrete Fourier Transform 

Definition: 

x[n] = 0 outside the range 0 ::5 n ::5 N - 1 

x[n] DFT X[k] 
N-1 

X[k] = :L x[n]W~n k = 0, 1, .. .,N -1 W -j(2n:IN) 
N = e 

n=O 
l N-1 

x[n] = - :L X[k]WNkn 
N n=O 

Properties of the DFT: 

Linearity: a1x1[n] + a2x2[n]- a1X1[k] + a2X2 [k] 

Time shifting: x[n - n0 1modN -w~no X[k] 

Frequency shifting: w;knox[n]- X[k- ko1modN 

Conjugation: x*[n] - X*[- k]modN 

Time reversal: x[ -n 1modN - X[-k 1modN 

Duality:X[n]- Nx[-k1modN 

Circular convolution: x1[n] ® x2 [n] - X1[k]X2 [k] 

Multiplication: x1[n]x2 [n] - _!_ X1[k]® X2 [k] 
N 

n = 0, 1, ... , N - 1 

Real sequence: x[n] = xe[n] + x0 [n] - X[k] = A[k] + jB[k] 

X[- k1modN = X*[k] 

Even component: xJn] - Re{X[k]} = A[k] 

Odd component: x0 [n] - j Im{X[k]} = jB[k] 

Parseval's Relatlon: 

Note 

C.8 Fourier Series 

N-1 N-1 

:L I x[n] 12 = _!_ :L I X[k] 12 
n=O N n=O 

N-1 

x1[n] ®x2 [n] = :L x1[i]x2[n - i]modN 
i=O 

x(t +Tr)= x(t) 

Complex Exponentlal Fourier Serles: 

00 

x(t) = :L ckejkroot 
k=-00 

1 To /2 'k 1 
ck =-J x(t)e- 1 roo dt 

To -To/2 

••• 
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Trigonometric Fourier Serles: 

Harmonic Form Fourier Serles: 

00 

x(t) = C0 + ,L Ck cos(kav- Ok) 
k=l 

Relatlons among Various Fourier Coefficients: 

Parseval's Theorem for Fourier Serles: 

C.9 Discrete Fourier Series 

x[n + N0 ] = x[n] 

No-I 

x[n] = ,L ckejkOon 

k=O 

Parseval's Theorem for Discrete Fourier Serles: 

2:rt 
w =-

0 T. 
0 



Review of Complex Numbers 

D.1 Representation of Complex Numbers 

The complex number z can be expressed in several ways. 
Cartesian or rectangular form: 

z =a+ jb (D.l) 

where j = vCJ" and a and b are real numbers referred to the real part and the imaginary part of z. a and b are 
often expressed as 

a= Re{z} b = lm{z} 

where "Re" denotes the "real part of" and "Im" denotes the "imaginary part of." 
Polar form: 

where r > 0 is the magnitude of z and 8 is the angle or phase of z. These quantities are often written as 

r = lzl 8= Lz 

Fig. D-1 is the graphical representation of z. Using Euler's formula, 

ei8 = cos 8 + j sin 8 

or from Fig. D-1 the relationships between the Cartesian and polar representations of z are 

b 

0 

a= rcos 8 

Im {z} 

a 

b = rsin 8 

8 - lb =tan -
a 

z 

Fig. D-1 

Re {z} 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

(D.6a) 

(D.6b) 
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D.2 Addition, Multiplication, and Division 

If z = r ej81 and z = r ej82 then 1 1 2 2 , 

~ = a1 + jb1 = (a1 + jb1)(a2 - jb2) 

Z2 a1 + jb2 (a2 + jb2Ha2 - jb2) 

'((J +8) z, Z2 = (lj r2)e' t z 

D.3 The Complex Conjugate 

The complex conjugate of z is denoted by z* and is given by 

z* = a - jb = re-j8 

Useful relationships: 

1. zz* = r 2 

2. ~=ej28 
z* 

3. z+z • = 2 Re{z} 

4. z - z* = j2 Im{z} 

5. (z1 + z2 )* = z; + z; 

6. (z1z2 )* = z;z; 

7. (~r = z~ 
Z2 Z2 

D.4 Powers and Roots of Complex Numbers 

The nth power of the complex number z = rej8 is 

zn = rnejnO = rn(COS nfJ + j sin nfJ) 

from which we have De Moivre's relation 

(cos (J + j sin (J)n = cos n(J + j sin n(J 

The nth root of a complex z is the number w such that 

Thus, to find the nth root of a complex number z, we must solve 

which is an equation of degree n and hence has n roots. These roots are given by 

k= 1,2, ... ,n 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.11) 

(D.12) 

(D.13) 

(D.14) 

(D.15) 

(D.16) 

(D.17) 



Useful Mathematical Formulas 

E.1 Summation Formulas 

E.2 Euler's Formulas 

~nan= a 2 

n =O (1- a) 
00 2 
~ 2 n a +a 
L.,,na = 3 

n=O (1-a) 

a =l 

lal<l 

lal<l 

lal<l 

e ± jfJ = cos8±jsin8 

1 () '() cos8=-(e1 +e- 1 ) 
2 
1 ' (J '() sin8=-(e1 -e- 1 ) 

2j 

E.3 Trigonometric Identities 

sin2 8+cos2 8=1 

sin2 8 = _!_(1- cos28) 
2 

cos2 8 = _!_ (1 +cos 28) 
2 

sin28= 2sin8cos8 

cos28 = cos2 8-sin2 8 = 2cos2 8-1=1- 2sin2 8 
sin( a :!::. /3) = sin a cos {3 :!::. cos a sin {3 
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cos( a ± /3) = cos a cos f3 + sin a sin f3 

sin a sin f3 =.!..[cos( a - {3)- cos( a+ {3)] 
2 

1 
cos a cos f3 = -[cos( a - /3) + cos( a + /3)] 

2 

sin a cos f3 =.!..[sin( a - /3) +sin( a+ /3)] 
2 

. . /3 2 . a+f3 a-{3 sma+sm = sm--cos--
2 2 

a+f3 a-{3 
cos a+ cosf3 = 2cos--cos--

2 2 

acosa+bsina=~a2 +b2 cos(a-tan-1 :) 

E.4 Power Series Expansions 

a 00 ak 12 13 
e = }:-=l+a+-a +-a +··· 

k=O k! 2! 3! 

(1 +at = 1 + na + n(n - l) a 2 + ··· + ( n) ak +···+an 
2! k 

1 2 1 3 (- l)k+ I k 
ln(l+a)=a--a +-a -···+ a +··· 

2 3 k 

E.5 Exponential and Logarithmic Functions 

a 
!!__ = ea-{J 

efJ 

ln (a/3)= Ina+ ln f3 

E.6 Some Definite Integrals 

a 
ln-= lna-ln/3 

/3 
ln aP = {3 lna 

log N 
log N=log Nlog a=-a-

b a b l b oga 

oo n' L n -a.xd.x . x e =--
o an+I 

a> 0 

f 00 e -a.x2 d.x = _!_ ~ a > 0 
Jo 2 v-;; 

00 2 1 
f xe -ax d.x = - a > 0 

Jo 2a 

lal<l 



Absolute bandwidth, 209 
Accumulation, 155 
Additivity, 16 
Adjoint (or adjugate) matrix, 449 
Advance , unit, 154 
Aliasing, 253 
Algebra of events , 459 
All-pass filter , 301 
Amplitude distortion, 206 
Amplitude spectrum, 195 
Analog signals , 2 
Analytic signal, 257 
Anticausal sequence , 58 
Anticausal signals , 53 
Aperiodic sequences (see Nonperiodic sequences) 
Aperiodic signals (see Nonperiodic signals) 
Asymptotically stable systems, 337, 340 
Autocorrelation, 396 , 417 

time-averaged, 399 
Autocovariance, 396 
Auxiliary conditions: 

difference equations, 59 
differential equations, 55 

Average power, 5 
normalized, 5 

Band-limited signal , 209, 252 
Band-limited white noise , 420 
Bandpass signal , 209 
Bandwidth: 

absolute , 209 
energy containment, 251 
equivalent, 249 
filter (or system), 209 
signal, 209 
3-dB (or half power), 209 

Bayes rule, 463 
Bayes' theorem, 464 
Bernoulli distribution , 466 
Binomial distribution , 466 
Bilateral (or two-sided) Laplace transform, 101 
Bilateral (or two-sided) z-transform, 149 
Bilinear transformation, 307 
Bode plots, 240 
Bounded-input/bounded-output (BIBO) stability, 17, 54, 

58, 71,90, lll, 131, 180, 337,340 

Canonical simulation: 
the first form, 347, 353 

the second form, 348 , 354 
Canonical State representation: 

the first form , 34 7, 353 
the second form, 348 , 354 

Cauchy-Schwarz inequlity, 476 
Causal sequence , 58 
Causal signal , 53 
Causal system, 16 
Causality, 44 , 53 , 55 , 58 , 89, ll l , 158 
Cayley-Hamilton theorem, 335 , 339, 360, 454 
Chain , 394 
Characteristic equation , 335 , 450 
Characteristic function (see Eigenfunction) 
Characteristic polynomial, 450 
Characteristic values (see Eigenvalues) 
Chebyshev inequlity, 476 
Circular convolution, 277 
Circular shift, 276 
Cofactor, 448 
Complement, 459 
Complex frequency, 199 
Complex numbers, 487 
Complex random process , 394 
Complex signals, 2 
Compressor, 43 
Conditional probability, 462 
Connection between: 

the Fourier transform (continuous-time) and 
the Laplace transform, 198 
the Fourier transform (discrete-time) and 
the z-transform , 266 

Constituent matrix, 336, 340, 456 
Continuous-time LTI systems, 51 

causality, 53 , 111 
described by differential equations , 

54, 206 
eigenfunctions, 54 
frequency response , 203 
impulse response , 51 
properties, 53 
response, 51 
stability, 54 
state space representation, 332 
step response, 52 
system (or transfer) function, 110 

Continuous-time signals, 1 
Continuous-time systems, 15 
Controllability matrix, 368, 380 
Controllable systems, 368, 380 



Convolution: 
circular, 277 
continuous-time, 52 
discrete-time, 56 
in frequency, 201 
integral, 52 
periodic, 67, 86 
properties, 52, 57 
sum,56 

Convolution property: 
discrete Fourier transform (DFT), 277 
Fourier transform (continuous-time), 201, 235 
Fourier transform (discrete-time), 269, 291 
Laplace transform, 108 
z-transform, 155, 168 

Convolution theorem: 
frequency,201,233 
time, 201, 231 

Correlation coefficient, 475 
Correlations, 424 
Counting process, 403 
Covariance, 475 
Covariance stationary, 410 
Covariance matrix, 400 
Cross-correlation, 396, 417 
Cross-covariance, 397 
Cross-power spectral density, 419 

Decimation-in-frequency, 320 
Decimation-in-time, 317 
Degenerative circuits, 143 
Delay, unit, 41, 154 
Determinants, 448 

Laplace expansion, 448 
Deterministic signals, 3 
DFS (see Discrete Fourier series) 
DFT (see Discrete Fourier transform) 
DFT matrix, 315 
Diagonal matrix, 443 
Diagonalization matrix, 451 
Difference equations, 59 

recursive, 59 
Differential equations, 54 

homogeneous solution, 54 
particular solution, 54 

Digital signals, 2 
Digital simulation of analog signals, 274 
Dirac delta function (c5-function) (see Unit 

impulse function) 
Dirichlet conditions: 

for Fourier series, 195 
for Fourier transforms, 198 

Discrete Fourier series (DFS), 261, 278 
properties, 262 

Discrete Fourier transform (DFT): 
definition, 275 
inverse, 275 
N-point, 276 
properties,276 

Discrete frequency (or line) spectra, 195 
Discrete-time LTI systems: 

causality, 58, 158 

described by difference equations, 59 
eigenfunctions, 58 
finite impulse response (FIR), 60 
impulse response, 56 
infinite impulse response (IIR), 60 
properties, 57 
response, 56 
stability, 58, 159 
state space representation, 330 
step response, 57 
system function, 158 

Discrete-time signals, 1 
Discrete-time systems, 15 
Distortionless transmission, 205 
Distribution: 

Bernoulli, 466 
binomial, 466 
exponential, 467 
normal (or Gaussian), 468 
Poisson, 466 
uniform, 467 

Distribution function, 465 
cumulative (cdf), 465 

Duality property: 
discrete Fourier series, 262 
discrete Fourier transform, 277 
Fourier transform (continuous-time), 200, 223 
Fourier transform (discrete-time), 268 

Duration-limited signal, 258 

Eigenfunctions (or characteristic function), 46 
of continuous-time LTI systems, 54 
of discrete-time LTI systems, 58 

Index 

Eigenvalues (or characteristic values), 46, 96, 335, 450 
Eigenvectors, 335, 450 
Energy containment bandwidth, 251 
Energy content, 5 

normalized, 5 
Energy-density spectrum, 202 
Energy signal, 5 
Energy theorem, 202 
Ensemble, 392 

average, 395 
Equivalence property, 34 
Equivalent bandwidth, 249 
Even signal, 3 
Events,459 

algebra of, 459 
certain, 459 
elementary, 459 
equally likely, 462 
independent, 463 
null,459 

Equally likely events, 462 
Ergodicity, 399 
Ergodic, in the autocorrelation, 399 

in the mean, 399 
Expectation (or mean), 473 
Exponential distribution, 467 
Exponential sequences: 

complex, 12 
real, 13 
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Exponential signals: 
complex, 8 
real, 9 

Fast Fourier transform (FFf): 
decimation-in-frequency algorithm, 320 
decimation-in-time algorithm, 317 

Feedback systems, 17 
FFT (see Fast Fourier transform) 
Filter: 

bandwidth, 209 
ideal band pass, 207 
ideal band stop, 207 
ideal frequency-selective, 206 
ideal low-pass, 207 
ideal high-pass, 207 
narrowband, 209 
nonideal frequency-selective, 208 

Filtering, 206 
Final-value theorem: 

unilateral Laplace transform, 135 
unilateral z-transform, 187 

Finite-duration signal, 104 
Finite impulse response (FIR), 60 
Finite sequence, 152 
FIR (see Finite impulse response) 
First difference sequence, 269 
Fourier series: 

coefficients, 194 
complex exponential, 194 
convergence, 195 
discrete (DFS), 261, 278 
harmonic form, 195 
trigonometric, 194 

Fourier spectra, 198, 265 
Fourier transform (continuous-time), 198 

convergence, 198 
definition, 198 
inverse, 198 
properties, 200 
tables, 202, 203 

Fourier transform (discrete-time), 265 
convergence, 266 
definition, 265 
inverse, 265 
properties,267 
tables, 270, 271 

Frequency: 
angular, 193 

fundamental, 193 
complex, 198 
convolution theorem, 201 
fundamental, 9, 10, 193 
radian, 9 

Frequency response: 
continuous-time LTI systems, 203, 237 
discrete-time LTI systems, 271, 294 

Frequency selective filter, 206 
Frequency shifting, 200, 219, 267, 276 

Gain,205 
Gaussian pulse, 236 

Gaussian (or normal) random process, 400 
Generalized derivatives, 8 
Generalized functions, 7 

Harmonic component, 195 
Hilbert transform, 245 
Homogeneity, 16 

Identity matrix, 335, 444 
IIR (see Infinite impulse response) 
Impulse-invariant method, 306 
Impulse response: 

continuous-time LTI systems, 51 
discrete-time LTI systems, 56 

Impulse train, periodic, 216 
Independentevents,463 
Independent increments, 403 
Index set, 392 
Infinite impulse response (IIR), 60 
Initial condition, 55 
Initial rest, 55 
Initial state, 381 
Initial-value theorem: 

unilateral Laplace transform, 135 
unilateral z-transform, 186 

Initially relaxed condition (see Initial rest) 
Interconnection of systems, 72, 112 
Intersection, 459 
Inverse transform (see Fourier, Laplace, etc.) 
Invertible system, 48 

Jacovian, 473 
Joint, cumulative distribution function (cdf), 468 

distribution function, 468 
probability density function (pdf), 469 
probability mass function (pmf), 468 

Jointly wide-sense stationary (WSS), 398 

Laplace transform: 
bilateral (two-sided), 101 
definition, 101 
inverse, 109 
properties, 106, 120 
region of convergence (ROC), 102 
tables, 105, 109 
unilateral (one-sided), 101, 113, 134 

Left-sided signal, 104 
Line spectra, 195 
Linear system, 16 

response to random input, 421, 423 
Linear time-invariant (LTI) system, 16 

continuous-time, 51 
discrete-time, 56 

Linearity, 16, 55, 106 

Magnitude response, 204, 272 
Magnitude spectrum, 195, 198 
Marginal, distribution function, 468 

pdf,469 
pmf, 469 

Markov inequlity, 476 



Matrix (or matrices): 
characteristic equation, 450 
characteristic polynomial, 450 
conformable, 445 
constituent,336,340,456 
controllability, 368, 380 
covariance,400 
diagonal, 443 
diagonalization, 451 
differentiation, 458 
eigenvalues, 450 
eigenvectors, 450 
function of, 452 
idempotent, 456 
identity (or unit), 335, 444 
integration, 458 
inverse, 446, 449 
minimal polynomials, 361, 455 
nilpotent, 361 
nonsingular, 331, 450 
observability, 369, 381 
power,452 
rank, 448 
similar, 331, 452 
singular, 450 
skew-symmetric, 446 
spectral decomposition, 335, 340, 456 
spectrum, 456 
state-transition, 335 
symmetric, 446 
system, 331 
transpose,446 

Mean,395 
Modulation theorem, 228 
Moment,474 
Mutually exclusive (or disjoint) events, 459 

Narrowband random process, 420 
N-dimensional state equations, 331 
Nilpotent, 361 
Noncausal system, 16 
Nonideal frequency-selective filter, 208 
Nonlinear system, 16 
Nonperiodic (or aperiodic), sequence, 5 

signals, 4 
Nonrecursive equation, 59 
Nonsingular matrix, 331, 450 
Normal (or Gaussian) distribution, 468 
Normalized average power, 5 
Normalized energy content, 5 
N-point, DFT, 276 

Sequence, 276 
Null event, 459 
Nyquist sampling interval, 254 
Nyquist sampling rate, 254 

Observability matrix, 369, 381 
Observable system, 369, 381 
Odd signal, 3 
Orthogonal, random variables, 475 

sequences,278 
signals, 210 

Parseval's identity (see Parseval's theorem) 
Parseval's relation, 202 

discrete Fourier series (DFS), 284 
discrete Fourier transform (DFT), 277 
Fourier series, 221 
Fourier transform (continuous-time), 202, 

233,234 
Fourier transform (discrete-time), 270 
periodic sequences, 284 
periodic signals, 221 

Parseval's theorem: 
discrete Fourier series (DFS), 263, 284 
discrete Fourier transform (DFT), 277 
Fourier series, 196 
Fourier transform (continuous-time), 202, 234 
Fourier transform (discrete-time), 270 

Partial fraction expansion, 110, 158 
Pass band, 206 
Period, 4 

fundamental, 4 
Periodic convolution: 

continuous-time, 67 
discrete-time, 86 

Periodic impulse train, 216 
Periodic sequences, 261 
Periodic signals, 4 
Phase distortion, 206 
Phase response, 204, 272 
Phase shifter, 245 
Phase spectrum, 195, 198 
Poisson, distribution, 466 

random process, 407 
Poles, 103 
Power,5 

average, 5 
Power series expansion, 157 
Power signals, 5 
Power spectral density (or power spectrum), 417, 

418,424 
cross-, 419 

Probability, 459 
axiomatic definition, 460 
conditional, 462 
density function (pdf), 467 
mass function (pmf), 465 
measure, 460 
total, 463 

Random sequence, 394 
Random signals, 3, 392 
Random binary signal, 401, 429 
Random experiment, 459 
Random (or stochastic) processes, 392 

atocorrelation, 396 
autocovariance, 396 
continuous-parameter, 394 
cross-correlation, 396 
cross-covariance, 397 
description, 394 
discrete-parameter, 394 
independent, 397 
orthogonal, 397 

Index 
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parameter set, 394 
probabilistic expressions, 394 
realization, 392 
state space, 394 
statistics of, 394 
strict-sense stationary (SSS), 397 
uncorrelated, 397 
wide-sense stationary (WSS), 397 

Random variable (r.v.), 464 
Bernoulli, 466 
binomial, 466 
continuous,467 
exponential, 467, 
normal (or Gaussian), 468 
Poisson, 466 
two-dimensional, 468 
uniform, 467 

Real signals, 2 
Recursive equation, 59 
Region of convergence (ROC): 

Laplace transform, 102 
z-transform, 149 
Relationship between: 

the DFT and the DFS, 276 
the DFT and the discrete-time Fourier 

transform, 276 
Response: 

frequency,203,237,271,294 
impulse, 51, 56 
magnitude, 204, 272 
phase,204,272 
step, 52, 57 
system, 273 
to random input, 421, 431 
zero-input, 55 
zero-state, 55 

Right-sided signal, 104 
Rise time, 250 

Sampled signal, ideal, 252 
Sample space, 392, 459 
Sample function, 392 
Samples, 2 
Sampling, 1 

interval, 2 
Nyquist, 254 
rate (or frequency), 252, 274 
Nyquist,, 254 

Sampling theorem: 
in the frequency domain, 258 
uniform, 254 

Sequence, 1 
complex exponential, 12 
exponential, 13 
finite, 152 
first difference, 269 
left sided, 152 
nonperiodic (or aperiodic), 5 
N-point, 276 
orthogonal, 278 
periodic, 5 
right-sided, 152 

sinusoidal, 14 
two-sided, 152 

Sift-invariant, 16 
Simple random walk, 404 
Shifting in the s-domain, 106 
Signal bandwidth, 209 
Signals: 

analog, 2 
analytical, 257 
anticausal, 53 
band-limited, 209, 252, 254 
bandpass, 209 
causal, 53 
complex,2 
complex exponential, 8 
continuous-time, 1 
deterministic, 3 
digital, 2 
discrete-time, 1 
duration-limited, 258 
energy, 5 
even,3 
finite-duration, 104 
Gaussian pulse, 236 
high-pass, 209 
ideal sampled, 252 
left-sided, 104 
low-pass, 209 
nonperiodic (or aperiodic), 4 
odd,3 
periodic,4 
power,5 
random, 3, 392 
random binary, 401, 429 
real, 2 
real exponential, 
right-sided, 104 
sinusoidal, 9 
telegraph, 427, 428 
time-limited, 104 
two-sided, 104 

Signum function, 254 
Similar matrices, 331, 452 
Similarity transformation, 331, 451 
Simulation, 274, 304 

by bilinear transformation, 307 
canonical, 347, 348 
impulse-invariance method, 306 

Singular matrix, 450 
Sinusoidal sequences, 14 
Sinusoidal signals, 9 
Spectral coefficients, 262 
Spectral decomposition, 335, 340, 456 
Spectrum (or spectra), 195 

amplitude, 195 
discrete frequency, 195 
energy-density, 202 
Fourier, 198, 265 
line, 195 
magnitude, 195, 198 
phase, 195, 198 

s-plane, 102 
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Stability: 

asymptotical, 337, 340 
bounded-input/bounded-output (BIBO), 17, 54, 58, 71, 

90, 111, 131, 180,337,340 
Stable systems, 17 
Standard deviation, 475 
State, 329, 394 
State equations: 

continuous-time, 333, 337 
discrete-time, 331, 334 

State space, 329 
State space representation: 

continuous-time LTI systems, 332 
discrete-time LTI systems, 331, 334 
canonical: 

the first form, 347 
the second form, 348 

State-transition matrix, 335 
State variables, 329 
State vectors, 330 
Stationarity, 397 
Stationary; 

strict-sense (SSS), 397 
wide-sense (WSS), 397 

Statistical (or ensemble) average, 395, 473 
Step response, 52, 57 
Stop band, 206 
Superposition property, 16 
Systems: 

causal and noncausal, 16 
continuous-time and discrete-time, 15 
continuous-time LTI, 51 
controllable, 368 
described by difference equations, 59, 91 
described by differential equations, 54, 75 
discrete-time LTI, 56 
feedback, 17 
interconnection of, 112 
invertible, 48 
linear and nonlinear, 16 
linear time-invariant (LTI), 17, 51 
memoryless, 15 
multiple-input multiple-output, 331 
observable, 369 
stable, 17 
time-invariant and time-varying, 16 
with and without memory, 15 

System function: 
continuous-time LTI systems, 110, 129, 338 
discrete-time LTI systems, 158, 176, 337 

System representation, 14 
System response, 273 

Telegraph signal, 427, 428 
Testing function, 7 
3-dB bandwidth, 209 

Time averages, 399 
Time-averaged, autocorrelation, 399 

mean, 399 
Time convolution theorem, 201, 231 
Time delay, 205 
Time-invariance, 55 
Time-invariant systems, 16 
Time reversal, 118, 155, 200, 268, 277 
Time scaling, 107, 200, 268 
Time shifting, 106, 154, 200, 267, 276 
Time-varying systems, 16 
Total probability, 463 
Transfer function, 111 
Transform circuits, 114 
Transforms (see Fourier, Laplace, etc.) 
Two-dimensional r.v., 468 
Two-sided signal, 104 

Uniform distribution, 467 
Uniform sampling theorem, 254 
Unilateral Laplace transform, 101, 134 
Unilateral z-transform, 149, 184 
Union,459 
Unit-advance operator, 154 
Unit circle, 150 
Unit-delay operator, 154 
Unit-delay element, 41 
Unit impulse function, 6 
Unit impulse sequence, 11 
Unit ramp function, 40 
Unit sample response, 56 

(See also Impulse response) 
Unit sample sequence (see Unit impulse sequence) 
Unit step function, 6, 33 
Unit step sequence, 11 

Variance, 474 
Vector mean, 400 
Venn diagram, 459 

White noise, 419 
band-limited, 420 

z-plane, 150 
z-transform: 

bilateral (or two-sided), 148 
definition, 148 
inverse, 156 
properties, 153, 166 
region of convergence (ROC), 149 
tables, 153, 156 
unilateral (or one-sided), 149, 184 

Zero-input response, 55 
Zero padding, 276 
Zero-state response, 55 
Zeros, 103 
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